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Abstract

We prove that every quasisymmetric homeomorphism of a standard square Sierpifiski carpet
Sp, p = 3 odd, is an isometry. This strengthens and completes earlier work by the authors
(Bonk and Merenkov in Ann Math (2) 177:591-643, 2013, Theorem 1.2). We also show
that a similar conclusion holds for quasisymmetries of the double of S, across the outer
peripheral circle. Finally, as an application of the techniques developed in this paper, we
prove that no standard square carpet S, is quasisymmetrically equivalent to the Julia set of
a postcritically-finite rational map.

1 Introduction

The standard square Sierpifiski carpet S, is constructed as follows. We fix an odd integer
p > 3. We start with the closed unit square Q = [0, 1]? in the plane R? and subdivide it into
p X p subsquares of sidelength 1/p. Next, we remove the interior of the middle subsquare
of this subdivision. Note that this middle subsquare is well defined since p is odd. After
this we repeat these two operations (i.e., subdividing and removing the middle subsquare)
indefinitely on the remaining subsquares. We equip the residual set of this construction with
the Euclidean metric and call it the standard square Sierpiriski p-carpet and denote it by S,.
The sets S, are all homeomorphic to each other. In general, we call a metrizable topological
space Z a Sierpiriski carpet if Z is homeomorphic to S3 (Fig. 1).

The boundary of Q and the boundaries of all the squares that were removed from Q in
the construction of S, are the so-called peripheral circles of S,. A Jordan curve J C S) is a
peripheral circle if and only if its removal from S, does not separate S,,. The boundary 0 O
of Q is called the outer peripheral circle of §,,. We denote it by O.
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Fig.1 The standard square
Sierpifiski 3-carpet S3

A homeomorphism f: X — Y between metric spaces (X, dy) and (Y, dy) is said to be
quasisymmetric or a quasisymmetry, if there exists a homeomorphism n: [0, co) — [0, c0)
such that

(@, o) _ (dm, y))
dy(f(), f@) ~ "\ dx(x,2)

for all distinct points x, y, z € X. We also say that amap f: X — Y is a quasisymmetric
embedding if the map f: X — f(X) is a quasisymmetry, where f(X) is endowed with the
restriction of the metric dy. Finally, if we want to emphasize a distortion function n, we say
that f is n-quasisymmetric.

The class of quasisymmetries contains all bi-Lipschitz maps. The composition of two
quasisymmetries (when defined) and the inverse of a quasisymmetry are quasisymmetric.
So if we call two metric spaces X and Y quasisymmetrically equivalent if there exists a
quasisymmetry f: X — Y, then we have a notion of equivalence for metric spaces.

The question of when two metric spaces are quasisymmetrically equivalent has drawn
much attention in recent years. This is motivated by questions in geometric group theory,
for example, such as Cannon’s conjecture or the Kapovich—Kleiner conjecture which can be
reduced to quasisymmetric equivalence problems (see [2] for a survey of this topic).

The main result of this paper is the following statement.

Theorem 1.1 Every quasisymmetry & : S, — Sp, p = 3 odd, is an isometry.

This improves results in [5]. There it was shown that every quasisymmetry of S3 is an
isometry [5, Theorem 1.1] and that the group of all quasisymmetries of S,, p > 5 odd, is a
finite dihedral group [5, Theorem 1.2].

The methods of [5] do not seem to give the more general conclusion of Theorem 1.1 (see
the discussion in [5, Remark 8.3]). In the present paper we do rely on the results in [5], but
for the proof of Theorem 1.1 we combine this with new ideas that were developed in [4] for
the study of quasisymmetries of Sierpifiski carpets that arise as Julia sets of postcritically-
finite rational maps. Our methods also allow us to prove other related rigidity results for
quasisymmetries. For their formulation we require some more definitions.

We consider the double P of the unit square Q, i.e., P is obtained from two identical
copies of Q glued together by identifying corresponding points on their boundaries. We refer
to P as a pillow and endow it with the unique path metric whose restriction to each of the two
copies of Q in P coincides with the Euclidean metric. We can identify one of the isometric
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copies of Q with Q itself and call it the front of P. Then Q € P. The other isometric copy
Q' of Q in P is called the back of P.

We consider S, as a subset of the front Q of P. The back Q' of P carries another isometric
copy S;, of §,,. We use the notation D), = §, U S’p for the union of these sets and equip it with
the restriction of the path metric on P. Then D), is a Sierpiniski carpet (this easily follows
from a topological characterization of Sierpifiski carpets due to Whyburn [11]). It consists
of two copies of S, glued together along the outer peripheral circle.

Our methods give the following rigidity result for D .

Theorem 1.2 Every quasisymmetry & : D,, — D, p > 3 odd, is an isometry.

The geometry of S, distinguishes its outer peripheral circle O. This is supported by the
fact that for the investigations in [5] and also for our proof of Theorem 1.1 the starting point is
the non-trivial fact that every quasisymmetry § : S, — S, has to preserve the outer peripheral
circle O as a set, i.e., §(0) = O. In contrast, the Sierpiniski carpet D, does not carry such a
distinguished peripheral circle; this makes the rigidity result given by Theorem 1.2 somewhat
more surprising.

To formulate our last result, we have to briefly review some standard facts from complex
dynamics (see [1] for general background). Let f: C— Cbea map on the Riemann sphere
C.Forn € N, we denote by

f"=fo-of

———
n factors

the n-th iterate of f. It is convenient to set f 0 = idg, where idg is the identity map on C.

Now suppose that f: C— Cisa rational map of degree > 2. Then the Fatou set of f,
denoted by F(f), is the set of all points in C that have neighborhoods where the sequence
{f"}nen of iterates of f is a normal family. The complement of F(f) in C is called the Julia
set of f and denoted by [J(f). It is a standard fact that 7 (f) is a non-empty compact set
that is completely invariant under f, i.e., f‘l(Aj(f)) =J(f)= f(T).

The critical set of f consists of all points in C near which f is not alocal homeomorphism.
This is a finite subset of C. The postcritical set

J1/"(©) : ¢ € C critical point of f}
neN

of f consists of all forward iterates of critical points. A rational map f is said to be
postcritically-finite if its postcritical set is finite.

In [4] it was shown that every quasisymmetry between two Sierpinski carpets that arise as
Julia sets of postcritically-finite rational maps is a M6bius transformation (i.e., a fractional
linear or conjugate fractional linear map on the Riemann sphere C). It is a natural question
whether any of the carpets S, or D, can be quasisymmetrically equivalent to such a Julia
set. The following statement shows that this is never the case.

Theorem 1.3 No Sierpiriski carpet S), or D, p > 3 odd, is quasisymmetrically equivalent
to the Julia set [7(g) of a postcritically-finite rational map g.

Even though there is only one topological type of Sierpinski carpets [11], Theorem 1.3
shows that standard square carpets and Julia sets of postcritically-finite rational maps are in
different quasisymmetric equivalence classes.

By the authors’ earlier work [5] the carpets S;, and S, for different odd integers p and g
are never quasisymmetrically equivalent. In [10], the second author proved that a Sierpiniski
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carpet that arises as the boundary at infinity of a torsion-free hyperbolic group cannot be
quasisymmetrically equivalent to a standard carpet S, or the Julia set of a rational map.
Moreover, in [4] it was shown that no Sierpinski carpet Julia set of a postcritically-finite
rational map is quasisymmetrically equivalent to the limit set of a Kleinian group.

To summarize, these results tell us that there are at least three quasisymmetrically distinct
classes or “universes” of Sierpifiski carpets: standard square carpets, boundaries at infinity
of hyperbolic groups (or limit sets of Kleinian groups), and Julia sets of postcritically-finite
rational maps. Moreover, even within these universes one often encounters infinitely many
quasisymmetric equivalence classes.

Before we go into the details, we will discuss some of the ideas that are used in the
proofs of the main results. Our main observation is that a quasisymmetry §: D, — D, as
in Theorem 1.2 is related to the dynamics of a Lattés map 7 (depending on p) that is defined
on the pillow P and leaves the Sierpinski carpet D, forward-invariant. More precisely, we
have a relation of the form

T" ot =T'oEoTk (1.1)

with (arbitrarily large) k, £, m € N (see Proposition 5.1). Once (1.1) is established, the
proofs of Theorems 1.1 and 1.2 are completed by carefully analyzing the implications for
the mapping behavior of & in combination with known results from [5]. For the proof of
Theorem 1.3 one derives similar dynamical relations for a quasisymmetry & of D), or S,
onto the Julia set 7 (g) of a postcritically-finite rational map g (see (7.5) and (7.8)) which
ultimately lead to a contradiction.

In order to establish (1.1), we rely on a dynamical “blow down-blow up” procedure very
similar to the one used in [4]. This is combined with a uniformization result for Sierpiriski
carpets proved by the first author [3] and rigidity results for Schottky maps established by
the second author [8,9].

The paper is organized as follows. In Sect. 2 we introduce the Latteés map 7 mentioned
above and some geometric facts related to the dynamics of 7. Section 3 is devoted to the
resolution of some technicalities that are ultimately caused by the lack of backward invariance
of D), under T'. This relies on the concept of an admissible map that is introduced and studied
in this section. In Sect. 4 we review the necessary background from the theory of Schottky
maps and the required rigidity results (in particular, Theorems 4.2 and 4.3 ). In Sect. 5 we
prove Proposition 5.1 that provides the crucial relation (1.1). The proof of Theorems 1.1, 1.2
and 1.3 are then given in the two subsequent sections.

Our arguments heavily rely on previous results obtained in [3-5,8,9]. A detailed knowledge
of these works is not necessary for the reader of the present paper, because we will review all
the relevant facts. It may be helpful for the reader though to take a more careful look at [4,
Section 8], because our arguments in Sect. 5 and part of the proof of Theorem 1.3 (leading
to (7.5) and (7.8)) are very similar to the reasoning there.

2 The Lattés map T

Throughout this paper p > 3is a fixed odd integer. Our pillow P as defined in the introduction
is equipped with a path metric that agrees with the Euclidean metric on the front Q and on the
back Q' of P. In the following, all metric notions related to P will be based on this metric.
The pillow P is an (abstract) polyhedral surface and so it carries a natural conformal structure
making it conformally equivalent to the Riemann sphere. On the subsquare [0, 1/p]? of the
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front Q = [0, 11> of P, we consider the map z € [0, 1/p]> — pz € Q. By Schwarz
reflection this naturally extends to a map 7: P — P. Note that this extension of 7 to all
of P using Schwarz reflection is possible, because in the obvious subdivision of P into 2 p?
subsquares of equal size, each corner of every subsquare is common to an even number of
subsquares in the subdivision. Of course, T depends on p, but we suppress this from our
notation.

With the conformal structure on P, the map 7" is holomorphic. By the uniformization
theorem there is a conformal map of P onto C. Under such a conformal identification P = C,
the map T is a rational map on (C, a so-called Lattes map (see [6, Chapter 3] for a detailed
discussion of Lattes maps from this point of view). Note that T(D,) = D), ie., D, is
forward invariant under 7', but clearly not backward invariant.

Let n € Ny. Then each of the two faces Q and Q’ of the pillow P is in a natural way
subdivided into p?" squares of side length p~". We call a square obtained in this way from
the subdivision of Q or Q’ a tile of level n or simply an n-tile. So there are 2 p>" tiles of level
n. Similarly, we call the sides of these n-tiles the n-edges and their corners the n-vertices
(this terminology is motivated by the language in [6, Section 5.3]).

On each n-tile X" the iterate 7" behaves like a similarity map and sends X" homeo-
morphically to either Q or Q’. Here and elsewhere we use the convention that 79 denotes
the identity map on P. We assign the color white or black to the n-tile X" as follows: if
T"(X") = Q, then we assign to X" the color white, and if 7" (X") = Q’ the color black.
Colors on n-tiles alternate so that two n-tiles sharing a side have different colors. Therefore,
the n-tiles form a checkerboard tiling of P (as defined in [6, Section 5.3]).

More generally, if k, n € Np, and X n+k is an (n + k)-tile, then 7" is a homeomorphism
of X"** onto the k-tile X* := T (X"**). Moreover, T" is color-preserving in the sense that
X"tk and X* have the same color.

In general, an inverse branch T™" for n € Ny is a right inverse of 7" defined on some
subset of P. In this paper, we will consider very specific inverse branches defined on Q. To
define them, let ¢ := (0, 0) € Q be the lower left corner of Q. Then Z" = [0, 1/p"]2 is the
unique n-tile Z" with ¢ € Z" € Q and T" sends Z" homeomorphically onto Q. We define
T~ := (T"|Z") " and so T™": Q — Z" is the unique map such that 7" o T~" is the
identity on Q.

If k, n € Ny, then with these definitions we have T~"1% = 7= o T—% and, if n > k in
addition, 7" % o T=" = T—*, This latter consistency condition for inverse branches will be
important in Sect. 5 (see (5.2)).

For some n-tiles X" the interior int(X") is disjoint from D, because int(X") falls into
one of the sets that were removed from Q or Q' in the construction of S, and S;. We call
an n-tile X" good if int(X") N D, # (. There are precisely 2(p? — 1™ good n-tiles. It
follows from the self-similar construction of S, that if X" is a good white or black n-tile,
then D, N X" is a scaled copy of S,,. Moreover, then 7" is a homeomorphism of D, N X"
onto S, or §7,, respectively.

The inverse branches 7" defined above preserve the color of a tile. Moreover, 7"
induces a bijection between the good subtiles of Q and the good subtiles of Z" = T " (Q).
So in particular, if k € Ny and Xk C Qs ak-tile, then X"tF := T7"(X¥*) is an (n + k)-tile
with the same color as X*. Moreover, X is a good tile if and only if X" is.

As before, we denote by O the boundary of Q and consider it as subset of the pillow P.
Then O = Q N Q' C P. For each side ¢ of O, i.e., for each 0-edge ¢, we have

T(e) =e. 2.1)
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This is clearly true for the two sides of Q that contain the origin ¢ = (0, 0) (i.e., the lower
left corner of O C P). Itis also true for the two other sides of Q since p is odd. The identity
(2.1) implies that

T(0)=0. 2.2)

The middle peripheral circle M of S, C P is the boundary of the subsquare of Q that is
removed in the first stage of the construction of §,; this is the only peripheral circle of S},
other than the outer peripheral circle O that is invariant under the isometries of the square
Q. Similarly, we denote by M’ C P the corresponding peripheral circle of the back copy S;,.
Then we have

T(M)=TM") = 0. (2.3)

We will now establish a geometric fact about quasisymmetries and tiles that will be used
later (see Lemma 2.2). First, we prove an auxiliary result. In both of the following lemmas
and their proofs p € N, p > 3 odd, is fixed.

All metric notions refer to the piecewise Euclidean metric on P discussed above. We use
dist(x, y) to indicate the distance of two points x, y € P with respect to this metric. We
denote by B(a,r) = {x € P : dist(a, x) < r} the open ball of radius » > 0 centered at
ae P.IfA, B C P, welet

diam(A) = sup{dist(x, y) : x,y € A}
be the diameter of A, and
dist(A, B) = inf{dist(x, y) :x € A, y € B}
be the distance of A and B. If x € P, we set dist(x, A) = dist({x}, A).

Lemma2.1 Let m,¢ € No, £ > 1, v € P be an m-vertex, K be the union of all m-edges
that meet v, and 2 be the interior of the union of all (m + £)-tiles that meet K. Then Q is
a simply connected region that contains the open p~"+9 -neighborhood of K, but does not
contain any ball of radius r > /2 - p~"+0,

Proof Note that unless v is a corner of P, the set K forms a “cross” (possibly “folded” if
vedQ =0aQ"). If visacorner of P, then K consists of two line segments of length p~™
meeting perpendicularly at the common endpoint v.

Obviously, K is contained in Q2. Moreover, €2 is connected, because two arbitrary points
X,y € 2 can be joined by a path in 2 as follows. There exist (m + €)-tiles X and Y with
xeX,yeY,XNK #@,and Y N K # (. Then one runs from x to a pointin x’ € X N K
along a path in X N 2, from x” along a path in K € Q to a pointin y’ € ¥ N K, and finally
from y’ to y along a path in ¥ N 2. This shows that €2 is a region.

The region €2 is simply connected, i.e., a contractible space, because €2 can be retracted
to K € Q and K is contractible.

Let x € K be arbitrary. Then there exists an (m + £)-edge e C K such that x € e. There
are at most six (m + £)-tiles that have one of the endpoints of e as a corner. The union of these
tiles is a set whose interior is contained in €2 and contains the ball B(x, p~*9). Hence
B(x, p~"*+9) C Q which implies that § contains the open p~"" 9 neighborhood of K.

Finally, every point x € 2 is contained in an (m + £)-tile X that meets K. Every such tile
X contains a corner y ¢ 2. For the distance of x and y we have dist(x, y) < /2 - p~ 0,
This implies that £ cannot contain any ball of radius r > /2 - p~™+0), O
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Lemma2.2 Let&: P — P beaquasisymmetry with&(Dp) C D). Then there exist numbers
ro, N € No and C > 1 with the following properties: if n € No withn > N and X C P
is a good n-tile, then there exist a good (n + ro)-tile Y C X and a good m-tile Z for some
m € N such that E(Y) C Z and

ép"" <diam(§(Y)) < Cp™™. (2.4)

If A and B are two quantities, then we write A < B if there exists a constant C > 1
only depending on some ambient parameters such that A/C < B < CA. Similarly, we write
A< BorBZ Aif A <CB.

Then (2.4) can be written as diam(£(Y)) =< p~™™ x diam(Z), where the implicit multi-
plicative constants are independent of the initial choice of the tile X. So Lemma 2.2 says that
£(Y) lies in a good m-tile Z of comparable size with constants of comparability independent
of X. In general, one cannot guarantee that the set £ (X) itself lies in a good tile of comparable
size.

Proof Let X be a good n-tile, where n € Ny. Since & is a quasisymmetry, the image &(X) is
a “quasi-ball”. So if x| is the center of the square X, then £(x;) has a distance to the Jordan
curve J := £(0X) that is comparable to diam(J). Similarly, there exists a point x, € P\X
(for example, for x, we can take the center of the face of P on the opposite side of X) such
that dist(& (x2), J) 2 diam(J), i.e., we have dist(§(x2), J) > diam(J)/C for some constant
C > 1 that depends only on &. Let y; = &(x;) fori = 1, 2. Then y; and y; lie in different
components of P\J. Moreover, there exists a constant § > 0 independent of n and X such
that dist(y;, J) > édiam(J). This shows that each of the two complementary components
of J in P contains a ball of radius r := § diam(J).

Uniform continuity of £ implies that there exists N € Ny that depends only on & such that
if n > N, then diam(J) < 1/3. In this case, we can choose the largest number m € Ny such
that diam(J) < %p_’”. Then %p_(’"“) < diam(J) < %p"”, and so diam(J) =< p~". We
can choose ¢ € N only depending on § (and independent of X) such that » = § diam(J) >
V2 - p~m+H By choice of 8, each of the two complementary components of J contains a
ball of radius r > /2 - p~ "+,

Claim. Let E € P denote the union of all m-edges. Then there exists a point a € J such
that dist(a, E) > € := p~"+0,

In order to prove the claim, we argue by contradiction and assume that there is no such
point. Then J is contained in the open e-neighborhood of E. In particular, there exists an
m-edge e such that dist(e, J) < €.

If e; and e, are two disjoint m-edges, then the connected set J cannot be e-close to both of
them. Indeed, if this were the case, then it follows from dist(eq, e2) > p™", € < p’(’"“) <
%p_’" and diam(J) < %p_m that

§p7" > diam(J) > dist(er, ) —2¢ = p .
This is a contradiction.

Since J cannot be e-close to two disjoint m-edges, one of the endpoints v of e, which is
an m-vertex, has the following property: if K is the set of all m-edges that meet v, then J is
contained in the open e-neighborhood of K. In particular, the Jordan curve J is contained in
the simply connected region €2 as defined in Lemma 2.1 for the m-vertex v and our choice
of £.

Then one of the two complementary components U of J is also contained in €2, because
Q2 is simply connected. This is a contradiction, because U contains a ball of radius r =
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S diam(J) > V2. p’(’"%) by what we have seen above, while & 2 U contains no such ball
by Lemma 2.1. The Claim follows.

Since £ is a quasisymmetry, we can choose ry € Ny sufficiently large independent of X
with the following property: if Y is any (n + ro)-tile with Y € X and Y N9 X # ¢, then

diam(£(Y)) < p~“ diam(£(3X)) = p~“ diam(J) < {p~"F0.

Note that these tiles Y are lined up along the boundary of X and cover 9 X. Each such tile Y
is a good tile, because X is a good tile.

Therefore, we can choose such a tile Y so that £(Y) contains a point @ € J with
dist(a, E) > p~*9 as provided by the Claim. Then

dist(¢(Y), E) = dist(a, E) — diam(§(Y)) = p~""+9 — 1 p= "0 > 0,

and so £(Y') does not meet the union E of all m-edges. Since £(Y) is a connected set, it must be
contained in the interior of an m-tile, because these interiors are precisely the complementary
components of E. In particular, there exists an m-tile Z such that £(Y) € Z. Since Y is a
good tile, there exists a point b € int(Y) N D). Then

E(b) € E(int(Y)) NE(D,) € int(Z) N D,

This implies that Z is a good tile.
Since ry is fixed and independent of X, the fact that £ is a quasisymmetry implies that

diam(£(Y)) =< diam(J) < p~"

with implicit multiplicative constants independent of X and Y. It follows that we can find
a suitable constant C > 1 independent of X such that inequality (2.4) is always valid. The
statement follows. O

3 Admissible maps

In order to prove Theorems 1.1 and 1.2 , we want to establish a relation between a given
quasisymmetry & : D, — D, and our Lattes map T (see Proposition 5.1). This relation can
be obtained by arguments similar to [4] relying on rigidity statements for Schottky maps.
These Schottky maps are obtained after a quasisymmetric uniformization of D), by a round
Sierpinski carpet, i.e., a Sierpiiski carpet in C all of whose peripheral circles are geometric
circles. We will discuss the necessary results in Sect. 4.

Unfortunately, there are some technicalities that are essentially due to the lack of backward
invariance of D, under T (see [4, Lemma 6.1], where a related statement relied on backward
invariance). To work around this problem, we introduce in this section the ad hoc notion of
an admissible map. We will prove several statements about these maps that will allow us to
apply the results on Schottky maps. We now present the details.

Let S2 be a topological 2-sphere. We think of it as equipped with an orientation and a
metric d. Subsets of $2 will carry the restriction of d, and so it makes sense to speak of
quasisymmetries between such sets. In our applications, S* will be the pillow P equipped
with the piecewise Euclidean metric described earlier or the Riemann sphere C equipped
with the chordal metric.

Let Z C S?beasetand f: U — S*be amap definedonaset U C 2. We say thatx € Z
is a good point for f and Z if the following condition is true: there exists an (open) Jordan
region V C S? with x € V such that f is defined on V, the set W = f(V) is also a Jordan
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region, and f|V: V — W is an orientation-preserving quasisymmetric homeomorphism
with f(V NZ) = W N Z. In particular, f is then a homeomorphism of V N Z onto W N Z.

Let Z C S2 be a Sierpiriski carpet, and f: S — S be a branched covering map (for the
definition of a branched covering map and more background on this topic see [6, Chapter 2]).
We say that f is admissible for the given Sierpifiski carpet Z if f(Z) € Z and if there exists
aset E C Z that is contained in a union of a finite set and finitely many peripheral circles
of Z such that each point x € Z\E is a good point for f and Z. We call E an exceptional
set for f and Z. Note that E is not necessarily the complement in Z of all good points, but
it contains this complement.

Lemma3.1 Let Z C Cbhea Sierpiriski carpet, and f - C— Cbhea quasiregular map with
f~Y2Z) = Z. Then f is an admissible map for Z.

For the definition of a quasiregular map and some related facts in a similar context see [4,
Section 2]. The lemma implies that if f: C — Cis a rational map and its Julia set J(f) is
a Sierpinski carpet, then f is admissible for J( f).

Proof The statement follows from [4, Lemma 6.1] and its proof. The considerations there
imply that each point in Z distinct from the finitely many critical points of f is a good point
for f and Z. In particular, f is an admissible map for Z. O

Lemma 3.2 The Lattes map T : P — P is admissible for D .

Proof We know that T is a branched covering map and that 7(D,) € D,. So we have to
find an exceptional set for 7" and the Sierpifiski carpet D,,.

Recall that M denotes the middle peripheral circle of S,, and M’ the corresponding
peripheral circle in the back copy S ;7. Let F be the finite set consisting of all 1-vertices, i.e.,
the corners of all squares that arise in the natural subdivision of Q and Q’ into squares of side
length 1/p. Then F contains all critical points of 7' (and actually four non-critical points of
T, namely the four corners of P).

We claim that £ := F U M U M’ is an exceptional set for 7 and D,. To see this, let
x € Dp\E be arbitrary. We want to show that x is a good point for T and D,. There exists
a good 1-tile X with x € X. We will assume that X is white (if X is black, the argument is
completely analogous). We now consider two cases.

Case 1: x € int(X). Since X is white, 7'| X is a homeomorphism from X to Q. Actually,
T|X is a quasisymmetry, because on X the map behaves like a similarity scaling distances by
the factor p. Then U = int(X) and V = int(Q) are Jordan regions and 7 is quasisymmetry
from U onto V. Since X is a good 1-tile, we also have T (X N D,) = QO N D, which implies
that 7(U N D,) = V N D,. Hence x is a good point for 7" and D,,.

Case 2: x € 3X. Since x does not lie in £ D F, this point belongs to the boundary of X,
but is not a corner of the square X. Hence there exists a unique side e € X of X withx € e.
Moreover, since x ¢ E 2 M U M’, the side e is not contained in M U M'. Hence there exists
a unique good 1-tile Y # X that shares the side e with X. Since X is white, Y is black. Let
int(e) be the set of interior points of the closed arc e, i.e., e with its two endpoints removed.
Then x € int(e). Moreover,

U’ :=int(X) Uint(e) U int(Y)

is a simply connected region with x € U’ that is mapped by T homeomorphically onto the
simply connected region

= int(Q) U int(e) U int(Q").
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Here ¢ := T'(e) is a common side of Q and Q'. We have T(U’' N D,) = V' N D, because
X and Y are good 1-tiles. Moreover, T'|U’ scales lengths of paths in U’ by the factor p, i.e.,

length(T o y) = p - length(y),

whenever y is a path in U’. The metric on P is a geodesic metric. So these considerations
imply that if » > 0 is sufficiently small, then the open ball U := B(x, r) is a Jordan region
contained in U’ and T is a quasisymmetry of U onto the Jordan region V := B(T (x), pr)
such that T(U N Dp) = V N D). Hence x is a good point for 7 and D,.

Since Cases 1 and 2 exhaust all possibilities, every point x € D\ E is a good point for T
and D,. The statement follows. O

Lemma3.3 Ler f: S> — S? be a branched covering map that is an admissible map for the
Sierpiriski carpet Z C S, and let J C Z be a peripheral circle of Z. Then f~(J) N Z is
contained in a union of finitely many peripheral circles of Z.

This implies that if £ € Z is an exceptional set for f and Z, then the set f -1 (EyNZis
contained in a union of a finite set and finitely many peripheral circles of Z.

Proof Let A C Z be the union of all peripheral circles of Z. Then A consist precisely of
those points in Z that are accessible by a (half-open) path contained in the complement of Z.
This characterization of the points in A together with the definition of a good point implies
that if x € Z is a good point for f and Z, then x € A if and only if f(x) € A.

We also need the following topological fact: if K is a non-degenerate continuum (i.e., a
compact connected set consisting of more than one point) and if K meets a point in Z\ A or
two distinct peripheral circles of Z, then K N (Z\ A) is an uncountable set. To see this, we
collapse the closure of each complementary component of Z to a point. Then by Moore’s
theorem (see [6, Theorem 13.8]) the quotient space obtained in this way is also a topological
2-sphere. The image K’ of K under the quotient map is also a compact and connected set. The
assumptions on K imply that K’ contains more than one point, and is hence a non-degenerate
continuum. Therefore, K’ is an uncountable set. In particular, K’ contains uncountably many
points distinct from the countably many points obtained by collapsing the complementary
components of Z. It follows that K N (Z\ A) is uncountable, as desired.

Now let K be a connected component of f~'(J). Then f(K) = J (this follows from a
general fact for open and continuous maps—see [6, Lemma 13.13]; since J is a Jordan curve,
one can also give a simple direct argument based on path lifting). Since f is finite-to-one,
it follows that there are only finitely many such components K of f~!(J). Each of these
components K is a non-degenerate continuum.

Let x € Z\A be a good point of f and Z. Then f(x) € Z\A € Z\J by what we have
seen in the beginning of the proof. In particular, x ¢ K € f~!(J). Since every point in Z\ A
is a good point with finitely many exceptions, the set K N (Z\A) is finite. But then actually
K N (Z\A) = @, because otherwise K N (Z\A) would be uncountable. So K N Z C A. This
implies that K N Z is contained in a single peripheral circle of Z (or is empty), because if
K N Z met two distinct peripheral circles, then K N (Z\A) would again be an uncountable
set.

We have seen that the intersection of each of the finitely many components of f~!(J)
with Z lies in a single peripheral circle of Z. The statement follows. O

Lemma3.4 Ler f,g: S — S2 be two branched covering maps that are admissible maps
for the Sierpiriski carpet Z C S*. Then f o g is also admissible for Z.
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Proof As a composition of two branched covering maps, 7 := f o g is also a branched
covering map on S 2 Moreover, we have h(Z) C Z.

Let E be an exceptional set for f (and Z, the relevant Sierpinski carpet for all maps in
this proof), and E’ be an exceptional set for g. Then by the remark after Lemma 3.3 we know
that f~1(E) N Z is contained in a union of a finite set and finitely many peripheral circles of
Z. The same is then true for (E' U f~1(E)) N Z. So to finish the proof, it is enough to show
that each point x € Z\(E’ U f~!(E)) is a good point for .

By our assumptions x € Z\ E’ is a good point for g, and y := g(x) € Z\E is a good point
for f. By possibly shrinking the regions in the definition of a good point if necessary, we can
find Jordan regions U, V, W C S? with the following properties: x € U and y € V, the map
g is a quasisymmetry from U onto V, the map f is a quasisymmetry from V onto W, and
wehave g(UNZ)=VNZand f(VNZ)=WNZ.Then h = f o g is a quasisymmetry
from U onto W and h(U N Z) = W N Z. This show that x is a good point for /, as desired. O

Lemma3.5 Letk,n € Ngand&: P — P be a quasisymmetry with (D) = D,,. Then the
map f =& oT" 0 & o T* is admissible for D,.

Note that if the homeomorphism & reverses orientation, then it is not a branched covering
map according to the definition given in [6, Section 2.1]. Conjugation by £ still preserves the
class of branched covering maps.

Proof 1t s clear that f is a branched covering map with f(D,) € D,. Moreover, it follows
from Lemma 3.2 and repeated application of Lemma 3.4 that the maps 7" and T* are
admissible for D, It is also clear that conjugation of 7" by & leads to a branched covering
map £~ ! o T" o & that is admissible for D p» because & induces a bijection on the peripheral
circles of D). The statement now follows from another application of Lemma 3.4. O

4 Schottky maps

A relative Schottky set S in a region D C C is a subset of D whose complement in D is a
union of open geometric disks whose closures are contained in D and are pairwise disjoint.
The boundaries of these disks are called the peripheral circles of S. A relative Schottky set
in D = C is called a Schottky set. R N

Let S be a relative Schottky set and U € C be an open set. Amap f: UNS — Cis
called conformal at a point zg € U N S if the derivative of f at z,

fl(zo)=  lim S @) = f(z0)

zeUNS, z—20 Z—20

exists and is non-zero. If zg = oo or f(z¢9) = 00, one has to interpret this in suitable charts on
C. In order to avoid this technicality, in the following we will only consider relative Schottky
sets S that do not contain oo and so S C C.

Let S, S C C be two relative Schottky sets, U C C be an openset,and f: UNS — S
be a local homeomorphism. Such a map f is called a Schottky map if it is conformal at every
point of U N § and its derivative is a continuous function on U N S.

Under some mild additional assumptions quasisymmetries on relative Schottky sets are
Schottky maps. More precisely, the following statement is true.

Theorem 4.1 Let § < C be a relative Schottky set of measure zero in a region D < C.
Suppose U C Cis open and f: U — C is a continuous map with f(U N S) C S such that
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each point x € U N S is a good point for f and S. Then fIlUNS: UNS — S is a Schottky
map.

Proof A special case of this statement immediately follows from [8, Theorem 1.2]. Namely,
if U € C is a Jordan region with partial 9U C S and f is an orientation-preserving qua-
sisymmetry from U onto f(U) with f(UNS) = f(U)N S,then fIUNS: UNS — Sis
a Schottky map.

In the general case, it is enough to show that f|U N S is a Schottky map locally near each
point x € U N S. We can reduce this to the special case, because x is a good point for f and
S. The details of the argument are very similar to the proof of Lemma 6.1 in [4] and so we
will only give an outline.

By our assumptions for each x € U N S we can find Jordan regions V, W C C with
x € V C U such that f|V is an orientation-preserving quasisymmetry of V onto W with
f(VvNS)=WwWnS.Wewould be done if 3V C S.

Now, if x does not lie on a peripheral circle, then one can shrink V suitably sothatdV < §
(see the proof of Lemma 6.1 in [4] for the details).

For the remaining case, suppose x lies on a peripheral circle of S. Then x € 9B C S,
where B is one of the complementary disks of S in D. Then one doubles the Schottky set S
by reflection in C = 9 B to obtain a new Schottky set S that does not have C as a peripheral
circle. By a Schwarz reflection procedure one modifies the map f in B to obtain a map f that
agrees with f in the complement of B near x. One can then find Jordan regions V, W € C
suchthatx € V,3V € S, and fis an orientation-preserving quasisymmetry from V onto W
with f vn §) = WNS. This implies that f is a Schottky map V N S—&. By construction
f and fagree onVNS=((Vn §)\B and map this set into S. Hence f|U N S is a Schottky
map into S near x € V N S, as desired. m]

We require the following stabilization result.

Theorem 4.2 Let S C C be a locally porous relative Schottky set, a € S, U C C be an open
neighborhood of a such that U N S is connected, and u: U NS — S be a Schottky map
with u(a) = a that is not equal to the identity on un S. Forn €e Nleth,: UNS — §
be a Schottky map such that for some open set U, € C the map h,: UNS — U, NS isa
homeomorphism.

Suppose the sequence {h,} converges locally uniformly on U N S to a homeomorphism
h:UNS—UN S, where U C Cisan open set. Then there exists N € N such that h, = h
onUN S foralln > N.

This is a version of [9, Theorem 5.2] formulated in a way that will be convenient for our
applications. Note that our assumption on u implies u’(a) # 1 by [9, Theorem 4.1]. The
existence of such a map u is a strong requirement on the geometry of the relative Schottky
set S and intuitively says that S admits a non-trivial “self-similarity” u locally near a.

It does not make a difference whether one allows the open sets U, U, U to contain the
point co € C (as in our formulation) or requires them to be subsets of C (as in [9]), because
oo ¢ S and so we can always delete co from these open sets.

We refer the reader to [9] for the definition of local porosity. It is easy to check that the
condition of local porosity is satisfied by S, and D, and is invariant under quasisymmetric
maps.

We also need the following uniqueness result [9, Corollary 4.2].
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Theorem 4.3 Let S C C be a locally porous relative Schottky set, and U C C be an open set
such that U N S is connected. Suppose f, g: U NS — S are Schottky maps, and consider

A={xeUNS: f(x) =gk}
If A has a limit pointin U N S, then A=U N S and so f = g.
We can apply these results in our context due to the following fact.

Lemma 4.4 There exists a quasisymmetry f: P — C such that S := B(Dp) is a locally
porous Schottky set contained in C and U = B(int(Q)) is a bounded Jordan region in C
such that U N S is connected. Moreover, there exist a point a € U N S and a Schottky map
u: UNS — S such that u(a) = a and u is not the identity on U N S.

Proof We use the following uniformization theorem proved in [3] (where the terminology
is also explained): if Z C Cisa Sierpifiski carpet whose peripheral circles are uniformly
relatively separated uniform quasicircles, then there exists a quasisymmetry f : C — Csuch
that B(Z) C Cis a round Sierpiriski carpet, i.e., a Sierpifiski carpet whose peripheral circles
are geometric circles (see [3, Corollary 1.2]). Since P is bi-Lipschitz equivalent to C and our
Sierpiriski carpet D), has peripheral circles that are uniform quasicircles and are uniformly
relatively separated, we can apply this statement and obtain a quasisymmetry §: P — C
such that S := B(D)) C Cis around Sierpiriski carpet. By postcomposing B with a Mobius
transformation if necessary, we may assume that § is orientation-preserving, S € C and
that U = B(int(Q)) is a bounded Jordan region in C. Then S is a Schottky set. It is locally
porous, because D), is a locally porous subset of P and this property is preserved under
quasisymmetries. In particular, S is a set of measure zero.
The set

UnS=pGnt(Q)) NB(Dy) = p(int(Q) N D) = B(S,\0)

is connected as a continuous image of the connected set S,\ 0.
To find a point a and a map u with the desired properties, we consider o = (1/(p +
),1/(p+1)) € Q € P.Theno € S,\0. Indeed, the identity

v r-!
p+l ZQ(k+1)

shows that the p-ary expansion of 1/(p + 1) has only coefficients 0 and p — 1, and thus o
belongs to the direct product Cj, x C),, where C), is a Cantor set constructed similarly to the
standard Cantor set, but instead of subdividing [0, 1] into three equal parts, we subdivide it
into p equal parts, remove the interior of the middle part (which is well defined because p is
assumed to be odd), and continue in the usual self-similar way. Now C,, x C), is a subset of
Sp, which implies that o € §),. Clearly, o does not belong to O, and so o € S,\ 0.

Actually, o is contained in the interior of the 2-tile X := [(p — 1)/p?, 1/p]>. This is a
good 2-tile and T is an orientation-preserving quasisymmetry from int(X) onto int(Q) with
T2(int(X) N D,) = int(Q) N D, = §,\ 0. The inverse map is an orientation-preserving
quasisymmetry v: int(Q) — int(X) with v(S,\0) = int(X) N D). We have T2(6) = o
(essentially, this follows from pz/(p +1)=1/(p+1) mod 2),andsov(o) =o0.

We now define a := B(c) € B(S,\0) = U N S, and consider the map ¥ := fovo B!
defined on U = B(int(Q)). Then ¥ is an orientation-preserving quasisymmetry of U onto
the open set u(U) = B(int(X)) with

AU NS) =H(B(S,\0)) = Bint(X) N D,) = Bint(X)) NS = &(WU) N S.
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Theorem 4.1 implies that u := #|U NS isa Schottky mapu: UNS — S.Moreover,u(a) = a
and u is not the identity on S. O

Corollary 4.5 Let B: P — C be the quasisymmetry from Lemma 4.4 with § = B(D,), and
f.g: P — P beadmissible maps for D . Define

fi=Bofop™!, Ti=pogopl.

Then there exists a region U C such that U N S is a connected set that is dense in S and

~

f,g: UNS — S are Schottky maps.

So if we conjugate the admissible maps f and g for D, by the uniformizing map S, then
we obtain Schottky maps at least on the large part U N S of S.

Proof Since f and g are admissible for D, the maps f and g are admissible for the Sierpiriski
carpet S = B(D,) € C. This implies that there exist a finite set ' C S and finitely many

periRheral circles Ji, ..., Jy of S such that E := F U J; U---U Jy is an exceptional set
fgr f andfor g. Let Dy, ..., Dy be the closures of the complementary components of S (in
C) bounded by Ji, ..., Ju, respectively. Since S € C, we may assume that co € D;. Then

U:=C\(FUD;U---UDy)

is aregion in C. The set U N § = S\E is connected and dense in S (the quickest way to see
this is again by an argument as in the proof of Lemma 3.3 based on Moore’s theorem—we
leave the details to the reader). Note that f (8),2(S) € S and each pointin U N § = S\E
is a good point for the maps )7 and g and the set S. Theorem 4.1 implies that f and g are
Schottky maps U N S — S. O

Corollary 4.6 Let f,g: P — P be admissible maps for D . If there exists a non-empty set
A C D), that is relatively open in D, such that f = g on A, then f = g on D).

Proof 1f 8 is the map from Lemma 4.4 and U is as in Corollary 4.5, then A’ := U N B(A) is
a non-empty and relatively open setin U N S, where § = B(D),). In particular, A" has a limit
point in U N S, and the Schottky maps f, 2: UNS — S as defined in Corollary 4.5 agree
on A’. It follows from Theorem 4.3 that f and g agree on U N S and hence on S, because
U N Sisdensein S. Thus f = g on ﬁ_](S)=Dp. O

5 Relation to Lattés maps

We now want to prove a crucial relation between an arbitrary quasisymmetry §: D, — D,
and our Lattes map T (recall that the odd integer p > 3 is fixed).

Proposition 5.1 Let £: D, — D, be a quasisymmetry. Then for each N € N there exist
k,€,m € Nwithk,{,m > N such that

T" ot =T'oEoTk (5.1)
on Dp.

In other words, (5.1) holds with arbitrarily large &, £, and m. The proof of this proposition
will occupy the rest of this section. The main ideas for establishing the relation (5.1) are
related to those for the proof of the similar relation (1.2) in [4].
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Let&: D, — D, be the given quasisymmetry. Then it has a (non-unique) extension to
a quasisymmetry £: P — P. This follows from [3, Proposition 5.1] (see also [4, Theorem
1.11]); here it is important that P is bi-Lipschitz equivalent to C equipped with the chordal
metric and that every quasiconformal map F: C — C is a quasisymmetry.

In order to prove (5.1), we may assume that this extension £ is orientation-preserving,
because otherwise we consider the homeomorphism £P>P given by & = Roé&, where
R: P — P is the involution on the pillow P that interchanges corresponding points on the
front and back of P. Since R is an orientation-reversing isometry on P with R(Dp) = Dp,
the map £ is also a quasisymmetry on P with E(Dp) = D), and it will be orientation-
preserving if & reverses orientation. Moreover, if we have a relatlon as in (5.1) for S then a
corresponding relation for £ with the same numbers k, £, m immediately follows from the
identity R o T = T o R. So in the following we may assume that the extension £: P — P
of the quasisymmetry in Proposition 5.1 is orientation-preserving.

We consider the pointc = (0, 0) € S, € D), (i.e., the lower left corner of D). We choose
a nested sequence of tiles X;, n € N, of strictly increasing levels k, € Ng with X,, € Q
and ¢ € X,,. Then each X, is a good tile. There exists a unique branch 7% on Q such that
T~*1(Q) = X,,. These branches T % are consistent in the sense that

T_kn — TknJrl_kn o T_kn+l (52)

for n € N. This consistency relation is preserved if we replace the original sequence of tiles
{X,} (and the corresponding sequence of branches {7 ~%»}) by a subsequence as we will do
in the ensuing argument.

If k; is sufficiently large, as we may assume, Lemma 2.2 guarantees that for eachn € N
we can find a good (k, + ro)-tile ¥, € X, and a good tile Z, with £(Y,) € Z, and
diam(&(Y,)) =< diam(Z,). Here ro € Ny and the comparability constant are independent of
n. Foreachn € N, let Y/ := T* (Y,). Then Y, C Q is a good tile of level o such that
Tk (Y!) = Y,. Since there are only finitely many ro-tiles, we may assume, by passing to
a subsequence of the original sequence {X,,} if necessary, that the tiles ¥, are all equal to
the same good rp-tile Y. We can find an orientation-preserving scaling map ¢: Q — Y that
maps Q onto Y.

Let ¢, € Ny be the level of Z,,. Then T%|Z, is a scaling map on Z,, that sends Z, to the
front Q or the back Q' of P depending on whether Z,, is white or black. Since

diam(§(Y,)) =< diam(Z,),
we then have

diam (T (£(Y,))) < diam(T*(Z,)) =< 1,

andso Tt (£(Y,,)) has uniformly large size,i.e., there exists @ > 0 such thatdiam (T (£(Y,)) >
o foralln e N.
Putting this all together, for each n € N we obtain a map
hpyi=T"o&o Tk o 0. 5.3)

This is a quasisymmetric embedding of Q into P with uniformly large image M, :=
Tt (£(Y,)). Since the maps T, T~% and ¢ just scale distances, the maps h,, are uniformly
quasisymmetric embeddings, i.e., there exists a distortion function 5 such that z,: Q — M,
is an n-quasisymmetry for each n € N. Note that each of the four maps on the right hand
side of (5.3) has the property that a point in the source space of the map lies in D), if and
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only if its image point lies in D,,. This implies that for z € QO we have
z € Dy if and only if h,(z) € D). (5.4)

We now invoke the following subconvergence lemma which follows from [3, Lemma 3.3].

Lemma5.2 Let X and Y be compact metric spaces, and let h,: X — Y be an n-
quasisymmetric embedding for n € N. Suppose that there exists a constant « > 0 such
that for the diameter of the image set h, (X) we have diam(h, (X)) > « for eachn € N. Then
there exist an increasing sequence {i,} in N and a quasisymmetric embedding h: X — Y
such that h;, — h uniformly on X as n — oo.

In our situation Lemma 5.2 implies that by passing to a subsequence if necessary, we may
assume that 2, — h uniformly on Q, where 4: Q — P is a quasisymmetric embedding.
We claim that the relation (5.4) passes to the limit, i.e., for z € Q we have

z € Dy ifandonlyif h(z) € D,. (5.5)

Indeed, if z € Q N Dy, then h,(z) € D, for each n € N by (5.4). Moreover, h,(z) — h(z)
asn — oo and so h(z) € D), because D), is a closed subset of P.

For the other implication, we argue by contradiction and assume that z € Q\D), but
h(z) € Dp. Since O = 90 C D), the point z lies in the interior of Q. Then we can
find a small neighborhood W of z with W C Q\D,,. Since h, — h uniformly on W,
a topological degree argument implies that for sufficiently large n there exists z, € W
such that h,(z,) = h(z) € D). Then z, € D), by (5.4). This is a contradiction, because
zyn € W € P\D,,. Relation (5.5) follows.

Let n € N. Then for one of the two open Jordan regions €2, € P bounded by 4,(O)
the map &, is a quasisymmetry of Q\O = int(Q) onto 2,. By (5.4) this implies that
h,(int(Q) N D) = Q, N D,,.

Similarly, there exists a Jordan region 2 € P such that 4 is a quasisymmetry of int(Q)
onto 2. By (5.5) we then have h(int(Q) N D) = QN D).

We are now in a situation that is very similar to what was established in Step III in the
proof of Theorem 1.4 in [4]: we want to show that the sequence {/,,} stabilizes and h,, = h
for large n. As in [4], we will invoke rigidity statements for Schottky maps.

Let B be the map provided by Lemma 4.4, and, as in this lemma, let U = S(int(Q)) and
S = B(Dp). Then § < Cis alocally porous Schottky set. For each n € N the map

By =B ohyoB!
is an orientation-preserving quasisymmetry of U onto U, := $(£2,) such that
hp(U N S) = B(hy,(int(Q) N Dp) =B, NDy) =U,NS.

It follows from Theorem 4.1 that i,: UNS — Sisa Schottky map, and a homeomorphism
ofUNSontoU,NS.

By the same reasoning the map Ho= =foho /3_ is also a Schottky map U N S — S,
and a homeomorphism of U N S onto Un S, where U= B(2). Moreover, we have h —h
locally uniformly on U N S. Lemma 4.4 and Theorem 4.2 imply that there exists N’ € N
such that ﬁn = En+1 onU NS =p(Sy\0),andso h, = hy110onS,\O foralln > N'.

For such an n we then have

Tt ot oT o =T ot 0T o (5.6)
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on S5\ 0, and hence on S, by continuity. Since ¢ is a homeomorphism of S, onto Y N D,
this leads to

Tl o o T Rntt = T o g o TR
on Y N D). By the consistency relation (5.2) this gives
Tt of o TFitt = Tl o g o Thir1=hn o p=huss
onY N D, and so
g o o =g o T o o Thir1hn (5.7)

on T=k+1(Y N D)) = Yyt N Dp.

Since Y41 is a good tile, the set Y, 1 N D), is a subset of D), with non-empty relative
interior. We can now apply Lemma 3.5 and Corollary 4.6 to conclude that (5.7) is true on
the whole set D,. Here we can cancel £~1. Since k41 > k, by our initial choice of the tiles
X, it follows that there exist numbers k € N and ¢, m € N such that

T" ot =T 0&oTk (5.8)

on D,. We can make m and ¢ arbitrarily large by postcomposing both sides in this identity
with iterates of 7. Moreover, using this equation for a large enough multiple of the original
¢ in (5.8) and precomposing with iterates of TX, we can also make k in (5.8) arbitrarily
large. So for each N € N we can find k, £, m > N such that (5.8) holds. This shows that
Proposition 5.1 is indeed true.

6 Proof of Theorem 1.1

We first state two relevant results from [5]. The following statement is part of [5, Lemma 8.1].

Theorem 6.1 Every quasisymmetry&: S, — S, p > 3 odd, preserves the outer peripheral
circle O setwise and so £(O) = O.

We need the following special case of [5, Theorem 1.4].

Theorem 6.2 Let&: S, — S, p > 3 odd, be an orientation-preserving quasisymmetry that
fixes the four corners of Q. Then & is the identity on S),.

Here &: S, — S, is orientation-preserving or orientation-reserving if it has an extension
to a homeomorphism on C 2 §,, with the same property. Every quasisymmetry §: S, — S,
is either orientation-preserving or orientation-reversing.

We can now prove our first main result.

Proof of Theorem 1.1 Let £: S, — S, be a quasisymmetry. In order to show that £ is an
isometry, we can freely pre- or postcompose & with isometries of S, without affecting our
desired conclusion.

Without loss of generality we may assume that £ is orientation-preserving; otherwise, we
consider the composition of & with a reflection of S, in, say, one of the diagonals of the
square Q.

By Theorem 6.1 we know that £(0) = O and so & restricts to an orientation-preserving
homeomorphism on O. If £ send each corner of Q to another corner of Q, then & has to
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preserve the cyclic order of these corners. This implies that on the set of corners & acts
as a rotation by an integer multiple of 7 /2 around the center of Q. It follows that we can
postcompose & with such a rotation of S, so that the new quasisymmetry actually fixes the
corners of Q. By Theorem 6.2 this map is then the identity on §), and we conclude that & is
an isometry as desired.

So we are reduced to the case where £ sends a corner of Q to a non-corner point.
Equivalently, the preimage of a corner of Q under £ is not a corner point. Again, by using
rotations of S, we may assume that the preimage g = & ~1(¢) € O of the lower left corner
¢ =(0,0) € R? of S, is not a corner.

If ¢ does not lie in the open bottom side (0, 1) x {0} of Q, we can precompose & with two
reflections Ry, R; in appropriate symmetry lines of Q (i.e., diagonals and lines through the
centers of two opposite sides of Q) so that £ is still orientation-preserving and

g=(RioRy0& () €(0,1) x {0} C 5.

Based on these considerations, we reduced to the case thatg = £ ! (¢) € (0, 1)x{0} € Sp.
‘We want to derive a contradiction from this statement, which will establish the theorem.

Let R be the involution on P that interchanges corresponding points in the two copies of
Q. Since & preserves the outer peripheral circle O of S, it induces a homeomorphism of
D, that agrees with & on the front copy of S, and is given by R o & o R on the back copy S;,
of §, in D). We continue to denote this map on D, by &. Itis clear that&: D, — D isa
homeomorphism.

If D, is, as before, endowed with the restriction of the path metric on the pillow P, then
the map £: D, — D, is actually a quasisymmetry. To see this, first note that the original
map & on S, extends to a quasiconformal homeomorphism of the unit square Q (see, e.g.,
[3, Proposition 5.1]). By using this and the reflection R, we can find a quasiconformal
homeomorphism on P that extends the homeomorphism & : D, — D,. We call this new
map on P also £&. Now P is bi-Lipschitz equivalent to C. If we conjugate §: P — P by
such a bi-Lipschitz map, then we obtain a quasiconformal homeomorphism S on C. Each
quasiconformal map on Cisa quasisymmetry. It follows that fisa quasisymmetry. Hence
its bi-Lipschitz conjugate £: P — P is also a quasisymmetry, and so is the restriction
&: Dy, — Dp.

LetT: P — P be the Lattes map defined in Sect. 2. Then it follows from Proposition 5.1
that we have a relation of the form

Mot =TlokoTk 6.1)

on D, where we may assume that k, £, m € N are suitably large.

Let I € (0,1) x {0} € S, be a small open interval one of whose endpoints is ¢, such
that £(7) is completely contained in one of the sides of Q. Recall that £(¢) = ¢ = (0, 0).
Each side of Q is forward invariant under 7 (see (2.1)). For a large enough k we actually
have T*(I) = [0, 1] x {0}, because, roughly speaking, T expands by the factor p. We may
assume that (6.1) holds for this k. Since

0,0) = &(g) € §((0, 1) x {0}),

the set A := & ([O, 1] x {0}) meets the interior of at least two sides of Q. It follows that
T o0& o TH(I) = (T 0 §)([0, 11 x {0}) = T*(A)

meets the interior of at least two sides of Q.
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On the other hand, since & (/) is contained in one side of Q and T leaves each side of Q
invariant, we conclude from (6.1) that T¢(A) = (T™ o £)(I) is contained in one side of Q.
Therefore, T (A) cannot meet the interior of two different sides of Q. This is a contradiction.
O

7 Proofs of Theorems 1.2 and 1.3

For the proof of Theorem 1.2 we require auxiliary results about certain weak tangent spaces at
points of D,. We will discuss these statements first. For a more detailed treatment of similar
weak tangents for S, the reader may consult [5, Section 7].

Let (X, d) be a metric space. Then a weak tangent of X at a pointa € X is the Gromov—
Hausdorff limit of a sequence of pointed metric spaces (X, a, A,d), where A, > 0 and
An — o0 as n — oo (for the relevant definitions and general background see [7, Chapters
7 and 8]). We are interested in weak tangents of subsets of D), equipped with the restriction
of the piecewise Euclidean metric on the pillow P. In this case, it is convenient to restrict the
scaling factors A, in the definition of weak tangents to powers of p, i.e., they have the form
An = pFn with k, € Ny and k,, — 00 as n — o0.

For example, let ¢ = (0, 0) € S, be the lower left corner of Q. Then S, has an essentially
unique weak tangent at ¢ isometric to the union

W= U p'S,cC (7.1)

neNy

with base point 0 € C. In this union we consider S, as a subset of R? = C and use the
notation LA = {Az : z € A} whenever A € C and A C C. In particular, W is a subset of the
first quadrant of R? = C.

Letg = ﬁ( p—1,p—1) € §,. Then g is the lower left corner of the middle peripheral

circle M of §,,. At g the set S), has an essentially unique weak tangent, denoted by W.Itis
obtained as the union of three copies of W. Up to isometry, we have

W:=iWU(—i)WU(DW, (7.2)
with base point 0 € C. Of course, W and W depend on p, but we suppress this from our
notation.

Standard compactness arguments imply that a quasisymmetric map of D), that takes a
point a € D), to another point b € D, induces a quasisymmetric map between appropriate
weak tangents at a and b, respectively. This observation along with the following lemma will
help us to eliminate certain mapping possibilities.

Lemma 7.1 There is no quasisymmetry from W onto W that fixes 0.

This follows from [5, Proposition 7.3]. Note that in [5] the setup is slightly different, because
weak tangents were considered as Hausdorff limits of sets in C under blow-ups by scaling
maps. This is equivalent to our definition with the only difference that our weak tangents do
not contain the point co € C as in [5].

Proof of Theorem 1.2 This immediately reduces to Theorem 1.1 if we can show that £(0) =
O, where as before O denotes common boundary of the two copies Q and Q’ of the unit
square that form the pillow P. In the following, we will rely on some mapping properties of
& and the Lattes map 7 (as defined in Sect. 2) that we state first.
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Since £ is a quasisymmetry on D, and hence a homeomorphism, it maps peripheral circles
of D), to peripheral circles. Note that O does not meet any peripheral circle of D, It follows
from (2.2) and (2.3) that if C is a peripheral circle of D, and n € Ny, then either 7" (C) is
also a peripheral circle or 7" (C) = O.

If z € D, lies on a peripheral circle, then each preimage z' € D), of z under any iterate
of T also lies on a peripheral circle. To see this, suppose z’ € D, N T " (z) for some n € N.
Then 7’ lies in a good tile X" of level n. On X" the iterate 7" behaves like a similarity map
scaling distances by the factor p", and sends the set D, N X" onto S, € D, or onto the back
copy S;, C D), depending on whether X" is white or black. This implies that if z = 7" ()
lies on a peripheral circle of D, then the same is true for the point z’.

By Proposition 5.1 we have an identity of the form

T" ok =T"o0EoTk (7.3)
on D, where k, n, m € N. Here we may assume that k, n, m are as large as we wish. Then
T"(E(M)) = T"(£(0)),

because TX(M) = O for any k € N as follows from (2.3) and (2.2).

The set £(0) € D, does not meet any peripheral circle of D). This and the mapping
property of T discussed above imply that the set 7" (£(0)) = T™(£(M)) does not meet any
peripheral circle of D), either. But £(M) is a peripheral circle, and so T"(§(M)) = O =
T"(£(0)). It follows that £(O) € D, N T7"(0). Note that T7"(0) forms a “grid” in P
consisting of all n-edges.

If p = 3, then it is not hard to see that the only Jordan curve (such as £(0)) that is
contained in D, N T7"(0) and does not meet any peripheral circle is equal to O. In this
case, we conclude that £(0) = O, as desired. To give an argument that is valid for any odd
p > 3, more work is required.

LetC :=£(0) € D,NT7"(0).Then C can be considered as a polygonal loop consisting
of n-edges. If we run through C according to some orientation, then two successive n-edges
in C have an endpoint @ in common, where they meet at a right angle or at the angle 7. If
they meet at a right angle, then we call a a turn of C.

Claim. Every turn a of C must have one of the four corners of O as a preimage under &.

To see this, we argue by contradiction and assume that there exists » € O that is not a
corner of O such thata = £(b) is a turn of C. Let I be a small open interval contained in O,
one of whose endpoints is b. Here we may assume that / is contained in one side of O and
that £(/) is contained in one of the two n-edges ¢ C £(0O) that meet at the turn a. Note that
then £(I) C e is an open interval, one of whose endpoints is a = &(b).

We now use an identity

T" ot =T" 00T (7.4)

as in (7.3) with suitably large k', n’, m’ € N and apply it to I. Note that k', n’, m" will in
general be different from the original numbers k, n, m in (7.3).

First, we may assume that k" in (7.4) is so large that Tk/(l ) is equal to the whole side of
O that contains b and 1. Then &(TX (1)) is a neighborhood of a in C. In particular, if n’ > n
is large enough, as we may assume, then there are two n’-edges e and e, that meet at a right
angle at the common endpoint a with e; U e; E(Tk/(l)) C &(0). Since the n’-edges e
and e, meet at a right angle, T (e1 U ep) consists of two sides of O. It follows that the set

T (E(TX (1)) 2 T" (e1 U en)
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contains at least two sides of O. On the other hand, £(/) is contained in the n-edge e. If
m’ > n as we may assume, T’”,(e) is equal to one of the sides of O as follows from (2.1).
This implies that the set

T ((T¥ (1)) = T" (6(I)) € T™ (e)

is contained in one of the sides of Q. This is a contradiction and the Claim follows.
There are now two cases to consider, depending on whether C does or does not have turns.
Case 1: C has no turns. Then C = £(0) # O and C runs “parallel” to one of the sides
of O in Q and in the back copy Q' of Q. In particular, the involution R (that interchanges
corresponding points of O and Q’) is a quasisymmetry on D, preserving C. Consider

g:&floRoé’,-‘.

Then g is a quasisymmetry on D, with g(O) = O. Its fixed point set is the Jordan curve
ey ££71(0) = 0.

It follows from Theorem 1.1 that every quasisymmetry on D, that preserves O as a set is
an isometry of D, In particular, g must be such an isometry. There are 16 such maps: eight
isometries that preserve the front and back copies of S, and eight obtained by composing
these maps by the involution R that interchanges the front and back copies. Among these 16
maps there is exactly one, namely the involution R, whose fixed point set is a Jordan curve
J. In this case J = O. In all other cases, the fixed point set is either empty, finite, a Cantor
set, or all of D,. On the other hand, g has the fixed point set given by the Jordan curve
& ) *§& —1(C) = 0. This is a contradiction, showing that Case 1 is impossible.

Case 2: C has at least one turn. We claim that such a turn must be a corner of O. To
reach a contradiction, suppose C has a turn a other than a corner of O. Since C = £(0) C
D, N T7"(0) does not meet any peripheral circle of D, the point a is the common corner
of four good n-tiles. The curve C is the common boundary of two complementary regions of
the pillow P. Since a is a turn of C, one of these regions, which we denote by U, has angle
37 /2 at a (the other region has the angle 7 /2 at a).

There are three good n-tiles, i.e., three copies of S, scaled by the factor 1/p”" that are
contained U and that share a as a corner. In fact, there are infinitely many such triples of
copies of §), that meet at a rescaled by the factor p~% with k > n. This implies U N D p has
a unique weak tangent at ¢ and that it is isometric to the set W in (7.2) with basepoint 0.

Since a is a turn of C, there exists a corner b of O with £(b) = a. Now £(0) = C, and
so either S, or the back copy S;, of §), is mapped to unb p by the quasisymmetry &. In
both cases we get an induced basepoint-preserving quasisymmetry of the weak tangents of
the source set at b and the image set D, N U ata.Both § p and S have unique weak tangents
at any corner b of O isometric to W in (7.1) with basepoint 0. This implies that there exists
a quasisymmetry between the pointed metric spaces (W, 0) and (W, 0). This is impossible
by Lemma 7.1, and so we reach a contradiction.

We conclude that the Jordan curve C = £(0) € T"(0) has at least one turn, and that
every turn of C is a corner of O; but then necessarily C = £(0) = O, and we are done. O

Proof of Theorem 1.3 We argue by contradiction and assume that there exists a quasisymmetry
&: D, — J(g),where p > 3isodd, and 7 (g) is the Julia set of a postcritically-finite rational
map g on C. We will later consider the case when S p is assumed to be quasisymmetrically
equivalent to J(g).

The quasisymmetry § can be extended (non-uniquely) to a quasisymmetry, also called &,
of the pillow P onto C (the justification for this is the same as in the beginning of the proof
of Proposition 5.1). We may assume that & is orientation-preserving, because otherwise we
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can precompose £ with an orientation-reversing isometry of P that leaves D, invariant (such
as the reflection R that interchanges corresponding points on the front and back of P).

As before, we denote by T the Lattes map as introduced in Sect. 2 (for given p). The main
idea of the proof now is to establish an analog of Proposition 5.1 for the maps g, £, and T'.
Namely, we want to show that there exist k € N and £, m € Ny such that

mo%‘:geoéjoTk (7.5)

on the set D,.

Once (7.5) is established, we obtain a contradiction as follows. Since 7 (g) is homeomor-
phic to D, the set J(g) is a Sierpiriski carpet. Let A be the set of all points in J(g) that
lie on a peripheral circle of 7(g). If J is a peripheral circle of 7(g), then g(J) is also a
peripheral circle and g~ (J) consists of finitely many peripheral circles (see [4, Lemma 5.1]).
This implies that A is completely invariant under g, and hence under all iterates of g, i.e.,
g"(A) = A = g7"(A) for each n € Ny. Note also that the homeomorphism & sends the
peripheral circles of D), to the peripheral circles of 7 (g).

We now apply both sides of (7.5) to the middle peripheral circle M of S, € D,. Then
the left hand side shows that (g o £)(M) C A. On the other hand, if we consider the right
hand side of (7.5), we first note that T¥(M) = O. It follows that

(g8 oo TH(M) = (g4 0 £)(0)

is disjoint from A, because O does not meet any peripheral circle of D, and so £(0O) and
(g% 0 £)(0) are disjoint from A. This is a contradiction.

In order to establish (7.5), one uses ideas as in the proof of Proposition 5.1 combined with
arguments for the proof of the similar relation (8.4) in [4, Section 8], where T plays the role
of the rational map f and D, the role of the Julia set J(f).

As in the proof in [4, Section 8], we want to implement a “blow down-blow up”” argument
applying “conformal elevators”. Namely, one first uses inverse branches 7" to blow down,
and then iterates of the map g¢ :=§ ~logo&: P — P toblow up. Note that D p is completely
invariant under the map gg¢ and its iterates.

As in the proof of Proposition 5.1, we choose a sequence 7% of inverse branches
mapping the front Q of the pillow to a good tile X,, € Q of level k, € Ny containing the
corner ¢ = (0, 0) € Q. Here we again assume that the sequence {k, } is strictly increasing. The
branches T~ are consistent as in (5.2). Each map T % is a scaling map, and in particular
a quasisymmetry of Q onto X,, € Q. We also have diam(T % (Q)) — 0 as n — oo. All of
this is similar to the choice of inverse branches in [4, Section 8, Step II], but easier.

Following the argument of [4, Section 8, Step II], we use the expansion property of g
to find for each natural number n € N, a corresponding number ¢, € Ny such that the
sets (gé” o T~*n)(Q) have uniformly large size independent of n. Now we argue as in [4,

Section 8, Step III] and consider the maps hy = gé" oT % : Q — Pforn e N. Undera

conformal identification P = C these are actually uniformly quasiregular maps on the region
U := Q\O. By passing to a subsequence if necessary, we may assume that there exists a
(non-constant) quasiregular map h:U — P suchthath, — h locally uniformly on U as
n — 0o.

The map I is locally quasiconformal on U away from the branch points of h. These
branch points form a set with no limit points in U. This implies that we can find a point
q € UN Dy and a small radius r > 0 such that B(g,2r) € U and 7 is quasiconformal
on B(q, 2r). It follows that on the smaller ball B(g, r) the maps En are quasiconformal for
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large n. By discarding finitely many of the maps hy, if necessary, we may assume that they
are quasiconformal for all n € N.

Since ¢ € D), we can find a good tile ¥ € B(g,r) (as defined in Sect. 2). Since a
quasiconformal map is a local quasisymmetry, we conclude that the maps B and ﬁ,, forn e N
are quasisymmetric embeddings of Y into P. We are now in a similar situation as in the proof
of Proposition 5.1. We choose an orientation-preserving scaling map ¢ that sends Q onto Y.
Note that then ¢(Q N D) =Y N D,. We now define

h = zo(p,
hy, = ?lnogozgg"onk"o<p

for n € N. These maps are quasisymmetries on Q with 4, — h uniformly on Q.

Note that we again have the relation (5.4), which follows from the mapping properties of ¢
and T % in combination with the identities &(Dp) = J(g) and ggl (D)) = ge(Dp) = D).
As before, (5.4) implies (5.5).

Based on Theorem 4.2 and Lemma 4.4 we can again argue that the sequence 4, stabilizes
and so A, 41 = h, on S, for large n. This implies that there exists n € N such that

g§n+l ° T*knJrl — gg” o) Tﬁk"’ (76)
on Y N §,. Using the consistency relation for the inverse branches we see that
g§n+1 — ggn o Tkn+1*kn (77)

on T kw1 (y N Sp) € Dp. Note that here k,, 11 — k, € N, because k1 > k.

We want to argue that this identity remains valid on the whole set D,. To see this, first
note that by Lemma 3.1 for each £ € Ny the iterate g¢ of g is an admissible maps for the
Sierpinski carpet 7 (g). Thus, g§ = &1 o g o £ is an admissible map for D,,. Combined
with Lemmas 3.2 and 3.4 this shows that both sides in (7.7) are admissible maps for D ,.

Corollary 4.6 then implies that (7.7) is valid on D),. This is equivalent to a relation of the
form (7.5) as required. This completes the proof when D), is assumed to be quasisymmetri-
cally equivalent to 7 (g).

Now suppose that there exists a quasisymmetry &: S, — J(g). Again we may assume
that & has an extension to an orientation-preserving quasisymmetry £: P — C. Here we
cannot expect an identity as in (7.5) to be valid on §,,. The main problem is that S, is not
forward-invariant under 7.

In order to derive a contradiction, we have to slightly modify the above argument. We
again implement a “blow down-blow-up” procedure as above, where D), is replaced with
Sp, up to the point where we conclude that the sequence {%,} stabilizes. We again obtain the
relation (7.6) on Y N S;,, where Y C Q is a suitable good tile. Instead of using the consistency
relation (5.2) we now employ the identity

T_kn-H — T_(kn+l_kn) o T_kn

for the unique branch T~ Kn1=kn) that maps Q tothe goodtile Z € Q oflevelk = k,4+1—k, €
N with ¢ € Z. This implies that there exist constants £, £’ € Ny such that

gl oT ™" =gf (7.8)

on the set 7% (Y N Sp)=Y'NS,, where Y’ := T~ % (Y) C Q is a good tile.
Let C and C’ be the finite sets of critical points of gg and g?, respectively. If we define
W :=Qo\(OuCuU Tk(C)), then W N Sp is connected and dense in S,. Moreover, each
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pointin x € W N S, is a good point (as defined in Sect. 3) for each of the two maps in (7.8)
and the Sierpinski carpet S,. So if we conjugate these maps by B from Lemma 4.4, then
we obtain Schottky maps from the locally porous relative Schottky set (W) N B(S,) into
B(Sp). By Theorem 4.3 this implies that (7.8) holds on W N §),. Since W N §, is dense in
S, it follows that (7.8) is valid on §,.

We want to see that this is impossible. Since the union of all peripheral circles of 7 (g) is
completely invariant under g, the union of all peripheral circles of S, is completely invariant
under g¢. Now consider the point a := (1, 1) € §),. Then T %) = (p’k, p’k) does not
lie on a peripheral circle of S;, and so the same is true for b := (gg/ o T~)(a). On the other
hand, a lies on the peripheral circle O of §), and so by (7.8),

b= (gf o T ")) = g(a) € g£(0)

lies on the peripheral circle gg (O) of S),. This is a contradiction.
We conclude that neither D, nor S}, can be quasisymmetrically equivalent to the Julia set
of a postcritically-finite rational map. O

The essential point in the previous proof was the fact that while the union of all peripheral
circles of 7 (g) is completely invariant under g, the union of all peripheral circles of S, or
D), is not completely invariant under 7.
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