Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Nearly optimal edge estimation with independent set queries

Xi Chen*

Amit Levif

Erik Waingarten?

November 6, 2019

Abstract

We study the problem of estimating the number of edges of
an unknown, undirected graph G = ([n], E) with access to
an independent set oracle. When queried about a subset S C
[n] of vertices, the independent set oracle answers whether
S is an independent set in G or not. Our first main result is
an algorithm that computes a (1 + ¢)-approximation of the

number of edges m of the graph using min(y/m,n/y/m) -
poly(logn,1/e) independent set queries. This improves
the upper bound of min(y/m,n?/m) - poly(logn,1/e) by
Beame et al. [3]. Our second main result shows that
min(y/m, n/y/m)/polylog(n) independent set queries are
necessary, thus establishing that our algorithm is optimal
up to a factor of poly(logn,1/e).

1 Introduction

We study the problem of estimating the number of
edges of a simple undirected graph G = ([n], E) in the
context of sublinear-time graph algorithms. The goal is
to design a highly-efficient randomized algorithm that,
given a certain type of oracle access to an underlying
graph G, outputs a number m that approximates the
number of edges of G. The first result in this direction
was by Feige [14], who studied this problem when the
oracle is a degree oracle: the degree oracle answers
queries of the form “what is the degree of a given vertex
v?” The algorithm of Feige makes O(n/y/m) queries
to the degree oracle, where m denotes the number of
edges of the input graph G, and outputs a (2 + ¢)-
approximation to m for any constant € > 0. Moreover,
Feige showed that the upper bound of n/y/m is tight for
a (2 + e)-approximation, and indeed Q(n?/m) degree
queries are necessary for a (2 — o(1))-approximation.
Soon thereafter, Goldreich and Ron [15] considered an
oracle that, in addition to degree queries, can answer
neighbor queries (i.e., given a vertex v € [n] and
an index j, the oracle returns the jth neighbor of v
according to some fixed ordering). Their algorithm uses
O(n/y/m)! queries and outputs a (1+¢)-approximation
to m for any constant £ > 0; they further showed that

" *Columbia University, email: xichen@cs.columbia.edu.
TUniversity of Waterloo, email: amit.levi@uwaterloo.ca.
fColumbia University, email: eaw@cs.columbia.edu.
1We use O(f(n)) and Q(f(n)) to surpress polylog(f(n)) fac-

tors.

the upper bound is tight up to a polylog(n) factor.

Since then, sublinear-time algorithms have been
developed for a variety of graph problems, including
estimating the number of stars [16, 1], triangles [11], k-
cliques [12], and arbitrary small subgraphs [2], finding
forbidden graph minors [19, 20], sampling edges almost
uniformly [13], approximating the minimum weight
spanning tree [4, 8, 7], maximum matching [24, 29], and
minimum vertex cover [26, 22, 24, 29, 17, 25]. As noted
in a recent work of Beame, Har-Peled, Ramamoorthy,
Rashtchian, and Sinha [3], all these algorithms interact
with oracles that provide only local information about
the underlying graph (such as degree, neighbor, and
edge existence queries where an algorithm can ask “is
vertex u connected to vertex v?”)2. They suggested
that non-local oracle models may be natural in certain
scenarios of graph parameter estimation and their non-
locality may enable more efficient graph algorithms.

Along this line of investigation, [3] introduced both
the independent set oracle and the bipartite independent
set oracle and studied the problem of estimating the
number of edges under these two query models. The
independent set oracle for a graph G = ([n], E) can
be queried with a set S C [n] of vertices and outputs
whether or not S is an independent set in G, i.e.
whether or not there exist vertices u,v € S with
(u,v) € E. The bipartite independent set oracle, on
the other hand, can be queried with a pair of disjoint
sets S,T C [n] and outputs whether or not (S,7) is a
bipartite independent set in G, i.e. whether or not there
exist u € S and v € T with (u,v) € E.3

20ne exception is that [2] also uses uniform edge sampling in
addition to the above specified queries.

3We remark that the bipartite independent set oracle is at least
as powerful, up to poly-logarithmic factors, as the independent set
oracle. Consider a graph G = ([n], E), a set S C [n] of vertices,
and the question of whether or not S is an independent set.
Letting (S1,S2) be a uniformly random partition of S, we may
query the bipartite independent set oracle with S; and Sa. If S is
an independent set, then (S1,S2) will be a bipartite independent
set; if S is not an independent set, then (Si1,S2) will not be a
bipartite independent set with probability at least 1/2. Thus,
O(log(1/8)) bipartite independent set queries can simulate an
independent set query with probability at least 1 — §.

Copyright © 2020 by SIAM

2916 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

The problem of edge estimation using (bipartite)
independent set queries shares resemblance to the clas-
sical problem of group testing, which dates back to 1943
[9] and has found many recent applications in computer
science [28, 5, 10, 23, 21, 6, 18]. In group testing one
needs to recover an unknown subset S of a known uni-
verse U by making subset queries: an algorithm can pick
a subset T" of U and ask whether T' contains any element
from S. The graph setting of the current paper is a nat-
ural generalization of group testing by considering the
unknown object as a binary relation over a known uni-
verse U. The goal of estimating the number of edges, on
the other hand, is a relaxation of group testing because
it suffices to obtain an approximation of the size of the
unknown binary relation, instead of recovering the rela-
tion itself exactly. The same relaxation on the original
group testing setting (i.e., using subset queries to esti-
mate the size of an unknown subset S C U) was stud-
ied by Ron and Tsur [27]. Besides group testing, edge
estimation using independent set queries is motivated
by connections to problems that arise in computational
geometry and counting complexity, which we refer the
interested reader to [3].

Perhaps surprisingly, [3] gave an algorithm that re-
turns a (14 ¢)-approximation to the number of edges by
making only poly(logn,1/¢) queries to the bipartite in-
dependent set oracle. So in this setting, the non-locality
indeed brings down the query complexity significantly
for the edge estimation problem (compared to [14] and
[15], both of which use local queries only). For the in-
dependent set oracle, [3] obtained an algorithm for a
(1 + e)-approximation of the number m of edges with
query complexity min(y/m,n?/m) - poly(logn,1/¢). Tt
was left as an open problem in [3] to improve current
understanding of edge estimation under independent set
queries.

1.1 Our results

THEOREM 1.1. (UPPER BOUND) There is a random-
ized algorithm that takes as input (1) an accuracy pa-
rameter € > 0, (2) a positive integer n as the number of
vertices and (8) access to the independent set oracle of
an undirected graph G = ([n], E) with m = |E| > 1.4
With probability at least 1 — o(1), the algorithm makes
no more than min(y/m,n/y/m) - poly(logn,1/e) many
independent set queries and outputs a number m that
satisfies (1 —e)m <m < (14 ¢e)m.

The improvement over the upper bound of [3] is
TThe assumption of m > 1 is merely for convenience; it avoids
the issue that the query complexity upper bound claimed would

be 0 when m = 0. We note that whether a graph is empty or not
can be determined by a single independent set query.

due to a new algorithm for edge estimation that uses
(n/y/m) -poly(logn,1/¢) independent set queries (The-
orem 3.1). Note that the query complexity achieved by
the algorithm underlying Theorem 1.1 is essentially the
same as [15]; however, the two algorithms access the
graph with very different ways (independent set oracle
versus degree and neighbor oracles). The proof of The-
orem 1.1 requires new ideas and algorithmic techniques
that are developed for independent set queries. See fur-
ther discussion in Section 1.2.

THEOREM 1.2. (LOWER BOUND) Let n and m be two
positive integers with m < (3). Any randomized
algorithm with access to the independent set oracle
of an wundirected graph G = ([n],E) must make at
least min(y/m,n//m)/polylog(n) queries in order to
determine whether |E| < m/2 or |E| > m with

probability at least 2/3.

Theorems 1.1 and 1.2 essentially settle the query
complexity of edge estimation with independent set
queries at min(y/m,n/y/m). Theorem 1.1 brings down
the overall complexity of the problem from n%/3 [3] to
\/n; the worst case is when the number of edges m is
linear in n. Theorem 1.2, on the other hand, shows
that no algorithm with independent set queries can
achieve sub-polynomial query complexity. This gives
an exponential separation between the power of the
bipartite independent set oracle and the independent
set oracle for the task of edge estimation.

1.2 Overview of techniques We first give a high-
level overview of the lower bound because some key
ideas from the lower bound will be helpful in under-
standing the main algorithm later. For convenience we
will slightly abuse the notation O and 2 to hide fac-
tors of poly(logn,1/¢) in the discussion below. Outside
of Section 1.2 they follow the convention described in
footnote 1.

1.2.1 Lower bound We describe our construction
for the case when m > n, where we seek a lower bound
of Q(n/y/m). The complement case follows from a
reduction to this case.

The plan is to follow Yao’s principle. We construct
two distributions Dy and Dy, over graphs with vertices
[n] so that G ~ Dy has no more than m/2 edges
with probability at least 1 — o(1) and G ~ Dy, has
at least m edges with probability at least 1 — o(1). We
then show that no deterministic algorithm with access
to an independent set oracle can distinguish these two
distributions.

A graph G ~ Dy is generated by first sampling a
uniformly random partition of vertices into (A, A) and

Copyright © 2020 by SIAM

2917 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

then forming the bipartite graph by including each pair
(i,§) with i € A and j € A as an edge independently
with probability d/n, where d def m/n. In expectation
G ~ Dy has about m/4 edges and thus, has no
more than m/2 edges with probability 1 — o(1). On
the other hand, a graph G ~ D,, is generated by
sampling a uniformly random partition (A, A) of [n],
as well as a subset B C A by including each vertex
of A independently with probability dlogn/n. Similar
to Dyes, a pair (i,7) where i € A\ B and j € A
is included as an edge independently with probability
d/n. The main difference compared to Dyes is that
every pair (i,j), where i € B and j € A, is included
as an edge (so (B, A) form a complete bipartite graph).
Given that [A| = Q(n) and |B| = Q(dlogn) with
high probability, the number of edges in the graph is
Q(dnlogn) = Q(mlogn) > m with probability at least
1—o0(1).

We make the following two observations. The first is
that a graph G ~ D,,, can be generated by first drawing
a graph G’ ~ Dy with partition (A, A), then sampling
B C A by including each vertex in A independently
with probability dlogn/n, and finally adding all pairs
between B and A as edges in G. This suggests that, in
order for an algorithm to distinguish Dy, from Dy, a
(seemingly quite weak) necessary condition is for one of
its queries to overlap with B when it runs on G ~ D,,.

For the second observation, we consider a query set
S C [n] of size larger than (n/{/m) -logn. In both Dy
and Dy, we have [SNA|,|SNA| > Q((n/y/m) -logn)
with high probability and when this happens, S is not an
independent set with high probability, given that there
are at least

Q ((n*/m) -log>n) = Q ((n/d) - log” n)

pairs between S N A and SN A and each is included
in the graph with probability d/n. Since S is not an
independent set in both Dyes and Dy, with high prob-
ability, such a query conveys very little information in
distinguishing the two distributions. Thus, a reasonable
algorithm should only make queries of size smaller than
(n/y/m) - logn. This intuition, that algorithms should
not make queries of size larger than n/y/m, will be
helpful in our discussion of the algorithm later, and we
will frequently refer to the quantity n//m as the crit-
ical threshold. However, if all the queries an algorithm
makes are smaller than (n//m) - logn, then Q(n/\/m)
queries are necessary for at least one of them to over-
lap with B; otherwise, given that |B| = O(dlogn), the
probability that one of the queries overlaps with B is
negligible.

To formalize the above intuition and simplify the
presentation of our lower bound proof, we introduce

the notion of an augmented (independent set) oracle
in Section 5.2. We first show that any algorithm with
access to the standard independent set oracle can be
simulated using an augmented oracle with the same
query complexity. Then, we prove an Q(n//m) lower
bound for algorithms that distinguish Dy.s and Dy, with
access to an augmented oracle.

1.2.2 Upper Bound Our goal is to obtain a (1 +
g)-approximation algorithm for edge estimation with
O(n/y/m) independent set queries, where m denotes
the number of edges of the input graph (Theorem
3.1). Theorem 1.1 follows by combining it with the
algorithm of [3] by running both algorithms in parallel
and outputting the result of whichever finishes first.

In the sketch of the algorithm below, we assume
that a rough estimate m of the number of edges m is
given, satisfying m = ©(m). The goal is to refine it to
obtain a (1 + ¢)-approximation m of m.

An Initial Plan: At a high level, we partition the
vertex set [n] into O((logn)/e) many buckets according
to their degrees: a vertex u € [n] belongs to the ith
bucket B; if deg(u) is between (1 + €)? and (1 + &)+
We refer to (1 + ¢)® as the degree of bucket B; for
convenience. Our initial plan is to develop efficient
algorithms for the following two tasks:

Task 1: Develop a subroutine that, given a vertex u
and an index 7, checks if u belongs to B;.%

Task 2: Use the first subroutine to estimate the size
of each bucket B;.

We point out that this initial plan looks very similar
to the framework of the algorithm of [15], where ideally
one would like to estimate the size of each B; by drawing
enough random samples and running the subroutine in
Task 1 on each sample to obtain an estimate of | B;|. The
similarity, however, stops here as we start discussing
more details about how to implement the plan with an
independent set oracle.

We consider Task 1 first (which is trivial with a
degree oracle). Note that when d > +/m, checking
whether a vertex u has deg(u) > (1+4¢)d or deg(u) <d

requires 6(1) independent set queries. As a result, it

requires O(1) to tell if u € B; when the degree of B;
is at least v/m. The bad news is that the same task

5The goal of the subroutine as described above may not sound
reasonable. If deg(u) lies very close to the boundary of two
buckets B; and B;t1, determining which of the two buckets w
lies in may be expensive with independent set queries. This is
indeed one source of errors we need to handle. We focus on high-
level ideas behind the algorithm and skip details such as errors
most of time, and discuss briefly how we analyze the algorithm in
the presence of errors at the end of the sketch.

Copyright © 2020 by SIAM

2918 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

becomes significantly more challenging as d goes down
from v/m. This challenge leads to a major revision of
our initial plan.

To gain some intuition we consider the task of
distinguishing deg(u) > (1 + ¢)d and deg(u) < d when
d > \/m.% Suppose we sample a set T from [n] \ {u}
by including each vertex with probability 1/d and then
make two independent set queries on T and T U {u}.
Let £ denote the event that T is an independent set
but T U {u} is not (so T contains at least one neighbor
of u). Then we claim that there is a significant gap
in the probability of £ when deg(u) > (1 4 €)d versus
deg(u) < d. This gap in the probability of £ is large
enough so that one can repeat the experiment 6(1)
times (each time making two independent set queries)
to distinguish the two cases with high probability.

Now we turn to the case when d < +/m. In this
case, the algorithm is limited to query sets T of size
much smaller than n/d. Therefore, we limit T to include
each vertex with probability 1//m instead of 1/d. Two
issues arise. The first (minor) issue is that, given that
the size of T is roughly n/+/T, even to hit a neighbor of
u (with degree roughly d) one needs to draw T at least
Vv /d many times. This suggests that /7 /d queries
are needed for Task 1 when the degree d of the bucket
we are interested is less than /7.

There is, however, a more serious issue that is
subtle but leads to a major revision of the initial plan.
Consider the scenario where u has (1 + €)d neighbors
and every neighbor has degree > v/m. If we sample T
by including each vertex with probability 1/ Vi, it is
very unlikely that T contains a neighbor of v but T is
at the same time independent (since when conditioning
on T containing a neighbor v of w, most likely T also
contains a neighbor of v given the large degree of v).
Because of the second issue, we change the goal of the
subroutine in Task 1 from finding the right bucket of u
according to the degree of u to finding the right bucket
according to the number of neighbors of u with degree at
most v/, when deg(u) < v/m. For vertices with degree
at least \/ﬁ, we still would like to partition them into
buckets according to their degrees.

A Revised Plan: By the above, we arrived at the
following revised plan:

Task 0: Develop a subroutine that, given a vertex u,
decides” if deg(u) > vm (which we refer
to as high-degree vertices and denote the set by
H) or deg(u) < /m (which we refer to as
low-degree vertices and denote the set by L).

6For convenience we consider the case of d > /m in the sketch

but the same idea works when d > y/m.
7Again we need to handle errors when deg(u) is close to v/m.

High-degree vertices are further partitioned into
buckets H; according to their degrees. Low-degree
vertices, on the other hand, are partitioned into
buckets L; according to their degrees to low-degree
vertices, denoted by deg(u, L) for a vertex u.

Task 1: Develop a subroutine that, given a vertex
u € H (or w € L) and an index 4, decides
if u belongs to the bucket H; (or L;).

Task 2: Use the two subroutines to obtain
(1 + €)-estimations of the size of each L; and H;.

Looking ahead, with (1 + ¢)-approximations ¢; and
h; for |L;| and |H;|, one can compute

Yili-(L+e) + 3 hi- (1+e)

as roughly a 2-approximation of the number of edges m.
The reason that we only get 2-approximation follows by
the fact that in the sum, edges between vertices in L
and edges between vertices in H are counted twice but
edges between L and H are only counted once. We will
discuss more about how to further revise the plan to
obtain a (1 4 ¢)-approximation; for now let us consider
Task 2.

Note that Task 2 for buckets L; is easy. Consider a
low-degree bucket L; with d = (1 +)’ < v/m. Unless
|L;| = Q(m/d), L; has negligible impact on the final
estimate. When |L;| = Q(m/d), it takes O(nd/m)
samples to get a sufficient number of vertices in Lj,.
We can then get a good estimation of |L;| by running
subroutines for Task 0 and 1 on these vertices. We pay
O(vm/d) queries for each vertex so the overall query
complexity is

O(nd/m) - O(Vm/d) = O(n/v/m)

as desired. In contrast, uniformly sampling vertices
and checking individually if each of them lies in H;
is too inefficient for high-degree buckets, given that
nd/m > n/\/ﬁ when d > /.

Estimating the size of each high-degree bucket H;
is where we fully take advantage of the mon-locality of
independent set queries. To explain the intuition, let
us consider the task of distinguishing |H;| > (1 + &)r
versus |H;| < r for some parameter r = ©(7m/d) where
d = (1+¢)" > v/m denotes the degree of the bucket H;.
To this end, it suffices to have a procedure that can take
a random set S C [n] of size n/(v/Tlogn) and answers
the question “does there exist u € S that belongs to
H;?” with O(1) queries. With such a procedure it
suffices to draw S and run the procedure on S for

n

0 <<n/<mlogn>> - <m/d>> =0 <m> <0 <\/ﬁ>

Copyright © 2020 by SIAM

2919 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

many times in order to obtain a good estimation of | H;|.

As discussed earlier, the revised plan ultimately
leads to a (2 + ¢)-approximation algorithm with
O(n/+/m) independent set queries. We achieve (1 + ¢)-
approximation by revising the plan further. First we
divide high-degree vertices u into buckets H; ; where i
is related to the degree of u (as usual), but the second
index j is related to the fraction of neighbors of u in
L; see Definition 3.3 for details. Task 1 is updated to
develop a subroutine that can decide whether u belongs
to H; ; or not. Task 2 is updated to estimate the size
of each H; j (with similar ideas in the approximation of
|H;| sketched above) and L;. Together they lead to a
(1 4 e)-approximation of the number of edges between
low-degree and high-degree vertices, and ultimately a
(1 4 ¢)-approximation of m.

Now extra care must be taken to handle errors when
executing the above plan. As alerted in two footnotes,
one cannot hope for a subroutine that returns the true
bucket of a vertex u. To simplify the presentation of
the algorithm and its analysis, we introduce the notion
of (T, e)-degree oracles (see Definition 3.5). An (7, ¢)-
degree oracle can answer questions listed in Tasks 0 and
1 consistently and accurately up to certain errors (as
captured by the notion of an (7, €)-degree partition in
Definition 3.3 underlying each (77, €)-degree oracle). We
first present an algorithm in Section 3.3 that has query
access to a (7, ¢)-degree oracle. We finish the proof of
Theorem 3.1 by giving an efficient implementation of a
(m, €)-degree oracle using an independent set oracle in
Section 4.

2 Preliminaries

Given a positive integer n, we write [n] to denote
{1,...,n}. Similarly, for two non-negative integers
i < j, we write [i : j] to denote {%,...,j}. All graphs
considered in this paper are undirected and simple
(meaning that there are no parallel edges or loops), and
have [n] as its vertex set.

DEFINITION 2.1. (INDEPENDENT SET ORACLE) Given
an undirected graph G = ([n], E), its independent set
oracle is a map I1Sg: 2" — {0,1} which satisfies that
for any set of vertices U C [n], ISq(U) =1 if and only
if U is an independent set of G (i.e., (u,v) ¢ E for all
u,veU).

We use deg(v) to denote the degree of a vertex
v € [n]. Given v € [n] and U C [n], we let T'g(v,U) =
{ueU: (uv) € E} and degy(v,U) def [T (v,U)].
Note that v can lie in U, but since we only consider
simple graphs, I'¢(v,U) =T¢(v,U \ {v}). For the sake
of brevity, we write T'g(v) = T'g (v, [n]). We usually skip

Subroutine Binary-Search(n, G, T,)

Input: A positive integer n, access to the
independent set oracle of a graph G = ([n], E), a
set T C [n] with a promise that T is not an
independent set of G, and an error parameter
6> 0.

Output: An edge (u,v) € FE with u,v € T, or
“fail.”

1. Let A« T.

2. Repeat the following for
t = O(logn + log(1/0)) iterations:

(a) If |A| = 2, output the two vertices in A

(b) Randomly partition A into A; U As
where |A1| and |A,| differ by at most 1.
Query I1Sg (A1) and IS¢ (Az2) to see if one
of them is not an independent set.

If Ay is not an independent set for some
be {1,2}, set A A,.

3. Output “fail”.

Figure 1: Description of the Binary-Search subroutine.

the subscript in IS¢, ' and deg when the underlying
graph G is clear from the context.

The following simple lemma will be used multiple
times.

LEMMA 2.2. Let G = ([n], E) be an undirected graph,
S C [n] be a set of vertices, and r € N be an upper bound
on the number of edges in the subgraph induced by S.
Let T C S be a random subset given by independently
including each vertex of S with probability p. Then,

Pr [T i independent set of G | > 1 —rp*.
Tgrs[is an independent set of] > rp
Proof: ~ The expected number of edges where both
vertices lie in T is at most rp?. By Markov’s inequality
the probability that T contains at least one edge is at
most rp2. [|

2.1 Binary search using the independent set
oracle We present a subroutine based on binary search
for finding an edge using independent set queries:

LEMMA 2.3. There is a randomized algorithm,
Binary-Search(n,G,T,d), that takes as input (1)
a positive integer n, (2) access to the independent
set oracle ISg of an undirected graph G = ([n], E),

Copyright © 2020 by SIAM

2920 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

(8) a set T C [n] of vertices such that T is not an
independent set of G, and (4) an error parameter
d > 0. Binary-Search makes O(logn + log(1/9))
queries to I1Sg and outputs u,v € T with (u,v) € E
with probability at least 1 — 0.

REMARK 2.4. We will always invoke Binary-Search
with the parameter § = 1/poly(n).8 The subroutine
will always make O(logn) queries, and will fail with
probability at most 1/poly(n).

3 Upper bound

In this section we prove the following upper bound:

THEOREM 3.1. There is a randomized algorithm
Estimate-Edges(e,n,G) that takes as input (1) an
accuracy parameter € € (0,1), (2) a positive integer
n, and (3) access to the independent set oracle of
a graph G = ([n],E) with m = |E| > 1. With
probability at least 1 — o(1), Estimate-Edges makes
(n/y/m) - poly(logn,1/e) queries and outputs a number
m satisfying (1 —e)m < m < (1 +¢&)m.

We recall the following lemma from [3].

LEMMA 3.1. (LEMMA 5.6 FROM [3]) There is a ran-
domized algorithm that takes as input (1) an accuracy
parametere € (0,1), (2) a positive integer n, and (3) ac-
cess to the independent set oracle of a graph G = ([n], E)
with m = |E| > 1. With probability at least 1 —o(1), the
algorithm makes \/m - poly(logn,1/e) queries and out-
puts a number m satisfying (1 —e)m < m < (1 +¢&)m.

The upper bound claimed in Theorem 1.1 of
min{y/m,n/\/m} - poly(logn,1/e) follows by running
the algorithm of Theorem 3.1 and the algorithm of
Lemma 3.1 in parallel. Specifically, we alternate queries
between the two algorithms until one of them termi-
nates. Once one terminates with an estimate m to m,
we output m.

3.1 Reduction to edge estimation with advice
We prove Theorem 3.1 using the following lemma stated
next. We will provide an algorithm, which we call
Estimate-With-Advice, for estimating |E| given an
extra parameter m which is promised to be an upper
bound for |E|.

LEMMA 3.2. (ESTIMATION WITH ADVICE) There is a
randomized algorithm, Estimate-With-Advice, that
takes four inputs: (1) an accuracy parameter € € (0,1),
(2) two positive integers n,m, and (3) access to an in-
dependent set oracle of G = ([n], E) with 1 < m =

8For example, setting § = 1/n'0 will suffice for our purposes.

Algorithm Estimate-Edges (g,n, G)

Input: An accuracy parameter ¢ € (0,1), a
positive integer n, and access to the independent
set oracle of an undirected graph G = ([n], E).
Output: A number m as an estimation of

m = |E|.

1. Set m = (g)
2. While m > 1:

(a) Invoke
Estimate-With-Advice(¢/11,n,m, G).

(b) Let 7 denote the output. If 4m >m
return m as m; otherwise set m to be

|m/2].

3. Return 0 as m (this line is reached with low
probability).

Figure 2: Description of the Estimate-Edges algo-

rithm.

|E| < m. Estimate-With-Advice makes (n/v/m) -
poly(logn,1/e) queries and with probability at least
1 —1/n outputs i that satisfies

31) (1-5)m—-0 <1z;”n> <m < (1+¢e)m.

Before proving Lemma 3.2, we show that it implies
Theorem 3.1.

Proof of Theorem 8.1 Assuming Lemma 3.2: We
present Estimate-Edges in Figure 2.

Note that at the end of each iteration of step
2 in Figure 2, either the algorithm terminates or m
is halved. Since m is initially (}), the maximum
number of iterations of the step 2 (before m < 1) in
Estimate-Edges is O(logn). It follows from Lemma 3.2
and a union bound that, with probability at least
1 —o(1), every execution of Estimate-With-Advice in
step 2(a) of Estimate-Edges returns a correct value
(meaning that if 7 of this run indeed satisfies m >
m = |E|, then its output / satisfies (3.1) but with € set
to £/11). We show that the following holds when this is
the case:

(x): Estimate-Edges terminates in the while loop
(instead of going to line 3)
with the final value of m satisfying m <m < 5m.

Assume that (%) holds, and let m be the output of
Estimate-Edges(e,n,G). Since m < m in every it-
eration of step 2 and the final iteration also satisfies

Copyright © 2020 by SIAM

2921 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

m < 5m, Theorem 3.1 would follow from two observa-
tions.(i) The query complexity of Estimate-Edges can
be bounded using m > m, and (ii) since the final run
of Estimate-With-Advice is correct, we have (using
m < 5m)

(32) (I—g/2ym < (1-5e/1)m -0 (1§Zn>

<m<(1+e/1l)m < (1+¢e)m.

It suffices to show that (%) holds when every run of
Estimate-With-Advice returns a correct value.
Assuming for contradiction of (x) that the final
value of m is smaller than m. This implies that m <m
< 2m in one of the runs of Estimate-With-Advice in
Estimate-Edges. Since it returns a correct value m
(and note that for this run we still have m < m), the
same calculation in (3.2) implies that m > (1 —¢/2)m
and thus, 4m > 4-05-m = 2m > m and the
algorithm should have terminated at the end of this
run, a contradiction. On the other hand, assume for
a contradiction of (x) that the final value of T is larger
than 5m. Since the final run returns a correct value m,
m < (14+¢/11)m < 1.1m and thus, 4m < dm < mm;
however, step 2(b) should have terminated if 47h > T,
a contradiction. This finishes the proof of the theorem.

We prove Lemma 3.2 in the rest of the section.
From now on, let € € (0,1) be the accuracy parameter,
m < (5) be a positive integer, and G = ([n], E) be a
graph with 1 < m = |E| < T as in the statement of
Lemma 3.2. Let @ = 1 4 ¢ and let s be the unique
positive integer such that

(3.3) a*~t < Vm < ot

We also write § = O((logn)/e) to denote the smallest
integer such that o® > n, and 7 to denote the smallest
integer such that o™ > logn/e (so o7 = O(logn/e)).
It may be helpful to the reader to consider the case
when 77 is only a constant factor larger than |E|, so the
algorithm’s task is to refine an approximation to the
number of edges given a crude approximation; however,
the proof of Lemma 3.2 assumes just the upper bound
m > |E.

3.2 Degree oracles and the high-level plan To
simplify the presentation and analysis of our algo-
rithm, Estimate-With-Advice, we introduce the no-
tion of (m,e)-degree partitions and (m,¢€)-degree or-
acles. Roughly speaking, an (m,¢)-degree partition
P=(Li,Hyy:1€[0:s],ke[s+1:p]and L€ [0:7])
of an undirected graph G = ([n], F) is a partition of [n]

(so L;’s and Hy's are pairwise disjoint subsets of [n]
whose union is [n]) such that the placement of a vertex
v reveals important degree information of v (see Defi-
nition 3.3 for details). An (7, ¢)-degree oracle, on the
other hand, contains an underlying (7, ¢)-degree par-
tition and the latter can be accessed via queries such
as “does v belong to L;” or “does v belong to Hy ¢.”
There is also a cost associated with each such query
(see Definition 3.5 for details).

With the definition of degree partitions and degree
oracles, our proof of Lemma 3.2 proceeds in the fol-
lowing two steps. First we present in Lemma 3.6 an
algorithm Estimate-With-Advice® that achieves the
same goal as Estimate-With-Advice, namely (3.1) in
Lemma 3.2 with high probability. The difference, how-
ever, is that Estimate-With-Advice* is given access
to not only an independent set oracle but also an
(m, e)-degree oracle. Next, we show in Lemma 3.7
that an (7,¢)-degree oracle can be implemented ef-
ficiently using access to the independent set oracle.
This allows us to convert Estimate-With-Advice*
into Estimate-With-Advice with a similar perfor-
mance guarantee, and Lemma 3.2 follows directly from
Lemma 3.6 and Lemma 3.7.

We start with the definition of (77, €)-degree parti-
tions:

DEFINITION 3.3. Let G = ([n],E) be a graph. An
(1, €)-degree partition of G is a partition

P = (Li,HM:iG[O:s],ke [s+1:5] and £ € [O:T])

of its vertex set [n] (so the sets in P are disjoint and
their union is [n]) such that

1. Let L =U;L; and H = Uy ¢Hy, ¢ (so we have
LUH = [n]). Every vertex u € L satisfies
deg(u) < a®*! and every verter u € H satisfies
deg(u) > o®.

2. Every verter u € Ly satisfies deg(u, L) = 0 and
every verter u € L;, i € [s], satisfies

(3.4) ol < deg(u, L) < o't

3. Let Hy, = UgHy ¢ for each k € [s+1: 8]. Then
every vertexr u € Hy satisfies

(3.5) a7l < deg(u) < ot

Moreover, every vertex w € Hy ¢ for some
e [0: 7 —1] satisfies

(3.6) oF1 < deg(u, L) < aF 1

and every u € Hy, , satisfies deg(u, L) < oF=7+1,

Copyright © 2020 by SIAM

2922 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

REMARK 3.4. It is worth pointing out that intervals
used in (3.4), (3.5), and (3.6) are not disjoint (and
so are the conditions on deg(u) in the first item). As a
result, such partitions are not unique for a given G in
general. For example, a vertex with degree between o
and o+ can lie in either L or H.

Next we define (7, €)-degree oracles:

DEFINITION 3.5. Let G = ([n],E) be an undirected
graph. An (m,e)-degree oracle D = (Djow, Dhign) of
G contains an underlying (M, e)-degree partition P =
(Li,Hip @ i,k,0) of G and can be accessed via two
maps Dpign, = [n] X [s +1 : f] x [0 : 7] — {0,1} and
Dioy : [n] x [0:s] = {0,1}, where

1. For every vertex u € [n|, Dpign(u, k,0) =1 if
u € Hy ¢ and Dyign(u, k,¢) = 0 otherwise.

2. For every vertex u € [n], Dipw(u,i) =1 if u € L;
and 0 otherwise.

The cost of each query on Dy;g, is 1 and the cost of each
query Digy(u,i) is a®°.

We will be interested in algorithms that have access
to both the independent set oracle IS and an (7, ¢)-
degree oracle D of a graph G = ([n], E). For such an
algorithm Alg* (for clarity we always use * to mark
algorithms that have access to such a pair of oracles),
we are interested in its total cost. The cost of each query
on the independent set oracle is 1, and the cost of each
query on the degree oracle is specified in Definition 3.5.
The total cost of an algorithm is the sum of the costs of
individual queries.

We are ready to state Lemma 3.6 and Lemma 3.7
which together imply Lemma 3.2.

LEMMA 3.6. (ESTIMATION WITH DEGREE ORACLES)
There is a randomized algorithm, Estimate-With-
-Advice*(e,n,m,G), that takes four inputs: an accu-
racy parameter ¢ € (0,1), two positive integers n and
m, and access to both the independent set oracle 1Sg
and an (M, e)-degree oracle D of a graph G = ([n], E)
with 1 < m = |E| < m. Its worst-case total cost is
(n/v/m) - poly(logn, 1/e) and with probability at least
1 — 1/n?, it returns 7 satisfying

em

(3.7) (156)m0< > <1 < (1+¢€)m.

logn

We point out that, because (T, £)-degree partitions
are not unique, Estimate-With-Advice® in Lemma
3.6 needs to work with an (77, ¢)-degree oracle with
any underlying (7, ¢)-degree partition (as long as it
satisfies Definition 3.3). Lemma 3.7 below says that
one can simulate a degree oracle efficiently using the
independent set oracle.

LEMMA 3.7. (SIMULATION OF DEGREE ORACLES) Let
e € (0,1) and n,m be positive integers. There are a
positive integer ¢ = q(e,n,m) and a pair of deter-
ministic algorithms Sim-Dioy and Sim-Dypign, where
Sim-Dioy (v,4, G, 1) takes as input a verter v € [n],
i € [0 : s], access to the independent set oracle of a
graph G = ([n], E) with 1 < |E| < m, and a string
r € {0,1}9; Sim-—Dyign (v, k, ¢, G, 1) takes the same in-
puts but has i replaced by k € [s+1:] and £ € [0 : 7].
Both algorithms output a value in {0,1} and together
have the following performance guarantee:

1. Sim-Dyoy (v,4, G,7) makes a*~* - poly(logn, 1/¢)
queries to ISg and Sim-Dyign (v, k, ¢, G, 1) makes
poly(logn,1/¢) queries to 1S¢.

2. Given any graph G with 1 < |E| <'m, when
r ~ {0,1}? is drawn uniformly at random,
Sim-Digy (0,4, G, 1) viewed as a map from
[n] x [0:s] = {0,1} and Sim-Dyign (v, k, £, G, 1)
viewed as a map from
n] x[s+1:6] x[0:7] = {0,1} together form an
(m, €)-degree
oracle of G with probability at least 1 — 1/n? (over
the randomness of r).

We use Lemma 3.6 and 3.7 to prove Lemma 3.2.

Proof of Lemma 3.2 Assuming Lemma 3.6 and
3.7: The algorithm Estimate-With-Advice (e,n,
m,G) draws a string r ~ {0,1}¢ uniformly at
random, where ¢ = g¢(e,n,m) as in Lemma 3.7,
and simulates Estimate-With-Advice®. When the
latter makes a query on its given degree ora-
cle, Estimate-With-Advice runs either Sim-D,., or
Sim-Dpign using r and uses its output to continue the
simulation of Estimate-With-Advice. The query com-
plexity of Estimate-With-Advice can be bounded us-
ing the total cost of Estimate-With-Advice* and com-
plexity of Sim-Di,y and Sim-Dpign. The error proba-
bility of Estimate-With-Advice is at most 1/n? (for
the probability that r fails to produce an (m,e)-
degree oracle) plus 1/n? (for the error probability of
Estimate-With-Advice*), which is smaller than 1/n.
This finishes the proof of Lemma 3.2. |

We prove Lemma 3.6 in the rest of this section and
then prove Lemma 3.7 in Section 4.

3.3 Estimation of |L;| and |[Hy,. Let G =
([n], E) be the input graph with 1 < m = |E| < m. We
are given access to the independent set oracle IS¢ and
an (1, e)-degree oracle D = (Diow, Dnigh) of G, where
we use P = (L;,Hpy : i,k,¢) to denote the degree
partition underlying the degree oracle D. To obtain
a good estimation of |E|, it suffices to obtain good

Copyright © 2020 by SIAM

2923 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

estimations of cardinalities of L;’s and Hy, ¢’s (the latter
would also lead to good estimations of |Hy|; recall that
Hy = UgHy). Roughly speaking, estimations of |L;|’s
allow us to approximately count the number of edges in
the subgraph induced by L; estimations of |Hy|’s allow
us to approximately count the total degree of vertices
in H; estimations of |Hy ¢|’s allow us to approximately
count the number of edges between L and H.

We describe two subroutines for estimating |L;| and
|Hp,¢| in Lemma 3.8 and 3.9, respectively, and then use
them to prove Lemma 3.6.

LEMMA 3.8. (ESTIMATION OF |L;|) Let ¢ € (0,1) and
m be a positive integer. There is a randomized algorithm
that runs on graphs G = ([n|, E) with 1 < |E| < m
via access to the independent set oracle and an (M, €)-
degree oracle of G with an underlying (T, e)-degree
partition P = (L;,Hy, : i,k,0). It has total cost
(n/v/m) - poly(logn, 1/¢) and returns a number k; for
each i € [0 : s] satisfying
e2m

atlog®n

(3.8) |Li| — < ki <|L]

with probability at least 1 — 1/n3.

Proof: Fix an i € [0: s] and let ¢; = |L;|/n. We show
how to compute k;. If

e?m

(3.9)

———— 2"
ailog®n ’
then we can set k; = 0 and it satisfies (3.8) trivially.
So we assume below that the inequality above does not

hold. To estimate ¢; we draw (the equation uses the
assumption that (3.9) does not hold)

natlog® n nalog® n
—— | =0 | ————
edm edm
vertices uniformly at random from [n] (with replace-
ments). For each vertex sampled, we query the de-
gree oracle with a cost of a®*~* = O(vV/m/a") to tell
if it belongs to L;. The fraction of times that a ver-
tex sampled belongs to L; gives us an empirical esti-
mate é; of ¢; and it follows from Chernoff bound (using
cin -7l = |Li| - o7t < 2|E| < 2m) that
. e?m
|6 —cil <

~ 2ainlog®n

with probability at least 1 — e/n?. Setting ; to be

A e’m
Ry = (Ci - 2) n
2atnlog”n

would satisfy (3.8). The total cost for obtaining ; is
(n/v/m) -poly(logn, 1/¢). The algorithm works on each
i and succeeds with probability at least 1—(s+1)e/n* >
1 —1/n3 by a union bound. [

LEMMA 3.9. (ESTIMATION OF |Hy|) Let ¢ € (0,1)
and m be a positive integer. There is a randomized
algorithm that runs on G = ([n], E) with 1 < |E| <m
via access to the independent set oracle and an (7, ¢)-
degree oracle of G with an underlying degree partition
P = (Ly,Hyy : i,k,0). It has total cost (n/v/m) -
poly(logn,1/e) and returns i ¢ for each k € [s +1: ff]
and £ € [0 : 7] satisfying

‘Hkg etm
—— — 0 < < |H
(14¢)* aklog®n/) Ve < [Hiel

with probability at least 1 — 1/n>.

(3.10)

We delay the proof of Lemma 3.9 to Section 3.4 but
first use it to prove Lemma 3.6

Proof of Lemma 3.6 assuming Lemma 3.9: Given G
and P, we let m1, mo and mg denote

mp = Z deg(u, L), ms = Z deg(u)

ueL ueH

ms = Z deg(u, L).
ueH
Then we have m = |E| = (my + mae + m3)/2.
The algorithm Estimate-With-Advice® simply runs
the subroutines described in Lemma 3.8 and 3.9 to
obtain r;’s and g ’s. Letting v, = Zee[O:r] Vh,e, it
then outputs 1 = (1 + Mg + 13)/2, where

m; = g Ki-a', gy = E 'yk~ozk

1€[s] ke[s+1:8]
Mg = Y e-oth

ke[s+1:8]

Le0:7—1]

Assuming that r;’s satisfy (3.8) and 7y ¢’s satisfy (3.10)
(which hold with probability at least 1 — 2/n3 by
Lemma 3.8 and Lemma 3.9), we show in the rest of
the proof that 7 satisfies (3.7). This finishes the
proof of the lemma since the worst-case total cost of
Estimate-With-Advice* can be bounded using Lemma
3.8 and Lemma 3.9.

First for ms, we have from (3.8) and the definition
of (7, €)-degree partitions that

J— 27
miq Em . £°m .
_ < Lz At e e)
1+e¢ O(logn) _zez[;]| |- O<ailog2n> o

<y <YLl ol < (1+e)my.
i€[s]

Copyright © 2020 by SIAM

2924 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Next, from (3.10) combined with the fact that
[Hi| = 2ocor) [Hiel and 7 = O(log(logn/e)/e) =
O(loglogn/c?) we have that

IHk_O<€2m) -
(I4+¢e)* aklogn/) ~

|Hk‘ etm
m—o T -———a— | < = Z ’Yk,£§|Hk|-

=
a”log”n tef0:7]

As a result, we have from the definition of (77, €)-degree
partitions that

mo eEm
(1+e)® © (logn)

| H| ,ak_o<52m)(5—5—1)0/“

(]

- 4 k 2
ke[s+1:8] (1 +E) a IOg n
<< Y |Hil-o! < (14&)ma.
ke[s+1:8]

Finally the following upper bound for g follows from
(3.10):
mg < Z |yl - o < (14 £)ms.
ke[s+1:8]

Le0:7—1]

For a lower bound note that Zke[s+1:5]ak_l\Hk| <
2|E| < 2m. Together with o™ = O(logn/e) we have

ms < Z |Hk,€| . ak—é—l—l + Z |Hk| . ak—'r-i-l

ke[s+1:8] ke[s+1:8]
Le[0:7—1]
m
< N |Hi oo ().
’ logn
kels+1:4]
£e[0:7—1]

As a result, we have from (3.10) that

S W.&k—e_0(5m>

4
kels+1:6] (1+e)
£e[0:7—1]

1 eEm eEm
(1+e)p (m3 _9 logn>> -0 <logn>
ms em
(145 <logn

It follows that

em m

1-— — <
(1=5¢)m =0 (logn) —(1+
<

Y

Y

This finishes the proof of the lemma. |

Subroutine High-Degree-Event™* (k, ¢, n, G)

Input: Integers k€ [s+1: 8] and £ €[0: 7], a
parameter 7 € [0, 1] satisfying (3.11), and access to
both the independent set oracle ISg and an

(m, €)-degree oracle D (with underlying degree
partition P = (L;, Hy 4 : i, k,¢)) of a graph

G = ([n],E) with 1 <m = |E| <™.

Output: Either “few” or “many.”

1. Initialize a counter ¢ < 0, and repeat the
following N times:

(a) Sample an S C [n] where each vertex is
included with probability p
independently.

(b) Sample an T C [n] where each vertex is
included with probability ¢
independently.

(¢) If T is an independent set and SU T is
not an independent set (via 1Sg)

i. Run
Binary-Search(n,G,SUT,e"/n?)
to find an edge (u,v) in SUT.

ii. Query Dyign(u, k, £) and
Dhigh(v, k, E)

iii. If u* € {u,v} lies in S and Hy ¢, and
{u*} UT is not an independent set
(via ISg), let ¢ + ¢+ 1.

2. If ¢ > h, return “many;” otherwise return
L(feW ”

Figure 3: Description of the High-Degree-Event* sub-
routine.

3.4 Proof of Lemma 3.9 In this subsection we
will prove Lemma 3.9. Specifically, fixing any k €
[s+1: p]and ¢ € [0 : 7] we will design a proce-
dure to approximate the size of Hy,. Our procedure
High-Degree-Bucket* for this purpose uses a subrou-
tine called High-Degree-Event*. Its performance guar-
antee is proved in the following lemma:

LEMMA 3.10. There is a randomized algorithm
High-Degree-Event* (k,¢,n,G) that takes the follow-
ing inputs®: integers k € [s+1: 8] and £ € [0 : 7], a

9For convenience we skip m,7m and e as inputs of

High-Degree-Event* and High-Degree-Bucket™.

Copyright © 2020 by SIAM

2925 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

parameter n € [0,1] satisfying'®

etm

(8.11) aknlog® n =n=d

and access to the independent set oracle ISq and an
(m, e)-degree oracle D of G = ([n], E) satisfying 1 <
m = |E| < m. The algorithm High-Degree-Event*
has a total cost of (n/v/m)-poly(logn,1/¢) and has the
following performance guarantee. Let P = (L;,Hyy :
i,k,0) denote the degree partition of the given degree
oracle D of G. Then

1. If |Hi | < nn, then the algorithm outputs “few”
with probability at least 1 — e*/n*;

2. If |Hrel > o3nn, then the algorithm outputs
“many” with probability at least 1 — e*/n*.

Proof: We describe High-Degree-Event® in Figure 3
with the following four parameters (one can check that
p < 1 using the condition on n € [0,1] in (3.11)):

(3.12)
log” log? 5\/m
N0 ”,h=(1+f) B = 5\/”2 and
KN 4/ € nn2log” n
g
q:

aktllogn’

Suppose that |Hy ¢| < nn, and consider the proba-
bility that the counter is incremented at any specific it-
eration of High-Degree-Event®. Note that a necessary
condition for this to happen is that there is a vertex
u* € Hy, that is included in S and u* has a neighbor
in T so that step 1(c)iii increments the counter ¢. Thus
we have

Pr [c is incremented] <
T

i

E Pr [u € S| - Pr [T contains a neighbor of u].
s T
uEHy ¢

Given that every vertex u € Hy, o has degree at most
aFt1. We have

Pr [T contains a neighbor of u] < af*!qg = °
T logn

As a result, for the case when |Hy ¢| < nn we have

nnpe
ogn’

Pr [c is incremented] <
S, T

Next we consider the case of |Hy,| > o®nn. A
sufficient condition for the counter to increment is that

TONote that the left hand side of (3.11) is smaller than 1 given
that a* > a® = ©(vm) and m < (%)

there is a vertex u* € Hy such that (1) u* € S, (2)
one of the neighbors of v* lies in T, (3) (S\ {u*})UT is
an independent set, and (4) Binary-Search does not
fail. Suppose these occur for a sample of S and T
in step 1(a) and 1(b). Then, T C (S\ {v*})UT
must be an independent set by (3), and S U T is not
an independent set by (1) and (2). This means step
1(c) enters lines (i), (ii) and (iii). By (3) and (4),
Binary-Search(m,G,S U T,e"/n?) outputs an edge
(u*,v) since all edges in SUT are adjacent to u*; hence,
(ii) executes Dpign(u*, k,¢) and notices u* lies in S and
Hy, o Finally by (2), {u*} UT is not an independent set
in (iii) and the counter is incremented.

We first show that the events (1), (2), and (3) are
disjoint for different vertices u € Hyy. Suppose for
contradiction that uy,us € Hy e satisfy events (1), (2),
and (3). Then, by (3), (S\{u1})UT and (S\{u2})UT
are independent sets, which means that (uq,us) is the
only edge in SUT. This implies by applying (2) to u;
that ug € T, and similarly uy € T by applying (2) to us.
Thus, there is an edge in (S\ {u1})UT, a contradiction.
Thus, the probability for ¢ to increment is at least (the
last term accounts for Binary-Search)

Z g% [u € S, T contains a neighbor of u

)

u€H ¢
and (S\ {u}) UT is an IS] — (g7 /n?).

Let S’ be the set drawn by including each vertex in
[n] \ {u} with probability p independently, and let T’
be the set drawn similarly from [n]\ {u} using q. Then
the probability in the sum above can be written as

p(1—q)-

Prg 1 [T/ contains a neighbor of v and S’ UT’ is an IS].

On the one hand, the probability that T/ contains a

neighbor of u is at least
€ €
logn logn

k—1
k—1 «Q 2 1
_ >(—_-0

as aft1q = ¢/logn. On the other hand, it follows from
Lemma 2.2, (3.11) and o = O(n) that

Prs 1 [S'UT’ is not an IS]

_ _ g2
gm-<p+q>2§m~2<p2+q2>=0< i)
log”n

As a result, we have

Prg 1/ [T’ has a neighbor of u and 8’ UT" is an IS] >
1 € €

~ 0 : .

<042 <logn>> logn

Copyright © 2020 by SIAM

2926 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Procedure High-Degree-Bucket* (k, ¢, G)

Input: Integers k € [s+1: 3] and £ € [0 : 7], and
access to both the independent set oracle IS¢ and
an (T, ¢)-degree oracle D (with underlying degree
partition P = (L;, Hy ¢ : 1, k, ()

of an undirected graph G = ([n], E') with
1<m=|E| <m.

Output: An estimation 7y ¢ of |Hy ol.

1. Let n=1

2. While n > &'/ (a*nlog® n), perform the
following;:

(a) Run High-Degree-Event*(k, (¢, n,G)

9

(b) If it outputs “many,” return nn as i ¢;
Otherwise, set n to be n/a.

3. Return 0

Figure 4: Description of the High-Degree-Bucket*
procedure.

So for the case when |Hy, ¢| > a3nn, we have

Pr [c is incremented] >
S, T

1 € £ g’
3om-p(l—a)- | — —0O . — >
ann-p(1—q) <a2 logn logn n2 —

nnpe
14¢2/2)- :
(I+e/2) oem

Plugging in the choices of p and N, we have that

N logn . log?n

nmpe &t

By a Chernoff bound the counter will distinguish the
two cases with probability 1 — 3 /n?. |

Using the above lemma, we can estimate the sizes
of the high degree buckets.

Proof of Lemma 3.9: The algorithm simply runs
High-Degree-Bucket* (k,/,G) for each k€ [s+1:[]
and € [0:7] to obtain 74, Its total cost can be
bounded easily given that High-Degree-Bucket™® only
invokes High-Degree-Event™* at most O(logn/e) many
times, and both 3 and 7 are O(log n/e).

Below we assume that every «call to
High-Degree-Event*(k,¢,7,G) satisfies the two
conditions in Lemma 3.10, which happens with
probability at least

4 3
e* ~ (log”n 1
1‘714'0(e >>1‘n3-

We show that every ;¢ satisfies (3.10) and the lemma
follows.

Let Yk, b be the output of
High-Degree-Bucket*(k, ¢,). Considered two cases.
First suppose line 3 is reached so vy, = 0. Let 7 be
the value of 7 in the last call to High-Degree-Event*.
Then o

e*m
~ ak-lnlog®n
and because every call to High-Degree-Event™ returns
a correct answer (“few” in this case),

4

e*m
Hi/<a?imn=0(——r
Hieel < o7 (a’“log3n)

so (3.10) holds trivially with ~; ¢ = 0.

Next suppose that . = fin since
High-Degree-Event* (k,¢,7,G) outputted “many”,
and the previous High-Degree-Event* (k,/, aij, G)
outputted “few.” Given the assumption that both
invocations return correct answers, we get that
N :f]n S |Hk’g| and |Hk’g| S a4ﬁn = 014'7]9’4, SO (3.10)
follows. |

4 Simulation of Oracles

We prove Lemma 3.7 in this section. We show how to
simulate access to an (77, €)-degree oracle by giving im-
plementations of Sim-Dy;gn and Sim-Diy, Which assume
access to an independent set oracle. To simplify the
presentation, we break the simulation into two steps.
In the first step, we introduce the notion of a high-low
partition and a high-low oracle in Section 4.1 and show
how to simulate a high-low oracle using access to an in-
dependent set oracle. In the second step, we show how
to simulate an (7, ¢)-degree oracle with access to both
an independent set oracle and a high-low oracle.

Throughout the section, let ¢ € (0,1) be an accu-
racy parameter, 1 < m < (3) and G = ([n], E) be a
graph where 1 < m = |E| <m. Recall a = 1+¢, s is
set according to (3.3), 5 = O((logn)/e) is the smallest
integer such that o® > n, and 7 is the smallest integer
such that o™ > log2 n/e. For convenience we will fix e
and m and skip them as inputs of algorithms presented
in this section.

4.1 High-low partitions and oracles We start
with the definition of high-low partitions and oracles.

DEFINITION 4.1. An (7, ¢)-high-low partition of G =
([n], E) is a partition (H, L) of [n] such that every vertex
u € L satisfies deg(u) < o+ and every vertex u € H
satisfies deg(v) > a.

An (m,e)-high-low oracle contains an (m,¢<)-high-
low partition (H, L) of G, and can be accessed via a map

Copyright © 2020 by SIAM

2927 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Subroutine Check-High-Degree (u,d, G)

Input: A vertex u € [n], a parameter d > o, and
access to an independent set oracle

IS¢ of an undirected graph G = ([n], E) with
1<m=|E|<mm.

Output: Either “low” or “high.”

1. Let ¢ be a counter, initially set to 0. Repeat
t = poly(logn, 1/¢) many iterations:

e Sample T C [n] \ {u} by including each
vertex independently with probability
¢/(dlogn). Increment c if T is an
independent set but T U {u} in not.

2. If ¢ > (14 ¢/4)te /logn, output “high;”
otherwise, output “low.”

Figure 5: Description of the Check-High-Degree sub-
routine.

Dui: [n] — {0,1} such that DuL(u) =1 if u € H and
DHL(U) =0 qu cL.

We remark (similarly to the case of (77, ¢)-degree
partitions in Definition 3.3) that (7, ¢)-high-low par-
titions are not unique; in fact, a vertex v with o® <
deg(v) < a*T! may belong to either H or L in an (m, €)-
high-low partition (H, L). We show in the next lemma
that query access to an (7, €)-high-low oracle Dy can
be simulated very efficiently using an independent set
oracle.

LEMMA 4.2. There is a positive integer qu. =
quL(e,n, m) and a deterministic algorithm
High-Low with the following performance guaran-
tee. High-Low(u,G,r) takes three inputs: a vertex
u € [n], access to an independent set oracle 1S of
G = ([n],E) with 1 <m = |E| <™, and r € {0,1}9.
The algorithm makes at most poly(logn,1/e) queries
to IS¢ and outputs a value in {0,1}. With probability
at least 1 — 1/n® over the draw of r ~ {0,1}%,
the function High-Low(-,G,r): [n] — {0,1}, is an
(m, €)-high-low oracle of G.

Before giving the proof of Lemma 4.2, we introduce
the main subroutine, Check-High-Degree, which will
be used for High-Low as well as for later parts of this
section.

LEMMA 4.3. There s a randomized algorithm
Check-High-Degree (u,d,G) which takes three in-
puts: a wverter uw € [n], a parameter d> o, and

access to an independent set oracle of G = ([n], E)
with 1 < |E| < m. The algorithm makes at most
poly(logn, 1/e) queries and satisfies the following two
properties:

o If deg(u) > (1 + e, then
Check-High-Degree(u,d, G) outputs “high”
with probability at least 1 — &2 /n®.

o If deg(u) < d, then Check-High-Degree(u,d,G)
outputs “low” with probability at least 1 — &% /n’.

Proof: Suppose first deg(u) > (1 + ¢)d. Consider the
probability over the draw of T C [n] \ {u} that the
counter c¢ is incremented at any particular iteration.
We notice that if T is an independent set containing
a neighbor of u, the counter is incremented. Therefore,

Pr [c is incremented] >
T

Pr’rr [TNT(u) #0] - l?rr [T is not an independent set]

(14¢€)d 2
o (i) o)
dlogn log®n

e(1+¢e)(1 —o(e)) < e(1+¢/2)
logn = logn

v

where we used Lemma 2.2 to say that T is very
likely to be an independent set. On the other hand
when deg(u) < d, the probability that the counter
is incremented is at most the probability that any
neighbor of u is included in T, so at most ¢/logn. By
a Chernoff bound, the counter ¢ at the end will be able
to distinguish the two cases with probability at least
1 —¢&%/nb. |

We now use Lemma 4.3 to prove Lemma 4.2:
Proof of Lemma 4.2: Let gu. = quL(e,n,m) be a
large enough integer so that r € {0,1}% can store the
randomness of calls to Check-High-Degree (u,a®,G)
for every w € [n]. More formally, if x is the
number of random bits needed for each call to
Check-High-Degree (u,a®, &), then gy is set to be
n - k. By a union bound, with probability at least
1 —&%/n* over the draw of » ~ {0,1}% all n calls to
Check-High-Degree(u,a®, G) return a correct answer
(i.e. no property in Lemma 4.3 is violated). We will
refer to such a string r as a good string.

We now describe the implementation of
High-Low(u,G,r) and show that for every good
string r, High-Low(-, G,r) implements an (77, €)-high-
low oracle. When calling High-Low(u,G,), it just
calls Check-High-Degree(u,a®,G) with randomness
taken from bits of r allocated to this call. Then
High-Low(u,G,r) outputs 1 if it outputs “high,”
and 0 if it outputs “low.” It follows from Lemma

Copyright © 2020 by SIAM

2928 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

4.3 that High-Low(u,G,r) makes poly(logn,1/e)
independent set queries. Moreover, when r is a good
string, High-Low(u, G,r) = 1 implies that deg(u) > a;
High-Low(u,G,7) = 0 implies that deg(u) < «a®ti.
This finishes the proof of Lemma 4.2. [|

4.2 Implementation of a degree oracle using
a high-low oracle Lemma 3.7 follows from Lemma
4.2 and the next lemma which is almost identical to
Lemma 3.7, except that the algorithms now have access
to both an independent set oracle and a high-low oracle.

LEMMA 4.4. There exists a positive integer q, =
¢«(e,n, M) and two deterministic algorithms Sim-D,
and Sim-Dy, .y, where Sim-Diy, (u,4,G,1) takes as input
a vertex u € [n], an index i € [0 : 5|, access to both an
independent set oracle ISg and an (T, €)-high-low oracle
DuL of an undirected graph G = ([n], E) with 1 < m =
|E| < m, and an r € {0,1}%; Sim-Dy, . (u, k,(, G, 1)
takes the same inputs but has the index i replaced by
indices k € [s+1:] and £ € [0 : 7|. Both algorithms
output a value in {0,1} and together have the following
performance guarantee:

1. Sim-Di . (u,i,G,r) makes a*~% - poly(logn, 1/¢)
queries and Sim-Dy, .y (u, k, ¢, G, r) makes
poly(logn,1/e) queries to the two oracles ISg and
DHL.

2. With probability at least 1 — 1/n3 over
r ~ {0,1}%, Sim-Di , (u,i, G,r) viewed as a map
from [n] x [0:s] = {0,1} and
Sim-Dy;gy (4, k, £, G, r) viewed as a map from
[n] x [s+1:6]x[0:7] = {0,1} form an
(m, €)-degree oracle of G.

To prove Lemma 4.4, we need two procedures with
properties summarized in the following two lemmas. We
delay their proofs but first use them to prove Lemma
4.4.

LEMMA 4.5. There s a randomized algorithm
Check-H-L-Degree (u, k, ¢, G) which takes as input
a vertex u € [n], two integers k € [s +1 : 3] and
¢ € [7], and access to both an independent set oracle
and an (M, €)-high-low oracle Dy with (M, €)-high-low
partition (H, L) of G = ([n], E) with 1 < |E| <™. The
algorithm makes poly(logn,1/¢) queries and has the
following properties when o~ < deg(u) < oFt1:

o If deg(u,L) < o*~*, Check-H-L-Degree(u, k,/, Q)
outputs “low” with probability at least 1 — &% /n’.

o If deg(u, L) > ak=t
Check-H-L-Degree(u, k, ¢, Q) outputs “high”
with probability at least 1 — &2 /n®.

LEMMA 4.6. There s a randomized algorithm
Check-Low-Degree (u,d,G) which takes as input a
verter w € [n], a parameter 0 < d < a®, and access
to an independent set oracle and an (M, e)-high-low
oracle of a graph G = ([n], E) with 1 < |E| < m. The
algorithm makes (a®/d) - poly(logn, 1/e) queries to the
two oracles and satisfies the following two properties:

o If deg(u,L) > (1 + e, then
Check-Low-Degree(u,d,) outputs “high” with
probability at least 1 — g% /n’.

e Ifdeg(u,L) < d, then Check-Low-Degree(u,d, Q)
outputs “low” with probability at least 1 — &2 /n’.

Proof of Lemma 4.4 Assuming Lemma 4.5 and
4.6: Similar to the proof of Lemma 4.2, we let ¢, be
a large enough integer so that a string r € {0,1}9 can
store randomness needed by calls to

1. Check-Low-Degree (u,a'~! G) for all u € [n] and
ie0:s];

2. Check-High-Degree (u,a”,G) for all u € [n] and
kels+1:0]; and

3. Check-H-L-Degree(u,k,¢,G)for all u € [n], k €
[s+1:] and £ € [7].

Then it follows from Lemma 4.3, 4.5 and 4.6 and a
union bound that, when r ~ {0,1}9 all these calls
return a correct answer (in the sense that no property
as stated in Lemma 4.3, 4.5 and 4.6 is violated) with
probability 1 — 1/n3. We will refer to such an r €
{0,1}%as a good string, and will show that given correct
outputs to all calls listed above, Sim-Dj,, and Sim-Dy;
can implement an (7, ¢)-degree oracle for G. For the
remainder of the proof, we consider any fixed good
string r € {0,1}%-.

Before describing the implementation details of
Sim-Dj,, and Sim-Dy, ., it is helpful to discuss results
of running all these algorithms (1), (2) and (3) on a
vertex u when r is good. We first consider a vertex u
with Dy (u) = 0 and thus, v € L and we have deg(u) <
a*t1. In this case we consider the results of running
Check-Low-Degree (u,a’~!, G) for each i € [0 : s], and
write a;—1 € {“low”, “high”} to denote the result; we
set as = “low” by default. Then there are two cases. If
deg(u, L) = 0, then all a; = “low”; if 1 < deg(u,L) <
a1, we have a_; = “high” and by Lemma 4.6, as well
as the fact r is good, there is a unique ¢ € [0 : s] such
that a;,_1 = “high” and a; = “low”, where i satisfies
o't < deg(u, L) < o't (which intuitively means that
we can place u in L;).!!

TMore detailed, we note that a_; = “high” and as = “low”,

Copyright © 2020 by SIAM

2929 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Next consider a vertex uw with Dy (u) = 1 and
thus, v € H and deg(u) > «®. We first consider
Check-High-Degree (u,a”, G) for each k € [s+1: 3—1]
and use bp€ {“low”, “high” } to denote the result; we
also set bg = “low” and b, = “high” by default. By
Lemma 4.3, as well as the fact r is good, there is a unique
k € [s+1: /] such that by_; = “high” and b, = “low”,
which implies that a*~1 < deg(u)<a**! (so we can place
w in Hy). Next for this particular k, we consider
Check-H-L-Degree (u, k, ¢, G) for each £ € [7] and use ¢,
to denote the result; we also set ¢y = “low” by default.
If all ¢;’s are “low,” then deg(u, L)<a*~"+1 (which we
can place in Hy ,). Otherwise there exists a unique
¢ € [0: 71— 1] such that ¢, = “low” and cg41 = “high.”
In this case we have a*~*~1< deg(u, L)<a*~**! (which
we can place in Hy, ¢).

We now describe the implementation of Sim-Di_,
and Sim-Dy;., and show that for every good string r,
they together become an (77,¢)-degree oracle of the
graph:

1. For Sim-Dj,, (u,%, G, 1), where i € [0 : s], we first
check Dpi(u) and return 0 if Dy (u) = 1 (meaning
that u € H). There are two special cases: i =0
and ¢ = 1. If i = 0, we just run

a_1 = Check-Low-Degree (u,a~ !, G) and if

a_1 = “low” return 1, and return 0 otherwise.

If i = 1, Tun a_; = Check-Low-Degree (u,a™ !, G)
and a; = Check-Low-Degree (u,«, G) and if

a_1 = “high” and a; = “low” return 1, and return
0 otherwise. For general i > 2, we run

a; = Check-Low-Degree (u, o, G) and

a;_1 = Check-Low-Degree (u,a'~1, G) but set a;
to be “low” by default if i = s. If a;—1 = “high”
and a; = “low”, return 1; otherwise, return 0.

2. For Sim-Dy, .y (u, k, ¢, G,r), where k € [s +1: f3]
and ¢ € [0 : 7], we first check Dy (u) and return 0
if Dy (u) = 0 (meaning that u € L). Next run
by = Check-High-Degree (u, a”,G), and
bix_1 = Check-High-Degree (u,a*~1, G) but set
br—1 = “high” if Kk = s+ 1 by default and set
b, = “low” if k = (8 by default. If by_; = “high”
and by = “low”, we continue; otherwise we return
0 (meaning that v does not even belong to Hy).
Finally we run ¢, = Check-H-L-Degree (u, k, ¢, G)
and cg+1 = Check-H-L-Degree (u, k,¢ + 1,G) but
set ¢y = “low” by default if { =0. If / = 7 and
¢ = “low”, return 1; return 0 otherwise. If £ < 7,

so that some index ¢ € [s] satisfies a;—1 = “high” and a; = “low”.
In order to see this index is unique, note that, if for i’ # 4,
a;/—1 = “high” and a;; = “low”, then either i/ —1 > i, ori’ < i—1,
and o 1 < deg(u, L) < oai/"'l; however, this contradicts the fact
o'~ < deg(u, L) < at1.

return 1 if ¢, = “low” and cpy1 = “high”, and
return 0 otherwise.

Given results of these calls analyzed above, it can be
verified that Sim-Dj,, and Sim-Dy; ., together implement
an (7, €)-degree oracle when r is a good string. This
finishes the proof. [|

We now provide a proof of Lemma 3.7 by using

Lemma 4.4 and Lemma 4.2.
Proof of Lemma 3.7: Let gu. = qui(e,n,m) be the
integer obtained from Lemma 4.2, and ¢. = ¢.(¢,n,m)
be the integer obtained from Lemma 4.4. We let ¢ =
qHL + ¢+, and we consider a string r ~ {0,1}? defined as
the concatenation of 71 ~ {0,1}%" and ry ~ {0,1}9*.

If the function High-Low(-,G,71): [n] — {0,1}
is an (7,¢)-high-low oracle of G, we say that ry is
a good string, and note that by Lemma 4.2 r; ~
{0,1}9 is a good string with probability at least
1 — 1/n®. Furthermore, for any fixed 7 which is
good, we let 7o € {0,1}* be a good string if the
functions Sim-Dj ,(,-,G,r2): [n] x [0 : s] — {0,1} and
Sim-Dy;gn (s Gyr2): [n] X [s +1 ¢ Bl x [0 @ 7] —
{0,1}, when run with access to the independent set
oracle IS¢ of G and the (77, €)-high-low oracle given by
High-Low(-,G,r1), form an (m,¢)-degree oracle of G.
Similarly, by Lemma 4.4, we have that ro ~ {0,1}7* is
a good string with probability at least 1 — 1/n3.

As a result, for r; which is good, and r5 is good
(with respect to 1), which occurs with probability
1—2/n3, the functions Sim-Dyoy(-, -, G,7): [n] X [0 : 8] —
{0,1} and Sim—Dhigh(~,~,~,G,7‘): [n] X [S +1: ﬁ] X [0 :
7] — {0,1} are implemented by calling the functions
Sim-Dj,, and Sim-Dy,,,.We note that these functions
form an (7, €)-degree oracle of G which makes queries
only to the independent set oracle IS¢ of G.

Lastly, the upper bound on the query complexities
to IS¢ of 8im-Di,y and Sim-Dyipn follows from the
upper bounds on the query complexities of Sim-Dj , and
Sim-Dy;,y to IS¢ and High-Low, as well as the fact that

High-Low makes at most poly(logn, 1/¢) queries to IS¢.
|

4.3 Proof of Lemma 4.5: We describe
Check-H-L-Degree in Figure 6. The procedure
shares resemblance with Check-High-Degree and the
main difference is that every time a set T is found
such that T is an independent set but T U {u} is not,
we continue to find an edge (u,v) € E and then use
the high-low oracle to certify that v € L. Note that
we do not need to run the randomized binary search
in order to find an edge (u,v) € E. Given that T
is an independent set but T U {u} is not, one can
deterministically split T into two parts, query the two
parts together with u separately, and continue with one

Copyright © 2020 by SIAM

2930 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Subroutine Check-H-L-Degree (u, k, {,)

Input: A vertex u € [n] satisfying

b~ < deg(u) < oF*! integers k € [s+ 1: 8] and
¢ € [0: 7], and access to an independent set oracle
and an (7, €)-high-low oracle Dy, of G = ([n], E)
with 1 < |E| < .

Output: Either “low” or “high.”

1. Let ¢ be a counter, initially set to 0. Repeat
for t = poly(logn,1/¢) iterations:

e Sample T C [n] \ {u} by including each
element independently with probability
e/(a*logn). If T is an independent set
but T U {u} in not (obtained by
querying IS¢), run a deterministic binary
search to find an edge (u,v) € E.

e Query Dy (v), and increment c if it
outputs 0.

2. If ¢ > (14 ¢/4)et/(a’logn), output “high;”
otherwise, output “low.”

Figure 6: Description of the Check-H-L-Degree subrou-
tine.

that is not independent.

Now we start to prove Lemma 4.5. Consider first
the case of deg(u,L) < o*~f. We note that in any
iteration of line 1, the probability ¢ is incremented is
at most the probability that a neighbor v € T'(u, L)

is included, and this occurs with probability at most
£ . ak*[< €
ak logn — aflogn"’

Suppose, on the other hand, that deg(u,L) >
aF=t+1 A sufficient condition for the counter ¢ to
be incremented is (1) T is an independent set, (2) T
contains a unique neighbor v € I'(u, L), and (3) T avoids
all vertices in I'(u, H). Representing T = T; UTo UT;3
where Ty C I'(u, L), T C I'(u, H), and T3 C [n]\T'(u),
we have:

l?rr [c is incremented] >

(4.13)
— Ty = {v}A
2]’-:I‘)§[T2_@] Z TE’II.‘3|: T1UT3 is an IS
vel'(u,L)
(4.14))
+1
Pr(T,=0]> (1- ——) >1—o(c)
Trf 2= ok logn = '

We note that since deg(u) < a**1, for any v € T'(u, L),

€ L€
ok logn ok logn

_ s -oe))

ak*logn

aFtl_q

Pr(T) = (v}

(4.15)

Finally, conditioning on Ty = {v}, T; U T3 is an
independent set if and only if T3 NT'(v) = 0 and Tj
(which is sampled from [n] \ T'(z) and avoids T'(v)) is
an independent set. Since v € L, the probability of
T3NT(v) = 0 is at least (1—¢/(aF logn))® " > 1—o(e).
As a result, viewing T3 = Tgo) U Tgl) where Téo) C
I'(v) \ I'(u) and Tgl) C [n]\ (T'(u) UT(v), we have that
for any fixed v € I'(u, L),

(4.16)
Pr [{v}UT;3 is an independent set)

1,Ts

> (1—o(g)) ,11?(5 [Tél) is an independent set} >1-o(e),
3

where we used Lemma 2.2 to say Tgl) is an independent
set with probability at least 1 — o(e). Plugging (4.14),
(4.15) and (4.16) back into (4.13), and recalling that
ID(u,L)| = deg(u,L) > oF~!*1 the probability the
counter c is incremented is at least

e(l+¢/2)

(1- 0(5)).ak4+1,m.(1_0(5)) > oTlogn

a*logn

Given that of < a7 = O(log?n/e), it follows from
a Chernoff bound that poly(logn,1/e) iterations are
enough for the counter to distinguish these two cases
with probability at least 1 — &2 /n®.

4.4 Proof of Lemma 4.6 We present the algorithm
in Figure 7. The proof follows a similar path as that of
Lemma 4.5 with a few parameters set differently.
Suppose deg(u, L) < d, the probability that the
counter is incremented is at most the probability that a
neighbor v € I'(u, L) is included in T, which occurs
with probability at most ed/(a®logn). Suppose
deg(u,L) > (1 + ¢)d, and consider the probability,
over the draw of T C [n] \ {u} that the counter c¢ is
incremented at any particular round. Similarly to the
proof of Lemma 4.5, we note that a sufficient condition
for this to occur is when (1) T is an independent set,
(2) T contains a unique neighbor v € I'(u, L), and (3) T
avoids all vertices in I'(u, H). Viewing T = T;UT2UT3
where Ty C I'(u, L), T C I'(u, H), and T3 C [n]\T'(u),

Copyright © 2020 by SIAM

2931 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Subroutine Check-Low-Degree (u, d, G)

Input: A vertex u € L, a parameter

0 <d < o*t!, and query access to independent set
oracle IS¢ and an (77, €)-degree oracle of a graph
G = ([n], F) with 1 < |E| < m.

Output: Either “low” or “high.”

1. Let ¢ = 0 be a counter. Repeat for
t = (a®/d) - poly(logn, 1/¢) many iterations:

e Sample T C [n] \ {u} by including each
vertex independently with probability
e/(a®logn). If T is an independent set
but T U {u} is not (obtained by querying
IS¢), run a deterministic binary search
to find an edge (u,v) € E with v € T.

e Query Dy (v), and increment the
counter if it outputs 0, i.e., v € L.

2. If ¢ > (14 ¢/4)edt/(a® logn), output “high;”
otherwise, output “low.”

Figure 7: Description of the Check-Low-Degree subrou-
tine.

we have:

(4.17)

P;r [c is incremented] >

— T, = {v}A
Z g;‘[TQ - (Z)] Z T]i’II“g [T1 U T3 is an IS ’
vel'(u,L)
(4.18)
Qs+l
5
Pr(To=0>1{1- >1- .
T;.[2=0]z (o’ logn) - oe)

Next for each v € I'(u, L), we have

€ - €
a’logn a’slogn

e(1 —o(e))
(4.19) I

a’tl-1

Er)f [Ty = {v}] >

Conditioning on T; = {v}, T; U T3 is an independent
set if and only if T3NI'(v) = 0, and T3 is an independent
set. Similarly to (4.18), since v € L, the probability
of TsND(v) = 0 is at least (1 — &/(alogn))®" >
1 — o(¢g). By Lemma 2.2, T3 (after avoiding I'(v)) is
an independent set with probability at least 1 — o(e).

Therefore, we obtain that (4.17) is at least

ed(1+¢)(1—o(e))? -
aslogn

ed(1+¢€/2)
a’logn

from combining (4.18) and (4.19).
By a Chernoff bound, the counter will distinguish
these two cases with probability at least 1 — &2 /n®.

5 Lower Bound

We now turn to proving the lower bound on the query
complexity of estimating the number of edges of an
undirected graph G with access to the independent set
oracle 1Sq.

We restate the main lower bound theorem:

THEOREM 5.1. Let n and m be two positive integers
with m < (g) Any randomized algorithm with ac-
cess to the independent set oracle ISg of an unknown

G = ([n], E) must make min(y/m, n//m)-(poly logn)~!
many queries in order to distinguish whether |E| < m/2
or |E| > m with probability at least 2/3.

We first establish Theorem 5.1 for the case when
m > n; the case when m < n follows later with a simple
reduction to the case when m > n. Now let m be an
integer with

nZ

(5.20) n<m<

- log6 n
Note that we further assumed that m < n?/log®n.
When m > n?/ log®n, the lower bound we aim for
becomes Q(log®n) which holds trivially since (1) Q
hides a factor of polylog(n) and (2) solving the problem
requires at least one query to IS given that m < (g)
Assuming that m satisfies (5.20), the proof proceeds
by Yao’s principle. In Section 5.1 we present two
distributions Dyes and Dy, over undirected graphs with
vertex set [n] such that G ~ Dy has fewer than m/2
edges with probability at least 1—o0(1) and G ~ Dy, has
more than m edges with probability at least 1 — o(1).
Next, we prove in Section 5.2 that every deterministic
algorithm that distinguishes Dyes and Dy, must make
Q(n/y/m) independent set queries. This finishes the
proof of Theorem 5.1 when m > n. We work on the
case when m < n via a reduction in Section 5.3.

5.1 Distributions Let d < m/n (which is not
necessarily an integer). Given that m satisfies (5.20),
we have that

(5.21) 1<d<

Copyright © 2020 by SIAM

2932 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Let g be the following positive integer: ¢ =

[. log%n} =0 (\/g bg%n) . We consider the fol-
lowing two distributions supported on graphs with ver-
tex set [n]:

e D,y A graph G ~ Dy, is sampled by first letting
A C [n] be a uniformly random subset
of [n], and A = [n] \ A. Furthermore, we sample
B C A by including each element of A in B
independently with probability dlogn/n (note
that this is smaller than 1 by (5.21)). For each
i€ A\ B and j € A, we include the edge (i, ;) in
G independently with probability d/n. Finally, we

add the edge (4, j) to G for every i € B and j € A.

® Dye: A graph G ~ Dy, is sampled by first letting
A C [n] be a uniformly random subset of [n], and
A =[n]\ A as above. We set B = () by default in
Dyes.'? For each i € A\ B = A and each j € A,
we include the edge (i,7) in G independently with
probability d/n.

We note that with probability at least 1 —o(1) over
the draw of G ~ Dy.s, G will have no more than m/2
many edges. This follows from Chernoff bound and the
fact that there are at most n?/4 many pairs between
A and A (so the expected number of edges is no more
than (n?/4) - (d/n) = m/4). On the other hand, with
probability at least 1 — o(1) over the draw of G ~ D,,,
G will have Q(dnlogn) > m edges. This is because with
probability 1 — o(1), |[A| = Q(n) and |B| = Q(dlogn).

As aresult, Theorem 5.1 (when m > n) follows from
Lemma 5.1 below because any randomized algorithm
that can distinguish |F| < m/2 and |E| > m with
probability 2/3 implies a deterministic algorithm Alg
with the same complexity such that

P Ag(G tputs “no”

GNIID.,)O[g(G) outputs “no” |
- P Ag(G tputs “no” | > 1/3 — o(1).
GNgyes[g(G) outputs “no” | >1/3 — o(1)

LEMMA 5.1. Let Alg be a deterministic algorithm that
makes q independent set queries. Then

P Ag(G tputs “no”
ngm[g(G) outputs “no”]

- P Al “no”| < o(l).
G~£W[g(G) outputs “no”] < o(1)

5.2 Augmented oracle To prove Lemma 5.1, we
will work with an augmented (independent set) oracle.
We show that any deterministic algorithm with access
to the original independent set oracle can be simulated

2We introduce B in Dyes only for the purpose of analysis later.

exactly using the augmented oracle with the same query
complexity (Lemma 5.2). As a result lower bounds for
the augmented oracle (Lemma 5.3) carry over to the
independent set oracle (Lemma 5.1).

The augmented oracle is specifically designed to
be queried when the input graph is drawn from either
Dyes or Dyo. Suppose that G is drawn from Dyes or
Do together with the auxiliary sets A and B (see
Section 5.1). A deterministic algorithm can access the
augmented oracle as follows:

e At any time during its execution, the algorithm
maintains a triple (K, ¢, e) which we will refer to
as its current knowledge triple, where K C [n] is a
set of vertices, £: K — {@,a,b} assigns one of
three labels to each vertex in K, and
e: K x K — {0,1}. We refer to vertices in K as
known vertices. Initially, K = () (and both £ and e
are trivial) and will grow as the result of queries
made by the algorithm to the augmented oracle
(see the next paragraph). For each vertex i € K,
¢(i) indicates whether i € A, A\ B or B: ifi € A,
then £(i) =a; if i € A\ B, then £(i) = a; if i € B,
then £(i) = b.'> Moreover, for any vertices
i,7 € K, e(i,7) is the indicator of whether (i, j)
lies in G or not.

e At the beginning of each round, based on its
current knowledge triple (K, ¢, ¢), the algorithm
can deterministically send a query specified by a
set @ C [n] \ K to the augmented oracle. The
oracle then reacts to the query as follows:

— If |Q] < t, where ¢ denotes the following
integer parameter

¢4t [\/m-logn—‘ =0 (W'logn),

the oracle sends a new knowledge triple
(K, ¢, ¢e) to the algorithm with K + KUQ
and with both £ and e updated according to
G, A and B.

— If |Q| > t, the oracle samples a subset L C @
of size t uniformly at random. If L is not an
independent set of G, the oracle sends a new
knowledge triple (K, ¢, e) to the algorithm
with K <+ K UL. If L happens to be an
independent set of G, we say the oracle
“fails” and it sends a new knowledge triple
(K, ¢, e) with K « [n] (i.e., in this case the
oracle simply gives up and sends the whole
graph to the algorithm).

I3Recall that when G ~ Dyes, we set B =) by default. As a
result, £(i) = b can never happen when G ~ Dyes.

Copyright © 2020 by SIAM

2933 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

Note that even when the algorithm is deterministic, the
augmented oracle is randomized due to L.

We show that any algorithm with access to the
original independent set oracle can be simulated using
the augmented oracle with the same query complexity.

LEMMA 5.2. Let Alg be a deterministic algorithm with
access to the independent set oracle. Then there is a de-
terministic algorithm Alg* with access to the augmented
oracle (running over G drawn from either Dyes or Dy,
only) such that Alg* has the same query complexity as
Alg,

P Al 113 ”
G~£m[g(G) outputs “no”|

= P Ag* (G tputs “no”
G~£m[g"(G) outputs “no”],

and the same equation holds for Dyes™.

Given Lemma 5.2, Lemma 5.1 follows directly from
the following lemma:

LEMMA 5.3. Let Alg* be any deterministic algorithm
that makes q queries to the augmented oracle (over
graphs G drawn from either Dyes or Dy, only). Then
we have

P Alg* (G tputs “no”
G~£no[g"(G) outputs “no”]

_ GE%-W [Alg*(G) outputs “no”] < o(1).

We start with some intuition. Given access to the
augmented oracle, an algorithm will aim to make the
set K as large as possible in order to maximize the
chance of BN K # () (in which case one can conclude
that G ~ Dyo). Now if the algorithm makes a query
Q C [n]\ K with |Q| <t = +/n/d-logn, the probability
of QN B # 0 is 0o(1/q) given that |B| is only roughly
dlogn (this will be made formal in the proof of Lemma
5.5). On the other hand, if |Q] > ¢, then a vertex in
B can be added to K because either L N B # () (which
happens with low probability by a similar analysis since
|IL| = ¢) or the oracle “fails” (which we show that is
unlikely to happen).

To proceed with the proof of Lemma 5.3 we view
Alg* as a tree of depth ¢ in which each internal node is
labelled by a query set, each leaf is labelled either “yes”
or “no,” and each edge is labelled by a knowledge triple
(K, ¥, e) as the result of the previous query received from
the augmented oracle. Let (u, v) be an edge with v being

MNote that in the right hand side the probability is not
only over the draw of G ~ Dypo but also the randomness of
the augmented oracle. The same comment applies to similar
expressions in the rest of the section.

a child of u. The label of (u,v) is the current knowledge
triple (K, ¢, e) of the algorithm when it arrives at v and
thus, the query set @ at v is a subset of [n] \ K. We
will refer to the label of (u,v) as the current knowledge
triple of v; for the root we have K = (.

We introduce the following definition of good and
bad nodes, which is inspired by the intuition that an
algorithm would aim for reaching a K with K N B # (.
We then state two lemmas based on this definition and
use them to prove Lemma 5.3.

DEFINITION 5.4. We say a node v in the tree of an

algorithm Alg* is good if its current knowledge triple
(K, ¢, e) satisfies {=1(b) = 0. We say v is bad otherwise.

We note that G ~ Dy can never reach a bad node
since B = 0 in this case.

LEMMA 5.5. We have (the probability is over G ~
Dno and randomness of the augmented oracle)
Prg.p,, [Alg*(G) reaches a bad node| = o(1).

no

LEMMA 5.6. For every good node v in the tree
of Alg*, we have Prg.p,, [Alg*(G) reaches v] <
Prg~p,, [Alg*(G) reaches v].

yes

Using the above two lemmas we derive Lemma 5.3
(we refer the reader to the full version for the proofs).

5.3 Proof of Theorem 5.1 The case when m > n
follows directly from Lemma 5.3.

When m < n, we use the observation that every
randomized algorithm with parameters n and m (i.e.,
determining whether an input graph G = ([n], F)
satisfies |E| < m/2 or |E| > m) implies a randomized
algorithm with parameters m and m (i.e., determining
whether a given graph G’ = ([m], E’) has |E’| < m/2
or |E’| > m) with the same query complexity by simply
embedding the input graph G’ = ([m], E’) in a graph
G = ([n], E) using its first m vertices (and noting that
the independent set oracle of G can be simulated using
that of G’ query by query). The latter task, by Lemma
5.3, has a lower bound of Q(y/m). This finish the proof
of the theorem when m < n.

References

[1] M. Aliakbarpour, A. S. Biswas, T. Gouleakis,
J. Peebles, R. Rubinfeld, and A. Yodpinyanee.
Sublinear-time algorithms for counting star subgraphs
with applications to join selectivity estimation. arXiv
preprint arXiv:1601.04233, 2016.

[2] S. Assadi, M. Kapralov, and S. Khanna. A simple
sublinear-time algorithm for counting arbitrary

Copyright © 2020 by SIAM

2934 Unauthorized reproduction of this article is prohibited

Downloaded 05/01/20 to 160.39.60.240. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

subgraphs via edge sampling. In Proceedings of the
2019 ACM Conference on Innovations in Theoretical
Computer Science (ITCS ’2019), 2019.

P. Beame, S. Har-Peled, S. N. Ramamoorthy,

C. Rashtchian, and M. Sinha. Edge estimation with
independent set oracles. In Proceedings of the 2018
ACM Conference on Innovations in Theoretical
Computer Science (ITCS ’2018), 2018.

B. Chazelle, R. Rubinfeld, and L. Trevisan.
Approximating the minimum spanning tree weight in
sublinear time. SIAM Journal on Computing,
34(6):1370-1379, 2005.

C. L. Chen and W. H. Swallow. Using group testing
to estimate a proportion, and to test the binomial
model. Biometrics, pages 1035-1046, 1990.

G. Cormode and S. Muthukrishnan. What’s hot and

what’s not: tracking most frequent items dynamically.

ACM Transactions on Database Systems (TODS),
30(1):249-278, 2005.

A. Czumaj, F. Ergiin, L. Fortnow, A. Magen,

I. Newman, R. Rubinfeld, and C. Sohler.
Approximating the weight of the euclidean minimum
spanning tree in sublinear time. SIAM Journal on
Computing, 35(1):91-109, 2005.

A. Czumaj and C. Sohler. Estimating the weight of
metric minimum spanning trees in sublinear time.
SIAM Journal on Computing, 39(3):904-922, 2009.
R. Dorfman. The detection of defective members of
large populations. The Annals of Mathematical
Statistics, 14(4):436-440, 1943.

D. Du and F. K. Hwang. Combinatorial group testing
and its applications, volume 12. World Scientific,
2000.

T. Eden, A. Levi, D. Ron, and C. Seshadhri.
Approximately counting triangles in sublinear time.
SIAM Journal on Computing, 46(5):1603-1646, 2017.
T. Eden, D. Ron, and C. Seshadhri. On
approximating the number of k-cliques in sublinear
time. In Proceedings of the 50th ACM Symposium on
the Theory of Computing (STOC ’2018), pages
722-734. ACM, 2018.

T. Eden and W. Rosenbaum. On sampling edges
almost uniformly. In Proceedings of the 1st
Symposium on Simplicity in Algorithms,

(SOSA ’2018), 2018.

U. Feige. On sums of independent random variables
with unbounded variance and estimating the average
degree in a graph. SIAM Journal on Computing,
35(4):964-984, 2006.

O. Goldreich and D. Ron. Approximating average
parameters of graphs. Random Structures &
Algorithms, 32(4):473-493, 2008.

M. Gonen, D. Ron, and Y. Shavitt. Counting stars
and other small subgraphs in sublinear-time. SIAM
Journal on Computing, 25(3):1365-1411, 2011.

A. Hassidim, J. A. Kelner, H. N. Nguyen, and

K. Onak. Local graph partitions for approximation
and testing. In Proceedings of the 50th Annual IEEE

2935

(18]

(19]

20]

23]

24]

25]

27]

(28]

29]

Symposium on Foundations of Computer Science
(FOCS ’2009), pages 22-31. IEEE, 2009.

P. Indyk, H. Q. Ngo, and A. Rudra. Efficiently
decodable non-adaptive group testing. In Proceedings
of the 21st ACM-SIAM Symposium on Discrete
Algorithms (SODA ’2010), pages 1126-1142. Society
for Industrial and Applied Mathematics, 2010.

A. Kumar, C. Seshadhri, and A. Stolman. Finding
forbidden minors in sublinear time: A n” 1/2+ o
(1)-query one-sided tester for minor closed properties
on bounded degree graphs. In Proceedings of the 59th
Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’2018), pages 509-520.
IEEE, 2018.

A. Kumar, C. Seshadhri, and A. Stolman. Random
walks and forbidden minors ii: a poly(de™')-query
tester for minor-closed properties of bounded degree
graphs. In Proceedings of the 51st ACM Symposium
on the Theory of Computing (STOC ’2019), 2019.

A. J. Macula and L. J. Popyack. A group testing
method for finding patterns in data. Discrete applied
mathematics, 144(1-2):149-157, 2004.

S. Marko and D. Ron. Approximating the distance to
properties in bounded-degree and general sparse
graphs. ACM Transactions on Algorithms, 5(2):22,
2009.

H. Q. Ngo and D.-Z. Du. A survey on combinatorial
group testing algorithms with applications to dna
library screening. Discrete mathematical problems
with medical applications, 55:171-182, 2000.

H. N. Nguyen and K. Onak. Constant-time
approximation algorithms via local improvements. In
Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’2008),
pages 327-336. IEEE, 2008.

K. Onak, D. Ron, M. Rosen, and R. Rubinfeld. A
near-optimal sublinear-time algorithm for
approximating the minimum vertex cover size. pages
1123-1131. Society for Industrial and Applied
Mathematics, 2012.

M. Parnas and D. Ron. Approximating the minimum
vertex cover in sublinear time and a connection to
distributed algorithms. Theoretical Computer Science,
381(1-3):183-196, 2007.

D. Ron and G. Tsur. The power of an example:
Hidden set size approximation using group queries
and conditional sampling. ACM Transactions on
Computation Theory, 8(4):15, 2016.

W. H. Swallow. Group testing for estimating infection
rates and probabilities of disease transmission.
Phytopathology (USA), 1985.

Y. Yoshida, M. Yamamoto, and H. Ito. An improved
constant-time approximation algorithm for maximum
matchings. In Proceedings of the 41st ACM
Symposium on the Theory of Computing

(STOC ’2009), pages 225-234. ACM, 2009.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

