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Abstract
We prove that every quasisymmetric homeomorphism of a standard square Sierpiński carpet
Sp , p ≥ 3 odd, is an isometry. This strengthens and completes earlier work by the authors
(Bonk and Merenkov in Ann Math (2) 177:591–643, 2013, Theorem 1.2). We also show
that a similar conclusion holds for quasisymmetries of the double of Sp across the outer
peripheral circle. Finally, as an application of the techniques developed in this paper, we
prove that no standard square carpet Sp is quasisymmetrically equivalent to the Julia set of
a postcritically-finite rational map.

1 Introduction

The standard square Sierpiński carpet Sp is constructed as follows. We fix an odd integer
p ≥ 3. We start with the closed unit square Q = [0, 1]2 in the plane R2 and subdivide it into
p × p subsquares of sidelength 1/p. Next, we remove the interior of the middle subsquare
of this subdivision. Note that this middle subsquare is well defined since p is odd. After
this we repeat these two operations (i.e., subdividing and removing the middle subsquare)
indefinitely on the remaining subsquares. We equip the residual set of this construction with
the Euclidean metric and call it the standard square Sierpiński p-carpet and denote it by Sp .
The sets Sp are all homeomorphic to each other. In general, we call a metrizable topological
space Z a Sierpiński carpet if Z is homeomorphic to S3 (Fig. 1).

The boundary of Q and the boundaries of all the squares that were removed from Q in
the construction of Sp are the so-called peripheral circles of Sp . A Jordan curve J ⊆ Sp is a
peripheral circle if and only if its removal from Sp does not separate Sp . The boundary ∂ Q
of Q is called the outer peripheral circle of Sp . We denote it by O .
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Fig. 1 The standard square
Sierpiński 3-carpet S3

A homeomorphism f : X → Y between metric spaces (X , dX ) and (Y , dY ) is said to be
quasisymmetric or a quasisymmetry, if there exists a homeomorphism η : [0,∞) → [0,∞)

such that

dY ( f (x), f (y))

dY ( f (x), f (z))
≤ η

(
dX (x, y)

dX (x, z)

)

for all distinct points x, y, z ∈ X . We also say that a map f : X → Y is a quasisymmetric
embedding if the map f : X → f (X) is a quasisymmetry, where f (X) is endowed with the
restriction of the metric dY . Finally, if we want to emphasize a distortion function η, we say
that f is η-quasisymmetric.

The class of quasisymmetries contains all bi-Lipschitz maps. The composition of two
quasisymmetries (when defined) and the inverse of a quasisymmetry are quasisymmetric.
So if we call two metric spaces X and Y quasisymmetrically equivalent if there exists a
quasisymmetry f : X → Y , then we have a notion of equivalence for metric spaces.

The question of when two metric spaces are quasisymmetrically equivalent has drawn
much attention in recent years. This is motivated by questions in geometric group theory,
for example, such as Cannon’s conjecture or the Kapovich–Kleiner conjecture which can be
reduced to quasisymmetric equivalence problems (see [2] for a survey of this topic).

The main result of this paper is the following statement.

Theorem 1.1 Every quasisymmetry ξ : Sp → Sp, p ≥ 3 odd, is an isometry.

This improves results in [5]. There it was shown that every quasisymmetry of S3 is an
isometry [5, Theorem 1.1] and that the group of all quasisymmetries of Sp , p ≥ 5 odd, is a
finite dihedral group [5, Theorem 1.2].

The methods of [5] do not seem to give the more general conclusion of Theorem 1.1 (see
the discussion in [5, Remark 8.3]). In the present paper we do rely on the results in [5], but
for the proof of Theorem 1.1 we combine this with new ideas that were developed in [4] for
the study of quasisymmetries of Sierpiński carpets that arise as Julia sets of postcritically-
finite rational maps. Our methods also allow us to prove other related rigidity results for
quasisymmetries. For their formulation we require some more definitions.

We consider the double P of the unit square Q, i.e., P is obtained from two identical
copies of Q glued together by identifying corresponding points on their boundaries. We refer
to P as a pillow and endow it with the unique path metric whose restriction to each of the two
copies of Q in P coincides with the Euclidean metric. We can identify one of the isometric
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copies of Q with Q itself and call it the front of P . Then Q ⊆ P . The other isometric copy
Q′ of Q in P is called the back of P .

We consider Sp as a subset of the front Q of P . The back Q′ of P carries another isometric
copy S′

p of Sp . We use the notation Dp = Sp ∪ S′
p for the union of these sets and equip it with

the restriction of the path metric on P . Then Dp is a Sierpiński carpet (this easily follows
from a topological characterization of Sierpiński carpets due to Whyburn [11]). It consists
of two copies of Sp glued together along the outer peripheral circle.

Our methods give the following rigidity result for Dp .

Theorem 1.2 Every quasisymmetry ξ : Dp → Dp, p ≥ 3 odd, is an isometry.

The geometry of Sp distinguishes its outer peripheral circle O . This is supported by the
fact that for the investigations in [5] and also for our proof of Theorem 1.1 the starting point is
the non-trivial fact that every quasisymmetry ξ : Sp → Sp has to preserve the outer peripheral
circle O as a set, i.e., ξ(O) = O . In contrast, the Sierpiński carpet Dp does not carry such a
distinguished peripheral circle; this makes the rigidity result given by Theorem 1.2 somewhat
more surprising.

To formulate our last result, we have to briefly review some standard facts from complex
dynamics (see [1] for general background). Let f : Ĉ → Ĉ be a map on the Riemann sphere
Ĉ. For n ∈ N, we denote by

f n = f ◦ · · · ◦ f︸ ︷︷ ︸
n factors

the n-th iterate of f . It is convenient to set f 0 = id
Ĉ
, where id

Ĉ
is the identity map on Ĉ.

Now suppose that f : Ĉ → Ĉ is a rational map of degree ≥ 2. Then the Fatou set of f ,
denoted by F( f ), is the set of all points in Ĉ that have neighborhoods where the sequence
{ f n}n∈N of iterates of f is a normal family. The complement of F( f ) in Ĉ is called the Julia
set of f and denoted by J ( f ). It is a standard fact that J ( f ) is a non-empty compact set
that is completely invariant under f , i.e., f −1(J ( f )) = J ( f ) = f (J ( f )).

The critical set of f consists of all points in Ĉ nearwhich f is not a local homeomorphism.
This is a finite subset of Ĉ. The postcritical set⋃

n∈N
{ f n(c) : c ∈ Ĉ critical point of f }

of f consists of all forward iterates of critical points. A rational map f is said to be
postcritically-finite if its postcritical set is finite.

In [4] it was shown that every quasisymmetry between two Sierpiński carpets that arise as
Julia sets of postcritically-finite rational maps is a Möbius transformation (i.e., a fractional
linear or conjugate fractional linear map on the Riemann sphere Ĉ). It is a natural question
whether any of the carpets Sp or Dp can be quasisymmetrically equivalent to such a Julia
set. The following statement shows that this is never the case.

Theorem 1.3 No Sierpiński carpet Sp or Dp, p ≥ 3 odd, is quasisymmetrically equivalent
to the Julia set J (g) of a postcritically-finite rational map g.

Even though there is only one topological type of Sierpiński carpets [11], Theorem 1.3
shows that standard square carpets and Julia sets of postcritically-finite rational maps are in
different quasisymmetric equivalence classes.

By the authors’ earlier work [5] the carpets Sp and Sq for different odd integers p and q
are never quasisymmetrically equivalent. In [10], the second author proved that a Sierpiński
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carpet that arises as the boundary at infinity of a torsion-free hyperbolic group cannot be
quasisymmetrically equivalent to a standard carpet Sp or the Julia set of a rational map.
Moreover, in [4] it was shown that no Sierpiński carpet Julia set of a postcritically-finite
rational map is quasisymmetrically equivalent to the limit set of a Kleinian group.

To summarize, these results tell us that there are at least three quasisymmetrically distinct
classes or “universes” of Sierpiński carpets: standard square carpets, boundaries at infinity
of hyperbolic groups (or limit sets of Kleinian groups), and Julia sets of postcritically-finite
rational maps. Moreover, even within these universes one often encounters infinitely many
quasisymmetric equivalence classes.

Before we go into the details, we will discuss some of the ideas that are used in the
proofs of the main results. Our main observation is that a quasisymmetry ξ : Dp → Dp as
in Theorem 1.2 is related to the dynamics of a Lattès map T (depending on p) that is defined
on the pillow P and leaves the Sierpiński carpet Dp forward-invariant. More precisely, we
have a relation of the form

T m ◦ ξ = T � ◦ ξ ◦ T k (1.1)

with (arbitrarily large) k, �, m ∈ N (see Proposition 5.1). Once (1.1) is established, the
proofs of Theorems 1.1 and 1.2 are completed by carefully analyzing the implications for
the mapping behavior of ξ in combination with known results from [5]. For the proof of
Theorem 1.3 one derives similar dynamical relations for a quasisymmetry ξ of Dp or Sp

onto the Julia set J (g) of a postcritically-finite rational map g (see (7.5) and (7.8)) which
ultimately lead to a contradiction.

In order to establish (1.1), we rely on a dynamical “blow down-blow up” procedure very
similar to the one used in [4]. This is combined with a uniformization result for Sierpiński
carpets proved by the first author [3] and rigidity results for Schottky maps established by
the second author [8,9].

The paper is organized as follows. In Sect. 2 we introduce the Lattès map T mentioned
above and some geometric facts related to the dynamics of T . Section 3 is devoted to the
resolution of some technicalities that are ultimately caused by the lack of backward invariance
of Dp under T . This relies on the concept of an admissible map that is introduced and studied
in this section. In Sect. 4 we review the necessary background from the theory of Schottky
maps and the required rigidity results (in particular, Theorems 4.2 and 4.3 ). In Sect. 5 we
prove Proposition 5.1 that provides the crucial relation (1.1). The proof of Theorems 1.1, 1.2
and 1.3 are then given in the two subsequent sections.

Our arguments heavily rely onprevious results obtained in [3–5,8,9].Adetailed knowledge
of these works is not necessary for the reader of the present paper, because we will review all
the relevant facts. It may be helpful for the reader though to take a more careful look at [4,
Section 8], because our arguments in Sect. 5 and part of the proof of Theorem 1.3 (leading
to (7.5) and (7.8)) are very similar to the reasoning there.

2 The Lattès map T

Throughout this paper p ≥ 3 is a fixed odd integer. Our pillow P as defined in the introduction
is equipped with a path metric that agrees with the Euclidean metric on the front Q and on the
back Q′ of P . In the following, all metric notions related to P will be based on this metric.
The pillow P is an (abstract) polyhedral surface and so it carries a natural conformal structure
making it conformally equivalent to the Riemann sphere. On the subsquare [0, 1/p]2 of the
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Square Sierpiński carpets and Lattès maps

front Q = [0, 1]2 of P , we consider the map z ∈ [0, 1/p]2 �→ pz ∈ Q. By Schwarz
reflection this naturally extends to a map T : P → P . Note that this extension of T to all
of P using Schwarz reflection is possible, because in the obvious subdivision of P into 2p2

subsquares of equal size, each corner of every subsquare is common to an even number of
subsquares in the subdivision. Of course, T depends on p, but we suppress this from our
notation.

With the conformal structure on P , the map T is holomorphic. By the uniformization
theorem there is a conformal map of P onto Ĉ. Under such a conformal identification P ∼= Ĉ,
the map T is a rational map on Ĉ, a so-called Lattès map (see [6, Chapter 3] for a detailed
discussion of Lattès maps from this point of view). Note that T (Dp) = Dp , i.e., Dp is
forward invariant under T , but clearly not backward invariant.

Let n ∈ N0. Then each of the two faces Q and Q′ of the pillow P is in a natural way
subdivided into p2n squares of side length p−n . We call a square obtained in this way from
the subdivision of Q or Q′ a tile of level n or simply an n-tile. So there are 2p2n tiles of level
n. Similarly, we call the sides of these n-tiles the n-edges and their corners the n-vertices
(this terminology is motivated by the language in [6, Section 5.3]).

On each n-tile Xn the iterate T n behaves like a similarity map and sends Xn homeo-
morphically to either Q or Q′. Here and elsewhere we use the convention that T 0 denotes
the identity map on P . We assign the color white or black to the n-tile Xn as follows: if
T n(Xn) = Q, then we assign to Xn the color white, and if T n(Xn) = Q′ the color black.
Colors on n-tiles alternate so that two n-tiles sharing a side have different colors. Therefore,
the n-tiles form a checkerboard tiling of P (as defined in [6, Section 5.3]).

More generally, if k, n ∈ N0, and Xn+k is an (n + k)-tile, then T n is a homeomorphism
of Xn+k onto the k-tile Xk := T n(Xn+k). Moreover, T n is color-preserving in the sense that
Xn+k and Xk have the same color.

In general, an inverse branch T −n for n ∈ N0 is a right inverse of T n defined on some
subset of P . In this paper, we will consider very specific inverse branches defined on Q. To
define them, let c := (0, 0) ∈ Q be the lower left corner of Q. Then Zn = [0, 1/pn]2 is the
unique n-tile Zn with c ∈ Zn ⊆ Q and T n sends Zn homeomorphically onto Q. We define
T −n := (T n |Zn)−1 and so T −n : Q → Zn is the unique map such that T n ◦ T −n is the
identity on Q.

If k, n ∈ N0, then with these definitions we have T −(n+k) = T −n ◦ T −k and, if n > k in
addition, T n−k ◦ T −n = T −k . This latter consistency condition for inverse branches will be
important in Sect. 5 (see (5.2)).

For some n-tiles Xn the interior int(Xn) is disjoint from Dp , because int(Xn) falls into
one of the sets that were removed from Q or Q′ in the construction of Sp and S′

p . We call
an n-tile Xn good if int(Xn) ∩ Dp �= ∅. There are precisely 2(p2 − 1)n good n-tiles. It
follows from the self-similar construction of Sp that if Xn is a good white or black n-tile,
then Dp ∩ Xn is a scaled copy of Sp . Moreover, then T n is a homeomorphism of Dp ∩ Xn

onto Sp or S′
p , respectively.

The inverse branches T −n defined above preserve the color of a tile. Moreover, T −n

induces a bijection between the good subtiles of Q and the good subtiles of Zn = T −n(Q).
So in particular, if k ∈ N0 and Xk ⊆ Q is a k-tile, then Xn+k := T −n(Xk) is an (n + k)-tile
with the same color as Xk . Moreover, Xk is a good tile if and only if Xn+k is.

As before, we denote by O the boundary of Q and consider it as subset of the pillow P .
Then O = Q ∩ Q′ ⊆ P . For each side e of O , i.e., for each 0-edge e, we have

T (e) = e. (2.1)
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This is clearly true for the two sides of Q that contain the origin c = (0, 0) (i.e., the lower
left corner of Q ⊆ P). It is also true for the two other sides of Q since p is odd. The identity
(2.1) implies that

T (O) = O. (2.2)

The middle peripheral circle M of Sp ⊆ P is the boundary of the subsquare of Q that is
removed in the first stage of the construction of Sp; this is the only peripheral circle of Sp

other than the outer peripheral circle O that is invariant under the isometries of the square
Q. Similarly, we denote by M ′ ⊆ P the corresponding peripheral circle of the back copy S′

p .
Then we have

T (M) = T (M ′) = O. (2.3)

We will now establish a geometric fact about quasisymmetries and tiles that will be used
later (see Lemma 2.2). First, we prove an auxiliary result. In both of the following lemmas
and their proofs p ∈ N, p ≥ 3 odd, is fixed.

All metric notions refer to the piecewise Euclidean metric on P discussed above. We use
dist(x, y) to indicate the distance of two points x, y ∈ P with respect to this metric. We
denote by B(a, r) = {x ∈ P : dist(a, x) < r} the open ball of radius r > 0 centered at
a ∈ P . If A, B ⊆ P , we let

diam(A) = sup{dist(x, y) : x, y ∈ A}
be the diameter of A, and

dist(A, B) = inf{dist(x, y) : x ∈ A, y ∈ B}
be the distance of A and B. If x ∈ P , we set dist(x, A) = dist({x}, A).

Lemma 2.1 Let m, � ∈ N0, � ≥ 1, v ∈ P be an m-vertex, K be the union of all m-edges
that meet v, and � be the interior of the union of all (m + �)-tiles that meet K . Then � is
a simply connected region that contains the open p−(m+�)-neighborhood of K , but does not
contain any ball of radius r >

√
2 · p−(m+�).

Proof Note that unless v is a corner of P , the set K forms a “cross” (possibly “folded” if
v ∈ ∂ Q = ∂ Q′). If v is a corner of P , then K consists of two line segments of length p−m

meeting perpendicularly at the common endpoint v.
Obviously, K is contained in �. Moreover, � is connected, because two arbitrary points

x, y ∈ � can be joined by a path in � as follows. There exist (m + �)-tiles X and Y with
x ∈ X , y ∈ Y , X ∩ K �= ∅, and Y ∩ K �= ∅. Then one runs from x to a point in x ′ ∈ X ∩ K
along a path in X ∩ �, from x ′ along a path in K ⊆ � to a point in y′ ∈ Y ∩ K , and finally
from y′ to y along a path in Y ∩ �. This shows that � is a region.

The region � is simply connected, i.e., a contractible space, because � can be retracted
to K ⊆ � and K is contractible.

Let x ∈ K be arbitrary. Then there exists an (m + �)-edge e ⊆ K such that x ∈ e. There
are at most six (m +�)-tiles that have one of the endpoints of e as a corner. The union of these
tiles is a set whose interior is contained in � and contains the ball B(x, p−(m+�)). Hence
B(x, p−(m+�)) ⊆ � which implies that � contains the open p−(m+�)-neighborhood of K .

Finally, every point x ∈ � is contained in an (m + �)-tile X that meets K . Every such tile
X contains a corner y /∈ �. For the distance of x and y we have dist(x, y) ≤ √

2 · p−(m+�).
This implies that � cannot contain any ball of radius r >

√
2 · p−(m+�). ��
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Lemma 2.2 Let ξ : P → P be a quasisymmetry with ξ(Dp) ⊆ Dp. Then there exist numbers
r0, N ∈ N0 and C ≥ 1 with the following properties: if n ∈ N0 with n ≥ N and X ⊆ P
is a good n-tile, then there exist a good (n + r0)-tile Y ⊆ X and a good m-tile Z for some
m ∈ N0 such that ξ(Y ) ⊆ Z and

1

C
p−m ≤ diam(ξ(Y )) ≤ Cp−m . (2.4)

If A and B are two quantities, then we write A � B if there exists a constant C ≥ 1
only depending on some ambient parameters such that A/C ≤ B ≤ C A. Similarly, we write
A � B or B � A if A ≤ C B.

Then (2.4) can be written as diam(ξ(Y )) � p−m � diam(Z), where the implicit multi-
plicative constants are independent of the initial choice of the tile X . So Lemma 2.2 says that
ξ(Y ) lies in a good m-tile Z of comparable size with constants of comparability independent
of X . In general, one cannot guarantee that the set ξ(X) itself lies in a good tile of comparable
size.

Proof Let X be a good n-tile, where n ∈ N0. Since ξ is a quasisymmetry, the image ξ(X) is
a “quasi-ball”. So if x1 is the center of the square X , then ξ(x1) has a distance to the Jordan
curve J := ξ(∂ X) that is comparable to diam(J ). Similarly, there exists a point x2 ∈ P\X
(for example, for x2 we can take the center of the face of P on the opposite side of X ) such
that dist(ξ(x2), J ) � diam(J ), i.e., we have dist(ξ(x2), J ) ≥ diam(J )/C for some constant
C ≥ 1 that depends only on ξ . Let yi = ξ(xi ) for i = 1, 2. Then y1 and y2 lie in different
components of P\J . Moreover, there exists a constant δ > 0 independent of n and X such
that dist(yi , J ) > δ diam(J ). This shows that each of the two complementary components
of J in P contains a ball of radius r := δ diam(J ).

Uniform continuity of ξ implies that there exists N ∈ N0 that depends only on ξ such that
if n ≥ N , then diam(J ) < 1/3. In this case, we can choose the largest number m ∈ N0 such
that diam(J ) < 1

3 p−m . Then 1
3 p−(m+1) ≤ diam(J ) < 1

3 p−m , and so diam(J ) � p−m . We
can choose � ∈ N only depending on δ (and independent of X ) such that r = δ diam(J ) >√
2 · p−(m+�). By choice of δ, each of the two complementary components of J contains a

ball of radius r >
√
2 · p−(m+�).

Claim. Let E ⊆ P denote the union of all m-edges. Then there exists a point a ∈ J such
that dist(a, E) ≥ ε := p−(m+�).

In order to prove the claim, we argue by contradiction and assume that there is no such
point. Then J is contained in the open ε-neighborhood of E . In particular, there exists an
m-edge e such that dist(e, J ) < ε.

If e1 and e2 are two disjoint m-edges, then the connected set J cannot be ε-close to both of
them. Indeed, if this were the case, then it follows from dist(e1, e2) ≥ p−m , ε ≤ p−(m+1) ≤
1
3 p−m and diam(J ) < 1

3 p−m that

1
3 p−m > diam(J ) ≥ dist(e1, e2) − 2ε ≥ 1

3 p−m .

This is a contradiction.
Since J cannot be ε-close to two disjoint m-edges, one of the endpoints v of e, which is

an m-vertex, has the following property: if K is the set of all m-edges that meet v, then J is
contained in the open ε-neighborhood of K . In particular, the Jordan curve J is contained in
the simply connected region � as defined in Lemma 2.1 for the m-vertex v and our choice
of �.

Then one of the two complementary components U of J is also contained in �, because
� is simply connected. This is a contradiction, because U contains a ball of radius r =
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δ diam(J ) >
√
2 · p−(m+�) by what we have seen above, while � ⊇ U contains no such ball

by Lemma 2.1. The Claim follows.
Since ξ is a quasisymmetry, we can choose r0 ∈ N0 sufficiently large independent of X

with the following property: if Y is any (n + r0)-tile with Y ⊆ X and Y ∩ ∂ X �= ∅, then
diam(ξ(Y )) ≤ p−� diam(ξ(∂ X)) = p−� diam(J ) < 1

3 p−(m+�).

Note that these tiles Y are lined up along the boundary of X and cover ∂ X . Each such tile Y
is a good tile, because X is a good tile.

Therefore, we can choose such a tile Y so that ξ(Y ) contains a point a ∈ J with
dist(a, E) ≥ p−(m+�) as provided by the Claim. Then

dist(ξ(Y ), E) ≥ dist(a, E) − diam(ξ(Y )) ≥ p−(m+�) − 1
3 p−(m+�) > 0,

and so ξ(Y ) does notmeet the union E of allm-edges. Since ξ(Y ) is a connected set, it must be
contained in the interior of an m-tile, because these interiors are precisely the complementary
components of E . In particular, there exists an m-tile Z such that ξ(Y ) ⊆ Z . Since Y is a
good tile, there exists a point b ∈ int(Y ) ∩ Dp . Then

ξ(b) ∈ ξ(int(Y )) ∩ ξ(Dp) ⊆ int(Z) ∩ Dp.

This implies that Z is a good tile.
Since r0 is fixed and independent of X , the fact that ξ is a quasisymmetry implies that

diam(ξ(Y )) � diam(J ) � p−m

with implicit multiplicative constants independent of X and Y . It follows that we can find
a suitable constant C ≥ 1 independent of X such that inequality (2.4) is always valid. The
statement follows. ��

3 Admissible maps

In order to prove Theorems 1.1 and 1.2 , we want to establish a relation between a given
quasisymmetry ξ : Dp → Dp and our Lattès map T (see Proposition 5.1). This relation can
be obtained by arguments similar to [4] relying on rigidity statements for Schottky maps.
These Schottky maps are obtained after a quasisymmetric uniformization of Dp by a round
Sierpiński carpet, i.e., a Sierpiński carpet in Ĉ all of whose peripheral circles are geometric
circles. We will discuss the necessary results in Sect. 4.

Unfortunately, there are some technicalities that are essentially due to the lack of backward
invariance of Dp under T (see [4, Lemma 6.1], where a related statement relied on backward
invariance). To work around this problem, we introduce in this section the ad hoc notion of
an admissible map. We will prove several statements about these maps that will allow us to
apply the results on Schottky maps. We now present the details.

Let S2 be a topological 2-sphere. We think of it as equipped with an orientation and a
metric d. Subsets of S2 will carry the restriction of d, and so it makes sense to speak of
quasisymmetries between such sets. In our applications, S2 will be the pillow P equipped
with the piecewise Euclidean metric described earlier or the Riemann sphere Ĉ equipped
with the chordal metric.

Let Z ⊆ S2 be a set and f : U → S2 be a map defined on a setU ⊆ S2.We say that x ∈ Z
is a good point for f and Z if the following condition is true: there exists an (open) Jordan
region V ⊆ S2 with x ∈ V such that f is defined on V , the set W = f (V ) is also a Jordan
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Square Sierpiński carpets and Lattès maps

region, and f |V : V → W is an orientation-preserving quasisymmetric homeomorphism
with f (V ∩ Z) = W ∩ Z . In particular, f is then a homeomorphism of V ∩ Z onto W ∩ Z .

Let Z ⊆ S2 be a Sierpiński carpet, and f : S2 → S2 be a branched covering map (for the
definition of a branched covering map and more background on this topic see [6, Chapter 2]).
We say that f is admissible for the given Sierpiński carpet Z if f (Z) ⊆ Z and if there exists
a set E ⊆ Z that is contained in a union of a finite set and finitely many peripheral circles
of Z such that each point x ∈ Z\E is a good point for f and Z . We call E an exceptional
set for f and Z . Note that E is not necessarily the complement in Z of all good points, but
it contains this complement.

Lemma 3.1 Let Z ⊆ Ĉ be a Sierpiński carpet, and f : Ĉ → Ĉ be a quasiregular map with
f −1(Z) = Z. Then f is an admissible map for Z.

For the definition of a quasiregular map and some related facts in a similar context see [4,
Section 2]. The lemma implies that if f : Ĉ → Ĉ is a rational map and its Julia set J ( f ) is
a Sierpiński carpet, then f is admissible for J ( f ).

Proof The statement follows from [4, Lemma 6.1] and its proof. The considerations there
imply that each point in Z distinct from the finitely many critical points of f is a good point
for f and Z . In particular, f is an admissible map for Z . ��
Lemma 3.2 The Lattès map T : P → P is admissible for Dp.

Proof We know that T is a branched covering map and that T (Dp) ⊆ Dp . So we have to
find an exceptional set for T and the Sierpiński carpet Dp .

Recall that M denotes the middle peripheral circle of Sp , and M ′ the corresponding
peripheral circle in the back copy S′

p . Let F be the finite set consisting of all 1-vertices, i.e.,
the corners of all squares that arise in the natural subdivision of Q and Q′ into squares of side
length 1/p. Then F contains all critical points of T (and actually four non-critical points of
T , namely the four corners of P).

We claim that E := F ∪ M ∪ M ′ is an exceptional set for T and Dp . To see this, let
x ∈ Dp\E be arbitrary. We want to show that x is a good point for T and Dp . There exists
a good 1-tile X with x ∈ X . We will assume that X is white (if X is black, the argument is
completely analogous). We now consider two cases.

Case 1: x ∈ int(X). Since X is white, T |X is a homeomorphism from X to Q. Actually,
T |X is a quasisymmetry, because on X the map behaves like a similarity scaling distances by
the factor p. Then U = int(X) and V = int(Q) are Jordan regions and T is quasisymmetry
from U onto V . Since X is a good 1-tile, we also have T (X ∩ Dp) = Q ∩ Dp which implies
that T (U ∩ Dp) = V ∩ Dp . Hence x is a good point for T and Dp .

Case 2: x ∈ ∂ X . Since x does not lie in E ⊇ F , this point belongs to the boundary of X ,
but is not a corner of the square X . Hence there exists a unique side e ⊆ ∂ X of X with x ∈ e.
Moreover, since x /∈ E ⊇ M ∪ M ′, the side e is not contained in M ∪ M ′. Hence there exists
a unique good 1-tile Y �= X that shares the side e with X . Since X is white, Y is black. Let
int(e) be the set of interior points of the closed arc e, i.e., e with its two endpoints removed.
Then x ∈ int(e). Moreover,

U ′ := int(X) ∪ int(e) ∪ int(Y )

is a simply connected region with x ∈ U ′ that is mapped by T homeomorphically onto the
simply connected region

V ′ = int(Q) ∪ int(̃e) ∪ int(Q′).
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Here ẽ := T (e) is a common side of Q and Q′. We have T (U ′ ∩ Dp) = V ′ ∩ Dp , because
X and Y are good 1-tiles. Moreover, T |U ′ scales lengths of paths in U ′ by the factor p, i.e.,

length(T ◦ γ ) = p · length(γ ),

whenever γ is a path in U ′. The metric on P is a geodesic metric. So these considerations
imply that if r > 0 is sufficiently small, then the open ball U := B(x, r) is a Jordan region
contained in U ′ and T is a quasisymmetry of U onto the Jordan region V := B(T (x), pr)

such that T (U ∩ Dp) = V ∩ Dp . Hence x is a good point for T and Dp .
Since Cases 1 and 2 exhaust all possibilities, every point x ∈ Dp\E is a good point for T

and Dp . The statement follows. ��
Lemma 3.3 Let f : S2 → S2 be a branched covering map that is an admissible map for the
Sierpiński carpet Z ⊆ S2, and let J ⊆ Z be a peripheral circle of Z. Then f −1(J ) ∩ Z is
contained in a union of finitely many peripheral circles of Z.

This implies that if E ⊆ Z is an exceptional set for f and Z , then the set f −1(E) ∩ Z is
contained in a union of a finite set and finitely many peripheral circles of Z .

Proof Let A ⊆ Z be the union of all peripheral circles of Z . Then A consist precisely of
those points in Z that are accessible by a (half-open) path contained in the complement of Z .
This characterization of the points in A together with the definition of a good point implies
that if x ∈ Z is a good point for f and Z , then x ∈ A if and only if f (x) ∈ A.

We also need the following topological fact: if K is a non-degenerate continuum (i.e., a
compact connected set consisting of more than one point) and if K meets a point in Z\A or
two distinct peripheral circles of Z , then K ∩ (Z\A) is an uncountable set. To see this, we
collapse the closure of each complementary component of Z to a point. Then by Moore’s
theorem (see [6, Theorem 13.8]) the quotient space obtained in this way is also a topological
2-sphere. The image K ′ of K under the quotient map is also a compact and connected set. The
assumptions on K imply that K ′ contains more than one point, and is hence a non-degenerate
continuum. Therefore, K ′ is an uncountable set. In particular, K ′ contains uncountably many
points distinct from the countably many points obtained by collapsing the complementary
components of Z . It follows that K ∩ (Z\A) is uncountable, as desired.

Now let K be a connected component of f −1(J ). Then f (K ) = J (this follows from a
general fact for open and continuous maps—see [6, Lemma 13.13]; since J is a Jordan curve,
one can also give a simple direct argument based on path lifting). Since f is finite-to-one,
it follows that there are only finitely many such components K of f −1(J ). Each of these
components K is a non-degenerate continuum.

Let x ∈ Z\A be a good point of f and Z . Then f (x) ∈ Z\A ⊆ Z\J by what we have
seen in the beginning of the proof. In particular, x /∈ K ⊆ f −1(J ). Since every point in Z\A
is a good point with finitely many exceptions, the set K ∩ (Z\A) is finite. But then actually
K ∩ (Z\A) = ∅, because otherwise K ∩ (Z\A) would be uncountable. So K ∩ Z ⊆ A. This
implies that K ∩ Z is contained in a single peripheral circle of Z (or is empty), because if
K ∩ Z met two distinct peripheral circles, then K ∩ (Z\A) would again be an uncountable
set.

We have seen that the intersection of each of the finitely many components of f −1(J )

with Z lies in a single peripheral circle of Z . The statement follows. ��
Lemma 3.4 Let f , g : S2 → S2 be two branched covering maps that are admissible maps
for the Sierpiński carpet Z ⊆ S2. Then f ◦ g is also admissible for Z.

123



Authors copy
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Proof As a composition of two branched covering maps, h := f ◦ g is also a branched
covering map on S2. Moreover, we have h(Z) ⊆ Z .

Let E be an exceptional set for f (and Z , the relevant Sierpiński carpet for all maps in
this proof), and E ′ be an exceptional set for g. Then by the remark after Lemma 3.3 we know
that f −1(E) ∩ Z is contained in a union of a finite set and finitely many peripheral circles of
Z . The same is then true for (E ′ ∪ f −1(E)) ∩ Z . So to finish the proof, it is enough to show
that each point x ∈ Z\(E ′ ∪ f −1(E)) is a good point for h.

By our assumptions x ∈ Z\E ′ is a good point for g, and y := g(x) ∈ Z\E is a good point
for f . By possibly shrinking the regions in the definition of a good point if necessary, we can
find Jordan regions U , V , W ⊆ S2 with the following properties: x ∈ U and y ∈ V , the map
g is a quasisymmetry from U onto V , the map f is a quasisymmetry from V onto W , and
we have g(U ∩ Z) = V ∩ Z and f (V ∩ Z) = W ∩ Z . Then h = f ◦ g is a quasisymmetry
from U onto W and h(U ∩ Z) = W ∩ Z . This show that x is a good point for h, as desired. ��
Lemma 3.5 Let k, n ∈ N0 and ξ : P → P be a quasisymmetry with ξ(Dp) = Dp. Then the
map f := ξ−1 ◦ T n ◦ ξ ◦ T k is admissible for Dp.

Note that if the homeomorphism ξ reverses orientation, then it is not a branched covering
map according to the definition given in [6, Section 2.1]. Conjugation by ξ still preserves the
class of branched covering maps.

Proof It is clear that f is a branched covering map with f (Dp) ⊆ Dp . Moreover, it follows
from Lemma 3.2 and repeated application of Lemma 3.4 that the maps T n and T k are
admissible for Dp . It is also clear that conjugation of T n by ξ leads to a branched covering
map ξ−1 ◦ T n ◦ ξ that is admissible for Dp , because ξ induces a bijection on the peripheral
circles of Dp . The statement now follows from another application of Lemma 3.4. ��

4 Schottkymaps

A relative Schottky set S in a region D ⊆ Ĉ is a subset of D whose complement in D is a
union of open geometric disks whose closures are contained in D and are pairwise disjoint.
The boundaries of these disks are called the peripheral circles of S. A relative Schottky set
in D = Ĉ is called a Schottky set.

Let S be a relative Schottky set and U ⊆ Ĉ be an open set. A map f : U ∩ S → Ĉ is
called conformal at a point z0 ∈ U ∩ S if the derivative of f at z0,

f ′(z0) = lim
z∈U∩S, z→z0

f (z) − f (z0)

z − z0
,

exists and is non-zero. If z0 = ∞ or f (z0) = ∞, one has to interpret this in suitable charts on
Ĉ. In order to avoid this technicality, in the following we will only consider relative Schottky
sets S that do not contain ∞ and so S ⊆ C.

Let S, S̃ ⊆ C be two relative Schottky sets, U ⊆ Ĉ be an open set, and f : U ∩ S → S̃
be a local homeomorphism. Such a map f is called a Schottky map if it is conformal at every
point of U ∩ S and its derivative is a continuous function on U ∩ S.

Under some mild additional assumptions quasisymmetries on relative Schottky sets are
Schottky maps. More precisely, the following statement is true.

Theorem 4.1 Let S ⊆ C be a relative Schottky set of measure zero in a region D ⊆ Ĉ.
Suppose U ⊆ Ĉ is open and f : U → Ĉ is a continuous map with f (U ∩ S) ⊆ S such that
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each point x ∈ U ∩ S is a good point for f and S. Then f |U ∩ S : U ∩ S → S is a Schottky
map.

Proof A special case of this statement immediately follows from [8, Theorem 1.2]. Namely,
if U ⊆ C is a Jordan region with partial ∂U ⊆ S and f is an orientation-preserving qua-
sisymmetry from U onto f (U ) with f (U ∩ S) = f (U ) ∩ S, then f |U ∩ S : U ∩ S → S is
a Schottky map.

In the general case, it is enough to show that f |U ∩ S is a Schottky map locally near each
point x ∈ U ∩ S. We can reduce this to the special case, because x is a good point for f and
S. The details of the argument are very similar to the proof of Lemma 6.1 in [4] and so we
will only give an outline.

By our assumptions for each x ∈ U ∩ S we can find Jordan regions V , W ⊆ Ĉ with
x ∈ V ⊆ U such that f |V is an orientation-preserving quasisymmetry of V onto W with
f (V ∩ S) = W ∩ S. We would be done if ∂V ⊆ S.
Now, if x does not lie on a peripheral circle, then one can shrink V suitably so that ∂V ⊆ S

(see the proof of Lemma 6.1 in [4] for the details).
For the remaining case, suppose x lies on a peripheral circle of S. Then x ∈ ∂ B ⊆ S,

where B is one of the complementary disks of S in D. Then one doubles the Schottky set S
by reflection in C = ∂ B to obtain a new Schottky set S̃ that does not have C as a peripheral
circle. By a Schwarz reflection procedure one modifies the map f in B to obtain a map f̃ that
agrees with f in the complement of B near x . One can then find Jordan regions V , W ⊆ Ĉ

such that x ∈ V , ∂V ⊆ S̃, and f̃ is an orientation-preserving quasisymmetry from V onto W
with f̃ (V ∩ S̃) = W ∩ S̃. This implies that f̃ is a Schottky map V ∩ S̃ → S̃. By construction
f and f̃ agree on V ∩ S = (V ∩ S̃)\B and map this set into S. Hence f |U ∩ S is a Schottky
map into S near x ∈ V ∩ S, as desired. ��

We require the following stabilization result.

Theorem 4.2 Let S ⊆ C be a locally porous relative Schottky set, a ∈ S, U ⊆ Ĉ be an open
neighborhood of a such that U ∩ S is connected, and u : U ∩ S → S be a Schottky map
with u(a) = a that is not equal to the identity on U ∩ S. For n ∈ N let hn : U ∩ S → S
be a Schottky map such that for some open set Un ⊆ Ĉ the map hn : U ∩ S → Un ∩ S is a
homeomorphism.

Suppose the sequence {hn} converges locally uniformly on U ∩ S to a homeomorphism
h : U ∩ S → Ũ ∩ S, where Ũ ⊆ Ĉ is an open set. Then there exists N ∈ N such that hn = h
on U ∩ S for all n ≥ N.

This is a version of [9, Theorem 5.2] formulated in a way that will be convenient for our
applications. Note that our assumption on u implies u′(a) �= 1 by [9, Theorem 4.1]. The
existence of such a map u is a strong requirement on the geometry of the relative Schottky
set S and intuitively says that S admits a non-trivial “self-similarity” u locally near a.

It does not make a difference whether one allows the open sets U , Un, Ũ to contain the
point ∞ ∈ Ĉ (as in our formulation) or requires them to be subsets of C (as in [9]), because
∞ /∈ S and so we can always delete ∞ from these open sets.

We refer the reader to [9] for the definition of local porosity. It is easy to check that the
condition of local porosity is satisfied by Sp and Dp and is invariant under quasisymmetric
maps.

We also need the following uniqueness result [9, Corollary 4.2].
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Theorem 4.3 Let S ⊆ C be a locally porous relative Schottky set, and U ⊆ Ĉ be an open set
such that U ∩ S is connected. Suppose f , g : U ∩ S → S are Schottky maps, and consider

A := {x ∈ U ∩ S : f (x) = g(x)}.
If A has a limit point in U ∩ S, then A = U ∩ S and so f = g.

We can apply these results in our context due to the following fact.

Lemma 4.4 There exists a quasisymmetry β : P → Ĉ such that S := β(Dp) is a locally
porous Schottky set contained in C and U = β(int(Q)) is a bounded Jordan region in C

such that U ∩ S is connected. Moreover, there exist a point a ∈ U ∩ S and a Schottky map
u : U ∩ S → S such that u(a) = a and u is not the identity on U ∩ S.

Proof We use the following uniformization theorem proved in [3] (where the terminology
is also explained): if Z ⊆ Ĉ is a Sierpiński carpet whose peripheral circles are uniformly
relatively separated uniform quasicircles, then there exists a quasisymmetry β : Ĉ → Ĉ such
that β(Z) ⊆ Ĉ is a round Sierpiński carpet, i.e., a Sierpiński carpet whose peripheral circles
are geometric circles (see [3, Corollary 1.2]). Since P is bi-Lipschitz equivalent to Ĉ and our
Sierpiński carpet Dp has peripheral circles that are uniform quasicircles and are uniformly
relatively separated, we can apply this statement and obtain a quasisymmetry β : P → Ĉ

such that S := β(Dp) ⊆ Ĉ is a round Sierpiński carpet. By postcomposing β with a Möbius
transformation if necessary, we may assume that β is orientation-preserving, S ⊆ C and
that U = β(int(Q)) is a bounded Jordan region in C. Then S is a Schottky set. It is locally
porous, because Dp is a locally porous subset of P and this property is preserved under
quasisymmetries. In particular, S is a set of measure zero.

The set

U ∩ S = β(int(Q)) ∩ β(Dp) = β(int(Q) ∩ Dp) = β(Sp\O)

is connected as a continuous image of the connected set Sp\O .
To find a point a and a map u with the desired properties, we consider σ = (1/(p +

1), 1/(p + 1)) ∈ Q ⊆ P . Then σ ∈ Sp\O . Indeed, the identity

1

p + 1
=

∞∑
k=0

p − 1

p2(k+1)

shows that the p-ary expansion of 1/(p + 1) has only coefficients 0 and p − 1, and thus σ

belongs to the direct product C p × C p , where C p is a Cantor set constructed similarly to the
standard Cantor set, but instead of subdividing [0, 1] into three equal parts, we subdivide it
into p equal parts, remove the interior of the middle part (which is well defined because p is
assumed to be odd), and continue in the usual self-similar way. Now C p × C p is a subset of
Sp , which implies that σ ∈ Sp . Clearly, σ does not belong to O , and so σ ∈ Sp\O .

Actually, σ is contained in the interior of the 2-tile X := [(p − 1)/p2, 1/p]2. This is a
good 2-tile and T 2 is an orientation-preserving quasisymmetry from int(X) onto int(Q)with
T 2(int(X) ∩ Dp) = int(Q) ∩ Dp = Sp\O . The inverse map is an orientation-preserving
quasisymmetry v : int(Q) → int(X) with v(Sp\O) = int(X) ∩ Dp . We have T 2(σ ) = σ

(essentially, this follows from p2/(p + 1) ≡ 1/(p + 1) mod 2), and so v(σ ) = σ .
We now define a := β(σ) ∈ β(Sp\O) = U ∩ S, and consider the map ũ := β ◦ v ◦ β−1

defined on U = β(int(Q)). Then ũ is an orientation-preserving quasisymmetry of U onto
the open set ũ(U ) = β(int(X)) with

ũ(U ∩ S) = ũ(β(Sp\O)) = β(int(X) ∩ Dp) = β(int(X)) ∩ S = ũ(U ) ∩ S.
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Theorem 4.1 implies that u := ũ|U ∩S is a Schottkymap u : U ∩S → S.Moreover, u(a) = a
and u is not the identity on S. ��
Corollary 4.5 Let β : P → Ĉ be the quasisymmetry from Lemma 4.4 with S = β(Dp), and
f , g : P → P be admissible maps for Dp. Define

f̃ := β ◦ f ◦ β−1, g̃ := β ◦ g ◦ β−1.

Then there exists a region U ⊆ Ĉ such that U ∩ S is a connected set that is dense in S and
f̃ , g̃ : U ∩ S → S are Schottky maps.

So if we conjugate the admissible maps f and g for Dp by the uniformizing map β, then
we obtain Schottky maps at least on the large part U ∩ S of S.

Proof Since f and g are admissible for Dp , themaps f̃ and g̃ are admissible for the Sierpiński
carpet S = β(Dp) ⊆ C. This implies that there exist a finite set F ⊆ S and finitely many
peripheral circles J1, . . . , JN of S such that E := F ∪ J1 ∪ · · · ∪ JN is an exceptional set
for f̃ and for g̃. Let D1, . . . , DN be the closures of the complementary components of S (in
Ĉ) bounded by J1, . . . , JN , respectively. Since S ⊆ C, we may assume that ∞ ∈ D1. Then

U := Ĉ\(F ∪ D1 ∪ · · · ∪ DN )

is a region in C. The set U ∩ S = S\E is connected and dense in S (the quickest way to see
this is again by an argument as in the proof of Lemma 3.3 based on Moore’s theorem—we
leave the details to the reader). Note that f̃ (S), g̃(S) ⊆ S and each point in U ∩ S = S\E
is a good point for the maps f̃ and g̃ and the set S. Theorem 4.1 implies that f̃ and g̃ are
Schottky maps U ∩ S → S. ��
Corollary 4.6 Let f , g : P → P be admissible maps for Dp. If there exists a non-empty set
A ⊆ Dp that is relatively open in Dp such that f = g on A, then f = g on Dp.

Proof If β is the map from Lemma 4.4 and U is as in Corollary 4.5, then A′ := U ∩ β(A) is
a non-empty and relatively open set in U ∩ S, where S = β(Dp). In particular, A′ has a limit
point in U ∩ S, and the Schottky maps f̃ , g̃ : U ∩ S → S as defined in Corollary 4.5 agree
on A′. It follows from Theorem 4.3 that f̃ and g̃ agree on U ∩ S and hence on S, because
U ∩ S is dense in S. Thus f = g on β−1(S) = Dp . ��

5 Relation to Lattès maps

We now want to prove a crucial relation between an arbitrary quasisymmetry ξ : Dp → Dp

and our Lattès map T (recall that the odd integer p ≥ 3 is fixed).

Proposition 5.1 Let ξ : Dp → Dp be a quasisymmetry. Then for each N ∈ N there exist
k, �, m ∈ N with k, �, m ≥ N such that

T m ◦ ξ = T � ◦ ξ ◦ T k (5.1)

on Dp.

In other words, (5.1) holds with arbitrarily large k, �, and m. The proof of this proposition
will occupy the rest of this section. The main ideas for establishing the relation (5.1) are
related to those for the proof of the similar relation (1.2) in [4].
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Let ξ : Dp → Dp be the given quasisymmetry. Then it has a (non-unique) extension to
a quasisymmetry ξ : P → P . This follows from [3, Proposition 5.1] (see also [4, Theorem
1.11]); here it is important that P is bi-Lipschitz equivalent to Ĉ equipped with the chordal
metric and that every quasiconformal map F : Ĉ → Ĉ is a quasisymmetry.

In order to prove (5.1), we may assume that this extension ξ is orientation-preserving,
because otherwise we consider the homeomorphism ξ̃ : P → P given by ξ̃ = R ◦ ξ , where
R : P → P is the involution on the pillow P that interchanges corresponding points on the
front and back of P . Since R is an orientation-reversing isometry on P with R(Dp) = Dp ,
the map ξ̃ is also a quasisymmetry on P with ξ̃ (Dp) = Dp and it will be orientation-
preserving if ξ reverses orientation. Moreover, if we have a relation as in (5.1) for ξ̃ , then a
corresponding relation for ξ with the same numbers k, �, m immediately follows from the
identity R ◦ T = T ◦ R. So in the following we may assume that the extension ξ : P → P
of the quasisymmetry in Proposition 5.1 is orientation-preserving.

We consider the point c = (0, 0) ∈ Sp ⊆ Dp (i.e., the lower left corner of Dp).We choose
a nested sequence of tiles Xn, n ∈ N, of strictly increasing levels kn ∈ N0 with Xn ⊆ Q
and c ∈ Xn . Then each Xn is a good tile. There exists a unique branch T −kn on Q such that
T −kn (Q) = Xn . These branches T −kn are consistent in the sense that

T −kn = T kn+1−kn ◦ T −kn+1 (5.2)

for n ∈ N. This consistency relation is preserved if we replace the original sequence of tiles
{Xn} (and the corresponding sequence of branches {T −kn }) by a subsequence as we will do
in the ensuing argument.

If k1 is sufficiently large, as we may assume, Lemma 2.2 guarantees that for each n ∈ N

we can find a good (kn + r0)-tile Yn ⊆ Xn and a good tile Zn with ξ(Yn) ⊆ Zn and
diam(ξ(Yn)) � diam(Zn). Here r0 ∈ N0 and the comparability constant are independent of
n. For each n ∈ N, let Y ′

n := T kn (Yn). Then Y ′
n ⊆ Q is a good tile of level r0 such that

T −kn (Y ′
n) = Yn . Since there are only finitely many r0-tiles, we may assume, by passing to

a subsequence of the original sequence {Xn} if necessary, that the tiles Y ′
n are all equal to

the same good r0-tile Y . We can find an orientation-preserving scaling map ϕ : Q → Y that
maps Q onto Y .

Let �n ∈ N0 be the level of Zn . Then T �n |Zn is a scaling map on Zn that sends Zn to the
front Q or the back Q′ of P depending on whether Zn is white or black. Since

diam(ξ(Yn)) � diam(Zn),

we then have

diam
(
T �n (ξ(Yn))

) � diam(T �n (Zn)) � 1,

and soT �n (ξ(Yn))hasuniformly large size, i.e., there existsα > 0 such that diam(T �n (ξ(Yn)) ≥
α for all n ∈ N.

Putting this all together, for each n ∈ N we obtain a map

hn := T �n ◦ ξ ◦ T −kn ◦ ϕ. (5.3)

This is a quasisymmetric embedding of Q into P with uniformly large image Mn :=
T �n (ξ(Yn)). Since the maps T �n , T −kn , and ϕ just scale distances, the maps hn are uniformly
quasisymmetric embeddings, i.e., there exists a distortion function η such that hn : Q → Mn

is an η-quasisymmetry for each n ∈ N. Note that each of the four maps on the right hand
side of (5.3) has the property that a point in the source space of the map lies in Dp if and
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only if its image point lies in Dp . This implies that for z ∈ Q we have

z ∈ Dp if and only if hn(z) ∈ Dp. (5.4)

We now invoke the following subconvergence lemmawhich follows from [3, Lemma 3.3].

Lemma 5.2 Let X and Y be compact metric spaces, and let hn : X → Y be an η-
quasisymmetric embedding for n ∈ N. Suppose that there exists a constant α > 0 such
that for the diameter of the image set hn(X) we have diam(hn(X)) ≥ α for each n ∈ N. Then
there exist an increasing sequence {in} in N and a quasisymmetric embedding h : X → Y
such that hin → h uniformly on X as n → ∞.

In our situation Lemma 5.2 implies that by passing to a subsequence if necessary, we may
assume that hn → h uniformly on Q, where h : Q → P is a quasisymmetric embedding.

We claim that the relation (5.4) passes to the limit, i.e., for z ∈ Q we have

z ∈ Dp if and only if h(z) ∈ Dp. (5.5)

Indeed, if z ∈ Q ∩ Dp , then hn(z) ∈ Dp for each n ∈ N by (5.4). Moreover, hn(z) → h(z)
as n → ∞ and so h(z) ∈ Dp , because Dp is a closed subset of P .

For the other implication, we argue by contradiction and assume that z ∈ Q\Dp , but
h(z) ∈ Dp . Since O = ∂ Q ⊆ Dp , the point z lies in the interior of Q. Then we can
find a small neighborhood W of z with W ⊆ Q\Dp . Since hn → h uniformly on W ,
a topological degree argument implies that for sufficiently large n there exists zn ∈ W
such that hn(zn) = h(z) ∈ Dp . Then zn ∈ Dp by (5.4). This is a contradiction, because
zn ∈ W ⊆ P\Dp . Relation (5.5) follows.

Let n ∈ N. Then for one of the two open Jordan regions �n ⊆ P bounded by hn(O)

the map hn is a quasisymmetry of Q\O = int(Q) onto �n . By (5.4) this implies that
hn(int(Q) ∩ Dp) = �n ∩ Dp .

Similarly, there exists a Jordan region � ⊆ P such that h is a quasisymmetry of int(Q)

onto �. By (5.5) we then have h(int(Q) ∩ Dp) = � ∩ Dp .
We are now in a situation that is very similar to what was established in Step III in the

proof of Theorem 1.4 in [4]: we want to show that the sequence {hn} stabilizes and hn ≡ h
for large n. As in [4], we will invoke rigidity statements for Schottky maps.

Let β be the map provided by Lemma 4.4, and, as in this lemma, let U = β(int(Q)) and
S = β(Dp). Then S ⊆ C is a locally porous Schottky set. For each n ∈ N the map

h̃n := β ◦ hn ◦ β−1

is an orientation-preserving quasisymmetry of U onto Un := β(�n) such that

h̃n(U ∩ S) = β(hn(int(Q) ∩ Dp)) = β(�n ∩ Dp) = Un ∩ S.

It follows from Theorem 4.1 that h̃n : U ∩ S → S is a Schottky map, and a homeomorphism
of U ∩ S onto Un ∩ S.

By the same reasoning the map h̃ := β ◦ h ◦ β−1 is also a Schottky map U ∩ S → S,
and a homeomorphism of U ∩ S onto Ũ ∩ S, where Ũ = β(�). Moreover, we have h̃n → h̃
locally uniformly on U ∩ S. Lemma 4.4 and Theorem 4.2 imply that there exists N ′ ∈ N

such that h̃n = h̃n+1 on U ∩ S = β(Sp\O), and so hn = hn+1 on Sp\O for all n ≥ N ′.
For such an n we then have

T �n+1 ◦ ξ ◦ T −kn+1 ◦ ϕ = T �n ◦ ξ ◦ T −kn ◦ ϕ (5.6)
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on Sp\O , and hence on Sp by continuity. Since ϕ is a homeomorphism of Sp onto Y ∩ Dp ,
this leads to

T �n+1 ◦ ξ ◦ T −kn+1 = T �n ◦ ξ ◦ T −kn

on Y ∩ Dp . By the consistency relation (5.2) this gives

T �n+1 ◦ ξ ◦ T −kn+1 = T �n ◦ ξ ◦ T kn+1−kn ◦ T −kn+1

on Y ∩ Dp , and so

ξ−1 ◦ T �n+1 ◦ ξ = ξ−1 ◦ T �n ◦ ξ ◦ T kn+1−kn (5.7)

on T −kn+1(Y ∩ Dp) = Yn+1 ∩ Dp .
Since Yn+1 is a good tile, the set Yn+1 ∩ Dp is a subset of Dp with non-empty relative

interior. We can now apply Lemma 3.5 and Corollary 4.6 to conclude that (5.7) is true on
the whole set Dp . Here we can cancel ξ−1. Since kn+1 > kn by our initial choice of the tiles
Xn , it follows that there exist numbers k ∈ N and �, m ∈ N0 such that

T m ◦ ξ = T � ◦ ξ ◦ T k (5.8)

on Dp . We can make m and � arbitrarily large by postcomposing both sides in this identity
with iterates of T . Moreover, using this equation for a large enough multiple of the original
� in (5.8) and precomposing with iterates of T k , we can also make k in (5.8) arbitrarily
large. So for each N ∈ N we can find k, �, m ≥ N such that (5.8) holds. This shows that
Proposition 5.1 is indeed true.

6 Proof of Theorem 1.1

Wefirst state two relevant results from [5]. The following statement is part of [5, Lemma 8.1].

Theorem 6.1 Every quasisymmetry ξ : Sp → Sp, p ≥ 3 odd, preserves the outer peripheral
circle O setwise and so ξ(O) = O.

We need the following special case of [5, Theorem 1.4].

Theorem 6.2 Let ξ : Sp → Sp, p ≥ 3 odd, be an orientation-preserving quasisymmetry that
fixes the four corners of Q. Then ξ is the identity on Sp.

Here ξ : Sp → Sp is orientation-preserving or orientation-reserving if it has an extension
to a homeomorphism on Ĉ ⊇ Sp with the same property. Every quasisymmetry ξ : Sp → Sp

is either orientation-preserving or orientation-reversing.
We can now prove our first main result.

Proof of Theorem 1.1 Let ξ : Sp → Sp be a quasisymmetry. In order to show that ξ is an
isometry, we can freely pre- or postcompose ξ with isometries of Sp without affecting our
desired conclusion.

Without loss of generality we may assume that ξ is orientation-preserving; otherwise, we
consider the composition of ξ with a reflection of Sp in, say, one of the diagonals of the
square Q.

By Theorem 6.1 we know that ξ(O) = O and so ξ restricts to an orientation-preserving
homeomorphism on O . If ξ send each corner of Q to another corner of Q, then ξ has to
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preserve the cyclic order of these corners. This implies that on the set of corners ξ acts
as a rotation by an integer multiple of π/2 around the center of Q. It follows that we can
postcompose ξ with such a rotation of Sp so that the new quasisymmetry actually fixes the
corners of Q. By Theorem 6.2 this map is then the identity on Sp and we conclude that ξ is
an isometry as desired.

So we are reduced to the case where ξ sends a corner of Q to a non-corner point.
Equivalently, the preimage of a corner of Q under ξ is not a corner point. Again, by using
rotations of Sp , we may assume that the preimage q = ξ−1(c) ∈ O of the lower left corner
c = (0, 0) ∈ R

2 of Sp is not a corner.
If q does not lie in the open bottom side (0, 1)×{0} of Q, we can precompose ξ with two

reflections R1, R2 in appropriate symmetry lines of Q (i.e., diagonals and lines through the
centers of two opposite sides of Q) so that ξ is still orientation-preserving and

q = (R1 ◦ R2 ◦ ξ−1)(c) ∈ (0, 1) × {0} ⊆ Sp.

Basedon these considerations,we reduced to the case thatq = ξ−1(c) ∈ (0, 1)×{0} ⊆ Sp .
We want to derive a contradiction from this statement, which will establish the theorem.

Let R be the involution on P that interchanges corresponding points in the two copies of
Q. Since ξ preserves the outer peripheral circle O of Sp , it induces a homeomorphism of
Dp that agrees with ξ on the front copy of Sp and is given by R ◦ ξ ◦ R on the back copy S′

p
of Sp in Dp . We continue to denote this map on Dp by ξ . It is clear that ξ : Dp → Dp is a
homeomorphism.

If Dp is, as before, endowed with the restriction of the path metric on the pillow P , then
the map ξ : Dp → Dp is actually a quasisymmetry. To see this, first note that the original
map ξ on Sp extends to a quasiconformal homeomorphism of the unit square Q (see, e.g.,
[3, Proposition 5.1]). By using this and the reflection R, we can find a quasiconformal
homeomorphism on P that extends the homeomorphism ξ : Dp → Dp . We call this new
map on P also ξ . Now P is bi-Lipschitz equivalent to Ĉ. If we conjugate ξ : P → P by
such a bi-Lipschitz map, then we obtain a quasiconformal homeomorphism ξ̃ on Ĉ. Each
quasiconformal map on Ĉ is a quasisymmetry. It follows that ξ̃ is a quasisymmetry. Hence
its bi-Lipschitz conjugate ξ : P → P is also a quasisymmetry, and so is the restriction
ξ : Dp → Dp .

Let T : P → P be the Lattès map defined in Sect. 2. Then it follows from Proposition 5.1
that we have a relation of the form

T m ◦ ξ = T � ◦ ξ ◦ T k (6.1)

on Dp , where we may assume that k, �, m ∈ N are suitably large.
Let I ⊆ (0, 1) × {0} ⊆ Sp be a small open interval one of whose endpoints is q, such

that ξ(I ) is completely contained in one of the sides of Q. Recall that ξ(q) = c = (0, 0).
Each side of Q is forward invariant under T (see (2.1)). For a large enough k we actually
have T k(I ) = [0, 1] × {0}, because, roughly speaking, T expands by the factor p. We may
assume that (6.1) holds for this k. Since

(0, 0) = ξ(q) ∈ ξ
(
(0, 1) × {0}),

the set A := ξ
([0, 1] × {0}) meets the interior of at least two sides of Q. It follows that

(T � ◦ ξ ◦ T k)(I ) = (T � ◦ ξ)
([0, 1] × {0}) = T �(A)

meets the interior of at least two sides of Q.
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On the other hand, since ξ(I ) is contained in one side of Q and T leaves each side of Q
invariant, we conclude from (6.1) that T �(A) = (T m ◦ ξ)(I ) is contained in one side of Q.
Therefore, T �(A) cannot meet the interior of two different sides of Q. This is a contradiction.
��

7 Proofs of Theorems 1.2 and 1.3

For the proof of Theorem 1.2we require auxiliary results about certain weak tangent spaces at
points of Dp . We will discuss these statements first. For a more detailed treatment of similar
weak tangents for Sp the reader may consult [5, Section 7].

Let (X , d) be a metric space. Then a weak tangent of X at a point a ∈ X is the Gromov–
Hausdorff limit of a sequence of pointed metric spaces (X , a, λnd), where λn > 0 and
λn → ∞ as n → ∞ (for the relevant definitions and general background see [7, Chapters
7 and 8]). We are interested in weak tangents of subsets of Dp equipped with the restriction
of the piecewise Euclidean metric on the pillow P . In this case, it is convenient to restrict the
scaling factors λn in the definition of weak tangents to powers of p, i.e., they have the form
λn = pkn with kn ∈ N0 and kn → ∞ as n → ∞.

For example, let c = (0, 0) ∈ Sp be the lower left corner of Q. Then Sp has an essentially
unique weak tangent at c isometric to the union

W :=
⋃

n∈N0

pn Sp ⊆ C (7.1)

with base point 0 ∈ C. In this union we consider Sp as a subset of R2 ∼= C and use the
notation λA = {λz : z ∈ A} whenever λ ∈ C and A ⊆ C. In particular, W is a subset of the
first quadrant of R2 ∼= C.

Let q = 1
2p (p − 1, p − 1) ∈ Sp . Then q is the lower left corner of the middle peripheral

circle M of Sp . At q the set Sp has an essentially unique weak tangent, denoted by W̃ . It is
obtained as the union of three copies of W . Up to isometry, we have

W̃ := iW ∪ (−i)W ∪ (−1)W , (7.2)

with base point 0 ∈ C. Of course, W and W̃ depend on p, but we suppress this from our
notation.

Standard compactness arguments imply that a quasisymmetric map of Dp that takes a
point a ∈ Dp to another point b ∈ Dp induces a quasisymmetric map between appropriate
weak tangents at a and b, respectively. This observation along with the following lemma will
help us to eliminate certain mapping possibilities.

Lemma 7.1 There is no quasisymmetry from W onto W̃ that fixes 0.

This follows from [5, Proposition 7.3]. Note that in [5] the setup is slightly different, because
weak tangents were considered as Hausdorff limits of sets in Ĉ under blow-ups by scaling
maps. This is equivalent to our definition with the only difference that our weak tangents do
not contain the point ∞ ∈ Ĉ as in [5].

Proof of Theorem 1.2 This immediately reduces to Theorem 1.1 if we can show that ξ(O) =
O , where as before O denotes common boundary of the two copies Q and Q′ of the unit
square that form the pillow P . In the following, we will rely on some mapping properties of
ξ and the Lattès map T (as defined in Sect. 2) that we state first.
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Since ξ is a quasisymmetry on Dp and hence a homeomorphism, it maps peripheral circles
of Dp to peripheral circles. Note that O does not meet any peripheral circle of Dp . It follows
from (2.2) and (2.3) that if C is a peripheral circle of Dp and n ∈ N0, then either T n(C) is
also a peripheral circle or T n(C) = O .

If z ∈ Dp lies on a peripheral circle, then each preimage z′ ∈ Dp of z under any iterate
of T also lies on a peripheral circle. To see this, suppose z′ ∈ Dp ∩ T −n(z) for some n ∈ N.
Then z′ lies in a good tile Xn of level n. On Xn the iterate T n behaves like a similarity map
scaling distances by the factor pn , and sends the set Dp ∩ Xn onto Sp ⊆ Dp or onto the back
copy S′

p ⊆ Dp depending on whether Xn is white or black. This implies that if z = T n(z′)
lies on a peripheral circle of Dp , then the same is true for the point z′.

By Proposition 5.1 we have an identity of the form

T m ◦ ξ = T n ◦ ξ ◦ T k (7.3)

on Dp , where k, n, m ∈ N. Here we may assume that k, n, m are as large as we wish. Then

T m(ξ(M)) = T n(ξ(O)),

because T k(M) = O for any k ∈ N as follows from (2.3) and (2.2).
The set ξ(O) ⊆ Dp does not meet any peripheral circle of Dp . This and the mapping

property of T discussed above imply that the set T n(ξ(O)) = T m(ξ(M)) does not meet any
peripheral circle of Dp either. But ξ(M) is a peripheral circle, and so T m(ξ(M)) = O =
T n(ξ(O)). It follows that ξ(O) ⊆ Dp ∩ T −n(O). Note that T −n(O) forms a “grid” in P
consisting of all n-edges.

If p = 3, then it is not hard to see that the only Jordan curve (such as ξ(O)) that is
contained in Dp ∩ T −n(O) and does not meet any peripheral circle is equal to O . In this
case, we conclude that ξ(O) = O , as desired. To give an argument that is valid for any odd
p ≥ 3, more work is required.

LetC := ξ(O) ⊆ Dp ∩T −n(O). ThenC can be considered as a polygonal loop consisting
of n-edges. If we run through C according to some orientation, then two successive n-edges
in C have an endpoint a in common, where they meet at a right angle or at the angle π . If
they meet at a right angle, then we call a a turn of C .

Claim. Every turn a of C must have one of the four corners of O as a preimage under ξ .
To see this, we argue by contradiction and assume that there exists b ∈ O that is not a

corner of O such that a = ξ(b) is a turn of C . Let I be a small open interval contained in O ,
one of whose endpoints is b. Here we may assume that I is contained in one side of O and
that ξ(I ) is contained in one of the two n-edges e ⊆ ξ(O) that meet at the turn a. Note that
then ξ(I ) ⊆ e is an open interval, one of whose endpoints is a = ξ(b).

We now use an identity

T m′ ◦ ξ = T n′ ◦ ξ ◦ T k′
(7.4)

as in (7.3) with suitably large k′, n′, m′ ∈ N and apply it to I . Note that k′, n′, m′ will in
general be different from the original numbers k, n, m in (7.3).

First, we may assume that k′ in (7.4) is so large that T k′
(I ) is equal to the whole side of

O that contains b and I . Then ξ(T k′
(I )) is a neighborhood of a in C . In particular, if n′ ≥ n

is large enough, as we may assume, then there are two n′-edges e1 and e2 that meet at a right
angle at the common endpoint a with e1 ∪ e2 ⊆ ξ(T k′

(I )) ⊆ ξ(O). Since the n′-edges e1
and e2 meet at a right angle, T n′

(e1 ∪ e2) consists of two sides of O . It follows that the set

T n′
(ξ(T k′

(I ))) ⊇ T n′
(e1 ∪ e2)
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Square Sierpiński carpets and Lattès maps

contains at least two sides of O . On the other hand, ξ(I ) is contained in the n-edge e. If
m′ ≥ n as we may assume, T m′

(e) is equal to one of the sides of O as follows from (2.1).
This implies that the set

T n′
(ξ(T k′

(I ))) = T m′
(ξ(I )) ⊆ T m′

(e)

is contained in one of the sides of Q. This is a contradiction and the Claim follows.
There are now two cases to consider, depending on whetherC does or does not have turns.
Case 1: C has no turns. Then C = ξ(O) �= O and C runs “parallel” to one of the sides

of O in Q and in the back copy Q′ of Q. In particular, the involution R (that interchanges
corresponding points of Q and Q′) is a quasisymmetry on Dp preserving C . Consider

g = ξ−1 ◦ R ◦ ξ.

Then g is a quasisymmetry on Dp with g(O) = O . Its fixed point set is the Jordan curve
ξ−1(O) �= ξ−1(C) = O .

It follows from Theorem 1.1 that every quasisymmetry on Dp that preserves O as a set is
an isometry of Dp . In particular, g must be such an isometry. There are 16 such maps: eight
isometries that preserve the front and back copies of Sp and eight obtained by composing
these maps by the involution R that interchanges the front and back copies. Among these 16
maps there is exactly one, namely the involution R, whose fixed point set is a Jordan curve
J . In this case J = O . In all other cases, the fixed point set is either empty, finite, a Cantor
set, or all of Dp . On the other hand, g has the fixed point set given by the Jordan curve
ξ−1(O) �= ξ−1(C) = O . This is a contradiction, showing that Case 1 is impossible.

Case 2: C has at least one turn. We claim that such a turn must be a corner of O . To
reach a contradiction, suppose C has a turn a other than a corner of O . Since C = ξ(O) ⊆
Dp ∩ T −n(O) does not meet any peripheral circle of Dp , the point a is the common corner
of four good n-tiles. The curve C is the common boundary of two complementary regions of
the pillow P . Since a is a turn of C , one of these regions, which we denote by U , has angle
3π/2 at a (the other region has the angle π/2 at a).

There are three good n-tiles, i.e., three copies of Sp scaled by the factor 1/pn that are
contained U and that share a as a corner. In fact, there are infinitely many such triples of
copies of Sp that meet at a rescaled by the factor p−k with k ≥ n. This implies U ∩ Dp has
a unique weak tangent at a and that it is isometric to the set W̃ in (7.2) with basepoint 0.

Since a is a turn of C , there exists a corner b of O with ξ(b) = a. Now ξ(O) = C , and
so either Sp or the back copy S′

p of Sp is mapped to U ∩ Dp by the quasisymmetry ξ . In
both cases we get an induced basepoint-preserving quasisymmetry of the weak tangents of
the source set at b and the image set Dp ∩U at a. Both Sp and S′

p have unique weak tangents
at any corner b of O isometric to W in (7.1) with basepoint 0. This implies that there exists
a quasisymmetry between the pointed metric spaces (W , 0) and (W̃ , 0). This is impossible
by Lemma 7.1, and so we reach a contradiction.

We conclude that the Jordan curve C = ξ(O) ⊆ T −n(O) has at least one turn, and that
every turn of C is a corner of O; but then necessarily C = ξ(O) = O , and we are done. ��
Proof of Theorem 1.3 Weargueby contradiction and assume that there exists a quasisymmetry
ξ : Dp → J (g), where p ≥ 3 is odd, andJ (g) is the Julia set of a postcritically-finite rational
map g on Ĉ. We will later consider the case when Sp is assumed to be quasisymmetrically
equivalent to J (g).

The quasisymmetry ξ can be extended (non-uniquely) to a quasisymmetry, also called ξ ,
of the pillow P onto Ĉ (the justification for this is the same as in the beginning of the proof
of Proposition 5.1). We may assume that ξ is orientation-preserving, because otherwise we
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can precompose ξ with an orientation-reversing isometry of P that leaves Dp invariant (such
as the reflection R that interchanges corresponding points on the front and back of P).

As before, we denote by T the Lattès map as introduced in Sect. 2 (for given p). The main
idea of the proof now is to establish an analog of Proposition 5.1 for the maps g, ξ , and T .
Namely, we want to show that there exist k ∈ N and �, m ∈ N0 such that

gm ◦ ξ = g� ◦ ξ ◦ T k (7.5)

on the set Dp .
Once (7.5) is established, we obtain a contradiction as follows. Since J (g) is homeomor-

phic to Dp , the set J (g) is a Sierpiński carpet. Let A be the set of all points in J (g) that
lie on a peripheral circle of J (g). If J is a peripheral circle of J (g), then g(J ) is also a
peripheral circle and g−1(J ) consists of finitelymany peripheral circles (see [4, Lemma 5.1]).
This implies that A is completely invariant under g, and hence under all iterates of g, i.e.,
gn(A) = A = g−n(A) for each n ∈ N0. Note also that the homeomorphism ξ sends the
peripheral circles of Dp to the peripheral circles of J (g).

We now apply both sides of (7.5) to the middle peripheral circle M of Sp ⊆ Dp . Then
the left hand side shows that (gm ◦ ξ)(M) ⊆ A. On the other hand, if we consider the right
hand side of (7.5), we first note that T k(M) = O . It follows that

(g� ◦ ξ ◦ T k)(M) = (g� ◦ ξ)(O)

is disjoint from A, because O does not meet any peripheral circle of Dp and so ξ(O) and
(g� ◦ ξ)(O) are disjoint from A. This is a contradiction.

In order to establish (7.5), one uses ideas as in the proof of Proposition 5.1 combined with
arguments for the proof of the similar relation (8.4) in [4, Section 8], where T plays the role
of the rational map f and Dp the role of the Julia set J ( f ).

As in the proof in [4, Section 8], we want to implement a “blow down-blow up” argument
applying “conformal elevators”. Namely, one first uses inverse branches T −n to blow down,
and then iterates of themap gξ := ξ−1◦g◦ξ : P → P to blow up. Note that Dp is completely
invariant under the map gξ and its iterates.

As in the proof of Proposition 5.1, we choose a sequence T −kn of inverse branches
mapping the front Q of the pillow to a good tile Xn ⊆ Q of level kn ∈ N0 containing the
corner c = (0, 0) ∈ Q. Herewe again assume that the sequence {kn} is strictly increasing. The
branches T −kn are consistent as in (5.2). Each map T −kn is a scaling map, and in particular
a quasisymmetry of Q onto Xn ⊆ Q. We also have diam(T −kn (Q)) → 0 as n → ∞. All of
this is similar to the choice of inverse branches in [4, Section 8, Step II], but easier.

Following the argument of [4, Section 8, Step II], we use the expansion property of g
to find for each natural number n ∈ N, a corresponding number �n ∈ N0 such that the
sets (g�n

ξ ◦ T −kn )(Q) have uniformly large size independent of n. Now we argue as in [4,

Section 8, Step III] and consider the maps h̃n := g�n
ξ ◦ T −kn : Q → P for n ∈ N. Under a

conformal identification P ∼= Ĉ these are actually uniformly quasiregular maps on the region
U := Q\O . By passing to a subsequence if necessary, we may assume that there exists a
(non-constant) quasiregular map h̃ : U → P such that h̃n → h̃ locally uniformly on U as
n → ∞.

The map h̃ is locally quasiconformal on U away from the branch points of h̃. These
branch points form a set with no limit points in U . This implies that we can find a point
q ∈ U ∩ Dp and a small radius r > 0 such that B(q, 2r) ⊆ U and h̃ is quasiconformal
on B(q, 2r). It follows that on the smaller ball B(q, r) the maps h̃n are quasiconformal for
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large n. By discarding finitely many of the maps h̃n if necessary, we may assume that they
are quasiconformal for all n ∈ N.

Since q ∈ Dp , we can find a good tile Y ⊆ B(q, r) (as defined in Sect. 2). Since a
quasiconformal map is a local quasisymmetry, we conclude that the maps h̃ and h̃n for n ∈ N

are quasisymmetric embeddings of Y into P . We are now in a similar situation as in the proof
of Proposition 5.1. We choose an orientation-preserving scaling map ϕ that sends Q onto Y .
Note that then ϕ(Q ∩ Dp) = Y ∩ Dp . We now define

h := h̃ ◦ ϕ,

hn := h̃n ◦ ϕ = g�n
ξ ◦ T −kn ◦ ϕ

for n ∈ N. These maps are quasisymmetries on Q with hn → h uniformly on Q.
Note that we again have the relation (5.4), which follows from themapping properties of ϕ

and T −kn , in combination with the identities ξ(Dp) = J (g) and g−1
ξ (Dp) = gξ (Dp) = Dp .

As before, (5.4) implies (5.5).
Based on Theorem 4.2 and Lemma 4.4 we can again argue that the sequence hn stabilizes

and so hn+1 = hn on Sp for large n. This implies that there exists n ∈ N such that

g�n+1
ξ ◦ T −kn+1 = g�n

ξ ◦ T −kn (7.6)

on Y ∩ Sp . Using the consistency relation for the inverse branches we see that

g�n+1
ξ = g�n

ξ ◦ T kn+1−kn (7.7)

on T −kn+1(Y ∩ Sp) ⊆ Dp . Note that here kn+1 − kn ∈ N, because kn+1 > kn .
We want to argue that this identity remains valid on the whole set Dp . To see this, first

note that by Lemma 3.1 for each � ∈ N0 the iterate g� of g is an admissible maps for the
Sierpiński carpet J (g). Thus, g�

ξ = ξ−1 ◦ g� ◦ ξ is an admissible map for Dp . Combined
with Lemmas 3.2 and 3.4 this shows that both sides in (7.7) are admissible maps for Dp .

Corollary 4.6 then implies that (7.7) is valid on Dp . This is equivalent to a relation of the
form (7.5) as required. This completes the proof when Dp is assumed to be quasisymmetri-
cally equivalent to J (g).

Now suppose that there exists a quasisymmetry ξ : Sp → J (g). Again we may assume
that ξ has an extension to an orientation-preserving quasisymmetry ξ : P → Ĉ. Here we
cannot expect an identity as in (7.5) to be valid on Sp . The main problem is that Sp is not
forward-invariant under T .

In order to derive a contradiction, we have to slightly modify the above argument. We
again implement a “blow down-blow-up” procedure as above, where Dp is replaced with
Sp , up to the point where we conclude that the sequence {hn} stabilizes. We again obtain the
relation (7.6) on Y ∩ Sp , where Y ⊆ Q is a suitable good tile. Instead of using the consistency
relation (5.2) we now employ the identity

T −kn+1 = T −(kn+1−kn) ◦ T −kn

for the unique branch T −(kn+1−kn) thatmaps Q to the good tile Z ⊆ Q of level k = kn+1−kn ∈
N with c ∈ Z . This implies that there exist constants �, �′ ∈ N0 such that

g�′
ξ ◦ T −k = g�

ξ (7.8)

on the set T −kn (Y ∩ Sp) = Y ′ ∩ Sp, where Y ′ := T −kn (Y ) ⊆ Q is a good tile.
Let C and C ′ be the finite sets of critical points of g�

ξ and g�′
ξ , respectively. If we define

W := Q\(O ∪ C ∪ T k(C ′)), then W ∩ Sp is connected and dense in Sp . Moreover, each
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point in x ∈ W ∩ Sp is a good point (as defined in Sect. 3) for each of the two maps in (7.8)
and the Sierpiński carpet Sp . So if we conjugate these maps by β from Lemma 4.4, then
we obtain Schottky maps from the locally porous relative Schottky set β(W ) ∩ β(Sp) into
β(Sp). By Theorem 4.3 this implies that (7.8) holds on W ∩ Sp . Since W ∩ Sp is dense in
Sp , it follows that (7.8) is valid on Sp .

We want to see that this is impossible. Since the union of all peripheral circles of J (g) is
completely invariant under g, the union of all peripheral circles of Sp is completely invariant
under gξ . Now consider the point a := (1, 1) ∈ Sp . Then T −k(a) = (p−k , p−k) does not
lie on a peripheral circle of Sp and so the same is true for b := (g�′

ξ ◦ T −k)(a). On the other
hand, a lies on the peripheral circle O of Sp and so by (7.8),

b = (g�
ξ ◦ T −k)(a) = g�

ξ (a) ∈ g�
ξ (O)

lies on the peripheral circle g�
ξ (O) of Sp . This is a contradiction.

We conclude that neither Dp nor Sp can be quasisymmetrically equivalent to the Julia set
of a postcritically-finite rational map. ��

The essential point in the previous proof was the fact that while the union of all peripheral
circles of J (g) is completely invariant under g, the union of all peripheral circles of Sp or
Dp is not completely invariant under T .
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