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Abstract. Image sharpening can highlight fine details in images but with a tendency

of amplifying noise. This paper proposes a novel idea of incorporating an image

sharpening operator into a framelet-based model for image deblurring. The proposed

model is convex and hence it can be solved efficiently by the semi-proximal alternating

direction method of multipliers (sPADMM) with guaranteed linear rate convergence,

which covers the classical ADMM. The experimental results on different blurring

kernels and Gaussian noise levels show that the proposed approach outperforms the

state-of-the-art methods in terms of PSNR, SSIM, relative error, and visual quality.

Keywords: image sharpening, wavelet frame, image restoration, semi-proximal

alternating direction method of multipliers

1. Introduction

In the process of image acquisition and transmission, blurring is inevitable due to optical

degradation, object motion, and air turbulence [1–4]. The blurring process can be

regarded as diffusion that smears out original (sharp) images. For example, a forward

heat equation is a typical diffusion process [5]. As the backward heat equation is known

to be notoriously unable, the deblurring problem (to undo the blur) is highly ill-posed.

One of popular methods in image deblurring involves a regularization term that

regularizes the solution and refines the feasible set. Among various regularization

models, e.g., [6–14], the Rudin-Osher-Fatemi (ROF) model [15] that minimizes the

total variation (TV) is widely used. It is true that the ROF model can preserve edges,

but it is unable to distinguish a jump (a sharp image) from a smooth transition (a
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blurred version), as both have the same value of total variation. Therefore, the TV

regularization results in a suboptimal effect on image deblurring.

On the other hand, a direct approach for image deblurring focuses on the backward

diffusion. For example, Osher and Rudin [16] proposed a shock filter that creates a

shock during diffusion for the purpose of image sharpening. Although this approach

sounds severely unstable, Rudin and Osher provided a sophisticated numerical scheme

that yields reasonable results. Alvarez and Mazorra [17] later combined the shock

filter with an anisotropic diffusion to stabilize the solution. Alternatively, Gilboa et

al. [18] proposed a forward and backward diffusion model for image sharpening and

denoising. Recently, Calder et al. [19] considered a Sobolev gradient flow for image

sharpening, which will be elaborated later due to its relevance of the proposed approach.

Generally speaking, one major drawback for image sharpening methods is the tendency

of amplifying the noise due to the inherent instability.

In this paper, we innovatively propose to combine image sharpening with a

regularization approach. In particular, we rely on an image sharpening operator to

enhance and reveal important features in an image. We then formulate a framelet-based

model to stabilize the image deblurring process, thus leading to a sharp and satisfactory

recovery. The two-step approach results in a convex minimization problem, which can

be solved efficiently by the semi-proximal alternating direction method of multipliers

(sPADMM) [20–22] with a linear-rate convergence. One important advantage of the

sPADMM algorithm is its potential to deal with any subproblems that do not have

closed-form solutions. The main contributions of this work are three-fold,

(1) We combine image sharpening with a regularization-based method for image

deblurring, which is better than applying either one alone.

(2) We propose a convex optimization model that enables an efficient numerical

algorithm of sPADMM with guaranteed convergence.

(3) We conduct extensive experiments to demonstrate that the proposed method

outperforms the state-of-the-art methods in image deblurring.

The rest of the paper is organized in the following way. Section 2 devotes to

the literature review of regularization methods and an image sharpening operator.

In Section 3, we propose our model by combining the image sharpening operator

with a regularization method. We also establish the existence and uniqueness of the

model solution and describe an efficient sPADMM algorithm to find the solution with

convergence analysis. Experimental results are exhibited in Section 4, followed by

conclusions and future works in Section 5.

2. Literature review

We describe an image degradation [23–26] as follows,

f = Au+ ε, (2.1)
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where A represents a (linear) blurring operator, u is an (unknown) original image, f

is an observed image, and ε is often assumed to be Gaussian noise with zero mean

and standard deviation σ. Image deblurring aims to recover a sharp image u given the

blurring operator A and the blurry and noisy input f . We will review some regularization

methods in the literature of image deblurring, followed by the Sobolev gradient flow [19]

for image sharpening.

2.1. Regularization methods

The ROF model can be expressed

min
u

λ

2
‖Au− f‖2

2 + ‖Du‖1, (2.2)

where D denotes a derivative operator, ‖Du‖1 is the total variation of the image u,

and λ is a positive parameter to balance between a good fit and a regularized solution.

Note that there are isotropic TV and anisotropic TV formulations depending on how

the l1-norm is defined.

There are numerous efficient algorithms for solving the TV-regularized deblurring

model such as [27–30]. Specifically in [30], Wang et al. considered an approximated

model of (2.2) by introducing an auxiliary variable at each pixel w ∈ R2 to represent

Du,

min
w,u

λ

2
‖Au− f‖2

2 +
β

2
‖w −Du‖2

2 + ‖w‖2, (2.3)

where β is a sufficiently large penalty parameter. Since this formulation enables the

closed-form solution of each sub-problem, it has advantages of low computational

complexity and high numerical stability, thus referred to as fast total variation

deconvolution (FTVd). This algorithm was later explored in other imaging applications

[31–33].

Lou et al. [34] proposed a weighted difference of anisotropic and isotropic total

variation, denoted by ani-iso TV, as a regularization term for image processing,

min
u

λ

2
‖Au− f‖2

2 + ‖Dxu‖1 + ‖Dyu‖1 − α‖
√
|Dxu|2 + |Dyu|2‖1, (2.4)

with a parameter α ∈ [0, 1]. The idea is stemmed from an l1 − αl2 penalty [35–38] that

works particularly well for recovering sparse vectors. Similar idea is considered in [39]

that borrows minimax concave penalty (MCP) [40] from compressed sensing to image

processing.

Other than gradient-based regularizations, wavelet frame based approaches are

also widely used due to its multiresolution structure, sparse representations, and high

redundancy [41–47]. Note that there are several different types of wavelet models,

including synthesis based approaches [48, 49], analysis based approaches [50, 51], and

balanced approaches [52, 53]. Specifically in [43], Cai et al. considered the l1-norm in

the wavelet tight frame transform domain, i.e.,

min
u

λ

2
‖Au− f‖2

2 + ‖Wu‖1, (2.5)
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where W is the framelet transform satisfying W TW = I with the identity matrix I.

This approach is referred to as the framelet method.

2.2. Sharpening operator

We provide a brief review on the Sobolev gradient flow [19] that can be used for image

sharpening. It is well-know that the heat equation of ut = ∆u is the gradient descent

flow for minimizing the functional E(u) = 1
2

∫
Ω
‖∇u‖2 = 1

2
‖∇u‖2

2 with respect to the

standard Euclidean metric, where Ω is an open subset of R2 with smooth boundary ∂Ω.

Sundaramoorthi et al. [54] considered an inner product on the Sobolev space H1(Ω) [55],

defined as 〈v, w〉 −→ gτ (v, w) = (1− τ)〈v, w〉L2 + τ〈v, w〉H1 for any τ > 0. As a result,

the gradient of E(u) with respect to the Sobolev metric gτ is given by

∇gτE|u = −∆(I − τ∆)−1u,

where I denotes the identity operator with an abuse notation of the identity matrix.

Unlike the backward heat equation that is extremely unstable, the backward Sobolev

gradient flow defined by

ut = ∆(I − τ∆)−1u, (2.6)

is well-posed [56]. As the backward direction can be used for image sharpening, Calder

et. al. [19] proposed to minimize the following functional,

F (u) =
1

4
‖∇u0‖2

2(
‖∇u‖2

2

‖∇u0‖2
2

− γ)2, (2.7)

where u0 is the initial condition and γ is the sharpness factor in the sense that the

recoverred image looks blurring for γ < 1 and gets sharpened for γ > 1. Note that a

larger γ value corresponds to a sharper reconstruction.

It is straightforward to derive a gradient descent flow for minimizing (2.7) with

respect to the Sobolev metric gτ , i.e.,

ut = (
‖∇u‖2

2

‖∇u0‖2
2

− γ)∆(I − τ∆)−1u. (2.8)

This is a nonlinear PDE with a natural stopping time when the ratio of ‖∇u‖2
2 and

‖∇u0‖2
2 reaches to γ.

3. Our Approach

We propose to use the image sharpening operator to recover finer structures from a

blurred input, which can be regarded as a preprocessing step. As the solution of (2.8) is

unique [56], we denote B(·) as an operator that takes an initial condition u0 and outputs

the steady-state solution B(u0) corresponding to the PDE (2.8). Then, we utilize the

wavelet frame approach to further improve upon the image restoration result. As such,

we propose the following model

min
u

λ

2
‖Au− f‖2

2 + ‖Wu‖1 + µ‖u− B(f)‖1, (3.1)
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where W is the framelet transform, B(f) is a sharpened image, and λ, µ are two positive

parameters. We use the l2 norm for the data fitting term by the assumption that the

noise term η in (2.1) follows the Gaussian distribution. The second term in the proposed

model (3.1) is measured by the l1 norm in order to suppress the erroneous artifacts [57]

caused by the sharpening operator (the l2 norm may smear out the result). Denoting

g = B(f), we rewrite the proposed model (3.1) as follows:

min
u
J (u) ≡ λ

2
‖Au− f‖2

2 + ‖Wu‖1 + µ‖u− g‖1. (3.2)

We establish the existence of the problem (3.2) in Theorem 3.1. If null space of A only

contains zero, then the problem (3.2) has a unique minimizer. Recall the definition of

coerciveness [60] as follows:

Definition 3.1 A functional J : X → R on a Banach space X is called coercive if

‖uk‖ → +∞ implies J (uk)→ +∞ for every sequence {uk}k∈N ⊂ X.

The existence of a solution to the model (3.2) is based on a theorem in [60], stating

that any continuous, convex, and coercive functional on a Banach space has a global

minimizer.

Theorem 3.1 There exists a global minimizer of the objective functional in (3.2).

Proof It is obvious that both l2 and l1 norms are continuous and convex on the

Banach Space L2, so is J (u). Additionally for any sequence ‖uk‖2 → +∞, we have

‖Wuk‖1, ‖uk − g‖1, and ‖Auk − f‖2
2 go to infinity, so J (u) is coercive and hence J (u)

has a global minimizer. �
In what follows, we describe the semi-proximal alternating direction method of

multipliers (sPADMM), which has the potential to deal with any subproblems that do

not have closed-form solutions. In order to apply sPADMM, we express the minimization

problem (3.2) as an equivalent form,

min
u,d,z

λ

2
‖Au− f‖2

2 + ‖d‖1 + µ‖z‖1 s.t. Wu− d = 0, u− g − z = 0. (3.3)

The augmented Lagrangian function of problem (3.3) is formulated by

S(u, d, z; b, c) =
λ

2
‖Au− f‖2

2 + ‖d‖1 + µ‖z‖1

+
µ1

2
‖Wu− d‖2

2 + 〈Wu− d, b〉

+
µ2

2
‖u− g − z‖2

2 + 〈u− g − z, c〉,

(3.4)

where µ1, µ2 > 0 are two penalty parameters and b, c are the Lagrange multipliers. The

sPADMM iteration for solving (3.4) goes as follows,

uk+1 ∈ arg minu S(u, dk, zk; bk, ck) + 1
2
‖u− uk‖2

S1

dk+1 ∈ arg mind S(uk+1, d, zk; bk, ck) + 1
2
‖d− dk‖2

S2

zk+1 ∈ arg minz S(uk+1, dk+1, z; bk, ck) + 1
2
‖z − zk‖2

S3

bk+1 = bk + ηµ1(Wuk+1 − dk+1)

ck+1 = ck + ηµ2(uk+1 − g − zk+1).

(3.5)
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Here the matrix norm is defined as ‖x‖M =
√
〈x,Mx〉 for any x ∈ X and self-

adjoint positive semidefinite linear operator M : X → X . As a result, the alternating

direction method of multipliers (ADMM) [61–64] is a special case of sPADMM by

setting S1 = 0, S2 = 0, and S3 = 0. If one chooses strictly positive definite matrices

S1, S2, S3, then it is more efficient to solve the subproblems with a guaranteed linear

rate convergence for η ∈ (0, (1 +
√

5)/2) under mild conditions.

Next, we elaborate how to solve these subproblems respectively. The u-subproblem

is written as

uk+1 = arg min
u

λ

2
‖Au− f‖2

2 + 〈bk,Wu− dk〉+
µ1

2
‖Wu− dk‖2

2

+ 〈ck, u− g − zk〉+
µ2

2
‖u− g − zk‖2

2 +
1

2
‖u− uk‖2

S1
.

(3.6)

The optimality condition of (3.6) is given by

0 = λAT (Au− f) + µ1W
T (Wu− dk +

bk

µ1

)

+ µ2(u− g − zk +
ck

µ2

) + S1(u− uk).
(3.7)

Since W TW = I, we obtain the following linear system,(
λATA+ (µ1 + µ2)I + S1

)
u = λATf + µ1W

T (dk − bk)

+ µ2(g + zk − ck) + S1(uk).
(3.8)

Under the periodic boundary condition (BC) for u, we know that ATA, and ATf
are block circulant, the Hessian matrix on the left-hand of (3.8) can be diagonalized by
two-dimensional discrete Fourier transform F . Using the convolution theorem of Fourier
transforms, the solution of (3.8) can be written as

uk+1 = F−1(
λF(A)∗ ◦ F(f) + µ1F(W )∗ ◦ F(dk − bk) + µ2F(g + zk − ck) + F(S1) ◦ F(uk)

λF(A)∗ ◦ F(A) + µ1 + µ2 + F(S1)

)
,
(3.9)

where ∗ denotes complex conjugation, ◦ means component-wise multiplication, and

the division is component-wise as well. There are analogous fast transforms for other

boundary conditions [65]. For example, the blurring operator corresponding to reflective

BC can be diagonalized by the fast cosine transform and the one for anti-reflective BC

can be diagonalized by the fast sine transform.

The d-subproblem is equivalent to

dk+1 = arg min
d
‖d‖1−〈bk, d−Wuk+1〉+µ1

2
‖d−Wuk+1‖2

2+
1

2
‖d−dk‖2

S2
.(3.10)

The solution of d can be obtained by

dk+1 = T1/(µ1+λmax(S2))

(µ1Wuk+1 + bk + S2d
k

µ1 + λmax(S2)

)
, (3.11)

where λmax(S2) denotes the largest eigenvalue of the matrix S2 and the operator Tθ is a

soft shrinkage operator defined component-wisely as

(Tθ(x))i = sgn(xi) ∗max(|xi| − θ, 0).
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Algorithm 1 sPADMM for minimizing the proposed model (3.2).

Step 1: Given a blurring operator A and a blurred noisy input f .

Step 2: Set parameters γ, τ, λ, µ, µ1, µ2, η and stopping parameters tol and kMax.

Step 3: Run (2.8) until the steady state to obtain g.

Step 4: Initialize u0 = f and d0 = b0 = z0 = c0 = 0.

For k = 0, 1, 2, · · · ,kMax, iterate

uk+1 = F−1
(
λF(A)∗◦F(f)+µ1F(W )∗◦F(dk−bk)+µ2F(g+zk−ck)+F(S1)◦F(uk)

λF(A)∗◦F(A)+µ1+µ2+F(S1)

)
,

dk+1 = T1/(µ1+λmax(S2))

(
µ1Wuk+1+bk+S2dk

µ1+λmax(S2)

)
,

zk+1 = Tµ/(µ2+λmax(S3))

(
(µ2(uk+1−g)+ck+S3zk)

µ2+λmax(S3)

)
,

bk+1 = bk + ηµ1(Wuk+1 − dk+1),

ck+1 = ck + ηµ2(uk+1 − g − zk+1).

Step 5: If ‖u(k+1) − u(k)‖/‖u(k+1)‖ ≤ tol, stop.

Step 6: Output u(k+1).

For the z-subproblem, we have

zk+1 = arg min
z
µ‖z‖1 − 〈ck, z − (uk+1 − g)〉

+
µ2

2
‖z − (uk+1 − g)‖2

2 +
1

2
‖z − zk‖2

S3
,

(3.12)

which can be solved by the soft shrinkage as well, i.e.,

zk+1 = Tµ/(µ2+λmax(S3))

((µ2(uk+1 − g) + ck + S3z
k)

µ2 + λmax(S3)

)
. (3.13)

The overall algorithm is summarized in Algorithm 1. The linear-rate convergence

of the proposed algorithm is characterized in Theorem 3.2. Please refer to Appendix for

the proof.

Theorem 3.2 Let {(uk, dk, zk, bk, ck)} are generated from the sPADMM. If η ∈ (0, (1 +√
5)/2), then the whole sequence {(uk, dk, zk, bk, ck)} converges to the KKT point.

4. Experimental results

In this section, we present various deblurring results using six testing images, labelled

by Boat (256× 256), Cameraman (256× 256), Goldhill (256× 256), House (256× 256),

Man (512× 512), and Plate (200× 380), as showed in Figure 1.

We consider three types of blurring functions with Matlab commands:

• average blur (AB): fspecial(’average’,hsize);

• Gaussian blur (GB): fspecial (’gaussian’,hsize,sigma);

• motion blur (MB): fspecial(’motion’,len,theta).
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(a) Boat (b) Cameraman (c) Goldhill

(d) House (e) Man (f) Plate

Figure 1: Testing images.

For AB and GB, the blurring kernels to be tested are of size 5 × 5, 7 × 7, and 9 × 9.

The standard deviations in GB are sigma=2, 3, and 4. As for MB, we use len=9, 15,

and 20 with an angle theta=30, 45, 60, 120. Furthermore, Gaussian noise is added

to blurred images with a standard deviation of 1, 3, 5, or 10. We use the notation of

AB(5,5)/σ = 1 to denote the case of average blur of size 5×5 and Gaussian noise of the

standard deviation σ = 1. Similarly, we use GB(9,4)/σ = 5 for Gaussian kernel of size

9 × 9 and standard deviation of 4 with additive Gaussian noise of standard deviation

of σ = 5. The motion blur of size 20 × 20 with additive Gaussian noise of standard

deviation of σ = 10 is denoted as MB(20,120)/σ = 10.

To illustrate the effectiveness of the proposed approach, we compare with the

following image deblurring algorithms,

• TVTVTV [30] used alternating direction method (ADM) to solve the ROF model (2.2);

• FrameletFrameletFramelet [43] is based on the wavelet frame and solved by the split Bregman(SB)

algorithm;

• ani-iso TVani-iso TVani-iso TV [34] is a weighted difference of anisotropic and isotropic TV as the

regularization and solved via a difference of convex algorithm (DCA);

• BM3DBM3DBM3D deblurring [68] is a two-stage non-iterative algorithm that is built on the

famous BM3D denoising filter [69] with a regularized Wiener inversion to get the
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final deblurred image.

Quantitatively, we evaluate the quality of image restoration by peak signal-to-noise

ratio (PSNR), relative error (ReErr), and structural similarity (SSIM) [70]. PSNR and

ReErr are defined as,

PSNR = 10 log10

2552p

‖ũ− u‖2
2

, ReErr =
‖ũ− u‖2

2

‖u‖2
2

,

where u, ũ, p denote the original image, the restored image, and the number of pixels

in the image, respectively. As for SSIM, we define local similarity index computed on

windows x and y,

ssim(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
,

where µx, µy are the average of x, y, σ2
x, σ

2
y are the variance, σx,y is the covariance of

x, y, and c1, c2 are two variables to stabilize the division with weak denominator. The

overall SSIM is the mean of local similarity indexes,

SSIM =
1

N

N∑
i=1

ssim((xi, yi)),

where xi, yi are corresponding windows of original/restored image indexed by i and N

is the number of windows. Here, we consider the windows of size 8 × 8. Note that

larger PSNR, larger SSIM, and smaller ReErr values mean better restored results. All

the experiments are performed under Windows 7 and MATLAB R2014a running on a

desktop (Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz).

4.1. Parameter settings

We summarize the role of each parameter in our algorithm. In the pre-computing

step (i.e., image sharpening), there are two parameters τ and γ that control the

sharpening effect. Though they should be adjusted for different blurring kernels,

we observe that τ = 5, γ = 5 usually give reasonable results and hence we fix

these values in all experiments. In addition, there are parameters (λ, µ, µ1, µ2, η)

in our algorithm (3.4). The parameter λ balances the data-fitting term and the

regularization term. A larger value of λ yields unsatisfactory denoising results. If λ

is too small, the recovered image suffers from over-smoothing. A rule of thumb is that

a smaller λ value is used for a noisier input. We choose the best λ from the set of

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 35, 36, 37, 38, 40, 45}. The parameter µ reflects how

much we trust the sharpened image. We choose the best value of µ among the set of

{1e − 4, 1e − 3, 1e − 2}. As for algorithmic parameters µ1 and µ2 that only affect the

convergence speed, we fix the values as µ1 = 0.2, and µ2 = 1e− 1. We choose the self-

adjoint positive semidefinite linear operators S1 = S2 = S3 = ρI and ρ ∈ {0.1, 0.2, 0.3}.
The step-length η is set to be 1.6 ∈ (0, (1 +

√
5)/2) for guaranteed convergence. In all

the experiments, the stop criterion is either ‖u
k+1−uk‖2
‖uk‖2 < 1e−4 or the maximum iterative

number exceeds 1000. According to the above setting of parameters, we plot the PSNR
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values and the objective function values J (u) versus the iteration numbers in Figure 2,

which empirically shows the convergence of the sPADMM algorithm and our stopping

criteria are reasonable.

0 5 10 15 20 25
36

37

38

39

40

41

42

43

44

45

Iteration

P
S

N
R

(a) PSNR value versus iteration number

0 5 10 15 20 25
9.2

9.25

9.3

9.35

9.4

9.45

9.5

9.55
x 104

Iteration

J(
u)

(b) J(u) value versus iteration number

Figure 2: The PSNR and J (u) versus the iteration number for House image corrupted

by GB(7,3)/σ = 3.

We describe the parameter settings for these competing methods. Specifically for

the TV method, its model (2.3) involves two parameters (λ, β). The parameter λ is the

trade-off between data fitting and regularization terms, while β affects the convergence

of the algorithm. We choose the best combination of λ ∈ {0.5, 1, 2, 3, 5, 20, 25} and

β ∈ {0.4, 0.5, 0.8, 1, 8, 16}. The parameters used in framelet method (2.5) are set as λ ∈
{2, 4, 6, 7, 10, 30} and µ ∈ {0.005, 0.01, 0.003, 0.005}. As for ani-iso TV, we fix α = 0.5

and set other parameters as µ ∈ {0.5, 1.5, 3, 15} and λ ∈ {0.1, 0.5}. The BM3D method

requires two parameters, referred to as regularized inversion (RI) with collaborative

hard-thresholding and regularized Wiener inversion (RWI) with collaborative Wiener

filtering. We choose two parameters as RI ∈ {1e− 4, 5e− 4, 5e− 3, 1e− 3, 1e− 2} and

RWI ∈ {5e− 3, 3e− 3, 2e− 3}.

4.2. Simplified models

Before presenting the deblurring results of the proposed model, we want to highlight

each term in the proposed model (3.2) is influential. For this purpose, we present

the comparison results of the standard wavelet method (2.5), without tightframe, and

without the data fitting term.

The standard wavelet method based on the sharpened image is formulated as

follows,

min
u

λ

2
‖Au− f‖2

2 + ‖Wu‖1. (4.1)
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To apply the ADMM approach, we introduce an auxiliary variable d = Wu and

formulate the augmented Lagrangian,

min
u,d

λ

2
‖Au− f‖2

2 + ‖d‖1 + µ1〈Wu− d, b〉+
µ1

2
‖Wu− d‖2

2. (4.2)

The ADMM iteration is expressed as
uk+1 = (λATA+ µ1)−1(λATf + µ1W

T (dk − bk))
dk+1 = T 1

µ1

(Wuk+1 + bk)

bk+1 = bk +Wuk+1 − dk+1.

(4.3)

To make a fair comparison to the proposed approach, we consider the use of the

sharpened image g as an initial condition for (4.3).

The model without tight frame is reduced to

min
u

λ

2
‖Au− f‖2

2 + µ‖u− g‖1, (4.4)

and the ADMM algorithm iterates as follows,
uk+1 = (λATA+ µ2)−1(λATf + µ2(g + zk − ck))
zk+1 = T µ

µ2
(uk+1 − g + ck)

ck+1 = ck + uk+1 − g − zk+1.

(4.5)

Finally, we can formulate the model without data fitting term, i.e.,

min
u
µ‖u− g‖1 + ‖Wu‖1, (4.6)

with the ADMM iterations,

uk+1 = (µ1 + µ2)−1(µ1W
T (dk − bk) + µ2(g + zk − ck))

dk+1 = T 1
µ1

(Wuk+1 + bk)

bk+1 = bk +Wuk+1 − dk+1

zk+1 = T µ
µ2

(uk+1 − g + ck)

ck+1 = ck + uk+1 − g − zk+1.

(4.7)

The comparison of the proposed approach with these simplified models is given in

Figure 3 using Cameraman and MB(9,30)/σ = 1 as an example. We can observe that

the method without data fitting term almost have no effect on deblurring. Additionally,

the one without framelet has severe ringing artifacts. The standard framelet approach

initialized by the sharpened image is about 0.5 dB less in PSNR compared to our

approach. This example shows the importance of having each term in the proposed

model.
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(a) degraded (b) sharpened image (c) without data fitting

(d) standard framelet (e) without framelet (f) ours

Figure 3: Comparison of simplified models for image deblurring with MB(9,30)/σ = 1.

(a) Degraded image; (b) sharpened image; (c) without data-fitting: PSNR=32.16;

(d) standard framelet: PSNR=44.18; (e) without framelet: PSNR=37.78; (f) Ours:

PSNR=44.45.

4.3. Deblurring results

We record the values of PSNR, SSIM, ReErr of various deblurring results on average

blur, Gaussian blur, and motion blur in Tables 1-3, respectively. We compare our

approach with TV, Framelet, ani-iso TV, and BM3D. All the tables confirm that our

proposed method achieves the best results in most of the cases. In addition, Table 4

lists the computation time, which reveals that our method is relatively slow compared

to other methods. Acceleration will be left in the future work.
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Table 1: PSNR (dB), SSIM, ReErr for average blur.

Image Degraded Input TV Framelet ani-iso TV BM3D Ours

Boat

AB(5,5)/σ = 1
PSNR 33.62 47.06 47.21 46.86 46.53 47.45
SSIM 0.759 0.924 0.930 0.919 0.929 0.931
ReErr 0.0453 0.0097 0.0095 0.0099 0.0103 0.0093

AB(9,9)/σ = 5
PSNR 30.12 38.13 38.69 38.35 38.84 39.31
SSIM 0.503 0.742 0.769 0.749 0.765 0.773
ReErr 0.0679 0.0270 0.0253 0.0263 0.0249 0.0236

AB(9,9)/σ = 10
PSNR 30.05 36.71 36.95 36.88 37.45 37.54
SSIM 0.369 0.688 0.700 0.697 0.717 0.725
ReErr 0.0684 0.0318 0.0309 0.0311 0.0292 0.0289

Cameraman

AB(5,5)/σ = 1
PSNR 34.91 45.32 45.15 45.14 44.13 45.62
SSIM 0.732 0.896 0.899 0.897 0.899 0.902
ReErr 0.0366 0.0111 0.0113 0.0113 0.0127 0.0109

AB(9,9)/σ = 5
PSNR 31.29 37.63 37.56 37.40 37.57 38.02
SSIM 0.492 0.738 0.749 0.749 0.751 0.753
ReErr 0.0556 0.0268 0.0270 0.0275 0.0270 0.0256

AB(9,9)/σ = 10
PSNR 31.23 36.36 36.04 35.45 35.95 36.63
SSIM 0.322 0.691 0.680 0.708 0.710 0.717
ReErr 0.0559 0.0310 0.0322 0.0344 0.0325 0.0301

Goldhill

AB(5,5)/σ = 1
PSNR 33.64 46.14 45.97 46.02 46.32 46.67
SSIM 0.610 0.851 0.846 0.847 0.845 0.860
ReErr 0.0447 0.0106 0.0108 0.0107 0.0104 0.0100

AB(9,9)/σ = 5
PSNR 30.82 38.76 38.77 38.45 39.43 39.66
SSIM 0.406 0.611 0.619 0.597 0.617 0.630
ReErr 0.0618 0.0248 0.0248 0.0257 0.0229 0.0223

AB(9,9)/σ = 10
PSNR 30.76 36.36 36.81 36.62 36.65 37.32
SSIM 0.312 0.539 0.555 0.531 0.555 0.565
ReErr 0.0623 0.0326 0.0310 0.0317 0.0316 0.0293

House

AB(5,5)/σ = 1
PSNR 36.51 49.86 50.21 49.77 49.94 50.42
SSIM 0.797 0.896 0.896 0.893 0.901 0.902
ReErr 0.0269 0.0058 0.0056 0.0058 0.0057 0.0054

AB(9,9)/σ = 5
PSNR 31.65 41.87 42.35 42.60 42.55 43.14
SSIM 0.556 0.786 0.807 0.804 0.807 0.816
ReErr 0.0471 0.0145 0.0137 0.0133 0.0134 0.0125

AB(9,9)/σ = 10
PSNR 31.58 39.35 39.02 40.04 39.57 40.44
SSIM 0.370 0.753 0.745 0.773 0.774 0.783
ReErr 0.0474 0.0194 0.0201 0.0179 0.0189 0.0171

Man

AB(5,5)/σ = 1
PSNR 42.02 51.10 50.87 50.79 50.61 51.27
SSIM 0.747 0.889 0.899 0.887 0.896 0.899
ReErr 0.0177 0.0062 0.0064 0.0065 0.0066 0.0061

AB(9,9)/σ = 5
PSNR 38.68 43.85 43.70 43.42 43.81 44.05
SSIM 0.508 0.710 0.717 0.699 0.715 0.718
ReErr 0.0260 0.0143 0.0146 0.0151 0.0144 0.0140

AB(9,9)/σ = 10
PSNR 38.54 42.69 42.62 42.45 42.05 42.89
SSIM 0.359 0.665 0.676 0.655 0.668 0.678
ReErr 0.0265 0.0164 0.0165 0.0169 0.0177 0.0160

Plate

AB(5,5)/σ = 1
PSNR 28.41 48.20 48.50 48.41 41.25 48.72
SSIM 0.793 0.942 0.951 0.958 0.923 0.958
ReErr 0.0871 0.0089 0.0086 0.0087 0.0199 0.0083

AB(9,9)/σ = 5
PSNR 24.61 35.66 38.57 37.61 36.19 39.08
SSIM 0.531 0.902 0.906 0.903 0.811 0.909
ReErr 0.1350 0.0378 0.0270 0.0302 0.0356 0.0255

AB(9,9)/σ = 10
PSNR 24.60 34.54 34.05 34.86 32.72 35.06
SSIM 0.386 0.861 0.867 0.867 0.783 0.869
ReErr 0.1351 0.0430 0.0455 0.0415 0.0530 0.0406
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Table 2: PSNR (dB), SSIM, ReErr for Gaussian blur.

Image Degraded Input TV Framelet ani-iso TV BM3D Ours

Boat

GB(5,2)/σ = 1
PSNR 34.54 46.06 46.91 46.01 46.92 47.25
SSIM 0.802 0.916 0.931 0.916 0.931 0.931
ReErr 0.0408 0.0108 0.0098 0.0109 0.0098 0.0095

GB(9,4)/σ = 5
PSNR 30.89 37.70 37.74 37.46 37.74 38.31
SSIM 0.540 0.743 0.766 0.746 0.763 0.774
ReErr 0.0621 0.0283 0.0282 0.0291 0.0282 0.0266

GB(9,4)/σ = 10
PSNR 30.82 36.50 35.90 36.55 36.04 36.91
SSIM 0.400 0.694 0.712 0.701 0.716 0.721
ReErr 0.0626 0.0325 0.0349 0.0324 0.0343 0.0312

Cameraman

GB(5,2)/σ = 1
PSNR 35.98 44.40 44.25 44.26 43.98 44.57
SSIM 0.768 0.887 0.899 0.894 0.897 0.902
ReErr 0.0324 0.0123 0.0125 0.0125 0.0129 0.0121

GB(9,4)/σ = 5
PSNR 31.98 35.83 36.57 36.32 37.84 37.90
SSIM 0.516 0.735 0.744 0.745 0.746 0.749
ReErr 0.0513 0.0329 0.0302 0.0311 0.0261 0.0261

GB(9,4)/σ = 10
PSNR 31.92 34.06 34.33 33.92 34.44 34.98
SSIM 0.341 0.693 0.693 0.707 0.706 0.715
ReErr 0.0517 0.0404 0.0391 0.0408 0.0386 0.0364

Goldhill

GB(5,2)/σ = 1
PSNR 34.54 45.36 45.60 45.20 45.99 46.05
SSIM 0.660 0.827 0.839 0.823 0.832 0.843
ReErr 0.0403 0.0116 0.0113 0.0118 0.0108 0.0107

GB(9,4)/σ = 5
PSNR 31.48 37.65 37.68 37.50 37.98 38.23
SSIM 0.441 0.596 0.603 0.582 0.605 0.615
ReErr 0.0573 0.0282 0.0281 0.0287 0.0271 0.0262

GB(9,4)/σ = 10
PSNR 31.41 36.35 35.96 36.60 36.67 37.12
SSIM 0.342 0.547 0.560 0.535 0.561 0.566
ReErr 0.0578 0.0327 0.0342 0.0318 0.0315 0.0300

House

GB(5,2)/σ = 1
PSNR 37.62 49.05 48.88 49.15 49.99 50.09
SSIM 0.824 0.888 0.899 0.894 0.899 0.901
ReErr 0.0237 0.0063 0.0058 0.0063 0.0057 0.0056

GB(9,4)/σ = 5
PSNR 32.57 41.46 40.80 41.87 41.16 41.88
SSIM 0.582 0.792 0.813 0.807 0.799 0.815
ReErr 0.0423 0.0152 0.0164 0.0145 0.0157 0.0145

GB(9,4)/σ = 10
PSNR 32.49 38.96 38.44 38.99 38.23 39.31
SSIM 0.390 0.754 0.766 0.778 0.778 0.787
ReErr 0.0427 0.0203 0.0215 0.0202 0.0221 0.0196

Man

GB(5,2)/σ = 1
PSNR 42.95 50.93 50.60 50.53 50.01 51.20
SSIM 0.786 0.890 0.898 0.883 0.893 0.898
ReErr 0.0159 0.0063 0.0066 0.0066 0.0071 0.0062

GB(9,4)/σ = 5
PSNR 39.40 44.26 44.07 44.07 44.07 44.80
SSIM 0.538 0.711 0.717 0.699 0.718 0.722
ReErr 0.0239 0.0137 0.0140 0.0140 0.0140 0.0129

GB(9,4)/σ = 10
PSNR 39.22 42.70 42.69 42.94 42.07 43.23
SSIM 0.382 0.673 0.683 0.663 0.678 0.687
ReErr 0.0244 0.0164 0.0164 0.0159 0.0176 0.0155

Plate

GB(5,2)/σ = 1
PSNR 29.46 45.75 47.49 46.54 44.52 47.77
SSIM 0.797 0.950 0.958 0.963 0.939 0.963
ReErr 0.1026 0.0118 0.0097 0.0108 0.0136 0.0094

GB(9,4)/σ = 5
PSNR 25.43 35.77 36.98 36.81 34.71 37.31
SSIM 0.565 0.894 0.894 0.893 0.812 0.894
ReErr 0.1229 0.0374 0.0325 0.0331 0.0422 0.0313

GB(9,4)/σ = 10
PSNR 25.41 33.47 32.56 32.85 31.83 33.57
SSIM 0.415 0.857 0.823 0.864 0.787 0.849
ReErr 0.1231 0.0487 0.0541 0.0523 0.0588 0.0481
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Table 3: PSNR (dB), SSIM, ReErr for motion blur.

Image Degraded Input TV Framelet ani-iso TV BM3D Ours

Boat

MB(9,30)/σ = 1
PSNR 33.93 45.05 46.34 45.23 45.38 46.48
SSIM 0.744 0.905 0.914 0.910 0.917 0.917
ReErr 0.0437 0.0122 0.0105 0.0119 0.0117 0.0103

MB(20,60)/σ = 5
PSNR 25.72 37.06 36.84 36.60 37.15 37.19
SSIM 0.450 0.732 0.747 0.738 0.747 0.750
ReErr 0.1126 0.0305 0.0313 0.0333 0.0302 0.0304

MB(20,120)/σ = 10
PSNR 25.70 33.85 34.89 34.33 34.23 35.15
SSIM 0.330 0.660 0.659 0.676 0.678 0.678
ReErr 0.1128 0.0441 0.0391 0.0411 0.0423 0.0389

Cameraman

MB(9,30)/σ = 1
PSNR 32.27 43.44 44.32 43.39 43.72 44.45
SSIM 0.713 0.889 0.896 0.899 0.895 0.902
ReErr 0.0496 0.0137 0.0124 0.0138 0.0133 0.0123

MB(20,60)/σ = 5
PSNR 30.51 36.83 36.61 37.10 37.07 37.33
SSIM 0.481 0.734 0.755 0.754 0.742 0.757
ReErr 0.0607 0.0293 0.0301 0.0284 0.0285 0.0277

MB(20,120)/σ = 10
PSNR 30.26 34.27 35.72 35.70 35.16 35.77
SSIM 0.313 0.686 0.668 0.685 0.680 0.693
ReErr 0.0625 0.0394 0.0333 0.0339 0.0356 0.0332

Goldhill

MB(9,30)/σ = 1
PSNR 34.14 42.68 42.94 42.80 42.87 43.43
SSIM 0.616 0.861 0.869 0.859 0.848 0.871
ReErr 0.0422 0.0158 0.0153 0.0156 0.0154 0.0146

MB(20,60)/σ = 5
PSNR 27.88 36.29 35.65 36.42 35.43 36.53
SSIM 0.374 0.540 0.594 0.566 0.582 0.604
ReErr 0.0867 0.0329 0.0354 0.0324 0.0364 0.0323

MB(20,120)/σ = 10
PSNR 27.82 34.61 34.31 34.59 34.03 34.75
SSIM 0.292 0.496 0.532 0.501 0.531 0.534
ReErr 0.0873 0.0400 0.0414 0.0400 0.0427 0.0398

House

MB(9,30)/σ = 1
PSNR 32.96 49.33 49.85 49.55 49.08 50.10
SSIM 0.782 0.890 0.902 0.897 0.900 0.904
ReErr 0.0405 0.0061 0.0058 0.0060 0.0063 0.0056

MB(20,60)/σ = 5
PSNR 30.68 38.96 38.63 39.10 38.88 39.13
SSIM 0.510 0.763 0.798 0.783 0.774 0.800
ReErr 0.0526 0.0203 0.0211 0.0200 0.0205 0.0199

MB(20,120)/σ = 10
PSNR 30.52 36.09 37.39 37.08 36.90 37.49
SSIM 0.333 0.714 0.725 0.747 0.732 0.736
ReErr 0.0536 0.0282 0.0243 0.0252 0.0257 0.0242

Man

MB(9,30)/σ = 1
PSNR 40.89 51.44 51.76 51.17 51.66 52.02
SSIM 0.719 0.889 0.892 0.886 0.886 0.896
ReErr 0.0202 0.0060 0.0058 0.0062 0.0058 0.0056

MB(20,60)/σ = 5
PSNR 35.49 42.66 43.45 43.27 41.33 43.75
SSIM 0.504 0.717 0.707 0.715 0.709 0.719
ReErr 0.0376 0.0164 0.0150 0.0153 0.0192 0.0148

MB(20,120)/σ = 10
PSNR 35.20 40.16 41.11 40.37 39.71 41.60
SSIM 0.342 0.648 0.649 0.643 0.650 0.660
ReErr 0.0388 0.0219 0.0197 0.0214 0.0231 0.0189

Plate

MB(9,30)/σ = 1
PSNR 25.65 42.95 43.58 43.53 40.59 43.96
SSIM 0.725 0.938 0.940 0.953 0.923 0.954
ReErr 0.1198 0.0163 0.0152 0.0153 0.0215 0.0149

MB(20,60)/σ = 5
PSNR 23.96 33.08 33.22 33.21 32.39 33.53
SSIM 0.492 0.876 0.871 0.880 0.794 0.876
ReErr 0.1454 0.0509 0.0501 0.0502 0.0551 0.0484

MB(20,120)/σ = 10
PSNR 24.14 30.59 30.61 30.48 29.89 30.89
SSIM 0.344 0.818 0.806 0.826 0.721 0.831
ReErr 0.1480 0.0678 0.0676 0.0687 0.0735 0.0655
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Table 4: The computation time (sec).

Method
Boat Cameraman Goldhill House Man Plate

AB(5,5)/ AB(7,7)/ GB(5,2)/ GB(7,3)/ MB(9,30)/ MB(15,45)/
σ = 1 σ = 3 σ = 1 σ = 3 σ = 1 σ = 3

TV 0.32 0.43 0.59 0.59 4.10 0.89
Framelet 8.11 14.37 8.37 13.49 20.09 11.01

ani-iso TV 4.56 4.64 4.04 4.12 8.42 5.93
BM3D 0.88 1.01 0.94 1.10 4.16 1.25
Ours 4.03 4.63 3.85 4.05 17.78 6.55

(a) Degraded: 32.45 (b) TV: 39.43 (c) Framelet: 39.39

(d) ani-iso TV: 39.06 (e) BM3D: 38.65 (f) Ours: 39.62

Figure 4: Deblurring results of AB(7,7)/σ = 3 for Cameraman with zoomed regions

and PSNR values.

We present visual results of image deblurring. In particular, we consider

AB(7,7)/σ = 3 for Cameraman/House, GB(7,3)/σ = 3 for Boat/Man, and

MB(15,45)/σ = 3 for Plate/Goldhill. Figures 4-9 show that the proposed method yields

the best image quality in terms of removing noises, preserving edges, and maintaining

image sharpness. On the other hand, we observe stair-casing artifacts in TV and ani-iso

TV. It seems that the framelet method can not completely remove the noise, while the

BM3D method results in ringing artifacts.
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(a) Degraded: 33.67 (b) TV: 44.72 (c) Framelet: 45.24

(d) ani-iso TV: 44.43 (e) BM3D: 44.93 (f) Ours: 45.33

Figure 5: Deblurring results of AB(7,7)/σ = 3 for House with zoomed regions and

PSNR values.

5. Conclusions

In this paper, we proposed a novel model in combination of an image sharpening

operator and a framelet regularization for image deblurring. We proved the existence

and uniqueness of the model solution under a mild condition. Furthermore, we adopted

the semi-proximal ADMM (sPADMM) algorithm to find the solution and provided the

convergence analysis. We conducted extensive experiments on different types of blurring

kernels and different amounts of Gaussian noises, showing that the proposed approach is

robust and outperforms the state-of-the-art in image deblurring. Future works include

acceleration of the current workflow and possible extensions to other types of noises

such as impulse noise, mixed noise, and unknown type of noise.
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Appendix: Convergence proof

To make the paper self-contained, we establish the linear-rate convergence of Algorithm 1

for the minimization problem (3.2). The proof follows the work of [20].

We denote F (u) = λ
2
‖Au − f‖2

2, G(d) = ‖d‖1, H(z) = µ‖z‖1. It follows from [66]

that (ū, d̄, z̄) is an optimal solution of the problem (3.3) if and only if there exists

Lagrange multipliers b̄, z̄ such that

−W T b̄− c̄ ∈ ∂F (ū), b̄ ∈ ∂G(d̄), c̄ ∈ ∂H(c̄),

W ū− d̄ = 0, ū− g − z̄ = 0,
(5.1)

where ∂F, ∂G, ∂H are the subdifferential mappings of F,G,H, respectively. Therefore,
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(a) Degraded: 40.92 (b) TV: 46.51 (c) Framelet: 46.66

(d) ani-iso TV: 46.62 (e) BM3D: 46.17 (f) Ours: 47.26

Figure 7: Deblurring results of GB(7,3)/σ = 3 for Man with zoomed regions and PSNR

values.

we call (ū, d̄, z̄, b̄, c̄) the KKT point of (3.4), which satisfies the following KKT conditions:
0 ∈ ∂F (u) +W T b+ c
0 ∈ ∂G(d)− b
0 ∈ ∂H(z)− c
0 = Wu− d
0 = u− g − z.

(5.2)

Since the subdifferential mappings of the closed convex functions are maximal

monotone [58], there exist self-adjoint and positive semidefinite operators ΣF ,ΣG,ΣH

such that for all u, û ∈ dom(F ), w ∈ ∂F (u), and ŵ ∈ ∂F (û),

F (u) ≥ F (û) + 〈ŵ, u− û〉+ 1

2
‖u− û‖2

ΣF
, 〈w− ŵ, u− û〉 ≥ ‖u− û‖2

ΣF
,(5.3)

for all d, d̂ ∈ dom(G), x ∈ ∂G(d), and x̂ ∈ ∂G(d̂),

G(d) ≥ G(d̂) + 〈x̂, d− d̂〉+
1

2
‖d− d̂‖2

ΣG
, 〈x− x̂, x− x̂〉 ≥ ‖x− x̂‖2

ΣG
,(5.4)

and for all z, ẑ ∈ dom(H), y ∈ ∂H(z), and ŷ ∈ ∂H(ẑ),

H(z) ≥ H(ẑ) + 〈ŷ, z − ẑ〉+
1

2
‖z − ẑ‖2

ΣH
, 〈y − ŷ, z − ẑ〉 ≥ ‖z − ẑ‖2

ΣH
.(5.5)
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(a) Degraded: 23.65 (b) TV: 37.36 (c) Framelet: 37.38

(d) ani-iso TV: 37.75 (e) BM3D: 37.33 (f) Ours: 38.03

Figure 8: Deblurring results of MB(15,45)/σ = 3 for Plate with zoomed regions and

PSNR values.

Denote {(uk, dk, zk, bk, ck)} be the sequence obtained from sPADMM and hence it

satisfies 

0 ∈ ∂F (uk+1) +W T (µ1(Wuk+1 − dk) + bk)
+(µ2(uk+1 − g − zk) + ck) + S1(uk+1 − uk)

0 ∈ ∂G(dk+1)− (µ1(Wuk+1 − dk+1) + bk) + S2(dk+1 − dk)
0 ∈ ∂H(zk+1)− (µ2(uk+1 − g − zk+1) + ck) + S3(zk+1 − zk)
0 = ε1(uk+1, dk+1)− (ηµ1)−1(bk+1 − bk)
0 = ε2(uk+1, zk+1)− (ηµ2)−1(ck+1 − ck),

(5.6)

where ε1(u, d) = Wu− d, ε2(u, z) = u− g− z. We further denote uke = uk − ū, similarly

dke , z
k
e , b

k
e , c

k
e , and

wk+1
1 = bk+1 + (1− η)µ1ε1(uk+1, dk+1) + µ1(dk+1 − dk)

wk+1
2 = ck+1 + (1− η)µ2ε2(uk+1, zk+1) + µ2(zk+1 − zk)

xk+1 = bk+1 + (1− η)µ1ε1(uk+1, dk+1)
yk+1 = ck+1 + (1− η)µ2ε2(uk+1, zk+1).

It is straightforward to have

ε1(uk+1
e , dk+1

e ) = ε1(uk+1, dk+1) = (ηµ1)−1(bk+1 − bk) = (ηµ1)−1(bk+1
e − bke),

ε2(uk+1
e , zk+1

e ) = ε2(uk+1, zk+1)− g = (ηµ2)−1(ck+1 − ck)− g
= (ηµ2)−1(ck+1

e − cke)− g.
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(a) Degraded: 30.13 (b) TV: 38.02 (c) Framelet: 39.37

(d) ani-iso TV: 38.22 (e) BM3D: 38.94 (f) Ours: 39.65

Figure 9: Deblurring results of MB(15,45)/σ = 3 for Goldhill with zoomed regions and

PSNR values.

Combining (5.3)–(5.5) with (5.1) and (5.6), we have

‖uk+1
e ‖2

ΣF
≤ 〈−W Twk+1

1 − wk+1
2 − S1(uk+1 − uk)− (−W T b̄− c̄), uk+1

e 〉,
‖dk+1

e ‖2
ΣG
≤ 〈xk+1 − S2(dk+1 − dk)− b̄, dk+1

e 〉,
‖zk+1

e ‖2
ΣH
≤ 〈yk+1 − S3(zk+1 − zk)− c̄, zk+1

e 〉.

Summing up these three inequalities and using the definitions of wk+1
1 , wk+1

2 , xk+1, yk+1,

we obtain that

‖uk+1
e ‖2

ΣF
+ ‖dk+1

e ‖2
ΣG

+ ‖zk+1
e ‖2

ΣH

≤(ηµ1)−1〈bk+1
e , bke − bk+1

e 〉+ (ηµ2)−1〈ck+1
e , cke − ck+1

e 〉
− (1− η)µ1‖ε1(uk+1, dk+1)‖2 − (1− η)µ2‖ε2(uk+1, zk+1)‖2

− µ1〈dk+1 − dk, ε1(uk+1, dk+1)〉 − µ1〈dk+1 − dk, dk+1
e 〉

− µ2〈zk+1 − zk, ε2(uk+1, zk+1)〉 − µ2〈zk+1 − zk, zk+1
e 〉

− 〈S1(uk+1 − uk), uk+1
e 〉 − 〈S2(dk+1 − dk), dk+1

e 〉 − 〈S3(zk+1 − zk), zk+1
e 〉.

(5.7)

Next, we shall estimate the terms µ1〈dk+1 − dk, ε1(uk+1, dk+1)〉 and µ2〈zk+1 −
zk, ε2(uk+1, zk+1)〉. It follows from (5.6) that

xk+1 − S2(dk+1 − dk) ∈ G(dk+1), xk − S2(dk − dk−1) ∈ G(dk),

yk+1 − S3(zk+1 − zk) ∈ H(zk+1), yk − S3(zk − zk−1) ∈ H(zk).
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We further consider the maximal montonic property of ∂G(·) and ∂H(·), i.e.,

〈dk+1 − dk, xk+1 − xk〉 ≥ ‖dk+1 − dk‖S2 − 〈dk+1 − dk, S2(dk − dk−1)〉
〈zk+1 − zk, yk+1 − yk〉 ≥ ‖zk+1 − zk‖S3 − 〈zk+1 − zk, S3(zk − zk−1)〉.

By letting αk+1 = −(1− η)µ1〈dk+1 − dk, ε1(uk+1, dk+1)〉 and βk+1 = −(1− η)µ2〈zk+1 −
zk, ε2(uk+1, zk+1)〉, we have

− µ1〈dk+1 − dk, ε1(uk+1, dk+1)〉
= − (1− η)µ1〈dk+1 − dk, ε1(uk+1, dk+1)〉+ 〈dk+1 − dk, bk − bk+1〉
=αk+1 + 〈dk+1 − dk, xk − xk+1〉
≤αk+1 − ‖dk+1 − dk‖2

S2
+ 〈dk+1 − dk, S2(dk − dk−1)〉

≤αk+1 −
1

2
‖dk+1 − dk‖2

S2
+

1

2
‖xk − xk−1‖2

S2

(5.8)

and

−µ2〈zk+1 − zk, ε2(uk+1, zk+1)〉 ≤ βk+1 −
1

2
‖zk+1 − zk‖2

S3
+

1

2
‖yk − yk−1‖2

S3
. (5.9)

Using bk+1 = bk+(ηµ1)ε1(uk+1, dk+1) and ck+1 = ck+(ηµ2)ε2(uk+1, zk+1), we obtain

from (5.7)-(5.9) that

2‖uk+1
e ‖2

ΣF
+ 2‖dk+1

e ‖2
ΣG

+ 2‖zk+1
e ‖2

ΣH

≤(ηµ1)−1(‖bke‖2 − ‖bk+1
e ‖2) + (ηµ2)−1(‖cke‖2 − ‖ck+1

e ‖2)

− (2− η)µ1‖ε1(uk+1, dk+1)‖2 − (2− η)µ2‖ε2(uk+1, zk+1)‖2

+ 2αk+1 − ‖dk+1 − dk‖2
S2

+ ‖dk − dk−1‖2
S2

− µ1‖dk+1 − dk‖2 − µ1‖dk+1
e ‖2 + µ1‖dke‖2

+ 2βk+1 − ‖zk+1 − zk‖2
S3

+ ‖zk − zk−1‖2
S3

− µ2‖zk+1 − zk‖2 − µ2‖zk+1
e ‖2 + µ2‖zke‖2

− ‖uk+1 − uk‖2
S1
− ‖uk+1

e ‖2
S1

+ ‖uke‖2
S1

− ‖dk+1 − dk‖2
S2
− ‖dk+1

e ‖2
S2

+ ‖dke‖2
S2

− ‖zk+1 − zk‖2
S3
− ‖zk+1

e ‖2
S3

+ ‖zke‖2
S3
.

(5.10)

For convenience, we define
δk+1 = min{η, 1 + η − η2}

[
µ1‖dk+1 − dk‖2 + µ2‖zk+1 − zk‖2

]
+‖dk+1 − dk‖2

S2
+ ‖zk+1 − zk‖2

S3

tk+1 = δk+1 + ‖uk+1 − uk‖2
S1

+ 2‖uk+1 − û‖2
ΣF

+2‖dk+1 − d̂‖2
ΣG

+ 2‖zk+1 − ẑ‖2
ΣH

ψk+1 = θ(uk+1, dk+1, zk+1, bk+1, ck+1) + ‖dk+1 − dk‖2
S2

+ ‖zk+1 − zk‖2
S3
,

(5.11)

where θ(u, d, z, b, c) = (ηµ1)−1‖b− b̄‖2 + (ηµ2)−1‖c− c̄‖2 + ‖u− ū‖2
S1

+ ‖d− d̄‖2
S2

+ ‖z−
z̄‖2

S3
+ µ1‖d − d̄‖2 + µ2‖z − z̄‖2. We need to discuss two cases: η ∈ (0, 1] and η > 1,

respectively.

Case I. η ∈ (0, 1]. By using the facts that

2〈dk+1 − dk, ε1(uk, dk)〉 ≤ ‖dk+1 − dk‖+ ‖ε1(uk, dk)‖2,
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2〈zk+1 − zk, ε2(uk, zk)〉 ≤ ‖zk+1 − zk‖+ ‖ε2(uk, zk)‖2,

and the definition of αk+1, βk+1, we can obtain from (5.10) that

ψk+1 + (1− η)
[
µ1‖ε1(uk+1, dk+1)‖2 + µ2‖ε2(uk+1, zk+1)‖2

]
−
[
ψk + (1− η)

[
µ1‖ε1(uk, dk)‖2 + µ2‖ε2(uk, zk)‖2

] ]
+ tk+1

+µ1‖ε1(uk+1, dk+1)‖2 + µ2‖ε2(uk+1, zk+1)‖2 ≤ 0.

(5.12)

Case II. η > 1. Similarly, we have

−2〈dk+1 − dk, ε1(uk, dk)〉 ≤ η‖dk+1 − dk‖+ η−1‖ε1(uk, dk)‖2,

−2〈zk+1 − zk, ε2(uk, zk)〉 ≤ η‖zk+1 − zk‖+ η−1‖ε2(uk, zk)‖2.

Therefore, it follows from (5.10) that

ψk+1 + (1− η−1)
[
µ1‖ε1(uk+1, dk+1)‖2 + µ2‖ε2(uk+1, zk+1)‖2

]
−
[
ψk + (1− η−1)

[
µ1‖ε1(uk, dk)‖2 + µ2‖ε2(uk, zk)‖2

] ]
+ tk+1

+η−1(1 + η − η2)[µ1‖ε1(uk+1, dk+1)‖2 + µ2‖ε2(uk+1, zk+1)‖2] ≤ 0.

(5.13)

From (5.11)-(5.13), we see immediately that the sequence θ(uk+1, dk+1, zk+1, bk+1, ck+1)+

‖dk+1 − dk‖2
S2

+ ‖zk+1 − zk‖2
S3

is bounded and

lim
k→∞

tk+1 = 0

lim
k→∞
‖bk+1 − bk‖ = lim

k→∞
(ηµ1)−1‖ε1(uk+1, dk+1)‖ = 0

lim
k→∞
‖ck+1 − ck‖ = lim

k→∞
(ηµ2)−1‖ε2(uk+1, zk+1)‖ = 0.

(5.14)

By using the definition of θ and tk+1, the sequences of {‖bk+1‖}, {‖ck+1‖},
{‖uk+1

e ‖2
ΣF+S1

}, {‖dk+1
e ‖2

ΣG+S2+µ1I
}, and {‖zk+1

e ‖2
ΣH+S3+µ2I

} are all bounded. Since both

G and H are the l1 norm, S2, S3 are assumed to be semi-positive definite, and µ1, µ2 > 0,

we have ΣG +S2 +µ1I and ΣH +S3 +µ2I are positive definite and hence the sequences

of {‖dk+1‖} and {‖zk+1‖} are also bounded. Since

‖Wuk+1
e ‖ ≤ ‖Wuk+1

e − dk+1
e ‖+ ‖dk+1

e ‖ = ‖ε1(uk+1, dk+1)‖+ ‖dk+1
e ‖

‖uk+1
e ‖ ≤ ‖ε2(uk+1, zk+1)‖+ ‖zk+1

e ‖,

the sequences {‖Wuk+1
e ‖} and {‖uk+1

e ‖} are bounded and so is the sequence

{‖uk+1
e ‖2

ΣF+S1+µ1WTW+µ2I
}. Since ΣF + S1 + µ1W

TW + µ2I is positive definite, the

sequence {‖uk+1
e ‖} is bounded. Therefore, the sequence {(uk, dk, zk, bk, ck)} is bounded,

which implies the existence of a convergent subsequence to a clusters point, denoted as

{(uki , dki , zki , bki , cki)} → {(u∗, d∗, z∗, b∗, c∗)}.
In what follows, we show that (u∗, d∗, z∗) is an optimal solution of problem (3.3),

and (b∗, c∗) is corresponding Lagrange multiplier. We note from (5.14) for the following

limits:

lim
k→∞
‖dk+1 − dk‖ = 0, lim

k→∞
‖zk+1 − zk‖ = 0, (5.15)

lim
k→∞
‖uk+1 − uk‖S1 = 0, lim

k→∞
‖dk+1 − dk‖S2 = 0, lim

k→∞
‖zk+1 − zk‖S3 = 0.
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By using the inequalities

‖Wuk+1 − dk‖ ≤ ‖Wuk+1 − dk+1‖+ ‖dk+1 − dk‖
‖uk+1 − g − zk‖ ≤ ‖uk+1 − g − zk+1‖+ ‖zk+1 − zk‖,

we deduce from (5.14) and (5.15) that

lim
k→∞
‖Wuk+1 − dk‖ = 0, lim

k→∞
‖uk+1 − g − zk‖ = 0. (5.16)

Taking limits on both sides of (5.6) along the subsequence {(uki , dki , zki , bki , cki)} and

using (5.15), (5.16), and the closedness of ∂F, ∂G [67], we obtain that

−W T b∗ − c∗ ∈ ∂f(u∗), b∗ ∈ ∂g(d∗), c∗ ∈ ∂h(z∗),

Wu∗ − d∗ = 0, u∗ − g − z∗ = 0.

As a result, (u∗, d∗, z∗, b∗, c∗) satisfies (5.1) and hence (u∗, d∗, z∗) is an optimal solution

to problem (3.3) and (b∗, c∗) is the corresponding Lagrange multipliers.

We then show the global convergence, i.e., {(uk, dk, zk, bk, ck)} → (u∗, d∗, z∗, b∗, c∗)

(not just subsequence convergence). Since (u∗, d∗, z∗, b∗, c∗) satisfies (5.1), we could

replace (ū, d̄, z̄, b̄, c̄) with (u∗, d∗, z∗, b∗, c∗) in the above analysis. For η ∈ (1, (1+
√

5)/2),

(5.12) and (5.13) imply that {ψki + (1 − η)[µ1‖ε1(uki , dki) + µ2‖ε2(uki , zki)‖]} → 0

and {ψki + (1 − η−1)[µ1‖ε1(uki , dki) + µ2‖ε2(uki , zki)‖]} → 0, respectively, as ki → ∞.

Consequently, the sequence {‖ε1(uk, dk)‖}, {‖ε2(uk, zk)‖} converge to 0. Furthermore,

we have the following limits:

lim
k→∞

θ(uk, dk, zk, bk, ck) + ‖dk+1 − dk‖2
S2

+ ‖zk+1 − zk‖2
S3

= 0

lim
k→∞

ψk = 0.
(5.17)

Therefore, we can see that limk→∞ b
k = b∗ and limk→∞ c

k = c∗. Moreover, we obtain

from (5.14) and (5.17) that

lim
k→∞

(‖dke‖2
ΣG

+ ‖dke‖2
S2

+ µ1‖dke‖2)

+(‖zke‖2
ΣH

+ ‖zke‖2
S3

+ µ2‖zke‖2) + (‖uke‖2
ΣF

+ ‖uke‖2
S1

) = 0.

Hence, we have limk→∞ d
k = d∗ and limk→∞ z

k = z∗. This further implies that

limk→∞ ‖Wuk+1
e ‖ = 0 and limk→∞ ‖uk+1

e ‖ = 0. Therefore, we have

lim
k→∞

(‖uke‖2
Σf

+ ‖uke‖2
S1

) + µ1‖Wuke‖2 + µ2‖uke‖2 = 0, (5.18)

which ensures that limk→∞ u
k = u∗. As a result, we have that the whole sequence

{(uk, dk, zk, bk, ck)} converges to {(u∗, d∗, z∗, b∗, c∗)} if η ∈ (0, (1 +
√

5)/2).
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