
DISCRETE AND CONTINUOUS doi:10.3934/dcdsb.2020131
DYNAMICAL SYSTEMS SERIES B

A GAME-THEORETIC FRAMEWORK FOR AUTONOMOUS

VEHICLES VELOCITY CONTROL: BRIDGING MICROSCOPIC

DIFFERENTIAL GAMES AND MACROSCOPIC MEAN FIELD

GAMES

Kuang Huang

Department of Applied Physics and Applied Mathematics
Columbia University

New York, NY 10027, United States

Xuan Di∗

Department of Civil Engineering and Engineering Mechanics and Data Science Institute

Columbia University
New York, NY 10027, United States

Qiang Du

Department of Applied Physics and Applied Mathematics and Data Science Institute
Columbia University

New York, NY 10027, United States

Xi Chen

Department of Computer Science

Columbia University
New York, NY 10027, United States

(Communicated by Lei Zhang)

Abstract. This paper proposes an efficient computational framework for lon-
gitudinal velocity control of a large number of autonomous vehicles (AVs) and
develops a traffic flow theory for AVs. Instead of hypothesizing explicitly how

AVs drive, our goal is to design future AVs as rational, utility-optimizing agents
that continuously select optimal velocity over a period of planning horizon.

With a large number of interacting AVs, this design problem can become com-
putationally intractable. This paper aims to tackle such a challenge by em-
ploying mean field approximation and deriving a mean field game (MFG) as
the limiting differential game with an infinite number of agents. The proposed
micro-macro model allows one to define individuals on a microscopic level as
utility-optimizing agents while translating rich microscopic behaviors to macro-
scopic models. Different from existing studies on the application of MFG to
traffic flow models, the present study offers a systematic framework to apply
MFG to autonomous vehicle velocity control. The MFG-based AV controller is
shown to mitigate traffic jam faster than the LWR-based controller. MFG also
embodies classical traffic flow models with behavioral interpretation, thereby
providing a new traffic flow theory for AVs.
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1. Introduction.

1.1. Problem statement. When all human-driven vehicles (HVs) on public roads
are replaced by autonomous vehicles (AVs), AVs’ control strategy will be different
from human driving behavior and their traffic flow will be different from what we
observe nowadays. In this paper we would like to understand two questions:

1. What is the new car-following control strategy of AVs at micro-scale?
2. What is the new traffic flow theory for AVs at macro-scale?

Human driving behavior has been extensively modeled at both micro- and macro-
scales. At micro-scale, car following models (CFMs) treat each vehicle as a discrete
entity with a constant length, whose dynamic location and velocity is computed
from an underlying ordinary differential equation (ODE) system [76, 31, 8, 13,
121, 123, 126, 17, 78, 22, 115, 43, 125, 124, 68, 69, 34, 33]. CFMs assume local
interactions among vehicles and local information from neighboring vehicles. The
modeling of each agent requires tracking and keeping records of surrounding agents.
Due to dynamic and volatile characteristics of traffic flow, the interacting agents
and their topology may change quickly. Real time design strategies may become
extremely difficult to implement for heavy traffic scenarios, as the associated mi-
croscopic control mechanism may not be scalable for many vehicles. Moreover, it
is also not easy to account for global traffic information obtained from vehicle con-
nectivity. In contrast, macroscopic traffic flow models treat one vehicle as a particle
without occupying any space. Traffic flow is then described by the continuum den-
sity distribution and velocity field solved from partial differential equations (PDEs)
[76, 75, 67, 120, 122, 50, 23, 60].

AVs, on the other hand, exhibit distinct driving behavior from HVs and thus call
for new models and theories for both microscopic vehicle control and macroscopic
traffic flow.

1.1.1. Microscopic Longitudinal Controller of AVs. To prepare AVs to drive on pub-
lic roads, safe and efficient controller design of autonomous driving is a top priority.
AV controls can be categorized into longitudinal control (i.e., the car-following sce-
nario) and lateral control (i.e., the lane-change scenario). Longitudinal control has
been studied in various scenarios, including: platooning [34, 127, 109, 65], speed
harmonization [70, 71, 6], longitudinal trajectory optimization [109, 64], and eco-
approach and departure at signalized intersections [4, 37, 116]. Connected adaptive
cruise control (CACC) is the most extensively studied longitudinal controller for
AV platooning [96, 26, 45, 84, 103, 74, 104, 52, 90, 74, 80, 73, 72, 99, 47, 109, 64].

This paper is primarily focused on AVs’ longitudinal velocity control in the
car-following scenario. We formally formulate the problem as follows.

Definition 1.1. (Problem Statement): There are N autonomous vehicles indexed
by i ∈ {1, 2, . . . , N} driving in one direction on a closed highway without any
entrance nor exit, with initial positions x1,0, . . . , xN,0. Each car aims to select its
optimal velocity control by minimizing its driving cost functional pre-programmed
by its manufacturer over the predefined planning horizon [0, T ]. We would like to
investigate a scalable velocity control strategy for a large number of AVs.

The modeling details will be discussed in next sections. To develop microscopic
AV controls, one needs to design autonomous driving behavior by some underlying
dynamical models for AVs. A majority of studies simply tailor AVs’ behavior on
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that of HVs by tweaking behavioral parameters (e.g., shorter reaction time or head-
way [62] or k-vehicle ahead information [47]), in which AVs are essentially human
drivers but react faster, “see” farther, and “know” the road environment better.
The models proposed in those studies may not capture AVs’ dynamic learning ca-
pabilities. Such learning capabilities are modeled by the model predictive control
(MPC) or Stackelberg games in some studies [108, ?]. However, those studies suffer
from scalability issues when the number of AVs becomes large.

1.1.2. Macroscopic Traffic Flow Theory for AVs. The connections between CFMs
and macroscopic traffic flow models have been established either using continuum
limit or via change of coordinates, states or formulations. In the former case, a
macroscopic model is the limit of a CFM as the number of cars tends to infinity,
which may be shown rigorously using theory from conservation laws [20, 87] or
measure theory [28]. However, such continuum limit results are only known for
very few CFMs while the general mathematical theories are still not available. As
an alternative, a macroscopic model can be transformed into different coordinates,
different state variables or its variational formulation, so that consistency can be
established between the transformed systems and specific CFMs. For instance,
[24, 25] showed that the Newell’s CFM is a discrete form of the LWR model with the
Greenshields fundamental diagram in Lagrangian coordinates. Along this line, [38]
studied a nonlocal second order model and [58] studied three representations of the
LWR model using different coordinates and state variables. Later, [49] established a
more general framework bridging between a family of CFMs and macroscopic traffic
flow models.

Similarly, deriving a new traffic flow theory for pure AVs requires the establish-
ment of a micro-macro connection from AV control models. There exist limited
studies that characterized traffic flow theories from their respective microscopic
controls of connected and automated vehicles using gas-kinetic theory [77, 81]. In
contrast, a majority of researchers simply derived new fundamental diagrams using
the existing traffic flow theory framework: Assuming that AVs posses shorter reac-
tion time in car-following, AVs’ fundamental diagram has the same free-flow speed
but steeper congestion curve [62] compared to HVs.

In this paper, we aim to derive a macroscopic game-theoretic model from AV
microscopic longitudinal control and fill two gaps in the existing literature by (i)
proposing an efficient computational framework for the longitudinal control of a
platoon of AVs in the car-following scenario and (ii) developing a traffic flow theory
for AVs.

Traditional macroscopic traffic flow models are often classified into two cate-
gories: first-order models such as the Lighthill-Whitham-Richards (LWR) model
[66, 67] and higher-order models such as the Payne-Whitham (PW) model [79, 110]
and the Aw-Rascle-Zhang (ARZ) model [7, 122]. The classification is based on
different control variables. First-order models assume drivers control their speeds
according to the traffic density while higher-order models prescribe a relationship
between drivers’ acceleration rates and the traffic density as well as drivers’ speeds.
The mean field game presented in this paper, which only models AVs’ velocity con-
trols, may be seen as the game-theoretic analogue to traditional first-order models.
Similar to the extensions taken from traditional first-order models to higher-order
models, one can incorporate more factors such as the acceleration rate and develop
higher-order MFGs into our game-theoretic modeling framework. Table 1 shows the
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classification of both traditional and game-theoretic macroscopic traffic flow mod-
els. This paper primarily focuses on first-order MFGs and will leave the discussion
on higher-order MFGs in future research.

Table 1. Classification of macroscopic traffic flow models

Type
Control

Speed Acceleration rate

Traditional First-order (e.g., LWR) Higher-order (e.g., PW/ARZ)
Game-theoretic First-order MFGs Higher-order MFGs

1.2. Literature review. Assuming connectivity between predecessors and follow-
ers as well as between platoon leaders and followers, CACC contains two control
policies: constant spacing (CS) [96, 26, 97] and constant time headway (CTH)
[45, 84, 103, 74, 104, 127, 6, 94]. These two policies can be formulated as a linear
time invariant system (LTI) [98] with disturbances to dynamic and measurement
dynamics [127] or a model predictive control (MPC) system with distributed control
[107, 34, 33].

AVs longitudinal acceleration control can also be modeled using nonlinear car
following models (CFMs). The most widely used CFMs for AVs are Intelligent
Driver Model (IDM) [102, 53, 52, 90, 74, 80, 73, 72, 99, 22, 113, 101, 111, 115, 43,
125, 124] and Optimal Velocity Model (OVM) and its variants with heterogeneous
communication delay or dynamic uncertainty [82, 47, 83, 48, 46]. Unlike OVM, IDM
takes safety into consideration and is thus collision-free. All the aforementioned
studies aim to develop a string stable car-following controller in order to smoothen
traffic flow and prevent stop-and-go waves. But none of them considers control and
physical safety constraints [33]. In other words, interactions among vehicles are not
explicitly modeled [65].

To address the above challenges, some researchers model a full penetration of
AVs as a multi-agent system (MAS), wherein every AV interacts among one an-
other through physical interactions in traffic. A majority of studies that capture
the interactions of vehicles assume that each vehicle carries out a sequence of ac-
celerations over a finite time horizon by optimizing a common or an individual
objective function. Vehicles interact among themselves through the common or
individual cost function as well as safety constraints. Depending on the objective
functional form, these models can be further divided into two classes: cooperative
control and non-cooperative game.

Cooperative control has been widely studied in multi-robotic systems. In light
of multi-robotic-interaction, robots interact with one another and choose optimal
policies by predicting others behavior. Neighboring robots trajectories are treated
as hard safety constraints or boundaries for robots motion planning. Such model-
ing has been critical in multi-robot collision avoidance and human-robot interaction
[68, 69]. A cooperative AV system is a multi-vehicle system that can be controlled
to stabilize traffic flow and smoothen traffic jam [107, 34, 33], to optimize driving
comfort [106, 127], and to improve fuel efficiency [105, 116]. To reduce compu-
tational burdens, a distributed algorithm is usually designed and implemented on
each vehicle [107, 34, 33].

Compared to cooperative AV control, the non-cooperative interactions among
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AVs are relatively understudied. Game theory is a natural approach to model
the non-cooperative strategic interactions among AVs, in which each AV solved an
MPC [108] or MDP [30, 63, 89, 59]. In the game theoretic framework, cars are
referred to as “agents” or “players”. [108] formulated the discrete lane change and
continuous acceleration selection of AVs as a differential game, where the agents’ op-
timal strategies are obtained from solving optimal control problems. [100] modeled
lane-changing behavior as a two-person non-zero-sum non-cooperative game under
(in)complete information. [117, 118, 54, 119] developed a Stackelberg game among
multiple AVs in driving or merging and a mixed-motive game in lane-changing.
[30] modeled multiple AVs acceleration and steering angle velocity selection at in-
tersections with the goal of avoiding collisions. The human-cyber-physical systems
(h-CPS) community extends multi-agent systems to hybrid AVs interacting with
human drivers. For example, [89] designed “local interactions” between an AV and
a human driver to drive efficiently and maximize road capacity, while [59] general-
ized the model to several AVs and HVs. [63] assumed that human drivers choose
driving policies using hierarchical reasoning while AVs optimize car-following and
lane-changing strategies based on a Stackelberg game. The outcomes of all the afore-
mentioned game-theoretic models are equilibrium driving strategies. The computa-
tion of equilibrium may become extremely challenging when the number of coupled
agents becomes large. To get around, [108] applied Model Predictive Control (MPC)
instead of computing an equilibrium. [30] solved a generalized Nash equilibrium by
summing up all vehicles objective functions, which is essentially a cooperative con-
trol. [59] assumed that AVs can directly perform optimization based upon their
predictions of human driver actions rather than human’s actual strategies. None
of these studies investigated quantitatively how close the approximate solutions are
to the original differential games. Nevertheless, because the available game-based
control algorithms suffer from scalability issues, all the aforementioned studies had
to constrain their applications to a limited number of AVs. A scalable traffic sim-
ulation framework was developed where AVs learned their optimal driving policies
in a multi-agent RL environment [113, 112, 114], but the trained policies suffered
from a lack of interpretability.

All the aforementioned studies focus on AVs longitudinal or lateral controls in
discrete games, which suffers from scalability issues. Thus a scalable theory and
algorithm applicable for a large number of coupled AV controllers is urgently needed.

1.3. Contributions of this paper. Instead of hypothesizing explicitly how AVs
drive, our goal is to design future AVs as rational, utility-optimizing agents that
play best driving strategies. In other words, AVs are intelligent agents programmed
by manufacturers to minimize driving costs as a trade-off between traffic safety and
efficiency. Any deviation from driving with the best strategies will increase AVs’
individual costs.

Game theory is a natural tool to model the equilibrium of interacting utility-
optimizing agents. Given that a large number of interacting AVs are designed to
select velocity controls continuously, we seek an innovative game-theoretic tool, i.e.,
the mean field game, for complex multi-agent dynamic modeling [57, 42]. Mean field
approximation allows for the translation of microscopic behaviors and interactions
of agents to a macroscopic level. Most importantly, we will show later in this pa-
per that MFG embodies classical traffic flow models with behavioral interpretation,
thereby providing a new traffic flow theory for AVs.
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2. The modeling framework. This paper contributes to the state-of-the-art of
AV controller design by characterizing the interplay between discrete differential
games and continuous mean field games. Mean field game (MFG) is a game-
theoretic model used to describe complex multi-agent dynamic systems [57, 42].
It has become increasingly popular in designing new decision-making processes for
finance [35, 55], engineering [29, 21], social science [27], pedestrian crowds modeling
[56, 14] and traffic [51, 18, 40, 41]. MFG is a micro-macro model which allows one to
define individuals on a microscopic level as rational utility-optimizing agents while
translating rich microscopic behaviors to macroscopic models. The basic idea is to
exploit the “smoothing” effect of large numbers of interacting individuals. Instead
of solving a long list of highly coupled equations that depict the interactions among
different players, MFG assumes that each player only reacts to a “mass” that results
from an aggregate effect of all the players. Such an approach is called mean field
approximation and helps to simplify the complex multi-agent dynamic systems on
a macroscopic level.

This paper models AVs’ rational and intelligent driving behavior under the mean
field game framework. We shall make the following AVs’ behavioral assumptions:

• Each AV observes global in space traffic state information on the road.
• Each AV plans its velocity control in a time horizon by anticipating others’
behaviors.

• AVs act to utilize their predefined driving costs over the time horizon in a
non-cooperative way.

Four major components of this paper are elaborated below (as shown in Figure 1):

1. A mean field game is derived from the limiting differential game as the number
of AVs tends to infinity. The mean field game is a coupled forward-backward
PDE system that models AVs’ non-cooperative velocity selections at a macro-
scopic scale. The existing research on the application of mean field games to
transportation domain solely worked on specific objective functions [18, 51].
In contrast, we systematically derive the forward continuity equation and the
backward Hamilton-Jacobi-Bellman (HJB) equations with a family of more
general objective functions using mean field approximation.

2. An equilibrium solution, denoted by mean field equilibrium (MFE), is solved
from the mean field game. AVs’ optimal velocity control strategies are repre-
sented by the MFE at a macroscopic level. Existing algorithms for computing
the MFE are mainly designed for a short planning horizon [18] or a special
family of cost functions [56, 12]. In this paper we develop a new algorithm that
works with a longer planning horizon and more general cost functions. Our
algorithm is based on finite difference and multigrid preconditioned Newton’s
method.

3. A tuple of AVs’ discrete controls are constructed from the discretization of
a continuous MFE. We test different numbers of AVs and different objective
functions to illustrate the accuracy of MFE-constructed controls as an ε-Nash
equilibrium of the original differential game. The results show a consistent
trend that the continuous equilibrium solution provides a good approxima-
tion to AVs’ non-cooperative individual controls when the number of AVs is
large. This construction method addresses the scalability issue faced by many
existing literature [108, 30, 59].

4. The proposed mean field game can also be treated as a macroscopic traffic
flow model. It models AVs’ aggregated behavior assuming AVs are predictive
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and rational agents. Along this line, we first establish connections between
the mean field game and the traditional LWR model rigorously. Then we
present some possible AV driving objective functions whose respective mean
field games show interesting traffic patterns.

N-car differential 
game

MFG MFE

MFE-constructed
controls

3. 𝛜-NashMicro

Macro

Newell’s 
CFM

LWR

1. 𝑵 → ∞

Non-Predictive Predictive

2. Solution
Algorithm

3. Discretization

4. Special 
case

Figure 1. From Micro to Macroscopic Traffic Flow Models

The remainder of this paper is organized as follows. Section 3 introduces AVs’
differential game as an extension to one AV’s optimal longitudinal control problem.
In Section 4, the macroscopic MFG is derived from AVs’ differential game with
some assumptions. In Section 5, we illustrate connections between MFG and the
traditional LWR model in a general framework and present two MFG examples
modeling AVs’ kinetic energy, driving efficiency and safety. Then, Section 6 is
devoted to a new algorithm to solve MFG numerically based on Newton’s method.
In Section 7, we construct a tuple of AVs’ discrete controls from the continuous
MFG solution and characterize their accuracy as an approximate equilibrium of
the original differential game. Conclusions and future research directions follow in
Section 8.

3. From optimal control to differential game. We have seen a growing interest
in applying optimal control theory to model AVs’ predictive driving strategies in
car-following and lane-change scenarios [105, 106, 34, 127]. In this section, we briefly
introduce how to formulate a single AV’s longitudinal control as an optimal control
problem and then extend it to a differential game among multiple AVs.

3.1. Optimal longitudinal control of one car. Assume that there are N AVs
indexed by i ∈ {1, 2, . . . , N} driving in one direction on a closed highway of length
L without any entrance nor exit. Denote the ith car’s position at time t by xi(t)
and speed by vi(t). Fix a finite period of time [0, T ] where T > 0, the cars’ motions
on [0, T ] are dictated by the following dynamical system:

ẋi(t) = vi(t), xi(0) = xi,0, i = 1, 2, . . . , N, (1)

where,

ẋi(t): the shorthand notation of dxi(t)
dt

;

xi,0: the ith car’s initial position at the beginning time t = 0.
We use the notation xi(t) = xi(t, vi(·), xi,0), i = 1, 2, . . . , N for simplicity but keep
in mind that xi(·) depends on both vi(·) and xi,0.

For any i = 1, 2, . . . , N , suppose the ith car knows other cars’ speeds:

v−i(t) = [v1(t), · · · , vi−1(t), vi+1(t), · · · , vN (t)]T , (2)
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and positions:

x−i(t) = [x1(t), · · · , xi−1(t), xi+1(t), · · · , xN (t)]T , (3)

for t ∈ [0, T ]. To select an optimal driving speed profile, the ith car solves an optimal
control problem over the planning horizon [0, T ] .

Define the ith car’s driving cost functional as:

JN
i (vi,v−i) =

∫ T

0

fN
i (vi(t), xi(t),x−i(t))
︸ ︷︷ ︸

cost function

dt

︸ ︷︷ ︸

running cost

+ VT (xi(T ))
︸ ︷︷ ︸

terminal cost

, (4)

where,
∫ T

0
fN
i (vi(t), xi(t),x−i(t)) dt: the running cost over the entire planning horizon;

fN
i (·): the cost function that quantifies driving objectives such as efficiency and
safety;
VT (xi(T )): the terminal cost representing the ith car’s preference on its final position
at time T .

We assume that all cars have the same free flow speed denoted by umax. It is
natural to require that the ith car’s speed remains nonnegative and does not exceed
umax. Mathematically, this means that

A = {v(·) : 0 ≤ v(t) ≤ umax, ∀t ∈ [0, T ]} , (5)

is the admissible set of the ith car’s speed selections. The ith car tries to obtain an
optimal velocity control v∗i (v−i(·), t) on the planning horizon [0, T ] such that:

JN
i (v∗i ,v−i) ≤ JN

i (vi,v−i), ∀vi ∈ A. (6)

v∗i (v−i(·), t) depends on other cars’ speeds v−i(·) through their trajectories x−i(·).
We will use the notation v∗i (t) for simplicity. When one car selects its own driving
speed over the predefined planning horizon while everybody else does so simultane-
ously, a non-cooperative differential game forms.

3.2. N -Car differential game. Differential games can be regarded as extensions
of non-cooperative Nash games in dynamic systems. In a differential game, a finite
number of players solve their individual optimal control problems while those opti-
mal control problems are coupled through the dependency of one’s cost functional
on the others’ actions [10]. Along this line, we formulate the N -car differential game
for AVs extending the one-car optimal control problem in Section 3.1:

N AVs indexed by i ∈ {1, 2, . . . , N} are driving in one direction on a closed high-
way without any entrance nor exit, with initial positions x1,0, . . . , xN,0. Each car
aims to select its optimal velocity control by minimizing its driving cost functional
defined in Eq. (4) over the predefined planning horizon [0, T ]. A Nash equilibrium
of the game is a tuple of controls v∗1(t), v

∗
2(t), . . . , v

∗
N (t) satisfying:

JN
i (v∗i ,v

∗
−i) ≤ JN

i (vi,v
∗
−i), ∀vi ∈ A, i = 1, . . . , N. (7)

It is generally difficult to solve an equilibrium when N is large, because it involves
solving N coupled optimal control problems [15]. The goal of this paper is to
develop a scalable framework to solve approximate equilibria for a family of N -car
differential games by resorting to mean field approximation.

The underlying rationale of the developed methodology is articulated as follows:
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4.1. Mean field limit. The general idea of moving from the microscopic N -car
differential game to the macroscopic MFG is to take a mean field limit by letting
the number of cars in the system go to infinity. To allow us to take the limit, we
need to first make two homogeneity assumptions:

(A1) All cars are indistinguishable.
(A2) All cars have the same form of cost function.

It should be mentioned that the above assumptions may be relaxed. For example,
(A2) can be relaxed if multi-class traffic is the subject of study. In this paper we
mainly focus on single-class AVs and leave multi-class models to the future work.

Provided that the N -car differential game satisfies the above assumptions, we
will derive a MFG in four steps:

1. We reformulate the driving cost functional defined in Eq. (4) by introducing
a smooth density (Section 4.1.1);

2. We derive a generic car’s optimal control problem from the differential game
by taking the mean field limit when N → ∞ (Section 4.1.2);

3. We derive a set of HJB equations from the generic car’s optimal control prob-
lem (Section 4.1.3);

4. We obtain an evolution equation and show that it is exactly the continuity
equation widely used in macroscopic traffic flow models (Section 4.1.4).

4.1.1. Step 1: Traffic Density Smoothing. Traffic density is a crucial quantity to
manifest the macroscopic aspect of traffic flow. Assumption (A1) enables us to
replace states of individual cars in the driving cost functional defined in Eq. (4) by
an aggregated traffic density.

More precisely, for any i = 1, . . . , N , assumption (A1) implies that the function
fN
i (vi(t), xi(t),x−i(t)) does not depend on the permutation of x1(t), x2(t), . . . , xN

(t). According to [15], we can replace the arguments xi(t),x−i(t) in fN
i (vi(t), xi(t),

x−i(t)) by an empirical density distribution of x1(t), x2(t), . . . , xN (t), which is de-
fined as:

ρN (x, t) =
1

N

N∑

j=1

δ (x− xj(t)) , (8)

where δ(·) is the Dirac mass.
However, ρN is not a smooth function, leading to non-smoothness of the new

driving cost functional. To resolve this issue, we first approximate ρN using a
smoothing kernel.

Suppose that ξ(x) is a smoothing kernel which is smooth and nonnegative, and
satisfies

∫

R
ξ(x) dx = 1. We take a smoothing parameter σ > 0 and define the scaled

kernel ξσ(x) =
1
σ
ξ( x

σ
). The physical meaning of using the scaled kernel ξσ(x) is that

the ith car contributes to the density in a “window” [xi(t)−σ, xi(t)+σ] rather than
only at the point xi(t) (i = 1, . . . , N) so that the density changes smoothly with
location x. The smooth density distribution is defined as:

ρNσ (x, t) =
1

N

N∑

j=1

ξσ (x− xj(t)) . (9)

With the smooth density, the ith car’s cost function is rewritten as:

fN
i (vi(t), xi(t),x−i(t)) , fi

(
vi(t), ρ

N
σ (·, t)

)
, (10)
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where vi(t) is the car’s speed and ρNσ (·, t) is the traffic density over the whole road
at time t. Generally fi may have arbitrary dependence on ρNσ (·, t) as well as its
spatial derivatives. To simplify, we make the assumption:

(A3) The cost function only depends on the traffic density at the car’s position.

By assumption (A3) we can write:

fi
(
vi(t), ρ

N
σ (·, t)

)
, fi

(
vi(t), ρ

N
σ (xi(t), t)

)
, (11)

where fi(·, ·) is a bivariate function of speed and density, i = 1, 2, . . . , N .
By assumption (A2), we have f1 = f2 = · · · = fN = f , where f(·, ·) is a bivariate

cost function shared by all cars. In summary, the ith car’s driving cost becomes:

JN
i (vi,v−i) =

∫ T

0

f
(
vi(t), ρ

N
σ (xi(t), t)

)
dt+ VT (xi(T )) . (12)

It should be noted that the density information ahead of and behind the ith car
is asymmetric. At any time t1 ∈ [0, T ), the car anticipates the model predicted
density ρNσ (xi(t2), t2) for a later time t2 ∈ (t1, T ] to select its driving speed at time
t1. Since the ith car drives at positive speeds, it always holds that xi(t2) ≥ xi(t1).
The fact yields that the cars ahead of the ith car may contribute to the density
ρNσ (xi(t2), t2) but never will the cars behind the ith car do so. Consequently, the
ith car’s velocity control is not influenced by the cars behind it.

Definition 4.1. 1. N-car mean field type differential game [DG]:
N AVs indexed by i ∈ {1, 2, . . . , N} are driving in one direction on a

closed highway of length L without any entrance nor exit, with initial posi-
tions x1,0, . . . , xN,0. Each car aims to select its optimal velocity control by
minimizing its driving cost functional defined in Eq. (12) over the predefined
planning horizon [0, T ].

2. N-car mean field type differential game equilibrium [DGE]:
A Nash equilibrium of the N -car mean field type differential game is a tuple

of controls v∗1(t), v
∗
2(t), . . . , v

∗
N (t) satisfying:

JN
i (v∗i ,v

∗
−i) ≤ JN

i (vi,v
∗
−i), ∀vi ∈ A, i = 1, . . . , N. (13)

At equilibrium, no car can improve its driving cost by unilaterally switching
its velocity control.

We see from Eq. (12) that each car only responds to and contributes to the
density distribution ρNσ of all cars through driving costs. Such a property allows us
to take the mean field limit of the game as N tends to infinity.

4.1.2. Step 2: Optimal Control of a Generic Car. We take the mean field limit in
the following way: fix the ratio L/N , let N → ∞ and σ/L → 0. Intuitively that
means we fix the space headway and shrink the “window” so that in the limiting case
one car only sees a local density. Under the limit, using mean field approximation
we replace ρNσ (x, t) that is computed from N cars’ positions by a continuum density
distribution ρ(x, t). Note that all cars are anonymous, we can ignore the index i and
consider a generic car starting from x0 at t = 0. Denote the car’s velocity control
by v(t) and trajectory by x(t) for t ∈ [0, T ], we rewrite Eq. (12) as:

J(v) =

∫ T

0

f (v(t), ρ(x(t), t)) dt+ VT (x(T )) , (14)
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where its dynamic motion is described by

ẋ(t) = v(t), x(0) = x0, (15)

and its velocity control v(·) is constrained by

0 ≤ v(t) ≤ umax, ∀t ∈ [0, T ]. (16)

4.1.3. Step 3: HJB Equation. The generic car solves the optimal control problem
Eqs. (14)(15)(16) to obtain its optimal velocity control v∗(t), which depends on the
generic car’s initial position x0. The initial position x0 can be any position on the
road. Rather than solving an infinite number of optimal control problems for every
initial position, we use dynamic programming and derive a set of HJB equations
that characterize the optimality condition of the velocity control. Such an approach
is widely used in optimal control theory [9].

We first introduce the Bellman value function V (x, t) and the optimal velocity
field u(x, t). V (x, t) is defined as the optimal cost for the generic car starting from
location x at time t:

V (x, t) = minv:[t,T ]→[0,umax]

[
∫ T

t

f (v(s), ρ(x(s), s)) ds+ VT (x(T ))

]

, (17a)

s.t. ẋ(s) = v(s), x(t) = x, (17b)

and u(x, t) is defined as the car’s speed at location x and time t when choosing the
optimal control of Eqs. (17a)(17b).

From another point of view, v∗(t) is the Lagrangian optimal velocity control
while u(x, t) is the Eulerian optimal velocity field. Once u(x, t) is solved for all x
and t, the optimal cost of the original problem Eqs. (14)(15)(16) is given by V (x0, 0)
and the optimal control v∗(t) is given by the feedback law:

v∗(t) = u(x∗(t), t), (18)

ẋ∗(t) = v∗(t), x∗(0) = x0. (19)

Then we derive the HJB equations for V (x, t) and u(x, t) from Eqs. (17a)(17b).
Suppose the generic car starts from position x at time t. Consider a small time step
∆t, we can divide the driving cost in Eq. (17a) into two parts on [t, t + ∆t] and
[t+∆t, T ]:

∫ T

t

f (v(s), ρ(x(s), s)) ds+ VT (x(T ))

=

∫ t+∆t

t

f(v(s), ρ(x(s), s)) ds+

∫ T

t+∆t

f(v(s), ρ(x(s), s)) ds+ VT (x(T )) . (20)

Correspondingly, the generic car’s decision process is also divided into two stages.
First it selects the speed v(t) = α ∈ [0, umax] on the horizon [t, t + ∆t]. Then it
moves to x + α∆t at time t + ∆t and selects its speed profile over the rest of the
planning horizon [t+∆t, T ].

The running cost on [t, t+∆t] is approximated by

∫ t+∆t

t

f(v(s), ρ(x(s), s)) ds = f(α, ρ(x, t))∆t+O(∆t2). (21)
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Note that from the new position x + α∆t, the optimal cost on [t + ∆t, T ] the car
can obtain is V (x+ α∆t, t+∆t). By dynamic programming principle we have:

V (x, t) = min0≤α≤umax

{
f(α, ρ(x, t))∆t+ V (x+ α∆t, t+∆t) +O(∆t2)

}
. (22)

Take the first order Taylor’s expansion of V (x+ α∆t, t+∆t) near (x, t), denote Vt

and Vx the partial derivatives ∂V
∂t

and ∂V
∂x

. Eq. (22) yields:

V (x, t) = min0≤α≤umax
{f(α, ρ(x, t))∆t+ V (x, t) + α∆tVx(x, t) + ∆tVt(x, t)

+ O(∆t2)} . (23)

Eliminating V (x, t) from both sides, dividing both sides by ∆t and letting ∆t → 0,
we get:

Vt +min0≤α≤umax
{f(α, ρ) + αVx} = 0. (24)

We assume that f is strictly convex with respect to its first argument, the driving
speed. Then we can introduce:

f∗(p, ρ) = min0≤α≤umax
{f(α, ρ) + αp}, ∀p ∈ R, (25)

so that −f∗(−·, ρ) is the Legendre transformation of f(·, ρ) for any ρ. Using f∗,
Eq. (24) can be rewritten as:

Vt + f∗(Vx, ρ) = 0. (26)

The strict convexity of f with respect to speed yields the uniqueness of the minimizer
in Eq. (25) that is given by f∗

p (p, ρ) for any p ∈ R, where fp denotes f ’s derivative
with respect to p. As a result, the optimal velocity field u(x, t) is given by:

u = argmin0≤α≤umax
{f(α, ρ) + αVx} = f∗

p (Vx, ρ). (27)

We highlight the convexity assumption on f because the car’s optimal speed se-
lection is not unique even in a single time step without the assumption. In real
applications, it is reasonable to assume AVs’ utility satisfies the law of diminishing
marginal returns [92, 44], i.e., increasing speed results in smaller increase in utility.
As a corollary to the law, the utility should be concave with respect to speed. Then
the convexity assumption follows from the fact that AVs’ driving cost is just the
negative of the utility.

When t = T , Eq. (17a) becomes V (x, T ) = VT (x), which gives the terminal
condition of the HJB equations.

Summarizing all above, given the density distribution ρ(x, t), Eqs. (17a)(17b)
lead to the following HJB equations:

(HJB)

{
Vt + f∗(Vx, ρ) = 0, (28a)

u = f∗
p (Vx, ρ). (28b)

with V (x, T ) = VT (x). V (x, t) and u(x, t) are solved backward from the HJB
equations.

4.1.4. Step 4: Continuity Equation. When all cars follow the optimal velocity con-
trol, the aggregated density distribution ρ(x, t) evolves according to the optimal
velocity field u(x, t) obtained from the HJB equations. An evolution equation can
be derived from the conservation of cars:

(CE) ρt + (ρu)x = 0, (29)

to describe the evolution of density ρ(x, t) from some initial density distribution
ρ(x, 0) = ρ0(x). Eq. (29) is exactly the continuity equation (CE) widely used



14 KUANG HUANG, XUAN DI, QIANG DU AND XI CHEN

in traffic flow models [78]. Given velocity field u(x, t) known, Eq. (29) is solved
forward.

4.2. Mean field game system. Summarizing Eqs. (29)(28a)(28b), when the HJB
and continuity equations are coupled, we have the following MFG system with the
cost function f(u, ρ):

[MFG]







(CE) ρt + (ρu)x = 0, (30a)

(HJB) Vt + f∗(Vx, ρ) = 0, (30b)

u = f∗
p (Vx, ρ). (30c)

The associated initial and terminal conditions are provided by the initial density
ρ(x, 0) = ρ0(x) and the terminal cost V (x, T ) = VT (x), respectively. The choice
of boundary conditions depends on the traffic scenario. When cars drive on a ring
road without any entrance nor exit, periodic boundary conditions are specified as:
ρ(0, t) = ρ(L, t), V (0, t) = V (L, t); When the road has an entrance at x = 0 and an
exit at x = L, we should impose the boundary conditions ρ(0, t) = ρentr(t) repre-
senting the inflow at the entrance and V (L, t) = Vexit(t) representing the boundary
cost when cars leave the road at the exit. This paper will focus on the periodic
boundary conditions.

Denote the system’s solution by ρ∗(x, t) and u∗(x, t). The optimal velocity field
u∗(x, t) is our primary focus and will thus be referred as the mean field equilibrium
(MFE) in the subsequent analysis.

Remark 1. [MFG] is the general MFG system with any cost function f(u, ρ) that
is strictly convex with respect to u. The existence and uniqueness of MFE for the
general system remains to be investigated. MFGs with some special cost functions
are shown to have a unique MFE, see discussions in Section 5.2.1.

Remark 2. The MFG system derived here is usually called a non-viscous MFG
system, because we assume no stochasticity on cars’ dynamics. Accordingly, [MFG]
has no viscous terms such as ρxx and Vxx. For theory on non-viscous MFG, we refer
to [15, 16].

5. Mean field games in traffic flow. MFG shares the same continuity equation
with traditional traffic flow models but characterizes cars’ reactions to traffic con-
gestions in a different way. Traditional traffic flow models prescribe a relationship
between traffic density and the car’s speed or acceleration, while MFG models the
car’s speed selection as an optimal control problem with a prescribed cost function.
Based upon such understanding, MFG can be seen as a macroscopic traffic flow
model that models AVs’ predictive and rational driving behavior. In this section we
first establish connections between MFG and the traditional LWR model, and then
present MFG examples by choosing appropriate cost functions to quantify AVs’
driving objectives.

5.1. Connections between MFG and LWR. The Lighthill-Whitham-Richards
(LWR) model [67, 85] is a representative of traditional traffic flow models, so it
would be helpful to establish connections between MFG and LWR. [51, 18] have
revealed such connections focusing on a specific class of LWR with the Greenshields
fundamental diagram. [51] presented a cost function whose corresponding MFG
takes the Greenshields LWR as a solution. [18] claimed that the Greenshields LWR
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results are only obtained with short time horizon or small initial density [5]. Here
we show the solution existence of [MFG-LWR] from Theorem 5.1. When the solu-
tion uniqueness holds for [MFG-LWR], its unique solution is the solution of [LWR]
and the two systems [MFG-LWR] and [LWR] are equivalent. The equivalence be-
tween [MFG-LWR] and [LWR] is also supported by the numerical experiment. The
rigorous proof will be left for the future research.

Remark 4. VT (x) = C means that cars have no preference on their final positions.
One can specify the preference by imposing a non-constant terminal cost [56]. In
this paper we will always assume the terminal cost VT (x) = C.

Theorem 5.1 will be verified with the Greenshields desired speed function:

U(ρ) = umax(1−
ρ

ρjam
), (34)

later in the numerical experiment, where ρjam is the jam density.

5.1.2. LWR as the myopic limit of MFG. To demonstrate the other connection
between MFG and LWR, we consider a general cost function f(u, ρ) and its corre-
sponding MFG system [MFG].

Given the planning horizon [0, T ], a generic car selects its optimal velocity control
to minimize the driving cost functional defined in Eq. (14). If the generic car is
myopic and does not concern the future, intuitively it will select the speed u to
minimize the instantaneous cost, i.e., u = argmin0≤α≤umax

f(α, ρ) at any time t,
which leads to a LWR model with the desired speed:

U(ρ) = argmin0≤α≤umax
f(α, ρ) = f∗

p (0, ρ), (35)

according to Eq. (27).
To give a rigorous description of the myopic behavior, we define the myopic limit

to be the limiting process when the length of the planning horizon T → 0. In the
myopic limit, the anticipation effect of future traffic tends to zero. It is expected
that the solution of the MFG will converge to the solution of the LWR with the
desired speed function U(ρ) defined in Eq. (35).

Theorem 5.2. Under the conditions that: (i) f(u, ρ) is continuously differentiable,
strictly convex with respect to u; (ii) the terminal cost VT (x) = C where C is an
arbitrary constant for [MFG]; (iii) there exists T0 > 0 such that whenever 0 <
T ≤ T0, with initial density ρ0(x) and periodic boundary conditions, [MFG] has a
unique solution ρ(T )(x, t), u(T )(x, t) and V (T )(x, t) which are uniformly bounded up
to second order derivatives on 0 ≤ x ≤ L, 0 ≤ t ≤ T ≤ T0. When T → 0 we have:

lim
T→0

u(T )(x, 0) = U(ρ0(x)), ∀x ∈ [0, L]. (36)

Proof. There exists a constant M > 0 such that |V
(T )
xt (x, t)| ≤ M for all 0 ≤ x ≤ L

and 0 ≤ t ≤ T ≤ T0. Integrate the inequality from t = T to t = 0, note that

V
(T )
x (x, T ) = dVT (x)

dx
= 0 for all 0 ≤ x ≤ L, we get:

|V (T )
x (x, 0)| ≤ MT, (37)

for all 0 ≤ x ≤ L and 0 ≤ T ≤ T0. Hence V
(T )
x (x, 0) → 0 when T → 0, ∀x ∈ [0, L].

Since f(u, ρ) is continuously differentiable and strictly convex with respect to
u, f∗

p (p, ρ) is continuous with respect to p. From Eq. (30c) we deduce that when
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T → 0:

u(T )(x, 0) = f∗
p (V

(T )
x (x, 0), ρ0(x)) → f∗

p (0, ρ0(x)) = U(ρ0(x)), ∀x ∈ [0, L]. (38)

Remark 5. Typically a desired speed function U(ρ) is supposed to satisfy certain
conditions. For example: (i) U ′(ρ) ≤ 0; (ii) U(0) = umax; (iii) U(ρjam) = 0. In The-
orem 5.2, U(ρ) is computed from Eq. (35). The conditions on U(ρ) are rewritten as:
(i) f∗

pρ(0, ρ) ≤ 0; (ii)f∗
p (0, 0) = umax; (iii) f

∗
p (0, ρjam) = 0. Here the subscripts rep-

resent respective partial derivatives. Using the identity fu(f
∗
p (p, ρ), ρ) = p between

f and f∗ [86], we can translate the conditions on f∗ to those on f . As a result, we
require the cost function f(u, ρ) to satisfy: (i) fuρ(U(ρ), ρ) ≥ 0; (ii) fu(umax, 0) = 0;
(iii) fu(0, ρjam) = 0. These conditions provide a way to calibrate the cost function
from its myopic behavior.

We can now interpret LWR from the perspective of MFG, which provides a richer
behavioral foundation and a more general and flexible framework.

5.2. MFG examples. As a micro-macro game-theoretic model, MFG can capture
richer driving behaviors than LWR by choosing various cost functions. Different
cost functions relate to different driving objectives and consequently lead to different
MFGs. In this subsection, we will present two concrete cost functions quantifying
AVs’ kinetic energy, driving efficiency and safety.

5.2.1. MFG-Separable. We will propose a special cost function whose corresponding
MFG has nice mathematical properties. This family of cost functions is called
separable [5], i.e., f(u, ρ) can be written as the sum of two univariate functions with
respect to u and ρ. Denote ρjam the jam density, we propose a cost function that is
separable and models AVs’ kinetic energy, driving efficiency and safety:

fSep(u, ρ) =
1

2

(
u

umax

)2

︸ ︷︷ ︸

kinetic energy

−
u

umax
︸ ︷︷ ︸

efficiency

+
ρ

ρjam
︸ ︷︷ ︸

safety

. (39)

In Eq. (39), the first term of fSep(u, ρ) represents the kinetic energy; the second
term quantifies driving efficiency by speed magnitudes; the last term quantifies
driving safety using a traffic congestion penalty term on density ρ, meaning that
AVs tend to avoid staying in high density areas. We denote the corresponding MFG
by [MFG-Separable].

Since the cost function fSep(u, ρ) is separable, [MFG-Separable] is a potential
game when there are no speed constraints [12]. [16] proved the existence and unique-
ness results for a family of potential MFGs including the one presented here.

When there are speed constraints 0 ≤ u ≤ umax, the minimum of f(u, ρ) + uVx

is attained at:

u = max {min {umax(1− umaxVx), umax} , 0} . (40)

So the MFG system is:

[MFG-Separable]







ρt + (ρu)x = 0, (41a)

Vt + uVx +
1

2

(
u

umax

)2

−
u

umax
+

ρ

ρjam
= 0, (41b)

u = max {min {umax(1− umaxVx), umax} , 0} . (41c)
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5.2.2. MFG-NonSeparable. We propose another cost function that quantifies driv-
ing safety in a more explicit way. The cost function is:

fNonSep(u, ρ) =
1

2

(
u

umax

)2

︸ ︷︷ ︸

kinetic energy

−
u

umax
︸ ︷︷ ︸

efficiency

+
uρ

umaxρjam
︸ ︷︷ ︸

safety

. (42)

It quantifies kinetic energy and driving efficiency in the same way as in fSep but uses
a different traffic congestion penalty term on the product of density and speed to
quantify driving safety. The new penalty term means that AVs tend to decelerate in
high density areas and accelerate in low density areas. We denote the corresponding
MFG by [MFG-NonSeparable].

Let us rewrite the cost function in a different way:

fNonSep(u, ρ) =
1

2u2
max

(U(ρ)− u)2 −
1

2

(

1−
ρ

ρjam

)2

, (43)

where U(ρ) is the Greenshields desired speed function defined in Eq. (34). It pro-
vides a different way to interpret the cost function fNonSep that AVs tend to be not
too far from human driving, and they like to stay in low density areas.

Comparing Eq. (43) with Eq. (32), we see that fNonSep can be seen as a variant
of fLWR. That is one reason why we pick the cost function fLWR in Section 5.1.1.

With speed constraints 0 ≤ u ≤ umax, the minimum of f(u, ρ) + uVx is attained
at:

u = max

{

min

{

umax(1−
ρ

ρjam
− umaxVx), umax

}

, 0

}

. (44)

The corresponding MFG system is:

[MFG-NonSeparable]



























ρt + (ρu)x = 0, (45a)

Vt + uVx +
1

2

(

u

umax

)2

−

u

umax

+
uρ

umaxρjam
= 0, (45b)

u = max

{

min

{

umax(1−
ρ

ρjam
− umaxVx), umax

}

, 0

}

. (45c)

Remark 6. Letting Vx → 0, Eq. (44) becomes u = umax(1− ρ/ρjam), which is the
same as the Greenshields desired speed defined in Eq. (34). From Theorem 5.2 we
know that the Greenshields LWR is the myopic limit of [MFG-NonSeparable].

[MFG-NonSeparable] can also be interpreted from the perspective of traditional
higher-order traffic flow models. To see this, let umax = ρjam = 1, remove the speed
constraints 0 ≤ u ≤ umax and take Eq. (45c) into Eq. (45b). Then we obtain the
following system:







ρt + (ρu)x = 0, (46a)

Vt =
1

2
u2, (46b)

ρ+ u+ Vx = 1. (46c)

Differentiating Eq. (46b) with respect to x and Eq. (46c) with respect to t yields:

Vtx = uux, (47)

ρt + ut + Vxt = 0. (48)
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Using the identity Vxt = Vtx, we can eliminate the variable V from the HJB equa-
tions and obtain:

ut + uux = −ρt. (49)

Eq. (49) coupled with the continuity equation (46a) forms the reduced MFG system:

[reduced MFG]

{
ρt + (ρu)x = 0, (50a)

ut + uux = −ρt. (50b)

The reduced MFG system has the same initial condition ρ(x, 0) = ρ0(x) as that of
the original system. Moreover, the original system’s terminal condition VT (x) = C
and Eq. (46c) yield the terminal condition ρ(x, T ) + u(x, T ) = 1 of [reduced MFG].

The reduced MFG system [reduced MFG] has a similar structure to traditional
higher-order traffic flow models. Eq. (50a) is the continuity equation and Eq. (50b)
has an interpretation that the car’s acceleration ut + uux is exactly the negative
temporal derivative of the density.

The proposed MFG systems are more effectively simulated than discrete differ-
ential games. We will discretize the systems in space and time and then present a
solution algorithm to compute the MFE.

6. MFE solution algorithm. Because of the forward-backward structure, the
MFG system can be solved in neither forward nor backward direction. Given the
density profile ρ(x, t), the HJB equations (30b)(30c) can be solved backward from
t = T to t = 0 with terminal cost VT (x) for u(x, t) and V (x, t); given the velocity
field u(x, t), the continuity equation (30a) can be solved forward from t = 0 to
t = T with initial density ρ0(x) for ρ(x, t). However, the two directions can not be
matched simultaneously. So it is challenging to compute the MFE numerically.

Based on the existing studies, there have been three types of numerical meth-
ods considered for MFG: fixed-point iteration, variational method and Newton’s
method.

The fixed-point iteration solves the forward and backward equations alternat-
ingly. It is easy to implement once appropriate forward and backward solvers are
picked [21, 18]. However, the iterations converge only when T is small, that is, for
a short planning horizon. Moreover, there is no theory to estimate how small T
should be to guarantee the convergence.

The variational method deals with separable cost functions and potential MFGs.
In this case, it is shown that the MFG system is equivalent to an optimization
problem constrained by the continuity equation [12]. Then a variety of optimization
tools can be applied [56, 11, 19]. The variational method works for any planning
horizon but relies on the separability of the cost function. [56] used the variational
method to solve MFGs in pedestrian crowds modeling.

A more general approach is based on the Newton’s method. Such an approach is
first proposed by [2, 1, 3] to solve a family of MFGs. The key idea is to take both
forward and backward equations as a single nonlinear system and solve the nonlinear
system by the Newton’s method. This method is suitable for our purpose because
it has no requirements on the length of the planning horizon nor the separability of
the cost function. However, the Newton’s method may fail to converge if one does
not have a good initial guess to the solution. So tricks to improve the convergence
are needed when applying the Newton’s method.
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This paper develops a multigrid preconditioned Newton’s finite difference algo-
rithm for MFG. It works well with different cost functions and planning horizons.
Numerical examples of MFGs proposed in Section 5 are shown using this algorithm.

6.1. Algorithm. Let us divide the road [0, L] into cells {[xj−1, xj ]}
Nx

j=1 and the

planning horizon [0, T ] into time steps {tn}Nt

n=0 with spatial and temporal step sizes
∆x = L/Nx and ∆t = T/Nt. To impose the periodic boundary conditions, x0 and
xNx

are assumed to be the same location. Denote ρnj the average density and un
j the

average velocity on the jth cell [xj−1, xj ] at time tn (j = 1, . . . , Nx; n = 0, . . . , Nt).
Denote V n

j = V (xj , t
n).

We first discretize the continuity equation (30a) by a finite volume conservative
Lax-Friedrichs scheme [61]:

ρn+1
j =

1

2
(ρnj−1 + ρnj+1)−

∆t

2∆x
(ρnj+1u

n
j+1 − ρnj−1u

n
j−1). (51)

We then discretize the HJB equations (30b)(30c) by an upwind scheme:

V n+1
j − V n

j

∆t
+ f∗

(

V n+1
j − V n+1

j−1

∆x
, ρnj

)

= 0, (52)

un
j = f∗

p

(

V n+1
j − V n+1

j−1

∆x
, ρnj

)

. (53)

Remark 7. To ensure the stability of scheme (51), the CFL condition α∆t ≤ ∆x
should be posed [61] where α = maxj,n |u

n
j |. When the MFG has speed constraints

0 ≤ u ≤ umax, it suffices to ensure umax∆t ≤ ∆x.

The initial and terminal conditions are discretized by:

ρ0j =
1

∆x

∫ xj

xj−1

ρ0(x) dx, V Nt

j = VT (xj). (j = 1, . . . , Nx) (54)

Eqs. (51)(52)(53)(54) form a closed system for unknowns {ρnj }
0≤n≤Nt

1≤j≤Nx
,

{un
j }

0≤n≤Nt−1
1≤j≤Nx

and {V n
j }0≤n≤Nt

1≤j≤Nx
. The system can be written as:

F (w) = 0, (55)

where w ∈ R
3NxNt+2Nx is a long vector containing all ρnj , un

j and V n
j , and F :

R
3NxNt+2Nx → R

3NxNt+2Nx encodes all equations.
Eq. (55) may lead to a large nonlinear system. We denote J the Jacobian matrix

of F and apply the Newton’s method to solve Eq. (55):

wn+1 = wn − J(wn)−1F (wn), (56)

with any initial guess w0.
To improve the convergence of Newton’s iterations, we apply multigrid to get a

good initial guess and preconditioning to accelerate the linear solver. Multigrid and
preconditioning are widely used tricks in numerical algorithms, see [36, 32].

• Multigrid: Start with a coarse grid N
(0)
x × N

(0)
t so that the MFG system

is easy to solve. Then iteratively refine the grids and solve the MFG system

on finer grids N
(k)
x × N

(k)
t , k = 1, 2, . . . until getting a solution of desired

resolution. At step k, interpolate the solution w(k−1) from the grid N
(k−1)
x ×

N
(k−1)
t onto the finer grid N

(k)
x × N

(k)
t , which provides a good initial guess

when solving on the finer grid by the Newton’s method.
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• Preconditioning: At each Newton’s iteration a linear system

J(wn)(wn+1 − wn) = −F (wn), (57)

need to be solved. We use the GMRES iterative linear solver [88] since J(wn)
is sparse . However, the ill-posedness of the linear system leads to bad con-
vergence. To solve the issue, we pick an approximate matrix J̃(wn) to J(wn)
by ignoring the coupling parts between forward and backward equations. In-
verting J̃(wn) is equivalent to solving a decoupled forward-backward system.

We use J̃(wn) as a preconditioner to accelerate the GMRES convergence.

Using the algorithm, we shall compute MFE solutions and show simulations for
MFGs proposed in Section 5.

6.2. Numerical examples.

6.2.1. Settings. Set the road length L = 1 and the planning horizon length T = 3.
Set the free flow speed umax = 1 and the jam density ρjam = 1. Choose the following
initial density:

ρ0(x) = ρa + (ρb − ρa) exp[−
(x− L/2)2

2γ2
], (58)

where 0 ≤ ρa ≤ ρb ≤ 1 and γ > 0 are constant parameters. The initial density
represents the scenario that initially cars cluster near x = L/2 and the traffic is
lighter in other places. We choose the terminal cost VT (x) = 0 and specify periodic
boundary conditions ρ(0, t) = ρ(L, t), V (0, t) = V (L, t).

On a spatial-temporal grid of size Nx = 120 and Nt = 480, we compute MFE
solutions ρ∗(x, t), u∗(x, t) and V ∗(x, t) for the three MFG systems in Section 5.

For [MFG-LWR], we choose U(ρ) to be the Greenshields desired speed function
defined in Eq. (34).

6.2.2. Density Evolution. Fix the same initial density ρ0(x) defined in Eq. (58) with
ρa = 0.05, ρb = 0.95 and γ = 0.1, we compute the MFE solutions for the three MFG
systems and plot their density evolutions in a 3D space-time-density diagram. See
Figure 4a and Figure 5.

Figure 4a shows the formation and propagation of a shock wave for [MFG-LWR].
The shock wave moves with smaller and smaller amplitudes but does not disappear
in the given time horizon [0, T ].

Figure 5 shows that for both [MFG-NonSeparable] and [MFG-Separable], the
initial high density quickly dissipates. For [MFG-NonSeparable], the density profile
keeps smooth and no shock wave forms. From time t = 1, the density becomes a
uniform flow. For [MFG-Separable], the behavior is similar but the high density
dissipates more slowly and the density becomes nearly a uniform flow from t = 2.
Such phenomena are different from traditional traffic flow models.

The results show that AVs’ anticipation behavior helps to avoid the formation of
shock waves and to stabilize the traffic in this set-up. Figure 7 reveals the rationale
by plotting the snapshots of the MFE solutions’ density, speed and optimal cost
profiles with respect to spatial coordinate x at time instants t = 0 and t = 1.5
for [MFG-NonSeparable] and [MFG-Separable]. In addition, we compute the LWR
speeds from the density profiles with the Greenshields desired speed function defined
in Eq. (34), plot the LWR speeds and compare them with the MFE speeds in the
same axes.
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We observe from Figure 7 that all of the density, speed and optimal cost pro-
files converge to constant profiles as time goes on. Figure 7a and Figure 7b show
asymmetric optimal cost around a jam area with symmetric traffic density. As a
result of the “pressure” from the optimal cost, AVs tend to slow down farther up-
stream before joining the jam and immediately speed up after leaving the jam, in
contrast to HVs whose speeds remain symmetric before and after the jam area. In
other words, a HV’s speed is determined only through traffic density at the current
time while that of an AV depends on model predicted traffic density over the entire
horizon. Such behavioral difference between AVs and HVs result in different traffic
flows.

6.2.3. Fundamental Diagram. Fundamental diagram is a basic tool to understand
traditional traffic flow models [78]. In this subsection we will collect density and
flow data from the MFE solution and plot the data in a fundamental diagram for
both [MFG-LWR] and [MFG-NonSeparable].

The density and flow data are collected from the MFE solution as follows: Take
nx = 24 equidistantly distributed locations x1, x2, . . . , xnx

on [0, L] and nt = 96
time snapshots tk = kT

nt
, k = 0, 1, . . . , nt. We first pick the density and speed

values ρ∗(xi, t
k) and u∗(xi, t

k) that represent the average density and speed near the
spatial-temporal coordinate (xi, t

k) for i = 1, . . . , nx, k = 0, . . . , nt, then compute
the flow q∗(xi, t

k) = ρ∗(xi, t
k)u∗(xi, t

k) from the density and speed. The collected
data {ρ∗(xi, t

k), q∗(xi, t
k)}1≤i≤nx,0≤k≤nt

are plotted on the density-flow diagram.
Such a way to plot the fundamental diagram from a macroscopic traffic flow model
is also used in [93].

For [MFG-LWR], we collect the data from the MFE solution shown in Figure 4a
and plot the fundamental diagram in Figure 4b. We see that all of the collected
density-flow data points fall onto the Greenshields equilibrium curve q = umaxρ(1−
ρ/ρjam). The results verify Theorem 5.1.

For [MFG-NonSeparable], we plot the fundamental diagram by collecting the
data from a set of different MFE solutions. We take different initial densities by
varying the values of ρa and ρb from 0.05 to 0.95 but keep ρa < ρb and γ = 0.1. For
each initial density ρ0(x) we compute the MFE solution from [MFG-NonSeparable]
and collect the data in the way mentioned. Then we plot all collected data in the
same fundamental diagram, see Figure 6.

We observe from Figure 6 that: (i) All data points lie below the line q = umaxρ,
this is due to the speed constraint u ≤ umax in [MFG-NonSeparable]. (ii) All data
points cluster around the Greenshields equilibrium curve q = umaxρ(1−ρ/ρjam), this
is because [MFG-NonSeparable] is related to the Greenshields LWR. The traffic flow
always converges to a uniform flow represented by a data point on the Greenshields
equilibrium curve. The position of the data point on the curve depends on the initial
density. (iii) The fundamental diagram can be split into a free flow regime where
ρ ≤ 0.5 and a congested regime where ρ > 0.5. In the free flow regime, cars can
achieve the free flow speed umax. It reflects the efficiency term in the cost function
fNonSep; in the congested regime cars cannot achieve the free flow speed, which
reflects the safety term in the cost function. (iv) Different from the fundamental
diagram of human driving [91], data points in the free flow regime of Figure 6 may
not lie on the line q = umaxρ, this results from AVs’ anticipation behavior. Even in
a low density area, the car may drive at a lower speed than the desired one if there
is a traffic jam ahead.
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(a) Density Evolution (b) Fundamental Diagram

Figure 4. [MFG-LWR]

(a) [MFG-NonSeparable] (b) [MFG-Separable]

Figure 5. Density Evolution of [MFG-NonSeparable] and [MFG-
Separable]

6.2.4. Algorithm Convergence. To provide more evidence on the convergence of the
solution algorithm, we compute and plot the solution errors on different grids for
above examples. See Figure 8. Since we do not know any explicit solutions to those
MFG systems, the errors are estimated using numerical solutions on different grids.
To check the solution ρ∗(x, t), u∗(x, t) on the Nx ×Nt grid, we first solve the MFG
on the coarse grid of size Nx/2×Nt/2 and then interpolate the coarse solution back
onto the Nx × Nt grid. Denote the interpolated solution by (ρ̃∗, ũ∗), the solution
error on the Nx ×Nt grid is estimated as:

ErrorNx×Nt
= ‖ρ∗ − ρ̃∗‖+ ‖u∗ − ũ∗‖ , (59)

where the norm is chosen as the L1 norm on [0, L]× [0, T ].
We fix the spatial-temporal ratio Nt/Nx = 4 and increase Nx from 30 to 120.

Then we plot the errors computed by Eq. (59) with the spatial grid size Nx. From
Figure 8 we see first order convergence for all of the three numerical examples.
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Figure 6. Fundamental diagram of [MFG-NonSeparable]

(a) [MFG-NonSeparable] at t = 0 (b) [MFG-Separable] at t = 0

(c) [MFG-NonSeparable] at t = 1.5 (d) [MFG-Separable] at t = 1.5

Figure 7. Density, speed and optimal cost profiles for [MFG-
NonSeparable] and [MFG-Separable] at t = 0 and t = 1.5
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Figure 8. Convergence of solution algorithm in L1 norm

7. From MFG back to N -Car differential game. Summarizing the previous
sections, we have derived a continuous mean field game [MFG] from a discrete dif-
ferential game (Definition 4.1) and developed a solution algorithm for the mean field
game. In this section we shall build the connection between the discrete differential
game equilibrium (DGE) and the continuous mean field equilibrium (MFE) in the
sense of ε-Nash equilibrium. First we provide a way to construct a tuple of discrete
controls from a MFE solution. Then we introduce the concept of ε-Nash equilib-
rium and show how to characterize the accuracy of the MFE-constructed controls.
It is validated by numerical examples that the MFE-constructed controls are a good
approximate equilibrium of the original N -car differential game (DG) when N is
large.

7.1. MFE-constructed controls and accuracy characterization. From a con-
tinuous MFE solution, we construct a tuple of discrete controls v̂1(t), . . . , v̂N (t) for
the DG by applying the feedback law (18)(19). The rationale underlying such con-
struction is quite straightforward: for i = 1, · · · , N , the ith car’s instantaneous
speed selection at time t is determined by MFE’s velocity field u∗(xi(t), t) at that
time and the ith car’s location xi(t). Mathematically, for i = 1, · · · , N and t ∈ [0, T ]:

v̂i(t) = u∗(xi(t), t), (60)

ẋi(t) = v̂i(t), xi(0) = xi,0. (61)

Integrating the above dynamical system gives the ith car’s velocity control v̂i(t)
and trajectory xi(t) over the planning horizon [0, T ], i = 1, . . . , N .

As an example, Figure 9 shows the trajectories integrated from the MFE solution
shown in Figure 5a of [MFG-NonSeparable] with N = 21 cars. Each of the 21
lines represents the trajectory of one car. We take the time to be the x-axis and
the cumulative distance to be the y-axis to avoid special treatments on periodic
boundary conditions. We see that even though cars cluster near x = 0.5 at the
staring time, they become uniformly distributed at the final time. It means that
the flow converges to the uniform flow.

Remark 8. We observe from Figure 9 that there is no intersection between any pair
from the cars’ trajectories. In other words, the first-in-first-out (FIFO) property is
satisfied. Actually, Eqs. (60)(61) is a first order ODE system for all i = 1, . . . , N .
The solution uniqueness then guarantees that there is no intersection between any
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pair from the N trajectories starting from different initial locations [95]. In other
words, the FIFO property is always guaranteed by MFE-constructed controls.

Figure 9. N = 21 cars’ trajectories integrated from the MFE solu-
tion of [MFG-NonSeparable]

Now we would like to know whether the MFE-constructed controls v̂1(t), . . . , v̂N (t)
are a good approximate equilibrium of the DG. Since the DG’s true equilibrium
v∗1(t), . . . , v

∗
N (t) may not exist nor be unique and typically it is hard to get, we will

characterize the accuracy of the constructed controls in terms of the driving cost
functional. Along this line, such an approximate equilibrium can be treated as an
ε-Nash equilibrium of the DG, which is formally defined below [15, 16].

Definition 7.1. A tuple of controls ṽ1, . . . , ṽN is an ε-Nash equilibrium of the DG,
if

JN
i (ṽi, ṽ−i) ≤ JN

i (vi, ṽ−i) + ε, ∀vi ∈ A, i = 1, . . . , N. (62)

At an ε-Nash equilibrium, no car can improve its driving cost better than ε by
unilaterally switching its velocity control.

For a potential game where the cost function f(u, ρ) is separable, e.g., [MFG-
Separable], [16] proved the correspondence between the MFE-constructed controls
and an ε-Nash equilibrium of DG, that is: for any ε > 0, there exist N, σ > 0 such
that v̂1(t), . . . , v̂N (t) constructed from the MFE solution is an ε-Nash equilibrium
of the DG.

Unfortunately, there do not exist any theoretical results for a general cost func-
tion such as fNonSep. In this paper, instead of offering a formal proof, we will
validate such correspondence using numerical examples. A rigorous proof of such
correspondence for a general cost function will be left for future research.

Tailoring to our context, in the subsequent numerical examples, we aim to il-
lustrate that the MFE-constructed controls are an ε-Nash equilibrium of DG by
characterizing the accuracy ε across all feasible controls and all cars. There always
exists an arbitrarily large ε that can make v̂1(t), . . . , v̂N (t) satisfy the condition (62).
What we are more interested in is a lower bound, denoted as ε̂ ≥ 0, such that:

JN
i (v̂i, v̂−i) ≤ JN

i (vi, v̂−i) + ε̂, ∀vi ∈ A, i = 1, . . . , N. (63)

In other words,

ε̂ , max
1≤i≤N

max
vi∈A

{
JN
i (v̂i, v̂−i)− JN

i (vi, v̂−i)
}
. (64)
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Let us move the second maximum symbol in front of the second term that depends
only on vi, then we have:

ε̂ = max
1≤i≤N

{

JN
i (v̂i, v̂−i)− min

vi∈A
JN
i (vi, v̂−i)

}

= max
1≤i≤N

{
JN
i (v̂i, v̂−i)− JN

i (v̄i, v̂−i)
}
,

(65)
where v̄i is the best response that solves minvi∈A JN

i (vi, v̂−i). We attain v̄i from
the following optimal control problem, while keeping other cars’ strategies v̂−i un-
changed:

v̄i , argmin
vi∈A

JN
i (vi, v̂−i) = argmin

vi∈A

∫ T

0

f(vi(t), ρ
N
σ (xi(t), t)) dt, (66)

s.t. ẋj(t) = v̂j(t), xj(0) = xj,0, j = 1, . . . , i− 1, i+ 1, . . . , N ; (67)

ẋi(t) = vi(t), xi(0) = xi,0. (68)

Definition 7.2. The accuracy of a tuple of controls v̂1(t), . . . , v̂N (t) is the ε̂ defined
in Eq. (64).

7.2. Accuracy validation with numerical examples. Summarizing Section 4,
Section 6 and Section 7.1, we shall reiterate the procedure of solving an approximate
equilibrium of the DG from its respective MFG in a more systematic way. The
procedure of solving MFE-constructed controls and validating the accuracy of those
controls is listed in Algorithm 1. We will test some numerical examples following
the procedure.

Algorithm 1 Construction and Validation of MFE-constructed controls

Input: Number of cars N , cost function f(u, ρ), space domain [0, L], time hori-
zon [0, T ], cars’ initial positions x1,0, . . . , xN,0, terminal cost VT (x), smoothing
parameter σ.

Output: MFE-constructed controls v̂1(t), . . . , v̂N (t) and their maximal relative ac-
curacy (MaxRA) and mean relative accuracy (MeanRA).

1: Compute a smooth density profile ρ0(x) from cars’ initial positions x1,0, . . . , xN,0

by Eq. (9).
2: Compute the MFE solution u∗(x, t) on [0, L]× [0, T ] from initial density ρ0(x)

and terminal cost VT (x) using the algorithm proposed in Section 6.
3: Solve the MFE-constructed controls v̂1(t), . . . , v̂N (t) from Eqs. (60)(61).
4: Solve the best response strategy v̄i(t) from Eqs. (66)(67)(68) and obtain the

improved cost JN
i (v̄i, v̂−i) for i = 1, . . . , N .

5: Compute the accuracy associated with the ith car ε̂i = JN
i (v̂i, v̂−i)−JN

i (v̄i, v̂−i)
for i = 1, . . . , N .

6: Compute the maximal relative accuracy and mean relative accuracy:

MaxRA =
maxNi=1 ε̂i

maxNi=1 |J
N
i (v̂i, v̂−i)|

, MeanRA =
1
N

∑N
i=1 ε̂i

1
N

∑N
i=1 |J

N
i (v̂i, v̂−i)|

. (69)

In the numerical examples, we aim to convey two main messages:

1. Given N, σ > 0, we aim to construct an ε-Nash equilibrium of the DG from a
MFE solution and compute its accuracy ε̂.

2. The accuracy ε̂ deceases as N becomes large.
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The general set-up of the following numerical examples is similar to that used
previously. We fix the length of the planning horizon T = 1. Each time we solve
a different DG by varying the number of cars N = 21, 41, 61, 81, 101. For different
numbers of cars, the cars’ initial positions are sampled from the same initial distri-
bution defined in Eq. (58) with ρa = 0.2, ρb = 0.8 and γ = 0.15L. For each N we
take the road length L = N and choose the smoothing parameter σ = 0.05L. The
cost functions for [MFG-NonSeparable] and [MFG-Separable] are tested.

Figure 10. MFE-constructed control cost v.s. best response strat-
egy cost, N = 21 cars

To see the first message, Figure 10 compares the difference between costs com-
puted from MFE-constructed controls and those from the respective best response
strategies when N = 21. In Figure 10, the x-axis is the car’s index i while the
y-axis is the cost JN

i for i = 1, 2, . . . , N . We see from the figure that for both cost
functions the MFE solutions generate good approximate equilibria of DGs.

To see the second message, we compute the maximal relative accuracy and mean
relative accuracy of MFE-constructed controls for different numbers of cars, which
is shown in Figure 11. We see from Figure 11 that for both cost functions better
accuracy is obtained as N increases.

Figure 11. Accuracy v.s. Number of cars
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7.3. Discussion. The aforementioned procedure aims to characterize the interplay
between microscopic DG and macroscopic MFG. In particular, we can use the MFE
solution to construct an ε-Nash equilibrium of DG and show that this ε-Nash equi-
librium has desired accuracy. It provides an efficient and scalable method to solve
AVs’ individual controls in a game-theoretic framework.

Note that it is challenging to find the equilibrium of DG accurately. In fact, it is
not known whether or not DGE does exist and is unique. In this paper, though, we
have not discussed the solution properties of the original differential game. There
are three cases in terms of its solutions:

1. DGE does not exist: Albeit non-existent, in practice, we still need to find
a “good enough” control for each individual AV so that every AV achieves
its predefined driving objective with a reasonable performance. The MFE-
constructed controls can be used as an approximate equilibrium of DG.

2. DGE exists and is unique: The MFE-constructed controls provide a good
initial guess for solving the accurate DGE, and the proposed method can help
to characterize the upper bound of the deviation.

3. DGE exists but is non-unique: The MFE-constructed controls can be an ap-
proximation to one DGE. However, the characterization of the error bound
and the proposed method of finding an ε-Nash equilibrium may become de-
batable. Such a case will be left for future research.

8. Conclusions and future research. This paper applies the MFG to solve the
continuous velocity control problem for a system of AVs in traffic. The MFG of-
fers advantages over the existing individual control methods due to its scalability
properties. The proposed game-theoretic framework links micro- and macro-scale
behaviors, offering insights into systematic impacts of strategic interactions among
AVs from a microscopic scale. To the best of our knowledge, this is the first study to
characterize equilibrium solutions in both continuous MFGs and discrete differen-
tial games in traffic. Unlike most of the existing studies that approximate discrete
AV controls directly, we develop a game-theoretic framework from micro- to macro-
scale, and then construct solutions from macro- back to micro-scale. In particular,
we first introduce the macroscopic mean field game, solve its equilibrium, construct
discrete controls from the mean field equilibrium, and then validate the consistency
between the constructed discrete controls and the equilibrium of the original differ-
ential game. Our findings will help transportation engineers and planners to better
predict and forecast traffic conditions when AVs reach a critical mass, which in turn
will prepare them for a smooth transition from the present to future AV-equipped
transportation systems.

This work can be generalized in several ways: (i) As a first step to model AVs’
strategic interactions under the mean field game framework, this paper only presents
AVs’ longitudinal velocity controls with many simplifying assumptions. The control
variables, assumptions on cost functions and constraints need to be generalized. For
example, we will incorporate the acceleration rate into AVs’ control variables, relax
the homogeneity assumptions by considering multi-class MFGs, relax assumption
(A3) by incorporating the derivatives of the density into AVs’ driving cost function-
als and add constraints on the density and acceleration rate for the MFG. (ii) This
paper mainly focuses on deterministic, non-viscous MFGs. In the future we will
discuss viscous MFGs by adding randomness in AVs’ dynamics. (iii) We rigorously
show the relations between MFGs and the LWR model. However, we are only able
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to discuss the relationship between MFGs and traditional higher-order traffic flow
models by rewriting a specific MFG system to its reduced form and find the sim-
ilarity. Exploring deeper connections between MFGs and traditional higher-order
models will be left for future research. (iv) This paper presents three concrete cost
functions and their respective MFGs to illustrate AVs’ traffic flow patterns and the
consistency between discrete and continuous equilibria. In the future we will explore
other families of cost functions and provide more MFG examples.
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