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SUMMARY

The data completion problem involves recovering missing
traces from an under-sampled observation. This problem can
be solved using the tensor nuclear norm complexity measure
and the alternating direction method of multipliers (ADMM)
optimization algorithm. The computational cost of ADMM is
dominated by the tensor singular value decomposition (tSVD).
Reordering data in an ny X ny X n3 tensor so that ny is the
smallest dimension and r3 is the largest yields the most cost ef-
ficient orientation. Random sampling produces a higher rank
observation, making low rank recovery meaningful, whereas
regular sampling produces a lower rank observation, for which
low rank recovery fails. Data redundancy also results in im-
proved recovery. We validate these claims by applying our
tensor completion algorithm to the Viking Graben Field, off-
shore Norway.

INTRODUCTION

Seismic surveys cannot fully sample a field of interest since
it is not possible to have a receiver at every physical location.
Traces can also be incomplete or missing when receivers fail.
Spatial under-sampling negatively impacts data processing and
analysis. Data completion aims to recover missing traces to
mitigate the impact of incomplete sampling. Mathematically,
this problem can be formulated as

Y =A(X) +N, 1

where Y is an observation produced by applying a sampling
operator A to the true seismic data X, and N is noise. The sam-
pling operator has the same dimensions as X, with ones where
data is sampled and zeros elsewhere. Here we will only con-
sider the case where N = 0 to examine the recovery problem
without denoising.

There is a rich literature on data completion methods for a
variety of applications including seismic data reconstruction
(Kreimer and Sacchi (2012a)), remote sensing (Ng et al. (2017)),
and completion of color images and videos (Long et al. (2019)).
In particular, seismic data often contains many redundancies,
which means the data can be well approximated by a low-rank
tensor. For matrices, the rank is the number of non-zero singu-
lar values. Unfortunately, the rank is NP-hard to minimize and
a typical approach is to approximate the rank by the summa-
tion of singular values (Semerci et al. (2014)). For tensors we
instead use the tensor nuclear norm (TNN) (Ely et al. (2015)).

Kumar et al. (2015) proposed three practical principles for
using low rank optimization techniques for data completion.
First, the original data needs to be low rank, which often nat-
urally occurs in seismic data. Second, the sampling scheme
needs to increase the singular values; otherwise the observa-
tion has even lower rank than the true data, thus preventing low

rank recovery from being meaningful. The last principle is that
the optimization algorithm needs to restore low rank structure.
A successful method to minimize the TNN is the alternating
direction method of multipliers (ADMM) (Boyd et al. (2010)),
which has been used for seismic tensor reconstruction (Ely
et al. (2015), Kreimer et al. (2013)). Other techniques include
higher-order singular value decomposition methods (Kreimer
and Sacchi (2012b), Gao and Sacchi (2018)), parallel matrix
factorization schemes (Gao et al. (2015), Sacchi and Cheng
(2017)), randomized QR decomposition (Carozzi and Sacchi
(2017), Cheng and Sacchi (2015)), minimum weighted norm
interpolation (Sacchi et al. (2017)), and adaptive weighted ten-
sor completion (Ng et al. (2017)).

This paper provides a more thorough analysis of low-rank ten-
sor completion for seismic data. First, we analyze the compu-
tational cost of ADMM, which suggests the most efficient way
of ordering the data into tensor form. Second, we demonstrate
that high redundancy occurs both when more data is available
and when data is collected physically close together, improv-
ing seismic data recovery. Third, we examine two types of
sampling operators: regular sampling and random sampling.
Regular sampling refers to measuring data with equal spacing
in each of the 3 dimensions, while random sampling means
taking measurements arbitrarily. We show that random sam-
pling increases the TNN of the original data, and thus, mini-
mizing the TNN gives better recovery results than with regular
sampling.

OPTIMIZATION AND COST ANALYSIS

We consider the general case where Y and X are tensors. The
order of a tensor refers to the dimension of the tensor. We fo-
cus on order-3 tensors (with the three dimensions correspond-
ing to time, offset, and bin number), but our results generalize
to higher order tensors. An order-3 tensor can be split into
matrices, each of which is referred to as a slice.

From the data completion problem (1), we can formulate the
following optimization problem to recover low-rank real data
X:

mina(X) s.t][Y-AX)|| <ec. (2)
Here & is a complexity measure and c is a threshold bounding
the residual. If the complexity measure % is chosen to be rank,
the optimization problem is non-convex and NP-hard (Semerci
etal. (2014)), so instead we use the tensor nuclear norm (TNN)
for the complexity measure, defined as (Ely et al. (2015)):

N
HXHTNN:Z|‘X(:7:7i)||nuc; 3)

i=1
where X is the Fourier transform of X, X(:,:,) is the " slice
of X, and || - ||suc is the matrix nuclear norm. Furthermore, we
set the threshold ¢ = 0 to express the optimization problem as:

minHXHTNN s.t.Y ZA(X). 4)
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With the use of the TNN, (4) is a convex optimization problem
(Zhang et al. (2014)). To solve this optimization problem, we
consider the ADMM algorithm (Boyd et al. (2010)).

For brevity we do not present the full ADMM algorithm in
this paper, but note that the dominant part of the computational
cost of the ADMM algorithm applied to (4) is attributed to the
tensor singular value decomposition (tSVD). The tSVD is a
generalization of the matrix SVD algorithm, decomposing a
tensor into a product of three tensors. As depicted in Figure 1

X

y

n

n,

Figure 1: Illustration of tSVD (Ely et al. (2015))

we have X = U=*S*V, where S is a diagonal tensor, in which
each slice is a diagonal matrix, and tensors U and V are or-
thogonal tensors, for which the product of each with their own
transpose results in the identity tensor. The identity tensor has
the identity matrix as its first slice and zeros for all other slices.

Algorithm 1. tSVD Cost Analysis (mxnxns)

Input: X € R">n2---%1p
N=mnzny...n,
X = X % Initialization
for i=3topdo
Xefrux.[).i);
end for
for i=1to N do
[0.8.V] = svd(X(:. i)
UG 1) =T
V(:, Q)

(n1n2)nzlog(n3)

U:8(:.:.i) =8 (ninz + n3)n3
(t.0.0=V;
end for
fori=3topdo
U<iffu(ld, |
Veiffi(V, |
end for

s S<iffi(S, [J. i): (n%_ + ninp + ng)nglog(ng)

— -

1.4)
].4)

»

Total Cost: n[(n + na)?log(ns) + (n2 4 n2)na
Figure 2: tSVD Algorithm and Cost Analysis

Figure 2 presents our cost analysis of the tSVD algorithm for
order-3 tensors. First, the fast Fourier transform (FFT) is com-
puted along each tube of the tensor. A tube is a vector oriented
along the third dimension of the tensor. The cost of FFT on
a vector of length n is O(nlog(n)). The Fourier transform is
taken for n; X np many vectors, each of length n3, thus cost-
ing O((n1ny)n3log(nz)). The next part of the tSVD algorithm

takes the matrix SVD of each slice. Matrix SVD for a matrix
of size ny X ny costs O(n%nz +n§), and since the matrix SVD
is performed for nj slices, the cost is O((n3ny +n3)n3). The
last loop of the algorithm takes the inverse Fourier transform
(IFFT) of the tensors U, S, and V along the tubal direction.
Again multiplying the number of tubes by the cost of the FFT
results in a cost of O((n? +nyny +n3)n3log(nz)). Adding
these costs and simplifying we obtain the total cost of the tSVD
algorithm:

O(n3[(n1 +m)*log(ns) + (n} +nd)m)). 5)

It is important to note here that n; appears quadratically, n,
cubically, and n3 as linear and logarithmic. This cost analysis
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Figure 3: Average Runtime of tSVD

implies that orientation of the tensor impacts runtime of the
tSVD algorithm. To demonstrate the runtime variations, we
generate ten random tensors of size 1500 x 60 x 10. For each
tensor we permute the dimensions and calculate the runtime of
the tSVD. Figure 3 shows the average runtime for each orien-
tation of the data. We note that it is most efficient when the
smallest dimension is np and the largest dimension is n3, as
these are the cubic and linear/logarithmic terms respectively in
the above cost analysis.

DISCUSSION OF RESULTS

We examine the seismic data completion problem using real
data from the Viking Graben Field, offshore Norway. The data
set contains seismic streamer pressure data recorded in one ac-
quisition line. Each CMP gather contains 60 traces with offsets
ranging from 262 m to 3212 m. All traces have a 6 s time win-
dow and 0.004 s sampling. In total there are 1900 CMP gath-
ers, each of which can be considered as a slice of an order-3
tensor. For the following experiments, only a subset of this
data is used. Except where otherwise stated, the sampling op-
erator we use randomly selects 60% of the traces in each slice,
then randomly removes 90% of each selected trace. This sam-
pling operator reflects the real world scenario when receivers
fail.

We begin by examining the performance of the ADMM algo-
rithm on the first 100 slices of the CMP data. Three slices of
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Figure 4: From top to bottom: the first three slices of the true CMP gathers, the sampled gathers, where 60% of the traces in each
gather have 90% of the trace removed, and the recovered gathers after 20 iterations of ADMM
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Figure 5: Error plot over 20 iterations of ADMM using 100
slices of data. ADMM converges with error around 17%.

the original data are shown on the top row of Figure 4. After
applying the sampling operator, the resulting measurements,
referred to as sampled data, are given on the middle row of
Figure 4. The last row of Figure 4 shows the recovered gath-
ers after 20 iterations of ADMM. We also plot relative error to
the ground-truth versus ADMM iterations in Figure 5, which
shows that ADMM converges in 20 iterations and the final rel-
ative error is around 17%. As little additional gain in recovery
occurs after this number of iterations, for the rest of the exper-
iments in this paper, we fix the number of iterations of ADMM
at 20.

As Figure 4 demonstrates satisfactory recovery results using
100 CMP gathers (or slices), it is natural to ask to what ex-
tent the number of slices affects the recovery. We therefore
vary the number of slices and the stride spacing between slices
from the full dataset of 1900 CMP gathers. Stride spacing

refers to the indexing of the slices, for instance, stride spac-
ing 1 uses consecutive slices; stride spacing 2 uses every other
slice, etc. From the full CMP gather dataset, we use either 2,
3,5, 10, 20, 30, 60, or 100 gathers with stride spacing 1, 10, or
19. For each combination of gathers and stride, we randomly
generate 10 different sampling operators. The average errors
after recovery of the 10 random realizations are plotted in Fig-
ure 6, which shows that error decreases with more gathers and
smaller stride. While increasing the number of slices up to
about 10 results in improved recovery, beyond this number lit-
tle additional improvement occurs. We note also that the com-
putational complexity grows at least linearly with the number
of slices indicating a tradeoff between number of slices and
cost.

To understand why smaller stride also helps recovery, we ex-
amine the TNN values for different stride spacing in Figure 7.
As the stride spacing increases, the TNN increases, which im-
plies that the ground-truth signal is not well approximated by
a low rank tensor. In seismic surveys data collected closer to-
gether physically (i.e. small stride spacing) is often correlated,
thus having higher redundancies and lower rank. Both more
slices and smaller strides indicate that the original signal has a
low-rank structure, thus improving our chances of recovery.

For compressive sensing Candes (2006) showed random sam-
pling has higher probability of success than regular sampling.
Regular sampling uniformly selects traces in each slice to be
removed (i.e. removing 50% would remove every other trace).
In Figure 8, we compare the effect of regular and random sam-
pling schemes using stride spacing 1 and varying the number
of slices used. Specifically in Figure 8(a), we observe that even
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Figure 6: Final error after 20 iterations of ADMM was aver-
aged over 10 random seeds for each combination of either 2, 3,
5, 10, 20, 30, 60, or 100 gathers with stride spacing 1 (blue), 10
(magenta), or 19 (black). The error bars show the standard de-
viation. In general, error decreases with the use of more slices
and with smaller stride.
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Figure 7: TNN calculation for one-hundred slices of CMP with
different stride spacing. TNN increases as stride increases, re-
sulting in tensors which are not as well approximated by low-
rank tensors.

as the number of slices increases, the change in error for reg-
ular sampling is nearly constant. This result differs from ran-
dom sampling, for which the error decreases as more slices are
used. To examine why regular sampling performs worse, we
plot the TNN value of the true, randomly and regularly sam-
pled data sets for varying amounts of data in Figure 8(b), which
shows that random sampling increases the TNN, whereas reg-
ular sampling decreases the TNN. These results confirm that
the sampling operator needs to increase the singular values in
order for low rank optimization techniques to succeed.

CONCLUSIONS

Based on our cost analysis, we are able to determine the most
computationally efficient orientation of a tensor for the ADMM
algorithm. By choosing the orientation with n, as the smallest
dimension and n3 as the largest dimension, the runtime can be
drastically reduced. Our empirical results support the fact that
as more data (CMP gathers) are used, more redundancy oc-
curs in the data set, which leads to better recovery. However,
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Figure 8: (a) Final error after 20 iterations of ADMM for ran-
dom (blue) and regular (green) sampling of 100 slices of CMP
with stride spacing 1. Using more slices does not improve re-
covery in the case of regular sampling. (b) TNN of 100 slices
of CMP with stride spacing 1 before sampling (red), with ran-
dom sampling (blue) and with regular sampling (green). Reg-
ular sampling decreases the TNN, hence low rank recovery is
not meaningful in this case.

it is worth noting that the improvement for this dataset after 10
gathers is diminishing while the runtime increases at least lin-
early. The results also validate that data closer together phys-
ically (i.e. small stride spacing) contributes to better recovery
than larger strides, again because more redundancies leads to
lower rank. As for sampling, random sampling produces ob-
servations with a greater TNN value than the true, allowing
for low rank recovery to successfully minimize the TNN. In
contrast, regular sampling produces observations with lower
TNN value, thereby reducing the ability of low rank recovery
to succeed.
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