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Abstract— This paper presents scalable traffic stability
analysis for both pure autonomous vehicle (AV) traffic
and mixed traffic based on continuum traffic flow models.
Human vehicles are modeled by a non-equilibrium traffic
flow model, i.e., Aw-Rascle-Zhang (ARZ), which is unstable.
AVs are modeled by the mean field game which assumes AVs
are rational agents with anticipation capacities. It is shown
from linear stability analysis and numerical experiments
that AVs help stabilize the traffic. Further, we quantify the
impact of AV’s penetration rate and controller design on
the traffic stability. The results may provide insights for AV
manufacturers and city planners.

I. Introduction
Autonomous vehicles (AVs) are believed to be the

foundation of the next-decade transportation system and
are expected to improve the traffic flow that is presently
dominated by human vehicles (HVs). Modeling AV’s
driving behavior and quantifying different penetration
rates of AVs’ impact on the traffic is of great significance.

This paper focuses on traffic stability, which is one
of the most substantial traffic features. Traffic stability
refers to a traffic system’s asymptotic stability around
uniform flows. HV traffic is observed to be an unstable
system in which a small perturbation (caused by driving
errors or delays) to the uniform flow will grow up with
time and develop traffic congestion. By removing human
errors, it is expected that AVs will help stabilize the
traffic system. A field experiment [1] showed that one AV
is able to stabilize the traffic with approximately twenty
vehicles on a ring road.

AV’s capability of stabilizing traffic is validated
using microscopic models for mixed AV-HV traffic.
In microscopic models, the traffic system is described
by ordinary differential equations. One can carry out
standard linear stability analysis to characterize such
a traffic system’s stability, built upon connected cruise
controllers [2] or generic car-following models [3], [4]. [2],
[3] considered only one AV with multiple HVs; [4] studied
multiple AVs and multiple HVs but only focused on the
head-to-tail stability. However, in the general case, the
mixed traffic stability analysis relies on the topology of
mixed vehicles and the vehicle-to-vehicle communication
network, which suffers from scalability issues.
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One alternative approach to address the scalability is-
sues is the PDE approximation [5]. This approach suggests
to study the stability of continuum traffic flow models
which are the limits of microscopic models. The approach
is well suited for the mixed traffic since one needs only to
concern about the density distributions of different classes.

In continuum traffic flow models, the traffic system
is described by partial differential equations (PDEs) of
traffic density and velocity. For single class traffic, the
Lighthill-Whitham-Richards (LWR) model [6] is the most
extensively used continuum model. As a generalization,
the multiclass LWR is widely used to model the interaction
between two types of vehicles. [7] is among a few studies
that applied multi-class LWR models to AV-HV mixed
traffic and proposed networked traffic controls in the
presence of AVs. Based on gas-kinetic theory, [8] proposed
a multiclass macroscopic model to capture the effect
of communication and information sharing on traffic
flow and analyzed the model’s stability with respect to
the connected vehicle’s penetration rate; [9], [10], [11]
modeled the macroscopic traffic flow of mixed Adaptive
Cruise Control (ACC) and Cooperative Adaptive Cruise
Control (CACC) vehicles and analyzed how the ACC
vehicle’s penetration rate influences the traffic stability.

This paper models AVs using the mean field game
following the authors’ work [12]. In this framework, AVs
are assumed to be rational, utility-optimizing agents with
anticipation capabilities and play a non-cooperative game
by selecting their driving speeds. AVs’ utility-optimizing
and anticipation behaviors are distinctive characteristics
from the aforementioned continuum models. By extending
[12], this paper aims to build continuum traffic flow models
for both pure AV traffic and mixed AV-HV traffic based on
mean field games and analyze the models’ traffic stability.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of the mean field game and the
Aw-Rascle-Zhang model, used for modeling AVs and HVs,
respectively. Section III formulates models for both pure
AV traffic and mixed AV-HV traffic. Based on the pro-
posed models, Section IV shows the linear stability analy-
sis for the pure AV traffic and Section V demonstrates the
mixed traffic’s stability through numerical experiments.

II. Preliminaries
A. Mean Field Game

Mean field game (MFG) is a game-theoretic framework
to model complex multi-agent dynamic systems [13].
In the MFG framework, a population of N rational
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utility-optimizing agents are modeled by a dynamic
system. The agents interact with each other through their
utilities. Assuming those agents optimize their utilities in
a non-cooperative way, they form a differential game.

Exact Nash equilibria to the differential game are
generallyhardtosolvewhenN is large.Alternatively,MFG
considers the continuum problem asN→∞. By exploiting
the “smoothing” effect of a large number of interacting
individuals, MFG assumes that each agent only responds
to and contributes to the density distribution of the whole
population. Then the equilibria are characterized by a
set of two PDEs: a backward Hamilton-Jacobi-Bellman
(HJB) equation describing a generic agent’s optimal
control provided the density distribution and a forward
Fokker-Planck equation describing the population’s
density evolution provided individual controls.

In this paper we shall formulate AV traffic as a mean field
game. AVs are modeled as rational agents with predefined
driving costs. Their density distribution is exactly the
traffic density and the Fokker-Planck equation is the same
as the continuity equation (CE) that is widely used in
continuum traffic flow models.

B. Aw-Rascle-Zhang Model
The following Aw-Rascle-Zhang (ARZ) model:

(CE) ρt+(ρu)x=0, (1)

(ME) [u+h(ρ)]t+u[u+h(ρ)]x=
1

τ
[U(ρ)−u], (2)

is a non-equilibrium continuum traffic flow model
describing human driving behaviors [14], [15], where,
ρ(x,t), u(x,t): the traffic density and speed;
U(·): the desired speed function;
h(·): the hesitation function that is an increasing function
of the density;
τ : the relaxation time quantifying how fast drivers adapt
their current speeds to desired speeds.

Equation (1) is the continuity equation describing the
flow conservation and (2) is a momentum equation (ME)
prescribing human driver’s dynamic behavior.

The ARZ model is able to predict important human
driving features such as stop-and-go waves and traffic
instability [16]. Traffic stability is defined around uniform
flows. In continuum models, uniform flows are described
by constant solutions ρ(x,t)≡ ρ̄, u(x,t)≡ ū. The constant
solutions of the ARZ model is given by ū=U(ρ̄). Then the
traffic stability for the ARZ model is defined as follows:

Definition 2.1: The ARZ model (1)(2) is stable around
the uniform flow (ρ̄, ū) where ū = U(ρ̄) if for any ε > 0,
there exists δ > 0 such that for any solution ρ(x,t),u(x,t)
to the system:

sup
0≤t<∞

{∥ρ(·,t)−ρ̄∥+∥u(·,t)−ū∥}≤ε, (3)

whenever ∥ρ(·,0)−ρ̄∥+∥u(·,0)−ū∥≤δ. Here ∥·∥ is a given
norm. The system is linearly stable if its linearized system
at (ρ̄,ū) is stable around the zero solution.

TheARZmodelhasasimplelinearstabilitycriterion[16]:

Theorem 2.1: The ARZ model (1)(2) is linearly stable
around the uniform flow (ρ̄,ū) where ū=U(ρ̄) if and only
if h′(ρ̄)>−U ′(ρ̄).

Because of its capability of producing traffic instability,
we shall use the ARZ model (1)(2) to characterize HV’s
driving behavior.

III. Model Formulation
A. Pure AV Traffic: Mean Field Game

In this section, we will build a pure AV continuum traffic
flow model based on a mean field game following [12].

Assume that a large population of homogeneous AVs
are driving on a closed highway without any entrance
nor exit. Those AVs anticipate others’ behaviors and the
evolution of the traffic density ρ(x, t) on a predefined
time horizon [0,T ]. AVs control their speeds and aim to
minimize their driving costs on the horizon [0,T ]. Then
the AVs’ optimal cost V (x, t) and optimal velocity field
u(x,t) can be described by a set of HJB equations [12]:

(HJB) Vt+uVx+f(u,ρ)=0, (4)
u=argminα{αVx+f(α,ρ)}, (5)

where f(·,·) is the cost function [12].
When all AVs follow their optimal velocity controls, the

system’s density evolution is described by the continuity
equation:

(CE) ρt+(ρu)x=0. (6)

The mean field game is described by the coupled system
(4)(5)(6).

• The initial condition for the forward continuity equa-
tion (6) is given by the initial density ρ(x,0)=ρ0(x).

• The terminal condition for the backward HJB
equations (4)(5) is given by the terminal cost
V (x,T )=VT (x).Wewill always setVT (x)=0meaning
that the cars have no preference on their destinations.

• The choice of the spatial boundary condition depends
on the traffic scenario. In this paper we assume that
the highway is a ring road of fixed lengthL and specify
the periodic boundary condition ρ(0, t) = ρ(L, t),
V (0,t)=V (L,t).

The cost function represents certain driving objectives.
The choice of the cost function determines AV’s driving
behavior. In this paper we shall follow [12] and take the
following cost function:

f(u,ρ)=
1

2

(
u

umax

)2

︸ ︷︷ ︸

kinetic energy

−
u

umax
︸ ︷︷ ︸

efficiency

+
uρ

umaxρjam
︸ ︷︷ ︸

safety

, (7)

where,
umax and ρjam are the free flow speed and the jam density;
1
2 (u/umax)

2 models the car’s kinetic energy;
−u/umax models the car’s efficiency, minimizing this term
means that the car should drive as fast as possible;
uρ/umaxρjam models the safety, it is a penalty term that
restricts the car’s speed in traffic congestion;
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The MFG system corresponding to the cost function
(7) is [12]:






ρt+(ρu)x=0, (8a)

Vt+uVx+
1

2

(
u

umax

)2

−
u

umax
+

uρ

umaxρjam
=0, (8b)

u=g[0,umax]

(

umax

(

1−
ρ

ρjam
−umaxVx

))

, (8c)

where g[0,umax](u) = max{min{u, umax}, 0} is a cut-off
function which ensures the cars’ speeds satisfy the
constraint 0≤u≤umax.

[12] provides theoretical and numerical analysis on the
MFG system (8a)(8b)(8c).

The uniform flows of the MFG system (8a)(8b)(8c) are
given by ū=umax

(

1− ρ̄
ρjam

)

. Note that Definition 2.1 does
not apply to the MFG system since the system is defined
and solved on a fixed time horizon [0,T ]. In this case, we
define traffic stability as follows:

Definition 3.1: The MFG system (8a)(8b)(8c) is stable
around the uniform flow (ρ̄,ū) where ū=umax(1−ρ̄/ρjam)
if for any ε > 0, there exists δ > 0 such that for any T > 0
and for any solution ρ(T )(x,t),u(T )(x,t) to the system with
VT (x)=0 on the time horizon [0,T ]:

sup
0≤t≤T

{∥
∥
∥ρ(T )(·,t)−ρ̄

∥
∥
∥+

∥
∥
∥u(T )(·,t)−ū

∥
∥
∥

}

≤ε, (9)

whenever∥ρ(·,0)−ρ̄∥≤δ. The system is linearly stable if its
linearizedsystemat (ρ̄,ū) is stablearoundthezero solution.

B. Mixed Traffic: Coupled MFG-ARZ System
This section aims to develop a continuum mixed AV-HV

traffic flow model. We denote ρAV(x, t) the AV density,
ρHV(x,t) the HV density and

ρTOT(x,t)=ρAV(x,t)+ρHV(x,t), (10)

the total density. Denote uAV(x, t) and uHV(x, t) the
velocities of AVs and HVs, respectively.

We model HVs by the ARZ model and AVs by the MFG,
respectively. The next step is to model the interactions
between AVs and HVs. The interactions include the flow
interaction and the dynamic interaction.

Flow interaction. The flow interaction relates to how
the multiclass flows are computed and assigned. We follow
the framework from [17] and suppose that the multiclass
flows are described by the following continuity equations
for both AVs and HVs:

(CE-AV) ρAV
t +(ρAVuAV)x=0, (11)

(CE-HV) ρHV
t +(ρHVuHV)x=0. (12)

Dynamic interaction. Each of the velocitiesuAV anduHV

shoulddependonbothAVdensityρAV andHVdensityρHV.
The way of defining the velocities over multiclass densities
characterizes the dynamic interaction. [17] summarized
some possible formulations of the dynamic interaction.

In this paper we model an asymmetric dynamic
interactionbetweenAVsandHVsbyintroducingmulticlass

densities into the HJB equations and the momentum
equation of the system. For HVs, we assume that HVs only
observe the total density ρTOT to adapt their speeds. The
momentum equation (2) in the ARZ model then becomes:

[
uHV+h(ρTOT)]t+uHV[uHV+h(ρTOT)

]

x
=

1

τ

[
U(ρTOT)−uHV]. (13)

We take the Greenshields desired speed function
U(ρ)=umax(1−ρ/ρjam).

For AVs, we assume that AVs observe both AV and HV
densities. We model AVs’ reaction to multiclass densities
by introducing an extra term into the AV’s cost function.
The AV’s modified cost function for mixed traffic is:

f(uAV,ρAV,ρHV)=
1

2

(
uAV

umax

)2

︸ ︷︷ ︸

kinetic energy

−
uAV

umax
︸ ︷︷ ︸

efficiency

+
uAVρTOT

umaxρjam
+β

ρHV

ρjam
︸ ︷︷ ︸

safety

, (14)

where the safety is modeled by two penalty terms: one is
similar to the penalty term in (7) but the congestion is
modeled by the total density ρTOT, the other quantifies
HV’s impact on AV’s speed selection and the parameter β
represents AV’s sensitivity to HV’s density. From (14) we
can derive the corresponding HJB equations.

Summarizing all above, we obtain the following coupled
MFG-ARZ system:







ρAV
t +(ρAVuAV)x=0, (15a)

Vt+uAVVx+
1

2

(
uAV

umax

)2

−
uAV

umax
+
uAVρTOT

umaxρjam

+β
ρHV

ρjam
=0, (15b)

uAV=g[0,umax]

(

umax

(

1−
ρTOT

ρjam
−umaxVx

))

, (15c)

ρHV
t +(ρHVuHV)x=0, (15d)

[
uHV+h(ρTOT)]t+uHV[uHV+h(ρTOT)

]

x
=

1

τ

[

umax

(

1−
ρTOT

ρjam

)

−uHV
]

, (15e)

ρTOT=ρAV+ρHV. (15f)
• The initial conditions are given by the initial densities

ρAV(x,0)=ρAV
0 (x), ρHV(x,0)=ρHV

0 (x) and the initial
velocity uHV(x,0)=uHV

0 (x).
• The terminal condition is given by the terminal cost

V (x,T )=VT (x). We will always set VT (x)=0.
• We specify the periodic boundary conditions for all

of ρAV, ρHV, uHV and V .
The mixed traffic’s uniform flows are defined as the sys-

tem’s constant solutions ρAV(x,t)≡ ρ̄AV, ρHV(x,t)≡ ρ̄HV,

ρTOT(x,t)≡ ρ̄TOT= ρ̄AV+ρ̄HV, (16)
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and

uAV(x,t)≡uHV(x,t)≡ ū=umax

(

1−
ρ̄TOT

ρjam

)

. (17)

Since AVs are modeled by a mean field game, the mixed
traffic system (15a-15f) is defined and solved on a
predefined time horizon [0,T ]. Similar to Definition 3.1,
the mixed traffic system’s stability is defined as:

Definition 3.2: The system (15a-15f) is stable around
the uniform flow (ρ̄AV,ρ̄HV,ū)which satisfies (17) if for any
ε>0, thereexistsδ>0suchthat foranyT >0andforanyso-
lutionρAV,(T )(x,t),uAV,(T )(x,t),ρHV,(T )(x,t),uHV,(T )(x,t)
to the system with VT (x)=0 on the time horizon [0,T ]:

sup
0≤t≤T

∑

i=AV,HV

∥
∥
∥ρi,(T )(·,t)−ρ̄i

∥
∥
∥+

∥
∥
∥ui,(T )(·,t)−ū

∥
∥
∥≤ε,

(18)

whenever
∑

i=AV,HV

∥
∥
∥ρi,(T )(·,0)−ρ̄i

∥
∥
∥+

∥
∥
∥uHV,(T )(·,0)−ū

∥
∥
∥≤δ. (19)

The system is linearly stable if its linearized system at
(ρ̄AV,ρ̄HV,ū) is stable around the zero solution.

IV. Pure AV Traffic: Linear Stability Analysis
In this section we will carry out the standard linear

stability analysis for the MFG system (8a)(8b)(8c).
By scaling to dimensionless quantities we assume

umax = 1 and ρjam = 1. In addition we remove the speed
constraint0≤u≤umax since the existence of the constraint
does not change the system’s stability when 0<ū<umax.
Then we eliminate V from the system (8a)(8b)(8c) and
obtain a simpler system of ρ and u:

{

ρt+(ρu)x=0,

ut+uux−(ρu)x=0.
(20)

Fix a uniform flow (ρ̄,ū) where ū=1− ρ̄. Suppose that
the system (20) has the initial condition ρ(x,0)= ρ̄+ρ̃0(x)
and the terminal condition VT (x) = 0. Here ρ̃0(x) is any
small perturbation.

Then we linearize the system (20) near the uniform flow
(ρ̄,ū). Suppose ρ(x,t)= ρ̄+ρ̃(x,t), u(x,t)= ū+ũ(x,t). Note
that ū=1−ρ̄, we get the following linearized system:

{

ρ̃t+(1−ρ̄)ρ̃x+ρ̄ũx=0,

ũt+(ρ̄−1)ρ̃x+(1−2ρ̄)ũx=0.
(21)

(21) is also a forward-backward system with the initial
condition ρ̃(x, 0) = ρ̃0(x) and the terminal condition
ρ̃(x,T )+ũ(x,T )=0.

Proposition 4.1: The linearized system (21) is stable
near the zero solution for all 0<ρ̄<1.

We provide a computer-assisted proof for Proposition
4.1 in the Appendix. The analytical proof is left for future
research. As a corollary of Proposition 4.1 we have the
following results on the MFG system’s stability:

Corollary 4.2: The MFG system (20) is linearly stable
around the uniform flow (ρ̄, ū) where ū = 1 − ρ̄ for all
0<ρ̄<1.

Our analysis shows that the proposed MFG system for
AVs is always stable even if each AV only aims to optimize
his own utility. Then we turn our attention to the mixed
traffic and study whether the existence of AVs can stabilize
the unstable HV traffic.

V. Mixed Traffic: Numerical Experiments
In this section, we will demonstrate the stability of the

mixed traffic system (15a-15f) by numerical experiments.
We will run numerical simulations in different scenarios
and check the stability in those simulations automatically
with a stability criterion. Then we discuss how AVs’
different penetration rates and different controller designs
influence the stabilizing effect.

A. Experimental Settings
Take vehicles’ free flow speed umax=30m/s and the jam

density ρjam = 1/7.5m. Choose the hesitation function
h(ρ) in the ARZ model to be:

h(ρ)=9m/s·

(
ρ/ρjam

1−ρ/ρjam

)1/2

, (22)

which has the same form as the one used in [16]. For all
of the numerical experiments, the length of the ring road
L=1km and the length of the time horizon T =2L/umax.

For the system (15a-15f) and its arbitrary uniform flow
solution (ρ̄AV,ρ̄HV,ū), the initial densities are set to be:

ρi0(x)= ρ̄i+0.1×ρ̄isin(2πx/L), (23)

for i = AV,HV so that the initial perturbations on both
AV and HV densities are sine waves whose magnitudes
are 10% of the respective uniform states. The HV’s initial
velocity is set to be:

uHV
0 (x)≡ ū=umax

(

1−
ρ̄TOT

ρjam

)

, (24)

where ρ̄TOT = ρ̄AV + ρ̄HV so that there is no initial
perturbation on HV’s velocity. The AV’s terminal cost is
always set to be VT (x)=0.

It isnot easy tochecktheconditions (18)(19)directly.Al-
ternatively we shall use a simplified stability criterion. Sup-
pose ρAV,(T )(x,t), uAV,(T )(x,t), ρHV,(T )(x,t), uHV,(T )(x,t)
is any solution to the system, we define an error function:

E(t)=
∑

i=AV,HV

∥
∥
∥ρi,(T )(·,t)−ρ̄i

∥
∥
∥+

∥
∥
∥ui,(T )(·,t)−ū

∥
∥
∥, (25)

for 0≤ t≤T and the system is said to be unstable if:

max
0≤t≤T

E(t)≥2E(0), (26)

otherwise it is said to be stable. The stability criterion (26)
is checked automatically in the numerical experiments. It
is validated in the experiments with no presence of AVs
that the criterion (26) predicts the same stability as the
ARZ model’s analytical stability criterion.
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B. Numerical Method
To solve the coupled MFG-ARZ system (15a-15f)

numerically, we apply a finite difference method (FDM)
on the spatial-temporal grids. We discretize the continuity
equations (15a)(15d) by the Lax-Friedrichs scheme. We
discretize the HJB equations (15b)(15c) of the MFG by an
upwind scheme [12]. The momentum equation (15e) of the
ARZ model is transformed into its conservative form with
a relaxation term. Then we apply a hybrid scheme with
an explicit Lax-Friedrichs scheme for the conservation
part and an implicit Euler scheme for the relaxation part.
Finally we compress all equations into a large nonlinear
system and solve the system by Newton’s method [12].

C. Numerical Results
In the first group of experiments we fix β = 0 and try

different pairs of ρ̄AV and ρ̄HV. We restrict the values to
be under ρ̄AV+ ρ̄HV ≤ 0.75ρjam to avoid the total density
exceeding the jam density. We check the system’s stability
from each numerical experiment and plot the results in the
phasediagrambetweenthenormalizedAVandHVdensity,
see Figure 1a. We observe that when the HV density is
fixed, adding AVs can stabilize the traffic. when the AV
density is large enough, the mixed traffic is always stable.

In the second group of experiments we still keep β = 0
but try different total densities ρ̄TOT and different AV’s
penetration rates. Then we plot the results in the phase dia-
grambetweentheAV’spenetrationrateandthenormalized
total density, see Figure 1b. We observe that when the total
density is fixed, traffic becomes more stable with a higher
portion of AVs. In addition, the minimal AV’s penetration
rate to make the traffic stable increases as the total density
increases. We also observe that when the AV’s penetration
rate is large enough, the mixed traffic is always stable.

Figure 2 compares the total density evolution between
a stable example and an unstable example. When the
total density is ρ̄TOT = 0.4ρjam, the pure HV traffic is
unstable while 30% AVs can stabilize the mixed traffic.
In the former case, the initial perturbation on the total
density grows up and develops a shock; In the latter case,
the same initial perturbation decays and the total density
converges to a uniform flow.

(a) First group (b) Second group

Fig. 1: Stability regions for the first and second groups of
experiments

In the third group of experiments we fix the total density
ρ̄TOT=0.5ρjam and vary the AV’s penetration rate and the
parameterβ. Then we plot the results in the phase diagram

Fig. 2: Evolution of normalized total density when β =0,
ρ̄TOT=0.4ρjam, 0% AV (left) and 30% AVs (right)

between β and the AV’s penetration rate, see Figure 3. We
observe that for any fixed β, increasing AV’s penetration
rate makes the traffic more stable. When the AV’s penetra-
tion rate is fixed but higher than 20%, increasing β makes
the traffic more stable. This means that when AV is more
sensitive to HV, the traffic becomes more stable.

Fig. 3: Stability region for the third group of experiments

VI. Conclusion
This paper presents continuum traffic flow models

for both pure AV traffic and mixed AV-HV traffic. The
pure AV traffic is modeled by a mean field game and
the linear stability analysis shows the traffic is always
stable. The mixed AV-HV traffic is modeled by a coupled
MFG-ARZ system. To demonstrate the mixed traffic
stability analysis, three groups of numerical experiments
are performed. In particular, we characterize the stability
regions over AV density and HV density as well as over total
density and AV’s penetration rate in the mixed traffic. We
also quantify the impact of the AV controller parameter
on traffic stability. In future work, we plan to develop
analytical stability analysis for mixed traffic and discuss
the relation between more general AV controller designs
and stability under different types of AV-HV interactions.

APPENDIX
Apply Fourier analysis to (21), denote ρ̂(ξ,t) and û(ξ,t)

the Fourier modes of ρ̃(x,t) and ũ(x,t), ξ = 2kπx
L (k ∈ Z).

For any frequency ξ:
{

ρ̂t+iξ(1−ρ̄)ρ̂+iξρ̄û=0,

ût+iξ(ρ̄−1)ρ̂+iξ(1−2ρ̄)û=0.
(27)

It is an ODE system with the initial condition
ρ̂(ξ,0)= ρ̂0(ξ)where ρ̂0(ξ) is the Fourier transform of ρ̃0(x)
and the terminal condition ρ̂(ξ,T )+û(ξ,T )=0. The linear
PDE system (21) is stable in L2 norm if and only if there
exists a universal constantC>0 such that for anyT >0and
ξ, the solution of the ODE system (27) on [0,T ] satisfies:

|ρ̂(ξ,t)|2+|û(ξ,t)|2≤C|ρ̂0(ξ)|
2, ∀t∈ [0,T ]. (28)
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The ODE system (27) is homogeneous. We can assume
without loss of generality that ρ̂0(ξ)=1. To check the con-
dition (28) we directly solve this boundary value problem
of the ODE system (27). Denote r =

√

ρ̄(5ρ̄−4), η = ξt,
λ=ξT and S=exp

(
− 1

2 iη(r−3ρ̄+2)
)
, the solution is:

ρ̂(ξ,t)=S
(r+ρ̄)eirη+(r−ρ̄)eirλ

r+ρ̄+(r−ρ̄)eirλ
, (29)

û(ξ,t)=−S
(r+3ρ̄−2)eirη+(r−3ρ̄+2)eirλ

r+ρ̄+(r−ρ̄)eirλ
, (30)

when ρ̄ ̸= 4
5 or ρ̂(ξ, t) = e

1

5
iη 5i−2η+2λ

5i+2λ and
û(ξ,t)=−e

1

5
iη 5i−η+λ

5i+2λ when ρ̄= 4
5 .

Define:

Eρ̄(λ)= max
0≤η≤λ or λ≤η≤0

[
|ρ̂(ξ,t)|2+|û(ξ,t)|2

]
. (31)

Thentocheck(28)itsufficestochecktheboundednessofthe
functionEρ̄(λ) forall0<ρ̄<1.Wedothisbycomputingthe
values ofEρ̄(λ) from discrete values of ρ̄ andλ. The compu-
tationshowsthat forany ρ̄,Eρ̄(λ) isboundedwhen |λ|→∞.

ACKNOWLEDGMENT
The authors would like to thank Data Science Institute

from Columbia University for providing a seed grant for
this research.

References
[1] R. E. Stern, S. Cui, M. L. Delle Monache, R. Bhadani,

M. Bunting, M. Churchill, N. Hamilton, H. Pohlmann,
F. Wu, B. Piccoli et al., “Dissipation of stop-and-go waves
via control of autonomous vehicles: Field experiments,”
Transportation Research Part C: Emerging Technologies,
vol. 89, pp. 205–221, 2018.

[2] I. G. Jin and G. Orosz, “Connected cruise control among
human-driven vehicles: Experiment-based parameter estima-
tion and optimal control design,” Transportation research
part C: emerging technologies, vol. 95, pp. 445–459, 2018.

[3] S. Cui, B. Seibold, R. Stern, and D. B. Work, “Stabilizing
traffic flow via a single autonomous vehicle: Possibilities and
limitations,” in 2017 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2017, pp. 1336–1341.

[4] C. Wu, A. M. Bayen, and A. Mehta, “Stabilizing traffic with
autonomous vehicles,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 1–7.

[5] Y. Zheng, S. E. Li, K. Li, and L.-Y. Wang, “Stability margin
improvement of vehicular platoon considering undirected
topology and asymmetric control,” IEEE Transactions on
Control Systems Technology, vol. 24, no. 4, pp. 1253–1265,
2016.

[6] M. J. Lighthill and G. B. Whitham, “On kinematic waves
II. A theory of traffic flow on long crowded roads,” Proc. R.
Soc. Lond. A, vol. 229, no. 1178, pp. 317–345, 1955.

[7] M. W. Levin and S. D. Boyles, “A multiclass cell transmission
model for shared human and autonomous vehicle roads,”
Transportation Research Part C: Emerging Technologies,
vol. 62, pp. 103–116, 2016.

[8] D. Ngoduy, S. Hoogendoorn, and R. Liu, “Continuum
modeling of cooperative traffic flow dynamics,” Physica A:
Statistical Mechanics and its Applications, vol. 388, no. 13,
pp. 2705–2716, 2009.

[9] K. Porfyri, I. Nikolos, A. Delis, and M. Papageorgiou,
“Stability analysis of a macroscopic traffic flow model for
adaptive cruise control systems,” in ASME 2015 International
Mechanical Engineering Congress and Exposition. American
Society of Mechanical Engineers, 2015, pp. V012T15A002–
V012T15A002.

[10] A. I. Delis, I. K. Nikolos, and M. Papageorgiou, “Simulation of
the penetration rate effects of ACC and CACC on macroscopic
traffic dynamics,” in 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2016,
pp. 336–341.

[11] ——, “A macroscopic multi-lane traffic flow model for
ACC/CACC traffic dynamics,” Transportation Research
Record, vol. 2672, no. 20, pp. 178–192, 2018.

[12] K. Huang, X. Di, Q. Du, and X. Chen, “A game-theoretic
framework for autonomous vehicles velocity control: Bridging
microscopic differential games and macroscopic mean field
games,” arXiv preprint arXiv:1903.06053, 2019.

[13] J.-M. Lasry and P.-L. Lions, “Mean field games,” Japanese
Journal of Mathematics, vol. 2, no. 1, pp. 229–260, 2007.

[14] A. Aw and M. Rascle, “Resurrection of ”second order” models
of traffic flow,” SIAM Journal on Applied Mathematics,
vol. 60, no. 3, pp. 916–938, 2000.

[15] H. M. Zhang, “A non-equilibrium traffic model devoid
of gas-like behavior,” Transportation Research Part B:
Methodological, vol. 36, no. 3, pp. 275–290, 2002.

[16] B. Seibold, M. R. Flynn, A. R. Kasimov, and R. R. Rosales,
“Constructing set-valued fundamental diagrams from jamiton
solutions in second order traffic models,” arXiv preprint
arXiv:1204.5510, 2012.

[17] S. Fan and D. B. Work, “A heterogeneous multiclass traffic
flow model with creeping,” SIAM Journal on Applied
Mathematics, vol. 75, no. 2, pp. 813–835, 2015.

3274


