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Abstract

We consider the problem of finding a cycle in a sparse
directed graph G that is promised to be far from
acyclic, meaning that the smallest feedback arc set in
G is large. We prove an information-theoretic lower
bound, showing that for N -vertex graphs with constant
outdegree any algorithm for this problem must make
Ω̃(N5/9) queries to an adjacency list representation of
G. In the language of property testing, our result is
an Ω̃(N5/9) lower bound on the query complexity of
one-sided algorithms for testing whether sparse digraphs
with constant outdegree are far from acyclic. This is the
first improvement on the Ω(

√
N) lower bound, implicit

in Bender and Ron [BR02], which follows from a simple
birthday paradox argument.

1 Introduction

In the current massive data era there is great inter-
est in the abilities and limitations of sublinear time
algorithms for various computational problems. In
particular, in recent years a number of researchers
have studied sublinear time algorithms for fundamen-
tal graph problems such as approximating the size of
the minimum vertex cover [PR07, MR09, NO08, YYI09,
HKNO09, ORRR12], the number of connected com-
ponents [CRT05], maximum matching [NO08, YYI09],
and the minimum spanning tree weight [CRT05, CS09,
CEF+05]; counting edges [Fei06, GR08, BHPR+18],
stars [GRS11, ABG+18], triangles [ELRS17], k-cliques
[ERS18], and arbitrary subgraphs [AKK19]; finding
forbidden minors [KSS18, KSS19]; and checking k-
colorability [RD85], bipartiteness [GR02], planarity
[BSS08], and more. The sublinear time regime imposes
natural constraints on algorithms. For instance, a sim-
ple “needle in a haystack” lower bound argument shows
that it is impossible to distinguish acyclic graphs from
graphs with one or more cycles in time sublinear in the
number of edges. As a result, sublinear graph algo-
rithms typically provide either approximate guarantees
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on their output1 or are designed for property testing-
style problems in which the input graphG is promised to
satisfy some condition that allows a sublinear algorithm
to succeed.2 Our results are of the second type: We
prove a lower bound on the running time of algorithms
for finding cycles in sparse digraphs that are promised
to be not too close to acyclic.

To motivate our inquiry, we observe that many of
the most fascinating and enigmatic objects of modern
scientific research, such as brains, neural networks, so-
cial networks, and the Internet, are naturally modeled
as massive, sparse, directed graphs. Thus it is a com-
pelling goal to understand the capabilities of sublinear
time algorithms on such graphs. Despite this fact, al-
though there is a substantial literature on property test-
ing in general undirected graphs (see Chapters 8, 9, and
10 of [Gol17]), we are aware of fewer works on sublinear
time algorithms or property testing on sparse directed
graphs [OR11, HS12, HS13, CPS16]. The most directly
relevant previous work that we are aware of is the early
paper of Bender and Ron [BR02] on testing acyclicity
in directed graphs, which we discuss in detail below.

1.1 The query model and promise problem that

we consider. Throughout this work, we consider
digraphs on N vertices named [N ] := {1, . . . , N} in
which the outdegree of each vertex is bounded from
above by a small absolute constant d. It suffices to
take d ≥ 80 for our main result to hold. Graphs are
represented using the adjacency list model, in which
a query consists of a vertex u ∈ [N ] and an index
i ∈ [d]. In response, the algorithm receives the ith

outneighbor of u or an empty string if u has fewer than
i outneighbors. The query complexity of an algorithm
is the maximum number of queries that it makes on any
N -vertex graph.

The algorithmic problem we consider is that of
outputting a directed cycle given an input graph G. The
promise that G contains at least one cycle is insufficient
to allow sublinear time algorithms: for instance, if G
consists of a single constant-length cycle and all other
vertices are isolated, or if G consists of a single cycle

1For instance, the algorithms of [ORRR12, CRT05, ELRS17,
AKK19].

2For instance, the algorithms of [KSS18, RD85, GR02, BSS08].
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of length N , Ω(N) queries are required. Hence, in
the spirit of property testing, we consider the promise
problem in which the input graph G is promised to be ε-
far from acyclic. This means that the smallest feedback
arc set3 of G is of size at least εdN .

As we discuss later in item (1) of Section 9, the
promise that G is ε-far from acyclic ensures that G
must contain very short cycles [Fox18], so this promise
eliminates the concern that merely outputting a directed
cycle necessitates Ω(N) runtime. However, it is far
from clear how many queries may be required to find
a cycle in sparse directed graphs that are ε-far from
acyclic. This question was implicitly considered by
Bender and Ron: in [BR02] they gave an Ω(N1/3)-query
lower bound on property testing algorithms for testing
whether a bounded-degree digraph is acyclic versus ε-
far from acyclic with two-sided error in the adjacency
list model. Implicit in the proof of their Ω(N1/3) lower
bound is an Ω(N1/2) lower bound for one-sided testers,
or equivalently, for algorithms that find a directed cycle
in far-from-acyclic bounded-degree digraphs. We give
a proof sketch of this lower bound in Section 3.1; as
we explain there, their Ω(N1/2) lower bound is based
on a simple birthday paradox argument but such an
argument cannot succeed in obtaining an ω(N1/2) lower
bound. We note that Bender and Ron [BR02] state
as an explicit goal for future work the problem of
improving their lower bound, and that acyclicity testing
in bounded-degree digraphs is listed as “Open Problem
#41” on the website sublinear.info.4

1.2 Our result: An Ω̃(N5/9)-query lower bound.

Our main result is a proof that any randomized algo-
rithm under the adjacency list query model must make
Ω̃(N5/9) queries to find a cycle in a sparse N -vertex di-
graph that is ε-far from acyclic. The lower bound holds
even if ε is a fixed constant. In more detail, our main
result is the following:

Theorem 1 (Main theorem). Let d, ε be fixed constants
with d ≥ 80 and ε ≤ 1/60, and let G be an arbitrary
digraph, promised to be ε-far from acyclic and with
outdegree bounded above by d. Any algorithm that, given
query access to the adjacency list representation of G,
outputs a directed cycle in G with constant probability
must make Ω̃(N5/9) queries.

We give a detailed discussion of our techniques in
Section 3; as explained there, the arguments underlying

3Recall that a subset S ⊂ E of directed edges in a graph is a
feedback arc set if every directed cycle in G contains at least one

edge in S, or equivalently, deleting all the edges in S makes G
become acyclic.

4https://sublinear.info/index.php?title=Open Problems:41

our lower bound are significantly more involved, both
conceptually and technically, than the Ω(N1/2) lower
bound of [BR02] for the same problem.

2 Preliminaries

A directed graph (or digraph) G = (V,E) consists of a
set V of vertices and a set E of directed edges. Each
edge directed from u to v is represented by the pair
(u, v). The outdegree (resp. indegree) of a vertex u is
the number of edges (u, v) (resp. (v, u)) between u and
an outneighbor (resp. inneighbor) v ∈ V . We say a
digraph has outdegree bounded by d if every vertex has
outdegree at most d. A digraph is ε-far from acyclic if
the minimum feedback arc set has size εdN (that is, at
least εdN edges must be removed to make G acyclic).
An out-tree is an acyclic digraph in which there exists a
unique directed path from a root vertex to every other
vertex. A vertex in an out-tree with no outgoing edge
is called a leaf ; otherwise it is called an internal vertex.
An out-tree is said to have degree d if every internal
vertex has outdegree exactly d.

Given a positive integer n, we write [n] to denote
{1, . . . , n}. For fixed d and ε, we consider the problem
of finding a cycle in a digraph G = ([N ], E), with
outdegree bounded by d, that is ε-far from acyclic.
Algorithms may query the adjacency list representation
of G as follows. We assume the algorithm knows N . A
query consists of a vertex u ∈ [N ] and an index i ∈ [d].
In response, the algorithm receives the ith outneighbor
of u or an empty string if u has fewer than i neighbors.
For convenience, we simplify the adjacency list query
model to the vertex querymodel, in which the algorithm
simply queries a vertex u and receives an ordered list
containing all outneighbors of u. Clearly, algorithms
on digraphs with maximum outdegree at most d under
the vertex query model can be implemented in the
adjacency list model by increasing the number of queries
by a factor of d, and thus asymptotic lower bounds in
the vertex query model also hold in the adjacency list
model.

Throughout the paper, random variables are indi-
cated by a bold font and distributions are indicated by
blackboard bold.

3 Our techniques

As is standard in property testing, we employ Yao’s
principle [Yao77] to prove our lower bound. By this
principle, to prove Theorem 1 it suffices to define a
probability distribution over N -vertex digraphs with
outdegree bounded by d and argue that

1. A random G drawn from this distribution is ε-far
from acyclic with probability 1− oN (1).
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2. Any deterministic algorithm A that makes

Q∗ :=
N5/9

logN

queries to G finds a cycle with probability oN (1).

In this section we first present a simple distribu-
tion from [BR02] and sketch the Ω(N1/2) lower bound
for this distribution that is implicit in the arguments of
[BR02]. We then outline the difficulty inherent in prov-
ing an asymptotically better lower bound, informally
describe the distribution BR that we use for Theorem 1,
and outline our proof of the theorem.

3.1 A simple Ω(N1/2) lower bound due to Ben-

der and Ron. The distribution over sparse digraphs
we now describe corresponds to the distribution G2 de-
fined in Section 4 of [BR02]; we denote this distribu-
tion by BRsimple := BRsimple(N, d). A graph G drawn
from BRsimple is generated by randomly partitioning the
N vertices {1, . . . , N} into two equal-size subsets S1

and S2 and taking d random directed perfect matchings
from S1 to S2 and d random directed perfect matchings
from S2 to S1 as the edges of G.

A straightforward probabilistic analysis (see
Lemma 5 of [BR02]) shows that for any constant
d ≥ 128, a random graph G ∼ BRsimple is ε-far from
acyclic for ε = 1/16. To complete the lower bound,
it remains to argue that any deterministic algorithm
A that makes o(N1/2) queries finds a directed cycle
in G ∼ BRsimple with probability oN (1). This follows
from the following stronger property: with probability
1−oN (1) over the choice of G ∼ BRsimple, no determin-
istic algorithm that makes o(N1/2) queries receives in
response to a query a vertex it has previously observed,
either as input to or output from a query.5 This
property follows from a standard birthday paradox
type argument, i.e., the fact that a sequence of o(N1/2)
uniform samples from an N -element set samples the
same element twice with probability oN (1).

3.2 A challenge in going beyond N1/2 many

queries. Another birthday paradox type argument
demonstrates that a random walk in G ∼ BRsimple

will collide with itself in O(N1/2) steps with high
probability, thus yielding a cycle. Hence a different
construction must be considered to obtain an ω(N1/2)
lower bound.

The essence of the simple Ω(N1/2) lower bound is
that with high probability, the algorithm receives no

5We assume without loss of generality that the algorithm never
repeats a previous query.

“useful” information about the underlying graph: each
of o(N1/2) many queries yields an answer that is uni-
form over all previously unseen vertices. Unfortunately,
this property does not hold for algorithms that make
ω(N1/2) queries. For example, an algorithm that re-
peatedly queries (u, i) pairs drawn uniformly at random
from [N ]× [d] would observe i.i.d. draws from some dis-
tribution over [N ]. Because ω(N1/2) i.i.d. draws from
any distribution supported on at most N elements will
result in ωN (1) collisions with high probability, any ar-
gument establishing an ω(N1/2) lower bound must con-
tend with the nontrivial information that algorithms
receive about the unknown underlying graph through
collisions. Indeed, the central difficulty in proving an
ω(N1/2) lower bound is showing that no algorithm can
gain enough information from induced collisions to find
a cycle.

3.3 Our construction and a sketch of our main

ideas. We now give an informal description of the
distribution BR := BR(N, d) that we analyze (a detailed
description is given in Section 4). This distribution is a
modified version of a construction proposed by Bender
and Ron in [BR02].

Each graph in the support of BR has 3N vertices,
and each vertex has outdegree either d or 0. A graph
G drawn from BR is obtained as follows: N vertices
are randomly selected and designated as blue vertices,
and the remaining 2N vertices are designated as red
vertices. Red vertices are randomly partitioned into L
many layers R1, . . . , RL, each containing W = 2N/L
vertices.6 Each blue vertex is assigned d outneighbors
by choosing each one uniformly at random from the
blue vertices and the first half of the layers of the red
vertices. Each red vertex in layer Ri (i < L) is assigned
d outneighbors by choosing each one uniformly from
the W vertices in Ri+1. For a visual example, refer
to Figure 1. A straightforward probabilistic argument
(given in Section 4.2) shows that with probability 1 −
oN (1) a random G ∼ BR is ε-far from acyclic, so the
main challenge is to show that it is hard to find a
directed cycle in a graph drawn from this distribution.

We give some intuition behind the construction of
graphs in BR. Note that every cycle in G consists
entirely of blue vertices. Thus, a cycle-finding algorithm
may want to “avoid wandering into the red region.”
This, however, is difficult to do because the local
neighborhood of a typical vertex “looks the same”
whether it is blue or red (note that an algorithm under
the adjacency list model of course never receives explicit

6Both L and W are NΘ(1); the exact values will be given later
and are not important for our intuitive discussion here.
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B R1

R2

RL−1

RL

.

.

.

W

L

Figure 1: Cartoon of a random graph G ∼ BR.

information about whether any particular vertex is blue
or red). For example, the simple random walk approach
sketched at the beginning of the previous subsection will
not work for G ∼ BR: even if the random walk starts at
a blue vertex, after O(1) steps on average it will reach a
red vertex and will have no chance of completing a cycle.
Given that an algorithm needs Ω(N1/2) queries to find
a cycle even if it is given the set of blue vertices (since
the blue part of G ∼ BR is very similar to graphs drawn
from BRsimple described in Section 3.1), it is natural to
hope for an ω(N1/2) lower bound using the distribution
BR.

There are two challenges in obtaining an ω(N1/2)
lower bound using BR. First, as discussed in the
previous subsection (which applies not only to BR but
to any distribution), an ω(N1/2)-query algorithm may
experience many collisions and hence potentially obtain
a significant amount of information about G. The
second challenge is specific to BR. Despite the intuition,
“wandering into the red region” may actually provide
useful information aboutG when done strategically (see
Section 8 for two attacks on BR based on exploring the
red region; they together imply that one cannot hope
to obtain a lower bound better than N13/18 using BR).
Given that many algorithmic strategies are possible,
how can one argue that every algorithm that does not
make too many queries is unlikely to find a cycle?

To explain the intuition that underlies our lower
bound, we first note that for a query on vertex u to
reveal a cycle, it must be the case that u is blue and
there is a directed path from one of its outneighbors
to u in the current “knowledge graph” of the algorithm
(where the knowledge graph consists of all edges that
have been found so far and v is an ancestor of u if it
has a directed path to u). As a result, we focus on the

maximum number of ancestors among all blue vertices
in the current knowledge graph because the probability
that an algorithm discovers a cycle when it queries a
vertex is proportional to its number of ancestors in the
knowledge graph. Our proof, at a high level, shows that
this crucial quantity cannot grow too fast.

A key notion behind our analysis is the division of a
sequence of queries made by an algorithm into distinct
epochs. Roughly speaking, an epoch ends either when
a collision occurs (i.e., one of the outneighbors of the
vertex queried is a vertex that the algorithm has seen
before, either as a query vertex or as an outneighbor of
a query vertex), or when “too many” queries have been
made since the end of the previous epoch. We introduce
the notion of epochs in Section 5 and bound the number
of epochs that occur in the execution of any algorithm
that makes at most Q∗ queries (Lemma 2). We also
bound the number of blue surprise epochs : these are
epochs that end because the vertex u queried is blue and
has a blue outneighbor v that the algorithm has seen
before (Lemma 3). We pay special attention to such
epochs because with the discovery of (u, v), all ancestors
of u become ancestors of v and thus, the number of
ancestors of v may grow rapidly.

Next, in Section 6 we show that during an epoch
of any algorithm, regardless of outcomes of previous
epochs, the vertices queried are unlikely to contain a
path of blue vertices of length more than 4 logN . We
do so by analyzing the information that an algorithm
has about the connected components of the knowledge
graph at any point in its execution, and arguing that
the distribution of colors of unqueried children of the
knowledge graph is close to a “naive distribution”
against which no algorithm can succeed in constructing
a long blue path with high probability. We use this
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argument to prove Lemma 4, which is at the heart of our
lower bound argument. In particular, Lemma 4 implies
that during an epoch that is not a blue surprise epoch
(or during a blue surprise epoch but ignoring the blue-
blue collision edge found at the end of the epoch), the
maximum number of ancestors of blue vertices in the
knowledge graph can increase by no more than 4 logN .

Finally, in Section 7, we combine Lemmas 2, 3, and
4 to bound the maximum number of ancestors of blue
vertices in its knowledge graph during the execution of
any Q∗-query algorithm on G ∼ BR. This is used to
show that every such algorithm finds a cycle in G ∼ BR

with probability oN (1).
To simplify the presentation, we introduce in Sec-

tion 5.1 an augmented query model, called the color
revelation model, in which more information is provided
to the algorithm than in the standard model. Specifi-
cally, at the end of each epoch the query algorithm is
provided with the color of every vertex it has previously
seen. All our results discussed above are proved under
this model and our lower bound trivially carries over to
the standard model since any algorithm under the lat-
ter can be simulated under the color revelation model
by simply ignoring the additional information.

4 The Bender-Ron graphs

In this section we formally describe the distribution
BR := BR(N, d) and prove, in Section 4.2, that G ∼ BR

is 1/60-far from acyclic with probability 1−oN (1) when
d ≥ 80. Theorem 1 follows from the next theorem which
we prove in the rest of the paper.

Theorem 2. Let d be a constant with d ≥ 80. Let A
be any Q∗-query deterministic algorithm that operates
on graphs in the support of BR under the vertex-query
model, where Q∗ := N5/9/ log(N). Then the probability
of A finding a cycle in G ∼ BR is oN (1).

4.1 The distribution. Let W := 2N/L = (2N)7/9

and L := (2N)2/9 be two parameters indicating the
width of each red layer and the number of red layers,
respectively.7 We refer to a map from a subset of [3N ]
to L+ 1 colors {blue, red1, . . . , redL} as a coloring.

A digraph G ∼ BR over the vertex set [3N ] is
generated by the following randomized procedure:

1. Let U be the uniform distribution over all
colorings C : [3N ] → {blue, red1, . . . , redL} such
that N vertices are colored blue and W vertices

7Note that by our choices of L and W , N + LW = 3N . This
particular setting of L and W is chosen to optimize our lower

bound, as will become clear in the course of our analysis. We

assume without loss of generality that N is such that both L/2
and W are integers.

are colored redi for each i ∈ [L]. The procedure
starts by drawing a coloring C ∼ U. Naturally we
refer to vertices in B as blue vertices and vertices
in R1 ∪ · · · ∪RL as red vertices in C. We view
R1, . . . ,RL as L layers of red vertices and refer to
vertices in Ri as red vertices in the ith layer (see
Figure 1).

2. For each blue vertex u ∈ B, create its adjacency
list by drawing a sequence of d vertices without
replacement from the following set of
(N − 1) + LW/2 = 2N − 1 vertices:

(B \ {u}) ∪
L/2
⋃

i=1

Ri.

Thus, a blue vertex has d distinct outneighbors
from B and the top L/2 layers of red vertices.

3. For each red vertex in Ri, 1 ≤ i < L, create its
adjacency list by drawing a sequence of d vertices
without replacement from Ri+1. Thus, each red
vertex (other than those in the bottom layer RL)
has d distinct outneighbors in the next layer.
Finally, set the adjacency list of each vertex in RL

to be empty. This finishes the construction of G.
Note that every vertex in G has out-degree either
d or 0 so G is a bounded-outdegree-d digraph as
promised.

We refer to graphs in the support of BR as Bender-Ron
graphs, since these graphs are inspired by a construc-
tion that was proposed (but not analyzed) in [BR02].
Figure 1 illustrates a graph in BR. To facilitate our
proof of Theorem 2 later, in addition we introduce BR

∗

to denote the distribution of (C,G) generated by the
procedure above (so the marginal distribution of G in
BR

∗ is the same as BR).
We record the following property that is trivial from

the construction:

Property 1. Let (C,G) be a pair in the support of BR∗

and let (u, v) be an edge in G. Then either (1) C(u) =
C(v) = blue (a blue → blue edge), (2) C(u) = blue and
C(v) = redi for some i ≤ L/2 (a blue → red edge), or
(3) C(u) = redi and C(v) = redi+1 for some i < L (a
red → red edge).

Moreover, if a vertex u has no outneighbor, then we
must have C(u) = redL.

4.2 Almost all Bender-Ron graphs are far from

acyclic. It is clear from the construction that no red
vertex can participate in a cycle, but intuitively the
blue → blue edges will result in many cycles in the blue
part of the graph. Lemma 1 below makes this intuition
precise.
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Lemma 1 (BR-graphs are far from acyclic). Let d ≥ 80
be a constant. Then a random digraph G ∼ BR is 1/60-
far from acyclic with probability 1− oN (1).

Proof. It suffices to show that for any fixed coloring C,
the random graph G drawn using the same procedure
running on C is far from acyclic with high probability.
To this end, we assume without loss of generality that
the blue vertices in C are [N ]. We focus on the subgraph
of G induced by the blue vertices [N ], which we refer to
as the blue subgraph.

The following claim is folklore and we include its
proof for completeness:

Claim 1. An N -vertex digraph G = (V,E) is ε-far from
acyclic if and only if for every (bijective) vertex ordering
π : V → {1, . . . , N}, the number of “backedges” (i.e.
directed edges (u, v) such that π(u) > π(v)) is at least
εdN .

Proof. We prove the contrapositive in both directions:
(⇒) Deleting all the backedges leaves an acyclic graph,
showing that the graph is ε-close to acyclic. (⇐) Given
a feedback arc set, after deleting it we can find a
topological sort of the resulting acyclic graph. The
ordering resulting from the topological sort has exactly
the feedback arc set as its backedges.

We will use the following claim, which follows triv-
ially from Claim 1, to bound the distance to acyclicity
of the blue subgraph of G:

Claim 2. Let G = (V,E) be an N -vertex digraph.
Suppose that for all balanced partitions (V1, V2) of V ,
the number of directed edges from V1 to V2 is at least
εdN , then G is ε-far from acyclic.

Proof. Every ordering of vertices π induces a balanced
partition (V1, V2) by taking V2 as the first N/2 vertices
in π and V1 as the last N/2 vertices in π. Then all
edges from V1 to V2 are backedges with respect to π.
The result follows from Claim 1.

Fix a balanced partition (V1, V2) of the blue vertices
[N ]. We show below that the number of edges from
V1 to V2 in G is at least dN/20 with probability
1 − exp(−N). It follows from a union bound over all
balanced partitions that with probability 1−oN (1), the
number of edges one needs to delete to make G acyclic
is at least dN/20.

To bound the number of edges in G from V1 to
V2, we go through vertices in V1 one by one and for
each vertex u ∈ V1, draw a sequence of d outneighbors
without replacement from a set of 2N−1 vertices which
contains V2. For each of these dN/2 many rounds and

for any outcomes in previous rounds, the probability of
gaining a directed edge from V1 to V2 is at least

(N/2)− (d− 1)

2N − 1− (d− 1)
≥ 1

5

when N is sufficiently large, so the expected number of
edges is at least (dN/2) ·(1/5) = dN/10. It follows from
a Chernoff bound (and a standard coupling argument)
that the probability of having fewer than dN/20 edges
is at most

e−(dN/10)(1/2)2(1/2) = e−dN/80 ≤ e−N ,

when d ≥ 80. With a union bound over the at most
2N many balanced partitions, we conclude that G has
at least dN/20 edges from V1 to V2 in all balanced
partitions (V1, V2) of [N ] with probability at least 1 −
exp(−N) · 2N = 1 − oN (1). Thus the blue subgraph
is (1/20)-far from acyclic with probability 1 − oN (1).
Because the total number of vertices is 3N , after lifting
back to the original graph we have that G is (1/60)-far
from acyclic with probability 1− oN (1).

5 Epochs and color revelation

The goal of the rest of the paper is to prove Theorem 2.
Recall that under the vertex query model, each time an
algorithm queries a vertex u ∈ [3N ] it receives as its
answer an ordered list a = (v1, . . . , v`) containing the
outneighbors of u. We assume without loss of generality
that the algorithm never queries the same vertex twice.
For Bender-Ron graphs in the support of BR we know
that the answer to each query is either an ordered list
(v1, . . . , vd) of d distinct vertices different from u or the
empty list. This leads to the following definition of query
histories.

Definition 1 (Query histories). A query history H is
an ordered tuple ((u1, a1), . . . , (uq, aq)) for some q ≥ 0
such that u1, . . . , uq are distinct vertices in [3N ] and
each ai is either a list of d distinct vertices different
from ui or the empty list. We refer to q as the length of
H, and H as the empty history when q = 0.

Each query history H = ((u1, a1), . . . , (uq, aq))
uniquely determines a knowledge graph, denoted KG(H),
which summarizes the information about the underlying
graph contained in H: The vertex set of KG(H),
denoted VKG(H), consists of all vertices that appear
in H (i.e., every ui and every vertex v in ai for some
i ∈ [q]); KG(H) contains a directed edge (u, v) if u = ui

and v appears in ai for some i ∈ [q]. Note that each
vertex in KG(H) has outdegree either d or 0, and every
vertex with outdegree d is queried in H. On the other
hand, a vertex u with outdegree 0 has two cases: Either
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u is queried in H and the answer a is empty, in which
case we refer to u as a sink in KG(H), or u is discovered
as an outneighbor of some vertex queried in H but itself
is never queried in H.

To prove Theorem 2, we introduce the notion of
epochs and a new query model called the color revela-
tion model in Section 5.1. In addition to receiving the
adjacency list of the vertex queried, an algorithm under
the color revelation model receives additional informa-
tion about colors of vertices in the current knowledge
graph at the end of each epoch. In the rest of the paper
we show that, under the color revelation model, any Q∗-
query deterministic algorithm finds a cycle in G ∼ BR

with probability oN (1) (see the exact statement in The-
orem 3). Theorem 2 follows from Theorem 3 trivially
because the color revelation model is no harder than
the vertex query model: any algorithm under the vertex
query model can be simulated under the color revelation
model by simply ignoring the additional information.

5.1 The color revelation model. Let H =
((u1, a1), . . . , (uq, aq)) be a query history for some q ≥ 0;
we write Hi to denote its i-prefix ((u1, a1), . . . , (ui, ai)).
We say the kth query (uk, ak) is a surprise in H
if ak contains a vertex that appears in VKG(Hk−1).
Otherwise, we refer to (uk, ak) as surprise-free.

We now describe the color revelation model, which
provides additional power to the query algorithm by
revealing the colors of vertices in previous epochs for
free. Although this augmentation makes the task of
cycle-finding easier, it also makes it easier to prove lower
bounds. Formally, the oracle now contains a pair (C,G)
in the support of BR

∗, instead of just a Bender-Ron
graph G as in the vertex-query model. The oracle uses
C to reveal to the algorithm colors of certain vertices.
(In general, a coloring C is not uniquely determined by
a Bender-Ron graph G.)

Under the color revelation model, an algorithm A
maintains a triple (H, E , P ), where

1. H is the current query history, updated after each
query as in the vertex-query model;

2. E = (E1, . . . , E`) for some ` ≥ 1 is a decomposition
of H into epochs, where each epoch Ei is by itself
a query history and H = E1 ◦ · · · ◦ E`; and

3. Letting H ′ = E1 ◦ · · · ◦ E`−1, P is a coloring map
from VKG(H ′) to {blue, red1, . . . , redL}.

Initially, H and E1 are empty and E = (E1). We
refer to the final epoch El as the current epoch. For
clarity, we use the symbols P and S to denote partial
colorings over subsets of [3N ] and use C to denote a full
coloring over the vertex set [3N ].

Let (H, E , P ) denote the current triple maintained
by an algorithm A. Under the color revelation model,
the next round proceeds as follows:

1. As in the vertex query model, A queries a vertex
u, receives an ordered list a containing the
outneighbors of u in G, and concatenates (u, a) to
H and E`.

2. The current epoch ends if (u, a) is a surprise in H
or |E`| = L/2. In this case:

(a) A learns the colors of the vertices in the
current epoch: P is extended so that
P (u) = C(u) for every u ∈ VKG(H).

(b) A new epoch begins: An empty epoch E`+1

is appended to E .
Note that E can be reconstructed from H by reading
H serially and recording the end of an epoch if a
surprise occurs or the length of the epoch reaches L/2.
Thus A needs only to maintain the pair (H,P ) instead
of the triple (H, E , P ). We refer to E as the epoch
decomposition of H.

Next we introduce the notion of valid knowledge
pairs.

Definition 2 (Valid knowledge pairs). A pair (H,P )
is called a valid knowledge pair if

• H = ((u1, a1), . . . , (uq, aq)) is a query history
for some q ≥ 0 and P is a coloring map over
VKG(H ′), where E = (E1, . . . , E`) is the epoch
decomposition of H and H ′ = E1 ◦ · · · ◦ E`−1;

• There exists a pair (C,G) in the support of BR∗

such that C is an extension of P and G is
consistent with H, i.e., ai is the adjacency list of
ui in G for every i ∈ [q].

Given a valid knowledge pair (H,P ) we use
BR

∗(H,P ) to denote the distribution of (C,G) ∼ BR
∗

conditioning on C being an extension of P and G being
consistent with H.

Note that the pair (H,P ) maintained by an algo-
rithm under the color revelation model is always valid
by definition. From now on we consider a deterministic
query algorithm A under the color revelation model as
a map from valid knowledge pairs to vertices so that
u = A(H,P ) is the next vertex that is queried. Theo-
rem 2 follows directly from the following statement in
the color revelation model:

Theorem 3. Let d be a constant with d ≥ 80, and let
A be a Q∗-query deterministic algorithm that works on
pairs in the support of BR∗ under the color revelation
model, where Q∗ = N5/9/ logN . Then the probability
of A finding a cycle in (C,G) ∼ BR

∗ is oN (1).
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5.2 Epoch bounds. Let (H,P ) be a valid knowl-
edge pair and let E = (E1, . . . , E`) be the epoch decom-
position of the query history H. We refer to an epoch
Ei, i < `, as a surprise epoch if its last query is a sur-
prise in H; otherwise Ei has length L/2 and ends by
timeout. A surprise epoch Ei is a blue surprise epoch if
the last vertex queried in Ei is blue in P .

We begin our proof of Theorem 3 by proving upper
bounds on the number of epochs and blue surprise
epochs that occur during the execution of a Q-query
algorithm under the color revelation model.

Lemma 2 (Epoch bound). Let Ep(k) denote the event
that more than k epochs occur. There exists a constant
c1 such that for any algorithm that makes Q queries,
(5.1)

Pr
(C,G)∼BR∗

[

Ep

(

c1

(

Q2

W
+

Q

L

))]

≤ exp

(

−Ω

(

Q2

W

))

.

Proof. Let A be an algorithm that makes Q queries.
Since each epoch is either a surprise epoch or ends
by timeout, the number of epochs which take place in
running A on a pair (C,G) in the support of BR

∗ is
bounded from above by the number of surprise queries
plus 2Q/L. As a result, it suffices to show that the
probability of A observing more than O(Q2/W ) many
surprises when running on (C,G) ∼ BR

∗ is at most
exp(−Ω(Q2/W )).

For this purpose we fix a valid knowledge pair
(H,P ) and let u = A(H,P ) be the vertex that A
queries next. Below we upper bound the probability
of u being a surprise by O(Q/W ) when A runs on
(C,G) ∼ BR

∗(H,P ). Since u has not been queried
before, a key observation is that, fixing any coloring C
in the support of BR∗(H,P ) and conditioning (C,G) ∼
BR

∗(H,P ) further on C = C, the adjacency list of u
is distributed as follows: If C(u) = blue then each of
its d outneighbors is drawn without replacement from
vertices of color blue in C (other than u itself) and
vertices of color redi, i ≤ L/2; If C(u) = redi for
some i < L then each of its d outneighbors is drawn
without replacement from vertices of color redi+1 in C;
If C(u) = redL, then its adjacency list is empty.

As a result, if C(u) = blue, the probability of u
being a surprise query (as (C,G) ∼ BR

∗(H,P ) further
conditioning on C = C) is at most

d · Q(d+ 1)

2N − 1
≤ d2Q

N
,

using a union bound and the fact that VKG(H) has size
at most q(d + 1) ≤ Q(d + 1). Similarly the probability
of u being a surprise when C(u) = redi for some i < L
can be bounded from above by 2d2Q/W . Since u
is always surprise-free if C(u) = redL, we have that

the probability of u being a surprise when A runs on
(C,G) ∼ BR

∗(H,P ) is at most 2d2Q/W .
Now for each q ∈ [Q], let Xq be a Bernoulli random

variable which is 1 if the qth query made by A on
(C,G) ∼ BR

∗ is a surprise. Then what we have shown
above implies that the probability ofXq = 1 isO(Q/W )
even conditioning on any outcomes of X1, . . . ,Xq−1. It
then follows from the Chernoff bound (together with a
standard coupling argument) that

Pr





∑

q∈[Q]

Xq ≥ 4d2Q2

W



 ≤ exp

(

−Ω

(

Q2

W

))

.

This finishes the proof of the lemma.

Recall that an epoch ends as a blue surprise epoch
if the last query u is both a surprise and a blue vertex.
If we let Xq denote the random variable that is 1 if
the qth query of A turns out to be the last query of
a blue surprise epoch, when running on (C,G) ∼ BR

∗,
then the argument used in the proof of Lemma 2 implies
that the probability of Xq = 1 is at most O(Q/N)
conditioning on any outcomes of X1, . . . ,Xq−1. This
gives us the following upper bound:

Lemma 3 (Blue surprise epochs bound). Let BSEp(k)
denote the event that more than k blue surprise epochs
occur. There exists a constant c2 such that for any
algorithm that makes Q queries, we have
(5.2)

Pr
(C,G)∼BR∗

[

BSEp

(

c2Q
2

N

)]

≤ exp

(

−Ω

(

Q2

N

))

.

6 Bounding the probability of long blue paths

In this section we prove a key lemma necessary for
the proof of Theorem 3: that in any given epoch,
the probability that a Q∗-query algorithm discovers a
“long” path of previously unseen blue vertices is low.
As a result, with high probability, the subgraph induced
by the blue nodes revealed at the end of each epoch is
a forest in which every tree has small depth.

Lemma 4 (Long blue paths are unlikely.). Let (H,P )
be a valid knowledge pair in which the length q of
H is bounded by Q∗. Let E` be the current epoch
of H and let (C,G) ∼ BR

∗(H,P ). The probability
that KG(E`) contains a path of length at least 4 logN
consisting of blue vertices only under C is o(N−2).8

We begin with some notation and a sketch of the
proof. Let (H,P ) be a valid knowledge pair, let E =

8The constant factors in the lemma statement are arbitrary
but will be convenient later in the analysis.
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(E1, . . . , E`) be the epoch decomposition of H, and let
H ′ = E1◦· · ·◦E`−1. By definition, the current epoch E`

satisfies |E`| < L/2 and every query in E` is surprise-
free in H. As a result, the graph KG(E`) is a vertex-
disjoint union of degree-d out-trees.9 This leads to the
following observation:

Property 2. Let T be an out-tree in KG(E`).

1. Every vertex of T , other than the root, lies
outside VKG(H ′). (The root may or may not
lie in VKG(H ′).)

2. Every internal vertex and every sink in T is
queried in E`.

Let S ∼ S be the distribution of partial colorings
over VKG(H) induced by C drawn as in (C,G) ∼
BR

∗(H,P ). Then every partial coloring S in the
support of S must be a good partial coloring over
VKG(H) (see Property 1):

Definition 3. We say S is a good partial coloring over
VKG(H) if (1) S is an extension of P , (2) For each
directed edge (u, v) in KG(H), either S(u) = S(v) =
blue, or S(u) = blue and S(v) = redi for some i ∈ [L/2],
or S(u) = redi and S(v) = redi+1 for some i < L, and
(3) S(u) = redL for every sink vertex in H.

In other words, Lemma 4 states that KG(E`) is
unlikely to have a long blue path under S ∼ S. To
prove Lemma 4, we introduce a naive distribution S

′

in Section 6.1 that is much easier to work with and at
the same time serves as a good approximation of the
distribution S. We then show that KG(E`) is unlikely
to have a long blue path under S

′ ∼ S
′, from which

Lemma 4 follows.
The intuition behind the naive distribution S

′ is
that we color each tree T in KG(E`) independently,
ignoring all information in the knowledge pair (H,P )
other than the tree T itself. Roughly speaking, we
generate a coloring for T as follows. If the root of T
lies outside of VKG(H ′), we color it red with probability
2/3 and blue with probability 1/3 as if it were drawn
uniformly at random from [3N ]. If the root of T lies
inside VKG(H ′), its color is known. We then propagate
down the tree in breadth-first order. If the parent of
a vertex v was colored blue, v is colored blue with
probability 1/2 and redi with probability 1/L for each
i ∈ [L/2]; if the parent of v was colored redi then v is
colored redi+1. S

′ does not capture S perfectly, but we
show in Section 6.2 that they are pointwise very close
to each other.

9Note that an isolated vertex is also counted as a degree-d
out-tree.

6.1 The naive distribution. Before introducing
the naive distribution S

′, we start by classifying trees
of KG(E`) into four types and note that we can already
deduce colors of certain vertices in any good coloring
S over VKG(H). Let T be an out-tree of KG(E`) with
height h(T ) and root vertex r:

• T is a type-1 out-tree if r ∈ VKG(H ′) (so the color
of r has already been revealed in P ) and
P (r) = redi for some i ∈ [L]. It follows from
Property 1 that every valid coloring S has
S(v) = redi+` for each vertex v of depth ` in the
tree. (Note that we must have i+ h(T ) ≤ L;
otherwise the pair (H,P ) cannot be a valid
knowledge pair.)

• T is a type-2 out-tree if r ∈ VKG(H ′) and
P (r) = blue. Then none of its leaves can be a
sink; otherwise (H,P ) implies that there is a path
from a blue vertex to a redL vertex of length at
most h(T ) ≤ |E`| < L/2, contradicting with the
validity of (H,P ).

• T is a type-3 out-tree if r is not in VKG(H ′) but T
contains at least one sink leaf v∗. Given that
h(T ) < L/2, it follows from Property 1 that every
good coloring S satisfies S(r) = redL−k, where k
is the depth of v∗ in T , and S(v) = redL−k+` for
every vertex v of depth ` in the tree.

• T is a type-4 out-tree if r is not in VKG(H ′) and
none of its leaves is a sink.

Figure 2 illustrates the four types of out-trees. Let
U denote the set of vertices that are always colored red
or always colored blue in a good partial coloring for
VKG(H); that is, every vertex in VKG(H ′) as well as
vertices in type-1 and type-3 trees in KG(El). Let P ′

denote the unique partial coloring over U that agrees
with every good partial coloring S over VKG(H). We
let Y := VKG(H) \ U denote the set of vertices which
may be colored either red or blue in a good coloring;
that is, all vertices in type-2 and type-4 trees except for
the roots of type-2 trees.

We are ready to define the naive distribution S
′ of

partial colorings over VKG(H). A coloring S
′ ∼ S

′ is
drawn using the following procedure:

1. First we color each vertex u ∈ U as P ′(u) (so S
′ is

always an extension of P ′);

2. For each type-4 tree T , color its root vertex r blue
with probability N/(3N − h(T )W ) and redi with
probability Y/(3N − h(T )W ) for each
i ≤ L− h(T ). (The intuition behind the
denominator is that because there is a path of
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VKG(H)

VKG(H ′)

1 2 3 4

sink(s)

no sinks

Figure 2: Possible out-tree types during a given epoch. Bichromatic circles denote vertices
whose types cannot be determined from (H,P ) alone.

length h(T ) that starts at r, its color cannot be
redL−h(T )+1, . . . , redL.)

3. Then we go through each type-2 and type-4 tree
one by one and consider uncolored vertices in
breadth-first order. For each vertex v, if its parent
is colored blue, color v blue with probability 1/2
and with redi for each i ∈ [L/2] with probability
1/L. If the parent of v is colored redi, color v
redi+1.

10

The following property follows directly from the proce-
dure for S′ above:

Property 3. Every partial coloring in the support of S′

is a good partial coloring over VKG(H).

Both distributions S and S
′ are supported on good

partial colorings over VKG(H). The next lemma shows
that S′ is a good approximation of S:

Lemma 5. For every good partial coloring S over
VKG(H), we have

0.9 · Pr
S′∼S′

[

S
′ = S

]

≤ Pr
S∼S

[

S = S
]

≤ 1.1 · Pr
S′∼S′

[

S
′ = S

]

.

Before proving Lemma 5 in Section 6.2, we use it to
give a quick proof of Lemma 4.

Proof of Lemma 4 using Lemma 5. Given a good color-
ing S over VKG(H) we use LBP(S) to denote the event
that KG(E`) contains a blue path of length at least
4 logN under S. It follows from Lemma 5 that

(6.3) Pr
S∼S

[

LBP(S)
]

≤ 1.1 · Pr
S′∼S′

[

LBP(S′)
]

.

10 Observe that we never go beyond redL because the height of
each tree is at most L/2.

On the other hand, if LBP(S) holds then there must be
a vertex v in either a type-2 or a type-4 tree (since every
vertex in a type-1 or type-3 tree must be red in a good
partial coloring) such that v is of depth at least 4 logN
and the path from the root to v is all blue. For each such
vertex v, let LBP(S, v) denote the event that the path
from the root to v is blue under S. Then the probability
of LBP(S′, v) when S

′ ∼ S
′ is (1/2)` ≤ 1/N4 if v is in

a type-2 tree and has depth `, and is

N

3N − h(T )W
· (1/2)` ≤ 1/N4

if v is in a type-4 tree T . As a result, the probability
of LBP(S′) when S

′ ∼ S
′ is O(1/N3) by a union bound

since the number of v is trivially at most 3N . The
lemma follows from (6.3).

6.2 The naive distribution is a good approxi-

mation: Proof of Lemma 5. To simplify the pre-
sentation, in this section we use the notation “a± b” to
denote a quantity that is between a− b and a+ b.

Let S be a good partial coloring over VKG(H). We
write T2 to denote the set of type-2 trees in KG(E`)
and T4 to denote the set of type-4 trees in KG(E`),
and we write T to denote T2 ∪ T4. Given S, we write
T4,b(S) to denote the set of type-4 trees with a blue root
and T4,r(S) to denote the set of type-4 trees with a red
root in S. We also use #br(S),#bb(S) and #rr(S) to
denote the total number of blue → red, blue → blue
and red → red edges in all trees in T .

We start with the easier task of obtaining a closed-
form expression for PrS′∼S′ [S

′ = S]. This quantity can
be written as a product: each root of a type-4 tree
contributes a factor which depends on its color in S
(recall the second step of the procedure for drawing
from S

′), and each edge of a tree in T contributes a
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factor which is 1/2 if it is a blue → blue edge in S, 1/L
if it is a blue → red edge, and 1 if it is a red → red edge.
As a result, we have

Pr
S′∼S′

[

S
′ = S

]

=





∏

T∈T4,b(S)

N

3N − h(T )W









∏

T∈T4,r(S)

W

3N − h(T )W





(

1

L

)#br(S)(
1

2

)#bb(S)

=

(

∏

T∈T4

W

3N − h(T )W

)

(

L

2

)|T4,b(S)|(
1

L

)#br(S)

(

1

2

)#bb(S)

= τ1 ·
(

L

2

)|T4,b(S)|(
1

L

)#br(S)(
1

2

)#bb(S)

,

where the second equality uses WL/2 = N and the fact
that T4 is the disjoint union of T4,b(S) and T4,r(S). The
quantity τ1 > 0 is a value that does not depend on S.

Next we work on the probability distribution S. For
each good partial coloring S over VKG(H), we write
w(S) as a shorthand for the probability over (C,G) ∼
BR

∗ that C is an extension of S and G is consistent
with H. Given the definition of S and w(·), we have

Pr
S∼S

[

S = S
]

=
w(S)

∑

good S′

w(S′)
,(6.4)

where the sum is over all good partial colorings S′ over
VKG(H).

Looking ahead, our plan is to show that there is a
value τ > 0 (independent of S) such that

0.99τ Pr
S′∼S′

[

S
′ = S

]

≤ w(S) ≤ 1.01τ Pr
S′∼S′

[

S
′ = S

]

,

or more succinctly,

(6.5) w(S) ∈ (1± 0.01)τ Pr
S′∼S′

[

S
′ = S

]

.

With the above expression, it follows from

∑

good S′

Pr
S′∼S′

[S′ = S′] = 1

(since S
′ is supported on good colorings) that

0.99τ ≤
∑

good S′

w(S′) ≤ 1.01τ.(6.6)

Combining (6.4), (6.5), and (6.6), we have

Pr
S∼S

[

S = S
]

≤ 1.01τ

0.99τ
Pr

S′∼S′

[

S
′ = S

]

< 1.1 Pr
S′∼S′

[

S
′ = S

]

and the other side of Lemma 5 can be proved similarly.
Thus, it suffices to prove (6.5). We start with some
notation. We use U to denote the uniform distribution
over all full colorings. Given a full coloring C, we use
BR(C) to denote the distribution of Bender-Ron graphs
generated using C as the full coloring in the procedure
for BR.

Now we consider the (C,G) ∼ BR
∗ in the definition

of w(S) by first drawing a full coloring C ∼ U. If C is
not an extension of S then we already fail to satisfy the
condition in the definition of w(S). Let ext(C, S) denote
the event that C is an extension of S. If ext(C, S) then
we draw G ∼ BR(C) to see if G is consistent with H.

A useful observation is that every C that extends
S shares the same probability of G ∼ BR(C) being
consistent with H. Let #b(U) (respectively #r(U)) be
the number of blue (respectively red) vertices in U under
S that are queried in H; note that these two numbers
are independent of S since every good coloring must
be an extension of P ′ on U . Let #b(Y, S) (respectively
#r(Y, S)) denote the number of blue (respectively red)
vertices in Y under S that are queried in H. Then for
every C that is an extension of S, the probability of
G ∼ BR(C) being consistent with H is

(

d
∏

i=1

1

2N − i

)#b(U)+#b(Y,S)(d−1
∏

i=0

1

W − i

)#r(U)+#r(Y,S)

= τ2 ·
(

d
∏

i=1

1

2N − i

)#b(Y,S)(d−1
∏

i=0

1

W − i

)#r(Y,S)

(6.7)

for some positive value τ2 independent of S. Note that
our choices of L,W and Q∗ satisfy

(6.8) LQ∗ = o(W ).

Using (6.8) (we only need L = o(W ) here) and the fact
that #b(Y, S),#r(Y, S) ≤ L/2, (6.7) becomes

= (1± oN (1))τ2

(

1

2N

)d#b(Y,S)(
1

W

)d#r(Y,S)

= (1± oN (1))τ3

(

1

L

)d#b(Y,S)

,

for some positive value τ3 that is independent of S since
#b(Y, S) + #r(Y, S) is a constant independent of S.
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Note that d · #b(Y, S) = #bb(S) + #br(S) − d|T2|.
This is just because each blue vertex queried in Y
introduces d edges that are either blue → blue or
blue → red in T ; we need to subtract d|T2| because
roots of type-2 trees are not included in Y . Since |T2| is
a value independent of S, (6.7) can be simplified to

(1± oN (1)) · τ4 ·
(

1

L

)#bb(S)+#br(S)

,

for some value τ4 > 0 that is independent of S, and thus

w(S) = (1± oN (1)) Pr
C∼U

[

ext(C, S)
]

τ4

(

1

L

)#bb(S)+#br(S)

.

Next, we evaluate the probability that C ∼ U is an
extension of S over VKG(H) = U ∪ Y . For this purpose
we consider the following experiment:

1. Pick an arbitrary ordering u1, . . . , u|U | of U and
an arbitrary ordering y1, . . . , y|Y | of Y .

2. Start with N blue pebbles and W redi pebbles for
each i ∈ [L]. Go through vertices u1, . . . , u|U | one
by one and assign each one a remaining (as yet
unassigned) pebble uniformly at random. Then go
through vertices y1, . . . , y|Y | one by one and assign
each one a remaining pebble uniformly at random.

3. For each ui, we use Xi to denote the Bernoulli
random variable that is 1 if ui is assigned a pebble
of color S(ui), and define Y i similarly for each yi.

Then the probability PrC∼U[ext(C, S)] that we are
interested in is

Pr
[

X1 = · · · = Y |Y | = 1
]

= Pr
[

X1 = · · · = X |U | = 1]
∏

i∈[|Y |]

Pr
[

Y i = 1 |X1 = · · · = Y i−1 = 1
]

= τ5 ·
∏

i∈[|Y |]

Pr
[

Y i = 1 |X1 = · · · = Y i−1 = 1
]

,

for some positive value τ5 that is independent of S. For
each yi with S(yi) = blue, we have

N −Q∗(d+ 1)

3N
≤ Pr

[

Y i = 1 |X1 = · · · = Y i−1 = 1
]

≤ N

3N −Q∗(d+ 1)
.

This is because regardless of outcomes for vertices before
yi, the number of blue pebbles left in the round of yi

lies between N − Q∗(d + 1) and N (since VKG(H) has
no more than Q∗(d+ 1) vertices) and the total number
of pebbles left is between 3N −Q∗(d+ 1) and 3N .

Similarly for each yi with S(yi) = redj for some
j ∈ [L], we have

W −Q∗(d+ 1)

3N
≤ Pr

[

Y i = 1 |X1 = · · · = Y i−1 = 1
]

≤ W

3N −Q∗(d+ 1)
.

Let #∗
b(Y, S) (or #∗

r(Y, S)) denote the number of blue
(or red) vertices in Y under S (unlike #b(Y, S) and
#r(Y, S), these vertices may have not been queried).
It follows from (6.8) and |Y | = O(L) that

Pr
C∼U

[

ext(C, S)
]

= (1± oN (1)) τ5

(

1

3

)#∗

b (Y,S)(
W

3N

)#∗

r(Y,S)

= (1± oN (1)) τ6

(

2

L

)#∗

r(Y,S)

,

for some value τ6 > 0 that is independent of S since
#∗

b(Y, S) + #∗
r(Y, S) is a constant independent of S.

Finally we have

w(S)

PrS′∼S′ [S
′ = S]

= (1± oN (1)) τ7

(

2

L

)#∗

r(Y,S)+#bb(S)+|T4,b(S)|

for some value τ7 > 0 that is independent of S. Note
that for any good coloring S, the quantity #∗

r(Y, S) +
#bb(S) + |T4,b(S)| is equal to |Y |, a constant that does
not depend on S. This finishes the proof of (6.5) and
Lemma 5.

7 A Lower Bound on Cycle Finding

This section combines the results of Lemmas 2, 3 and 4
to establish Theorem 3, which is restated below:

Theorem 3. Let d be a constant with d ≥ 80, and let
A be a Q∗-query deterministic algorithm that works on
pairs in the support of BR∗ under the color revelation
model, where Q∗ = N5/9/ logN . Then the probability
of A finding a cycle in (C,G) ∼ BR

∗ is oN (1).

Proof. Let A be a Q∗-query algorithm. We start with
the definition of typical pairs in the support of BR

∗

with respect to A, and then show that (C,G) ∼ BR
∗ is

typical with probability 1− oN (1).

Definition 4. We say a pair (C,G) in the support of
BR

∗ is typical with respect to an algorithm A if the
following conditions hold:
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(i) The number of epochs during the execution of A
on (C,G) is O(Q∗2/W +Q∗/L).

(ii) The number of blue surprise epochs during the
execution of A on (C,G) is O(Q∗2/N).

(iii) For each q ∈ [Q∗], let (H(q), P (q)) denote the
knowledge pair of running A on (C,G) after
q queries and let E(q) denote the current epoch (in
the epoch decomposition of H(q)). Then there is
no blue path longer than 4 logN in KG(E(q))
under the coloring C.

We combine Lemmas 2, 3 and 4 to show that (C,G)
∼ BR

∗ is typical with respect to A with probability
1−oN (1). We focus on the third condition (iii) since the
probability of (C,G) satisfying the first two conditions
is 1− oN (1) by Lemmas 2 and 3. For (iii) we have

Pr
(C,G)∼BR∗

[

(C,G) violates (iii)
]

≤
Q∗

∑

q=1

Pr
(C,G)∼BR∗

[

(C,G) violates (iii) after q queries
]

.

On the other hand, letting Aq(C,G) denote the knowl-
edge pair A observes after q queries on (C,G), the qth

probability in the sum can be written as

∑

valid (H,P )

Pr
(C,G)∼BR∗

[

Aq(C,G) = (H,P )
]

×

Pr
(C,G)∼BR∗(H,P )

[

(C,G) violates (iii) after q queries
]

,

where the sum is over all valid knowledge pairs (H,P )
of length q. It follows from Lemma 4 that the latter
probability in the above expression is o(N−2) for every
valid knowledge pair (H,P ). As a result, the probability
of (C,G) ∼ BR

∗ violating (iii) is o(N−1) and thus
(C,G) is typical with probability 1− oN (1).

Given a query history H and a vertex u, we write
anc(H,u) to denote the set of ancestors of u in KG(H),
i.e., the set of vertices (other than u itself) that have a
directed path to u. (If u /∈ VKG(H) then anc(H,u) is
trivially empty.) The claim below shows that if (C,G)
is typical then at any time during the execution of A on
(C,G), every blue vertex has a small set of ancestors in
KG(H).

Claim 3. Let (C,G) be a typical pair with respect to A.
Then for each q ∈ [Q∗], letting H be the query history
of A after making q queries on (C,G), we have

(7.9)
∣

∣anc(H,u)
∣

∣ ≤ O

(

logN ·
(

Q∗2

W
+

Q∗

L

)

· Q
∗2

N

)

,

for every vertex u with C(u) = blue.

Proof. Recall that at the end of each blue surprise
epoch, A may find an edge (u, v) such that the vertex
u being queried is blue and v is a vertex encountered
before. We refer to such an edge as a surprise edge if v
also turns out to be blue.

Now we consider running A on a typical pair (C,G).
Let (H(i), P (i)) denote the knowledge pair maintained
by A after i queries, let E(i) be the current epoch, and
let H(i) = H ′(i) ◦ E(i). We focus on the evolution of
the blue subgraph (the subgraph induced by its blue
vertices) of KG(H ′(i)) over time. We write BKG(H ′(i))
to denote the blue subgraph of KG(H ′(i)).

First we note that KG(H ′(i)) (and thus, BKG(H ′(i)))
is only updated at the end of each epoch. If an epoch
ends at the ith query, a number of out-trees are added
to KG(H ′(i−1)). Each such tree (other than its root)
is vertex-disjoint from KG(H ′(i−1)). In addition, if the
epoch is a blue surprise epoch, no more than d many
surprise edges are added to KG(H ′(i)). Now focusing
on BKG(H ′(i)) vs BKG(H ′(i−1)), we have that at the
end of each epoch, each out-tree added to BKG(H ′(i−1))
satisfies the extra condition of having depth at most
4 logN . If it is the end of a blue surprise epoch we
may need to add no more than d surprise edges to
BKG(H ′(i)).

As a result, letting H be the query history of A
after making q queries on a typical pair (C,G), we have
that BKG(H ′) is the union of (1) a forest in which each
out-tree has depth at most

(7.10) O

(

logN ·
(

Q∗2

W
+

Q∗

L

))

and (2) a set of at most

(7.11) O

(

Q∗2

N

)

many surprise edges, where (7.10) follows from the
bound for the number of epochs and (7.11) follows from
the bound for the number of blue surprise epochs given
that (C,G) is typical.

Let u be a vertex in BKG(H ′). To bound the
number of its ancestors, we consider an in-tree T rooted
at u such that every ancestor of u appears in T (with a
directed path to u). If we remove surprise edges from T ,
it is left with a vertex-disjoint union of directed paths;
this is because, after removing surprise edges, BKG(H ′)
is a forest of out-trees (so no vertex has indegree larger
than 1). Since each path has length bounded by (7.10)
and the number of surprise edges is bounded by (7.11),
the number of vertices in T , i.e., the number of ancestors
of u, is bounded by (7.9).

Now in Claim 3, u can be a vertex in VKG(E).
Note that KG(E) must be a forest of out-trees and
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because (C,G) is typical, the blue subgraph of each
such out-tree has depth at most 4 logN . As a result,
considering vertices in VKG(E) may add a term of
4 logN to our bound for the number of ancestors, which
is still captured by (7.9). This finishes the proof of the
claim.

Now we show that A finds a cycle in (C,G) ∼
BR

∗ with probability oN (1). Given that (C,G) is
typical with probability at least 1 − oN (1), and letting
cyc(Aq,C,G) denote the event that A finds a cycle on
the qth query, we have

Pr
(C,G)∼BR∗

[

A finds a cycle
]

(7.12)

≤ oN (1) + Pr
(C,G)

[

(C,G) typical, A finds a cycle
]

≤ oN (1) +
∑

q∈[Q∗]

Pr
(C,G)

[

(C,G) typical, cyc(Aq,C,G)
]

.

As a result, it suffices to bound each probability in the
sum by o(1/N).

Fix any q ∈ [Q∗]. Given a pair (H,C), where
H = H ′ ◦E is a query history of length q−1 and C is a
full coloring, we write P (H,C) to denote the restriction
of C on VKG(H ′). Then we have

Pr
(C,G)∼BR∗

[

(C,G) typical, cyc(Aq,C,G)
]

,(7.13)

which is at most

∑

(H,C)

Pr
(C,G)∼BR∗

[

C = C and A sees (H,P (H,C))
]

(7.14)

× Pr
(C,G)∼BR∗(H,C)

[

cyc(Aq,C,G)
]

,

where the sum is over all (H,C) such that every blue
vertex (under C) in VKG(H) has its number of ancestors
bounded by (7.9). This follows from Claim 3 since
(C,G) is typical in (7.13).

Fix such a pair (H,C) and let u = A(H,P (H,C))
be the next vertex that is queried by A. If u /∈ VKG(H)
or u ∈ VKG(H) is not blue under C, the probability in
(7.14) is 0. If u ∈ VKG(H) is blue, we note that under
(C,G) ∼ BR

∗(H,C), outneighbors of u are picked
randomly from 2N − 1 vertices without replacement.
Consequently the probability that one of them is an
ancestor of u can be bounded by

O

(

logN ·
(

Q∗4

WN2
+

Q∗3

LN2

))

.

As a result, this is an upper bound for (7.14) as well as
(7.13) and thus, the sum in (7.12) is at most

Q∗ ·O
(

logN

(

Q∗4

WN2
+

Q∗3

LN2

))

(7.15)

= O

(

logN

(

Q∗5

WN2
+

Q∗4

LN2

))

= oN (1)

with our choices of L,W and Q∗. This finishes the proof
of the lemma.

Looking back regarding our choices of L := (2N)2/9

and W := 2N/L = (2N)7/9, we need L,W and Q∗

to satisfy the following two inequalities for the proof
to work: LQ∗ = o(W ) (6.8), and that (7.15) above
is oN (1). Our choices of L and W are optimized
to maximize the query complexity Q∗ under these
conditions.

8 Finding cycles in Bender-Ron-graphs using

O(N13/18) queries

Given the lower bound established above for cycle-
finding in Bender-Ron graphs, one natural question
concerns the limitations of this approach: what is
the true query complexity of cycle-finding in graphs
drawn from this distribution? This section sketches
two algorithmic approaches that find cycles with high
probability in random graphs G ∼ BR for many values
of the length parameter L. In particular, setting L =
Θ(N2/9) as in our lower bound construction yields an
algorithm for cycle finding in BR graphs with query
complexity roughly N13/18.

Algorithm 1. We begin with the following simple
observation: With high probability over a random
Bender-Ron graph G ∼ BR, for each vertex v ∈ [3N ] it
is possible to correctly determine the color (and layer,
if the color is red) of v in O(L) queries. This is a
straightforward consequence of the following two facts.
First, if v is a red vertex in layer Ri, then every directed
path from v reaches a sink after exactly L − i edges.
Second, for almost every graph G ∈ BR, a sequence
of random walks made from any blue vertex in G will
differ significantly in the distance they travel before they
find a sink. Thus an algorithm can determine the color
and layer of v with high probability by making several
random walks of length O(L).

We can leverage this observation to find a cycle with
high probability in O(L

√
N) queries as follows. The

algorithm works by first identifying a blue vertex in
O(L) queries by randomly sampling and confirming its
color using the procedure described above. Each child
of a blue vertex G ∼ BR is blue with probability 1/2,
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so we can grow a blue path from our seed vertex at
a cost of roughly O(L) queries to confirm the color of
each additional vertex.11 We construct a blue path of
length C

√
N , at which point each successive blue vertex

added to the path creates a cycle with probability at
least C/(2

√
N). By a birthday paradox argument, the

next C
√
N blue vertices added to the path yield a cycle

with high probability for large C. Setting L = (2N)2/9

as in our lower bound proof, the query complexity of
the resulting algorithm is O(N13/18).

Algorithm 2. Algorithm 1 provides a good upper
bound on the query complexity of cycle-finding in
Bender-Ron graphs when L is relatively small. In this
section we sketch a more sophisticated strategy that
gives a query-efficient algorithm when L is large. The
key observation here is that for almost every graph
G ∼ BR, given any red vertex v in layer Ri, by making
P := Õ(W ) queries it is possible to query almost
every vertex in layer Ri+t, where t = logd P. This is
accomplished by performing a breadth-first search of
depth t starting from vertex v. We think of this as
the query algorithm “building a wall” at layer Ri+t.

Algorithm 2 has two stages. In the first stage,
it builds a series of walls, effectively mapping out the
structure of G. In the second stage, it exploits its
knowledge about the structure of G to efficiently build
a long blue path using a method similar to Algorithm 1.

In more detail, the first stage starts by first iden-
tifying M red vertices by sampling vertices at random
and using random walks to confirm their color, a pro-
cess which takes O(LM) queries. In the rest of the first
stage the algorithm then performs the wall-building pro-
cedure at each of these vertices, a process which takes
roughly Õ(MW ) queries.12 At this point, the query
algorithm has built Θ(M) walls, which with high prob-
ability are typically spaced at intervals roughly O(L/M)
apart throughout the layers R1, . . . , RL. Thus the num-
ber of queries that the first stage takes is about

Õ(M(W + L)) = Õ(M(N/L+ L)).

In the second stage, Algorithm 2 is the same as
Algorithm 1, except that Algorithm 2 can identify
vertex colors by reaching a wall instead of a sink vertex.
Consider a random walk from a vertex v. If v is in layer
Ri, then most random walks from v will collide with
the next wall in a particular, fixed number of queries ai,

11 With high probability, the number of red vertices we identify

is proportional to the length of the path. If a blue node has no

blue children, an event which occurs with probability 1/2d, we
backtrack to the previous node.

12 If the algorithm finds a sink while attempting to run a

breadth-first search of depth t, this wall fails and the procedure
continues.

which will typically be O(L/M). If v is a blue vertex,
then most random walks from v will still collide with a
wall in O(L/M) queries, but with high probability the
length of these walks will vary significantly. As a result,
using the same method as Algorithm 1, Algorithm 2
can identify vertex colors in O(L/M) queries and find
a cycle of length O(

√
N) in O(L

√
N/M) queries. Thus

the query complexity of Algorithm 2 is

Õ(M(N/L+ L) + L
√
N/M).

If L � N1/4, then taking

M =
N1/4L√
N + L2

� 1,

we get that the query complexity of this second ap-
proach is roughly Õ(N1/4

√
N + L2), which is o(N) for

N1/4 � L ≤ o(N3/4).

9 Directions for future work: towards upper

bounds

Given our Ω̃(N5/9) lower bound, it is natural to ask the
true query complexity of cycle finding in sparse digraphs
that are ε-far from acyclic. We conjecture that there is
an o(N)-query algorithm for this problem, and we pose
the problem of finding such an algorithm as a tantalizing
goal for future work. We conclude with a few comments
towards this goal:

1. Let ` = `(m, ε) be the smallest value such that
every m-edge digraph G with the smallest
feedback arc set of size at least εm must have a
cycle of length at most `. Fox [Fox18] has proved
that `(m, ε) ≤ Õ(logm)/ε. It follows that every
bounded-outdegree-d N -vertex digraph that is
constant-far from acyclic must contain a cycle of
length Õ(logN). This structural result may be
viewed as a highly efficient nondeterministic
algorithm (with query complexity Õ(logN)) for
the cycle-finding problem that we consider.

2. It is possible that a simple algorithm based on
breadth first search may have sublinear query
complexity for cycle-finding in far-from-acyclic
bounded-degree digraphs. In more detail, we do
not know a counterexample to the following
conjecture: “Let 0 < ε < 1 be a (small) constant.
Let A′ be an algorithm which works as follows:
for C = C(ε) (a large constant) many repetitions,
A′ picks a random vertex v in G and performs a
breadth first search out from v until CN/ logN
vertices have been explored. When run on any
N -vertex graph G that is ε-far from acyclic, one of
the C(ε) BFSes performed by algorithm A′ finds a
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cycle with constant probability.” (We note that
by considering the case in which G is a union of d
many randomly chosen bipartite matchings, it can
be shown that N/ logN cannot be replaced by
any function of N that is o(N/ logN).)
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