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ABSTRACT

Blind hyperspectral unmixing is a challenging problem in re-
mote sensing, which aims to infer material spectra and abun-
dances from the given hyperspectral data. Many traditional
methods suffer from poor identification of materials and/or
expensive computational costs, which can be partially eased
by trading the accuracy with efficiency. In this work, we pro-
pose a fast graph-based blind unmixing approach. In particu-
lar, we apply the Nyström method to efficiently approximate
eigenvalues and eigenvectors of a matrix corresponding to a
normalized graph Laplacian. Then the alternating direction
method of multipliers (ADMM) yields a fast numerical algo-
rithm. Experiments on a real dataset illustrate great potential
of the proposed method in terms of accuracy and efficiency.

Index Terms— Hyperspectral imaging, hyperspectral un-
mixing, Nyström method, graph Laplacian, alternating direc-
tion method of multipliers.

1. INTRODUCTION

Hyperspectral imaging (HSI) has been widely used in remote
sensing with many applications including social security,
agriculture, biology, health care, and astronomy. Unlike dig-
ital images with one or three color channels, a hyperspectral
image often contains hundreds or thousands of spectral bands
at each recorded pixel to facilitate clustering and classifi-
cation. Unfortunately, due to low spatial resolution, it is
difficult in HSI to separate materials, some of which may
jointly occupy at a single pixel. Hence, hyperspectral unmix-
ing (HSU) aims at decomposing a hyperspectral image into a
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linear combination of spectra of pure materials (also known
as endmembers), in which the linear coefficients correspond
to the proportions or abundances of each pure material in a
mixed pixel [1]. A more sophisticated process that estimates
abundances and endmember signatures simultaneously from
the HSI data is called blind hyperspectral unmixing.

There are a large number of HSU methods based on
geometrical, statistical, and/or variational modeling of the
problem. For example, it is physically reasonable to assume
that all the endmembers and abundances are nonnegative, and
hence nonnegative matrix factorization (NMF) [2] is one of
the most popular methods due to its simple formulation and
fast computation. However, the nonconvex nature of the un-
mixing problem leads to many local minimizers, and thereby
yields poor identification of materials. Some regularization
techniques including �1-norm [3], �0-norm [4], and total
variation (TV) [5, 6] have been applied to HSU in attempts to
preserve spatial smoothness of abundances or to promote joint
spatial-spectral sparsity. Recently, graph-based regularization
has attracted tremendous interest [7, 8, 9]. When representing
hyperspectral data as a graph, each spectrum vector is con-
sidered as a node in the graph, whose affinity matrix encodes
the pairwise similarities of nodes. Due to the linear rela-
tionship between spectra and abundances, abundance maps
at two pixels are similar to each other if their corresponding
spectra are similar. In other words, abundance maps inherit
the graph structure from the spectra data. However, pairwise
similarity is typically a computational bottleneck for many
graph-based algorithms, especially when the HSI data is of
high dimension.

In this paper, we propose an efficient way to incorporate a
graph regularization for blind hyperspectral unmixing. In par-
ticular, we apply the Nyström method [10] to approximate the
eigenvalues and eigenvectors of a normalized graph Lapla-
cian, constructed from the given hyperspectral data. In addi-
tion to the nonnegative constraint for both endmembers and
abundances, we assume that the sum of abundances at each
pixel is one. In order to solve the constrained graph-based



unmixing model, we apply the alternating direction method
of multipliers (ADMM) [11]. Motivated by an ADMM ap-
proach for solving the NMF problem [12, 13], we introduce
two auxiliary variables to deal with the linear constraints, i.e.,
nonnegativity and sum-to-one. As a consequence, each sub-
problem can be solved efficiently with a closed-form solution.
Numerical experiments on a real dataset show that our method
yields reasonable performance with high efficiency.

The rest of the paper is organized as follows. In Section 2,
we provide background knowledge including graph construc-
tion and the Nyström method. Section 3 presents details of the
proposed algorithm. Experiments are conducted in Section 4,
followed by conclusions and future works in Section 5.

2. BACKGROUND

In this section, we present how to construct a graph corre-
sponding to the given hyperspectral data as well as how to ap-
ply the Nyström method to approximate the eigenvalues and
eigenvectors of the graph Laplacian.

Given a collection of spectral vectors V = {xi}ni=1 ⊆ R
w

with n being the number of pixels in the hyperspectral data,
we define an affinity matrix, or similarity matrix, W ∈ R

n×n

of the underlying graph as

Wij = e−d(xi,xj)
2/σ, i, j = 1, . . . , n, (1)

where d(xi,xj) is the distance between the two spectral vec-
tors xi and xj , and σ > 0 controls how similar they are.
Following [14], we adopt the cosine similarity as the distance
function for HSI, i.e.,

d(xi,xj) = 1− 〈xi,xj〉
‖xi‖2‖xj‖2 .

Calculating pairwise similarities of a fully-connected
graph is the crux of many graph-based algorithms. In or-
der to reduce the computational cost, we apply the Nyström
method [10] to approximate the eigenvectors and eigenvalues
of W by using a small number of sampled data points. Up to
permutations, the similarity matrix W can be expressed in a
block-matrix form,

W =

[
W11 W12

W21 W22

]
,

where W11 is the similarity matrix of the sampled points,
W12 = WT

21 is the one of the sampled points and the un-
sampled points, and W22 is the one of the unsampled points.
Assume that the symmetric matrix W11 has the eigendecom-
position: W11 = UΛUT , where U has orthonormal eigen-
vectors as columns and Λ is a diagonal matrix whose diagonal
entries are eigenvalues of W11. The Nyström extension gives
an approximation of W by using U and Λ as follows,

W ≈ ÛΛÛT , where Û =

[
U

W21UΛ−1

]
. (2)

In other words, computation of the pairwise similarity matrix
W can be significantly reduced by using a small set of sam-
pled points.

It has been shown in [15, 16] that a normalized similarity
matrix yields better performance with more efficient compu-
tation. Therefore, we consider to normalize the weight W as,

W̃ = D−1/2WD−1/2, (3)

where D is called the degree matrix, i.e., a diagonal matrix
with column sums of W as its diagonal entries. Similarly, W̃
can be approximated via (2), i.e., W̃ ≈ V Λ̃V T , where V ∈
R

n×d and the diagonal elements of Λ are eigenvectors and
eigenvalues of the approximated weight by using d (d � n)
sampled points. Denoting the graph Laplacian by L := I−W̃
with the identity matrix I , we have the eigendecomposition
form of L = V ΣV T , where Σ = I − Λ̃ and V is the same as
that in the eigendecomposition of W̃ . Please refer to [17] for
more details.

3. PROPOSED METHOD

Consider the hyperspectral data X = [x1, · · · ,xn] ∈ R
w×n,

where w is the number of spectral bands and n is the number
of spatial pixels. Suppose there are k endmembers with each
endmember spectrum denoted by si ∈ R

w. We assume that
the spectral measurement at each pixel is a linear combination
of all endmember spectra, i.e., xi =

∑k
j=1 ajisj . Here the

coefficients aji’s are called the abundances that form a matrix
A ∈ R

k×n. By denoting S = [s1, . . . , sk], we assume the
linear hyperspectral mixing model

X = SA+ ε,

where ε ∈ R
w×n is a noise term, which is often assumed to

have a Gaussian distribution.
The problem of blind hyperspectral unmixing is to recover

the two matrices S and A, given the hyperspectral data X .
As it is highly ill-posed, additional assumptions and proper
regularizations are necessary. In addition to the standard
constraints of nonnegativity and sum-to-one, we consider a
graph-based regularization on the abundance matrix A, i.e.,

J(A) =
1

2

n∑
i,j=1

‖ai − aj‖22 W̃ij , (4)

where W̃ij is a normalized weight between the pixels xi and
xj , defined in (3). By minimizing the regularization term
J(A) in (4), we assume that two column vectors ai, aj in the
abundance matrix A should be close to each other if the two
hyperspectral vectors xi and xj are similar. Simple calcula-
tions show that

J(A) =

n∑
i=1

aTi ai −
n∑

i,j=1

aTi ajW̃ij = tr(ALAT ),



where tr(·) is the trace operator summing up all diagonal en-
tries of a matrix.

Now we propose a graph Laplacian regularized blind hy-
perspectral unmixing model,

min
S∈Ωw×k

A∈Ωk×n,1T
k

A=1T
n

1

2
‖X − SA‖2F +

λ

2
tr(ALAT ), (5)

where ‖·‖F is the Frobenius norm, Ωm×n denotes the set of
all nonnegative matrices of size m× n, and 1k stands for the
all-one column vector of length k. The constraint 1T

kA = 1T
n

means that all columns of A belong to the probability simplex,
i.e., the set of all nonnegative vectors whose entries sum to
one.

We introduce an indicator function to deal with the con-
straints in (5). In general, the indicator function χΔ of a set
Δ is defined as

χΔ(Z) =

{
0, Z ∈ Δ;

∞, otherwise.

Denoting Π := {Z ∈ R
k×n : Z ∈ Ωk×n,1

T
k Z = 1T

n}, we
can rewrite the model (5) as follows,

min
S,A

1

2
‖X − SA‖2F +

λ

2
tr(ALAT ) + χΩw×k

(S) + χΠ(A).

(6)
In order to apply the ADMM framework to minimize (6), we
introduce two auxiliary variables B ∈ R

k×n and C ∈ R
w×k.

We split variables and rewrite (5) into an equivalent form,

min
S,A,B,C

1

2
‖X − CA‖2F +

λ

2
tr(BLBT ) + χΩw×k

(S)

+ χΠ(A) s.t. A = B, S = C.

The augmented Lagrange function is then given by

L =
1

2
‖X − CA‖2F +

λ

2
tr(BLBT ) + χΩw×k

(S)

+ χΠ(A) +
ρ

2
‖A−B + B̃‖2F +

γ

2
‖S − C + C̃‖2F ,

where B̃, C̃ are dual variables and ρ, γ are two positive pa-
rameters. After applying ADMM, we obtain the following
algorithm⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C ← argmin
C

1

2
‖X − CA‖2F +

γ

2
‖S − C + C̃‖2F

S ← argmin
S∈Ωw×k

γ

2
‖S − C + C̃‖2F

A ← argmin
A∈Π

1

2
‖X − SA‖2F +

ρ

2
‖A−B + B̃‖2F

B ← argmin
B

λ

2
tr(BLBT ) +

ρ

2
‖A−B + B̃‖2F

B̃ ← B̃ +A−B

C̃ ← C̃ + S − C.

For the C-subproblem, the Karush-Kuhn-Tucker (KKT) con-
ditions require

−XAT + SAAT + γ(C − S − C̃) = 0.

Thus, we get a closed-form solution for the C-subproblem

C =
(
XAT + γ(S + C̃)

)(
AAT + γI

)−1
. (7)

Since AAT ∈ R
k×k is of small dimension (k � n), solving

the C-subproblem is fast.
As for the S-subproblem, it is straightforward to obtain a

closed-form, i.e.,

S = max(C − C̃, 0). (8)

Note that the max operation is performed element-wisely.
As for the A-subproblem, we adopt the fast algorithm in

[18] that involves the projection onto the set Π, denoted by
PΠ. The KKT conditions give a closed-form solution

A = PΠ

(
(STS + ρI)−1

(
STX + ρ(B − B̂)

))
. (9)

For the B-subproblem, we can approximate the graph
Laplacian L by V ΣV T as detailed in Section 2. By denoting
μ = ρ/λ, the KKT conditions with respect to B lead to

BV ΣV T + μ(B −A− B̃) = 0, (10)

which yields the closed-form solution for B as

B = μ(A+ B̃)V (Σ + μI)−1V T . (11)

Notice that inversion of a relatively small diagonal matrix Σ+
μI of size d× d can be implemented by taking the reciprocal
of each diagonal entry.

In summary, each subproblem in the ADMM algorithm
can be solved efficiently via a closed-form solution. The en-
tire algorithm is presented in Algorithm 1. The stopping crite-
ria are to set ‖St−St+1‖F /‖St‖F and ‖At−At+1‖F /‖At‖F
smaller than some tolerance for an iterative index t.

Algorithm 1 Blind Hyperspectral Image Unmixing Based on
the Graph Laplacian

Input: The data X , parameters ρ, λ, maximum number of
iterations T , and tolerance tol.
Output: S and A.
Initialize: S0, A0, and using the Nyström method to get the
reduced eigendecomposition form of the graph Laplacian
L = V ΣV T .
for t = 0, . . . , T − 1 do

Update Ct+1 via (7).
Update St+1 via (8).
Update At+1 via (9).
Update Bt+1 via (11).
Set B̃t+1 = B̃t + (At+1 −Bt+1).
Set C̃t+1 = C̃t + (St+1 − Ct+1).
Stop if the stopping criteria are met.

end for



4. NUMERICAL RESULTS

We conduct numerical experiments on a real hyperspectral
dataset, called Urban1, which has 307 × 307 pixels and 162
spectral bands. The ground truth that consists of six identi-
fied endmember labels and their corresponding abundances is
shown on the top row of Fig. 1. We compare the proposed
method, denoted by GraphL, with two competing methods:
fully constrained least squared unmixing (FCLSU) [19] and a
recent work of fractional norm penalty method with q = 0.1,
denoted by FRAC [20] . All experiments are performed in
MATLAB 2018b on a MacBook Pro 2017 with an 2.9 GHz
Intel Core i7 and 16GB RAM in double precision.

To quantitatively measure the performance, we adopt the
following two metrics to calculate the error between an esti-
mator Ŷ ∈ R

r×c and the ground truth Y ∈ R
r×c:

(a) Root-mean-square error (RMSE)

RMSE(Y, Ŷ ) =
1

c

√√√√1

r

r∑
i=1

‖yi − ŷi‖22,

where yi ∈ R
c is the i-th row of Y ;

(b) Normalized mean-square error (nMSE)

nMSE(Y, Ŷ ) =
‖Y − Ŷ ‖F

‖Y ‖F .

In order to make a fair comparison, we use the initial-
ization steps in [20]. In particular, we run vertex component
analysis (VCA) [21], which results in 60 endmember candi-
dates that are clustered into 6 groups. This is directly used
as S for FCLSU and FRAC, while we use the mean spec-
trum within each group and the sum of the abundances es-
timated by FCLSU within each group as initial conditions
for S0 and A0, respectively. We randomly sample 0.5% of
the pixels for the Nyström method to approximate the graph
Laplacian, and use σ = 5 in (1). When choosing ρ and λ,
we perform a grid search with parameter candidates evenly
spaced over the interval in a logarithmic spacing, i.e., ρ ∈
{10−3, 10−2.6 . . . , 100.6, 101}, μ = ρ/λ ∈ {10−6, . . . 1},
and γ ∈ {10−2 . . . , 10, 102, 103} for GraphL. For the FRAC
method, we fix ρ = 10 as suggested in [20] and choose λ
among {10−3, 10−2.6 . . . , 100.6, 101}. The optimal param-
eters are chosen based on visual inspection of the resulting
abundance vectors, and are summarized in Table 1.

The quantitative comparisons in Table 1 indicate that
GraphL achieves the best results in terms of RMSE and
nMSE. It also requires less computational time than FRAC.
Fig. 1 shows that the GraphL produces the abundances that
are visually similar to those from FCLSU and FRAC. But the

1The data is downloaded from http://www.escience.cn/
people/feiyunZHU/Dataset_GT.html
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Fig. 1. Abundance matrices (A) of the Urban data produced
by FCLSU, FRAC, and GraphL. Top row is the ground truth.

FCLSU FRAC GraphL

RMSE(S, Ŝ) 0.196 * 0.151

nMSE(S, Ŝ) 0.807 * 0.675

RMSE(A, Â) 0.240 0.251 0.207

nMSE(A, Â) 0.849 0.930 0.681
time (sec) 34 119 74† + 5

λ n/a 100.2 103

ρ n/a 10 10−3

γ n/a n/a 103

iterations n/a 200 50

∗ : same as FCLSU, since FRAC only estimates A.
† : time spent estimating the graph Laplacian matrix L.

Table 1. Quantitative comparison of the unmixing perfor-
mances and a summary of the chosen parameters. The best
results in each row are highlighted in bold.

third panel (Tree) of GraphL looks much closer to the ground
truth. Overall, GraphL has great potential in hyperspectral
unmixing, especially for high-dimensional data.

5. CONCLUSIONS

In this paper, we proposed a blind hyperspectral unmixing
model based on a normalized graph Laplacian. To enhance
the computational efficiency for high-dimensional hyperspec-
tral data, we adopted the Nyström method to approximate
the eigenvalues and eigenvectors of the graph Laplacian. By
introducing auxiliary variables, we applied ADMM to mini-
mize the proposed model in a way that each subproblem has
a closed-form solution. Experiments on a real dataset have
shown promising results of the proposed method in terms of
efficiency and identification accuracy. Future works include
convergence analysis and comprehensive experiments on both
synthetic and real datasets in comparison with the state-of-



the-art methods in blind hyperspectral unmixing.
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