

16:2 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

denoted by “?”, used to inform the compiler that additional type checks may be needed at run
time. Programmers can add type annotations to a program gradually and control precisely how
much checking is done statically versus dynamically. The type-checker ensures that the parts of
the program that are typed with static types—i.e., types that do not contain ?—enjoy the type safety
guarantees of static typing (well-typed expressions never get stuck), while the parts annotated with
gradual types—i.e., types in which the dynamic type ? occurs—enjoy the same property modulo the
possibility to fail on some dynamic type check inserted by the type-driven compilation.
Some practical benefits of combining gradual typing with union and intersection types were

presented by Castagna and Lanvin [2017] in a monomorphic setting. In this work we extend such
benefits to a polymorphic setting. For an aperçu of what can be done in this setting, consider the
following ML-like code snippet adapted from Siek and Vachharajani [2008a]:

let mymap (condition) (f) (x : ?) =

if condition then Array.map f x else List.map f x

According to the value of the argument condition, the function mymap applies either the array
version or the list version of map to the other two arguments. This example cannot be typed using
only simple types: the type of x and the return type of mymap change depending on the value of
condition. By annotating x with the gradual type ?, the type reconstruction system for gradual
types of Siek and Vachharajani [2008a] can type this piece of code with Bool → (α → β) → ? → ?.
That is, type reconstruction recognizes that the parameter condition must be bound to a Boolean
value, and the compilation process adds dynamic checks to ensure that the value bound to x will
be, according to the case, either an array or a list whose elements are of a type compatible with the
actual input type of f. This type however is still imprecise. For example, if we pass a value that is
neither an array nor a list (e.g., an integer) as the last argument to mymap, then this application is
well-typed, even though the execution will always fail, independently of the value of condition.
Likewise, the type gives no useful information about the result of mymap, even though it will clearly
be either a β-list or a β-array. These problems can be remedied by using set-theoretic types:

let mymap (condition) (f) (x : (α array | α list) & ?) =

if condition then Array.map f x else List.map f x

where “|” denotes union and “&” denotes intersection. The union indicates that a value of this
type is either an array or a list, both of α-elements. The intersection indicates that x has both type
(α array |α list) and type ?. Intuitively, this type annotation means that the function mymap

accepts for x a value of any type (which is indicated by ?), as long as this value is also either an
array or a list of α elements, with α being the domain of the f argument. The use of the intersection
of a union type with “?” to type a parameter corresponds to a programming style in which the
programmer asks the system to statically enforce that the function will be applied only to arguments
in the union type and delegates to the system any dynamic check regarding the use of the parameter
in the body of the function. The system presented in Section 4 deduces for this definition the type:

Bool → (α → β) → ((α array |α list) & ?) → (β array | β list)

This type forces the last argument of mymap to be either an array or a list of elements whose type is
the input type of the argument bound to f. Note that the return type of mymap is no longer gradual
(as it was with the previous definition), since the union type allows us to define it without any loss
of precision, as well as to capture the correlation with the return type of the argument bound to
f. The derivation of this type is used by the compiler to insert dynamic type-checks that ensure
type soundness. In particular, the compilation process described in Section 2.2.4 inserts in the body
of mymap the casts that dynamically check that the first occurrence of x is bound to an array of

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:3

elements of the appropriate type, and that the second occurrence of x is bound to a list of such
elements, producing a code like the following:

let mymap (condition) (f) (x : (α array | α list) & ?) =

if condition then Array.map f (x<α array>) else List.map f (x<α list>)

where e<t> is a type-cast expression that dynamically checks whether the result of e has type t .
This kind of type discipline is out of reach of current systems. To obtain it we explore a new

idea to interpret gradual types, namely, that the unknown type ? acts like a type variable, but a
peculiar one since each occurrence of ? in a typing constraint can be considered as a placeholder
for a possibly distinct type variable. This idea is the essence of our approach to gradual typing and
we formalize it by defining an operation of discrimination which replaces each occurrence of ? in a
gradual type by a type variable.

Discrimination is the cornerstone of our semantics for gradual types: by applying discrimination
we map a polymorphic gradual type into a set of polymorphic static types (one for each possible
replacement of occurrences of the dynamic type by a type variable); then we use the semantic
subtyping interpretation of static types, to interpret, indirectly, our initial gradual type. We use this
semantic interpretation to revisit some notions from the gradual typing literature: we restate some
of them switching from syntactic to semantic definitions, make new connections, and introduce
new concepts. In particular, we use discrimination to define two preorders on gradual types: the
subtyping relation (by which τ1 ≤ τ2 implies that an expression of type τ1 can be safely used
wherever one of type τ2 is expected) and the materialization relation (τ1 4 τ2 if and only if τ2 is
more precise than τ1—i.e., it was obtained from τ1 by replacing some occurrences of ? by types).1

These two preorders are at the core of our approach and, we claim, of gradual typing as well, since
they can be combined to replace consistency and consistent subtyping, two notions that current
systems rely on. This is particularly important because the materialization relation is a preorder
(transitivity is what matters here); therefore it can be used in a subsumption-like rule that we call
materialize. As we show in Section 2, adding gradual typing to ML then essentially amounts to
adding this materialize rule to the standard set of rules for Hindley-Milner systems. Further, adding
set-theoretic types is then just a matter of adding the regular subsumption rule for subtyping. The
simplicity of this extension contrasts with current literature where gradual typing is obtained by
embedding checks for consistency or for consistent subtyping (two non-transitive relations) in
elimination rules.
Finally, our approach sheds some light on the logical meaning of gradual typing. It is well-

known that there is a strong correspondence between systems with subtyping and systems without
subtyping but with explicit coercions: every usage of the subsumption rule in the former corresponds
to the insertion of an explicit coercion in the latter. Our definition of materialization yields an
analogous correspondence between a gradually-typed language and the cast calculus in which the
language is compiled: every usage of the materialize rule in the former corresponds to the insertion
of an explicit cast in the latter. As such, the cast language looks like an important ingredient for a
Curry-Howard isomorphism for gradual typing disciplines. An intriguing direction for future work
is to study the logic associated with these expressions.

Overview and Contributions. We present our system gradually (pun intended) in three steps of
increasing complexity.
The first step is to add gradual typing to ML-like languages: we do it in Section 2. We start

by giving the definition of materialization and use it to give a declarative static semantics for a

1The fourth author prefers to call materialization the precision relation, using the terminology of Garcia [2013] but with ?

at the bottom, as in the work of Siek and Vachharajani [2008b].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:4 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

gradually-typed version of ML (§2.1). As customary for gradually-typed languages, we give the
dynamic semantics by compiling well-typed terms into a cast calculus and we prove its soundness
(§2.2). We conclude the section by studying the algorithmic aspects of typing, that is, we define a
constraint-based type inference algorithm that we prove to be sound and complete (§2.3).
The second step, in Section 3, shows how to extend the system with subtyping. We define a

subtyping relation and add a subsumption rule both to the type system of the gradual language
and to the one of the cast calculus (§3.1). The presence of subsumption makes type inference more
difficult since, in particular, constraint resolution involves computing intersections and unions of
types (§3.2). Therefore, we postpone the development of the algorithmic aspects of this part to the
following section, in which we add first-class union and intersection types to the systems.

The third and last step, presented in Section 4, is the addition of unions and intersections, which
we achieve by applying the approach of semantic subtyping. This involves the addition of union
and negation types (intersections are encoded by De Morgan’s laws) as well as of recursive types
(which are needed to solve type reconstruction with polymorphic types). We use a set-theoretic
interpretation of types to define subtyping for static types. Using our interpretation of ? as type
variables, we extend this subtyping relation and the previous materialization relation to gradual
types (§4.1). We extend the cast calculus with set-theoretic types: this notably requires a non-trivial
modification of the semantics to reduce composition of casts involving unions and intersections; we
prove the extension to be conservative besides enjoying the usual safety properties (§4.2). Finally,
we define a type inference algorithm and prove its soundness (§4.3).

A discussion on related (§5) and future (§6) work and a conclusion (§7) end this presentation.
For space reasons, some auxiliary definitions and results and all proofs are moved into an

appendix available online in the ACM digital library under the “Source Materials” tab.
The main contributions of this work are:
(1) A new interpretation of gradual types in which every occurrence of the unknown type “?” is

considered a placeholder for some type variable.
(2) The definition of gradual type systems in terms of two preorders, subtyping and materializa-

tion. The definition of these preorders is based on the new interpretation of types; it yields
semantic-oriented definitions that are syntax independent and, as such, more resilient to
language extensions or modifications.

(3) The first declarative definition of gradual type systems obtained by adding two subsumption-
like rules, yielding a clearer and more streamlined definition of the type system.

(4) A better correspondence between type derivations and compilation, obtained by showing a
one-to-one correspondence between cast insertions and the use of the materialize rule.

(5) A direct correlation between the safety of a cast and the polarity of its blame label —a
consequence of the correspondence in (4)—, allowing for a simpler statement of blame safety
for the cast calculus. We show in particular that our system never blames the context.

(6) The reformulation of the type inference problem for gradual type systems in terms of static
type systems via the new interpretation. In particular, our two inference algorithms reuse
existing algorithms such as unification and tallying.

(7) The extension of gradual typing to polymorphic type systems with set-theoretic types. In
particular, the definition of the operational semantics for casts in the presence of unions and
intersections is an important and far-from-obvious result.

2 GRADUAL TYPING FOR HINDLEY-MILNER SYSTEMS

In this section, we use our new approach to add gradual typing to a language with ML-style
polymorphism. We describe the syntax of types and of the source language, the declarative type
system, the cast language and how to compile expressions, and the type inference system.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:5

2.1 Source Language

2.1.1 Types and Expressions. Let α, β , and γ range over a countable set Vα of type variables. Let b
range over a set B of basic types (e.g., B = {Int,Bool}). Let c range over a set C of constants. Types
and expressions are then defined as follows and explained in the following paragraphs.

static types Tt ∋ t ::= α | b | t × t | t → t

gradual types Tτ ∋ τ ::= ? | α | b | τ × τ | τ → τ

source language expressions e ::= x | c | λx . e | λx : τ . e | e e | (e, e) | πi e | let ®α x = e in e

Static types Tt (ranged over by t) are the types of an ML-like language: type variables, basic
types, products, and arrows. Gradual types Tτ (ranged over by τ) add the unknown type ? to them.

The source language is a fairly standard λ-calculus with constants, pairs (e, e), projections for the
elements of a pair πi e (where i ∈ {1, 2}), plus a let construct. There are two aspects to point out.

One is that there are two forms of λ-abstraction: λx . e and λx : τ . e . In the latter, the annotation
τ fixes the type of the argument, whereas in the former the type can be chosen during typing (and
will in practice be computed by inference). Furthermore, the type τ in the annotation is gradual,
while in λx . e we require that the inferred type of the parameter be a static type t (cf. Figure 1, rule
[Abstr]). This is the same restriction imposed by Garcia and Cimini [2015] to properly reject some
ill-typed programs. For example, without this restriction we can type λx .(x + 1,¬x) since it would
be possible to infer the type ? for x so as to deduce for λx .(x + 1,¬x) the type ? → Int × Bool. But
λx .(x + 1,¬x) is not a well-typed term in ML, therefore by the principles of gradual typing (see
Theorem 1 of Siek et al. [2015b]) it must be rejected unless its parameter is explicitly annotated by
a type in which ? occurs (here, annotated by ? itself).
The second non-standard element of this syntax is that the let binding is decorated with a

vector ®α of type variables, as in let ®α x = e1 in e2. This decoration (we reserve the word annotation
for types annotating parameters in λ-abstractions) serves as a binder for the type variables that
appear in annotations occurring in e1. For instance, let α z = λx : α . x in e and let z = λx . x in e are
equivalent, while let z = λx : α . x in e implies that α was introduced in an outer expressions such as
λy : α . let z = λx : α . x in e . The normal let from ML can be recovered as the case where ®α is empty
(which would always be the case if, as in ML, function parameters never had type annotations).

As customary, we consider expressions modulo α-renaming of bound variables. In λx . e and
λx : τ . e , x is bound in e ; in let ®α x = e1 in e2, x is bound in e2 and the ®α variables are bound in e1. It
is also customary that we may refer to the source language as the gradually-typed language.

2.1.2 Type System. We describe the declarative type system of the source language. We use the
standard notion for type schemes and type environments. A type scheme has the form ∀®α . τ , where
®α is a vector of distinct variables. We identify type schemes with an empty ®α with gradual types. A
type environment Γ is a finite function from variables to type schemes. The type system is defined
by the rules in Figure 1.

The first eight rules are almost those of a standard Hindley-Milner type system. In [Const], we
use bc to denote the basic type for a constant c (e.g., b3 = Int). One important aspect to note is that
the types used to instantiate the type scheme in [Var] and the type used for the domain in [Abstr]
must all be static types, as forced by the use of the metavariable t .
The other non-standard aspect is the rule for [Let]. To type let ®α x = e1 in e2, we type e1 with

some type τ1; then, we type e2 in the expanded environment in which x has type ∀®α, ®β . τ1. The

first side condition (®α, ®β ♯ Γ) asks that all the variables we generalize do not occur free in Γ; this is

standard. The second condition (®β ♯ e1) states that the type variables ®β must not occur free in e1.
This means that the type variables that are explicitly introduced by the programmer (by using them
in annotations) can only be generalized at the level of a let binding by explicitly specifying them in

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:6 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

[Var]
Γ ⊢ x : τ { ®α ≔ ®t}

Γ(x) = ∀®α . τ [Const]
Γ ⊢ c : bc

[Proj]
Γ ⊢ e : τ1 × τ2

Γ ⊢ πi e : τi

[Pair]
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2
[App]

Γ ⊢ e1 : τ
′ → τ Γ ⊢ e2 : τ

′

Γ ⊢ e1 e2 : τ

[Abstr]
Γ, x : t ⊢ e : τ

Γ ⊢ (λx . e) : t → τ
[AAbstr]

Γ, x : τ ′ ⊢ e : τ

Γ ⊢ (λx : τ ′. e) : τ ′ → τ

[Let]
Γ ⊢ e1 : τ1 Γ, x : ∀®α, ®β . τ1 ⊢ e2 : τ

Γ ⊢ (let ®α x = e1 in e2) : τ
®α, ®β ♯ Γ and ®β ♯ e1

[Materialize]
Γ ⊢ e : τ ′

Γ ⊢ e : τ
τ ′ 4 τ

Fig. 1. Declarative type system of the source language.

the decoration. In contrast, type variables introduced by the type system (i.e., the fresh variables in
the t type in the [Abstr] rule) can be generalized at any let (implicitly, that is, by the type system),
provided they do not occur in the environment. Note that we recover the standard Hindley-Milner
rule for let bindings when expressions do not contain annotations and decorations are empty.

As anticipated, the type system does not need to deal with gradual types explicitly except in one
rule. Indeed, the first eight rules do not check anything regarding gradual types (they only impose
restrictions that some types must be static). The last rule, [Materialize], is a subsumption-like rule
that allows us to make any gradual type more precise by replacing occurrences of ? with arbitrary
gradual types. This is accomplished by the materialization relation 4 defined below.

Materialization. Intuitively, τ1 4 τ2 holds when τ2 can be obtained from τ1 by replacing some
occurrences of ? with arbitrary gradual types, possibly different for every occurrence. This relation
can be easily defined by the following inductive rules, which add the reflexive case for type variables
to the rules of Siek and Vachharajani [2008b]:2

? 4 τ α 4 α b 4 b

τ1 4 τ ′1 τ2 4 τ ′2

τ1 × τ2 4 τ ′1 × τ ′2

τ1 4 τ ′1 τ2 4 τ ′2

τ1 → τ2 4 τ ′1 → τ ′2

However, this definition is intrinsically tied to the syntax of types. Instead, we want the definition
of materialization to remain valid also when we extend the language of types we use. Therefore,
we give a definition based on our view, anticipated earlier, of occurrences of ? as type variables.

First, let us define a new sort of types, type frames, as follows:

TT ∋ T ::= X | α | b | T ×T | T → T

where X ranges over a setVX of frame variables disjoint fromVα . Type frames are like gradual
types except that, instead of ?, they have frame variables. We write TT for the set of all type frames.

Given a type frame T , we write T † for the gradual type obtained by replacing all frame variables
in T with ?. The reverse operation, which we call discrimination, is defined as follows.

Definition 2.1 (Discrimination of a gradual type). Given a gradual type τ , the set ⋆(τ) of its

discriminations is defined as: ⋆(τ) =def {T ∈ TT | T †
= τ } .

2Henglein [1994] defines an equivalent relation for monomorphic types (called “subtyping”) but with different rules.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:7

The definition of materialization, stated formally below, says that τ2 materializes τ1 if it can be
obtained from τ1 by first replacing all occurrences of ? with arbitrary variables inVX , and then
applying a substitution which replaces those variables with gradual types.

Definition 2.2 (Materialization). We define the materialization relation on gradual types

τ1 4 τ2 (“τ2 materializes τ1”) as follows: τ1 4 τ2 ⇐⇒
def

∃T ∈ ⋆(τ1), θ : VX → Tτ .Tθ = τ2 .

In the above, θ : VX → Tτ is a type substitution (i.e., a mapping that is the identity on a cofinite
set of variables) from frame variables to gradual types. We use dom(θ) to denote the set of variables
for which θ is not the identity (i.e., dom(θ) = {X | Xθ , X }).

It is not difficult to prove that the materialization relation of Definition 2.2 and the one deduced
by the inductive rules that we have given in the previous page are equivalent, and that they are
inverses of the precision relation [Garcia 2013] and of naive subtyping [Wadler and Findler 2009].
The presence of [Materialize] yields the static gradual guarantee

property of Siek et al. [2015b] for free. We lift the materialization rela-
τ 4 τ ′ e 4 e ′

λx : τ . e 4 λx : τ ′. e ′tion to terms as usual by relating type annotations via materialization.
On the right is the rule for annotated λ-abstractions. The remaining rules are straightforward.

Proposition 2.3 (Static gradual guarantee). If ∅ ⊢ e : τ and e ′ 4 e , then ∅ ⊢ e ′ : τ .

We said that our type system is declarative. This is because all auxiliary relations (here material-
ization) are handled by structural rules (here [Materialize]) added to an existing set of logical and
identity rules.3 In a declarative system, every term may have different types and derivations; re-
moving the structural rules corresponds to finding an algorithmic system that for every well-typed
term chooses one particular derivation and, thus, one type of the declarative system. This is usually
obtained by moving the checks of the auxiliary relations into the elimination rules: this yields a
system that is easier to implement but less understandable. And this is exactly what current gradual
type systems do. It is possible to show that the set of typable terms of our declarative system is the
same as the set of typable terms of the existing gradual type systems that use consistency.
In particular, the relation between our system and the gradual type system of Siek and Taha

[2006] can be stated formally. Let ⊢ST denote the typing judgments of Siek and Taha [2006] and
let ⊢1 denote the monomorphic restriction of the implicative fragment of our system (i.e., our
gradual types without type variables and the typing rules of the simply-typed λ-calculus plus
materialization: see Figure 7 in the appendix). Then we have the following result:

Proposition 2.4. If Γ ⊢ST e : τ then Γ ⊢1 e : τ . Conversely, if Γ ⊢1 e : τ , then there exists a type τ ′

such that Γ ⊢ST e : τ ′ and τ ′ 4 τ .

The most enlightening case in the proof of the forward direction is for the rule [GApp2] of Siek
and Taha [2006] here on the right. This rule is derivable
in our system because τ2 ∼ τ ′ implies that there is some

[GApp2]

Γ ⊢ e1 : τ
′ → τ Γ ⊢ e2 : τ2 τ2 ∼ τ ′

Γ ⊢ e1 e2 : τ
τ3 such that τ2 4 τ3 and τ ′ 4 τ3 [Siek and Vachharajani
2008a], then we have Γ ⊢ e1 : τ3 → τ and Γ ⊢ e2 : τ3 by
two uses of [Materialize]. Conversely, materialization can always be pushed to applications.

The (polymorphic) implicative fragment of our system (i.e., our systemwithout products), denoted
by ⊢→ , is yet another well-known gradual type system, because it coincides with the ITGL type
system of Garcia and Cimini [2015], denoted by ⊢GC , as stated by the following result:

Proposition 2.5. If Γ ⊢GC e : τ then Γ ⊢→ e : τ . Conversely, if Γ ⊢→ e : τ , then there exists a type
τ ′ such that Γ ⊢GC e : τ ′ and τ ′ 4 τ .

In other words, the relationship between our new declarative approach (i.e., with the [Materialize]
3In logic, logical rules refer to a particular connective (here, a type constructor, that is, either →, or ×, or b), while identity
rules (e.g., axioms and cuts) and structural rules (e.g., weakening and contraction) do not.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:8 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

[Var]
Γ ⊢ x : ∀®α . τ

Γ(x) = ∀®α . τ [TAbstr]
Γ ⊢ E : τ

Γ ⊢ Λ ®α . E : ∀®α . τ
®α ♯ Γ [TApp]

Γ ⊢ E : ∀®α . τ

Γ ⊢ E [®t] : τ { ®α ≔ ®t}

[Cast⊕]
Γ ⊢ E : τ ′

Γ ⊢ E〈τ ′ ⇒
ℓ
τ 〉 : τ

τ ′ 4 τ [Cast⊖]
Γ ⊢ E : τ ′

Γ ⊢ E〈τ ′ ⇒
ℓ̄
τ 〉 : τ

τ 4 τ ′

Fig. 2. Main Typing Rules for the Cast Language

rule) and the standard ones that use consistency (e.g., Siek and Taha [2006] and Garcia and Cimini
[2015]) is analogous to the usual relationship between a declarative type system with subtyping
(i.e., with a subsumption rule) and an algorithmic type system.

We conclude this section by stressing that our new interpretation of gradual types only concerns
the relations on types, but it does not apply directly to the terms of the language. In particular, it
does not apply to the occurrences of ? in the type annotations of a program: indeed, it can be that
an occurrence of ? in a program cannot be replaced by a static type while maintaining typability.

2.2 Cast Language

As customary with gradual typing, the semantics of the gradually-typed language is given by
translating its well-typed expressions into a cast language, which we define next.

2.2.1 Syntax. The syntax of the cast language is defined as follows:

E ::= x | c | λτ→τx . E | E E | (E, E) | πi E | let x = E in E | Λ ®α . E | E [®t] | E〈τ ⇒
p
τ 〉

This is an explicitly-typed λ-calculus similar to the source language with a few differences and the
addition of explicit casts.
There is now just one kind of λ-abstraction, which is annotated with its arrow type. Let-

expressions no longer bind type variables; instead, there are explicit type abstractions Λ ®α . E and
applications E [®t]. For example, the source language expression let α z = λx : α . λy. x in z 42, of type
β → Int, is translated into the cast calculus as let z = Λαβ . λα→β→αx . λβ→αy. x in z [Int, β] 42. De-
spite the presence of type abstractions, the cast calculus does not support first-class polymorphism;
the syntax of types remains unchanged from Section 2.1.1 and does not include universally quanti-
fied types. Finally, the important additions to the calculus are explicit casts of the form E〈τ ⇒

p
τ ′〉

where, as usual, p ranges over a set of blame labels. Such an expression dynamically checks whether
E, of static type τ , produces a value of type τ ′; if the cast fails, then the label p is used to blame the
cast. These casts are inserted during compilation to perform runtime checks in dynamically-typed
code: for instance, the function λx : ?. x + 1 will be compiled into λ?→Intx . x 〈? ⇒

p
Int〉 + 1, which

checks at runtime whether the function parameter is bound to an integer value (and if not blames
the label p). As customary blame labels have a polarity and we follow the standard convention of
using ℓ to range over positive labels and ℓ̄ for negative ones.

2.2.2 Type System. The main typing rules for the cast language are presented in Figure 2. Type
environments associate variables to type schemes of the form ∀®α .τ (rule [Var]) and we use the
standard rules for the introduction [TAbstr] and elimination [TApp] of type abstractions. Our
typing rules for casts are more precise than the current literature, since they capture invariants
that are typically captured by a separate safe-for relation that is used to establish the Blame
Theorem [Wadler and Findler 2009]. Our casts are well-typed if they go from the type of the casted
expression τ ′ to either a more precise (positive label) or a less precise (negative label) gradual
type τ (rules [Cast⊕] and [Cast⊖], respectively). Blame safety usually involves two subtyping

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:9

Cast Reductions.

[ExpandL] V 〈τ ⇒
p
?〉 ֒→ V 〈τ ⇒

p τ /?〉〈τ /? ⇒
p
?〉 if τ /? , τ and τ , ?

[ExpandR] V 〈? ⇒
p
τ 〉 ֒→ V 〈? ⇒

p τ /?〉〈τ /? ⇒
p
τ 〉 if τ /? , τ and τ , ?

[CastId] V 〈τ ⇒
p
τ 〉 ֒→ V

[Collapse] V 〈ρ ⇒
p
?〉〈? ⇒

q
ρ〉 ֒→ V

[Blame] V 〈ρ ⇒
p
?〉〈? ⇒

q
ρ ′〉 ֒→ blame q if ρ , ρ ′

Standard Reductions.

[CastApp] V 〈τ1 → τ2 ⇒
p
τ ′1 → τ ′2〉V

′ ֒→ V (V ′〈τ ′1 ⇒
p̄
τ1〉)〈τ2 ⇒

p
τ ′2〉

[App] (λτ1→τ2x . E)V ֒→ E{x ≔ V }

[ProjCast] πi (V 〈τ1 × τ2 ⇒
p
τ ′1 × τ ′2〉) ֒→ (πi V)〈τi ⇒

p
τ ′i 〉

[Proj] πi (V1,V2) ֒→ Vi
[TypeApp] (Λ ®α . E) [®t] ֒→ E{ ®α ≔ ®t}

[Let] let x = V in E ֒→ E{x ≔ V }
[Context] E[E] ֒→ E[E ′] if E ֒→ E ′

[CtxBlame] E[E] ֒→ blame p if E ֒→ blame p

Fig. 3. Semantics of the Cast Calculus

relations, called positive subtyping (written ≤+) and negative subtyping (written ≤−), characterizing
respectively casts that cannot yield positive blame and casts that cannot yield negative blame. By
the factoring theorem for naive subtyping [Wadler and Findler 2009], τ ′ 4 τ implies τ ′ <:+ τ , so
a cast that satisfies rule [Cast⊕] is safe for ℓ. Conversely, τ 4 τ ′ implies τ ′ <:− τ , so a cast that
satisfies rule [Cast⊖] is also safe for ℓ. The remaining rules are standard (Figure 9 of the appendix).

2.2.3 Semantics. The cast calculus has a strict reduction semantics defined by the reduction rules
in Figure 3. The semantics is defined in terms of values (ranged over by V), evaluation contexts
(ranged over by E), and ground types (ranged over by ρ). The first two are defined as follows:

V ::= c | λτ→τx . E | (V ,V) | V 〈τ1 → τ2 ⇒
p
τ ′1 → τ ′2〉 | V 〈τ1 × τ2 ⇒

p
τ ′1 × τ ′2〉 | V 〈ρ ⇒

p
?〉

E ::= � | E E | E V | E [®t] | (E, E) | (E,V) | πi E | let x = E in E | E〈τ ⇒
p
τ 〉

As usual there are three value forms with casts [Siek et al. 2015a].
The notion of ground type was introduced by Wadler and Findler [2009] to compare types in

casts, with the idea that incompatibility between ground types is the source of all blame. We next give
a definition of ground types equivalent to the one of Wadler and Findler [2009], but which uses a
different notation that is more convenient when we extend the system to set-theoretic types (§4).

Definition 2.6 (Grounding and Ground Types). For every type τ ∈ Tτ , we define the grounding
of τ with respect to ?, noted τ /?, as follows:

b/? = b α /? = α ?/? = ?
τ1 → τ2/? = ? → ? τ1 × τ2/? = ? × ?

Types τ such that τ , ? and that verify τ /? = τ are called ground types and are ranged over by ρ.

The reduction rules of Figure 3 closely follow the presentation of Siek et al. [2015a]. They are
divided into two groups, the reductions for the application of casts to a value and the reductions cor-
responding to the elimination of type constructors. For the former we use the technique by Wadler
and Findler [2009] which consists in checking whether a cast is performed between two types

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:10 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

with the same toplevel constructor and failing when this is not the case. This amounts to check-
ing whether grounding the two types (by the rules [Expand_]) yields the same ground type (rule
[Collapse]) or not (rule [Blame]). In regards to an implementation, the [ExpandL] rule corresponds
to tagging a value with its type constructor (as done in Lisp implementations) and the [Collapse]
rule corresponds to untagging a value. Most of the rules of the standard reductions group are
taken from Siek et al. [2015a] too: we added the rules for type abstractions and applications, for
projections, and for let bindings (all absent in the cited work). As usual, the function .̄ is involutory,
that is, ¯̄p = p.

The soundness of the cast calculus is proved via progress and subject reduction. We do not give a
direct proof of these properties. They follow from the corresponding properties of the cast calculus
of Section 4 (Lemmas 4.9, 4.10) and the conservativity of the extension (Theorem 4.13). The same
holds true for the property of blame safety (Corollary 4.12).

2.2.4 Compilation. The final ingredient of the declarative definition of the system is to show
how to compile a well-typed expression of the source language into an expression of the cast
calculus and prove that compilation preserves types. This result, combined with the soundness of
the cast language, implies the soundness of the gradually-typed language: a well-typed expression
is compiled into an expression that can only either return a value of the same type, or return a cast
error, or diverge.

Compilation is driven by the derivation of the type for the source language expression. Concep-
tually, compilation is straightforward: every time the derivation uses the [Materialize] rule on

some subexpression for a relation τ1 4 τ2, a cast 〈τ1 ⇒
ℓ
τ2〉 must be added to that subexpression.

Technically, we achieve this by enriching the judgements of typing derivations with a compilation
part: Γ ⊢ e { E : τ means that the source language expression e of type τ compiles to the cast
language expression E. These judgements are derived by the same rules as those given for the
source language in Figure 1 to whose judgements we add the compilation part. The only rules that
need non-trivial modifications are the following ones:

[Var]
Γ ⊢ x { x[®t] : τ { ®α ≔ ®t}

Γ(x) = ∀®α . τ [Abstr]
Γ, x : t ⊢ e { E : τ

Γ ⊢ (λx . e) { (λt→τx . E) : t → τ

[Let]
Γ ⊢ e1 { E1 : τ1 Γ, x : ∀®α, ®β . τ1 ⊢ e2 { E2 : τ

Γ ⊢ let ®α x = e1 in e2 { let x = Λ ®α, ®β . E1 in E2 : τ
®α, ®β ♯ Γ and ®β ♯ e1

[Materialize]
Γ ⊢ e { E : τ ′

Γ ⊢ e { E〈τ ′ ⇒
ℓ
τ 〉 : τ

τ ′ 4 τ

[Var] compiles occurrences of polymorphic variables by instantiating them with the needed types.
[Abstr] explicitly annotates the function with the type deduced by inference. The compilation of
a let-construct abstracts the type variables that are generalized. Finally, the core of compilation
is given by the [Materialize] rule, which corresponds to the insertion of an explicit cast (with
a positive fresh label ℓ). All the remaining rules are straightforward modifications of the rules in
Figure 1 insofar as their conclusions simply compose the compiled expressions in the premisses.
Compilation is defined for all well-typed expressions and preserves well-typing:

Theorem 2.7. If Γ ⊢ e : τ , then there exists an E such that Γ ⊢ e { E : τ and Γ ⊢ E : τ .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:11

2.3 Type Inference

In this section we show how to decide whether a given term is well-typed or not: we define a type
inference algorithm that is sound and complete with respect to the system of the previous section.
The algorithm is mostly based on the work of Pottier and Rémy [2005] and of Castagna et al. [2016],
adapted for gradual typing. Our algorithm differs from that of Garcia and Cimini [2015] in that
ours literally reduces the inference problem to unification. To infer the type of an expression, we
generate constraints that specify the conditions that must hold for the expression to be well-typed;
then, we solve these constraints via unification to obtain a solution (a type substitution).

Our presentation proceeds as follows. We first introduce type constraints (§2.3.1) and show how
to solve sets of type constraints using standard unification (§2.3.2). Then we show how to generate
constraints for a given expression (§2.3.3). To keep constraint generation separated from solving,
generation uses more complex structured constraints (this is essentially due to the presence of
let-polymorphism) which are then solved by simplifying them into the simpler type constraints
(§2.3.4). Finally, we present our soundness and completeness results for type inference.

2.3.1 Type Constraints and Solutions. A type constraint has either the form (t1 Û≤ t2) or the form
(τ Û4 α), whose meaning we give below. Type constraint sets (ranged over by the metavariable D)
are finite sets of type constraints. We write var(D) for the set of type variables appearing in the
type constraints in D. We write var Û4(D) for the set of type variables appearing in the gradual types
in materialization constraints in D: that is, var Û4(D) =

⋃
(τ Û4α)∈D var(τ). When α ⊆ Vα is a set of

type variables and θ is a type substitution, we define αθ =
⋃

α ∈α var(αθ).
We say that a type substitution θ : Vα → Tτ is a solution of a type constraint set D (with respect

to a finite set ∆ ⊆ Vα), and we write θ
∆ D, if:

• for every (t1 Û≤ t2) ∈ D, we have t1θ = t2θ ;
• for every (τ Û4 α) ∈ D, we have τθ 4 αθ and, for all β ∈ var(τ), βθ is a static type;
• dom(θ) ∩ ∆ = ∅.

A subtyping type constraint (t1 Û≤ t2) forces the substitution to unify t1 and t2. We use Û≤ instead of,
say Û=, to have uniform syntax with the later section on subtyping.

A materialization type constraint (τ Û4 α) imposes two distinct requirements: the solution must
make α a materialization of τ and must map all variables in τ to static types. These two conditions
might be separated but in practice they must always be imposed together, and their combination
simplifies the description of constraint solving. Note that the constraint (α Û4 α) forces αθ to be
static (since the other requirement, αθ 4 αθ , is trivial).
Finally, the set ∆ is used to force the solution not to instantiate certain type variables.

2.3.2 Type Constraint Solving. We solve a type constraint set in three steps: we convert the type
constraints to unification constraints between type frames (notably, by changing every occurrence
of ? into a different frame variable); then we compute a unifier; finally, we convert the unifier into
a solution (by renaming some variables and then changing frame variables back to ?).

We define this process as an algorithm solve(·)(·) which, given a type constraint set D and a finite
set ∆ ⊆ Vα , computes a set of type substitutions solve∆(D). This set is either empty, indicating
failure, or a singleton set containing the solution (which is unique up to variable renaming).4

We do not describe a unification algorithm explicitly; rather, we rely on properties satisfied
by standard implementations (e.g., that by Martelli and Montanari [1982]). We use unification on

type frames: its input is a finite set T 1 Û= T 2 of equality constraints of the form T 1 Û= T 2. We also
include as input a finite set ∆ ⊆ Vα that specifies the variables that unification must not instantiate

4We use a set because, in the extension with subtyping, constraint solving can produce multiple incomparable solutions.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:12 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

(i.e., that should be treated as constants). We write unify
∆
(T 1 Û= T 2) for the result of the algorithm,

which is either fail or a type substitution θ : Vα ∪VX → TT . We assume that unify satisfies the
usual soundness and completeness properties and that it computes idempotent substitutions.
Unification is the main ingredient of our type constraint solving algorithm, but we need some

extra steps to handle materialization constraints.
Let D be of the form { (t1i Û≤ t2i) | i ∈ I } ∪ { (τj Û4 α j) | j ∈ J }: then solve∆(D) is defined as follows.

(1) Let T 1 Û= T 2 be { (t1i Û= t2i) | i ∈ I } ∪ { (Tj Û= α j) | j ∈ J } where the Tj are chosen to ensure:

(a) for each j ∈ J , T †
j = τj ;

(b) every frame variable X occurs in at most one of the Tj , at most once.

(2) Compute unify
∆
(T 1 Û= T 2):

(a) if unify
∆
(T 1 Û= T 2) = fail, return ∅;

(b) if unify
∆
(T 1 Û= T 2) = θ0, return {(θ0θ

′
0)
† |Vα } where:

(i) θ ′0 = { ®X ≔ ®α ′} ∪ { ®α ≔ ®X ′}

(ii) ®X = VX ∩ var Û4(D)θ0 and ®α = var(D) \ (∆ ∪ dom(θ0) ∪ var Û4(D)θ0)

(iii) ®α ′ and ®X ′ are vectors of fresh variables

In step 1, we convert D to a set of type frame equality constraints. To do so, we convert all
gradual types in materialization constraints by replacing each occurrence of ?with a different frame
variable. In step 2, we compute a unifier for these constraints. If a unifier θ0 exists (step 2b), we use
it to build our solution: however, we need a post-processing step to ensure that α and X variables
are treated correctly. For example, a unifier could map α ≔ X when (α Û4 α) ∈ D: then, converting
type frames back to gradual types would yield α ≔ ?, which is not a solution because α is mapped
to a gradual type, but a static type is required. Therefore, to obtain the result we first compose θ0
with a renaming substitution θ ′0; then, we apply † to change type frames back to gradual types,
and we restrict the domain to Vα . The renaming introduces fresh variables to replace some frame
variables with type variables ({ ®X ≔ ®α ′}) and some type variables with frame variables ({ ®α ≔ ®X ′}).
It has two purposes. One is to ensure that the variables in var Û4(D) are mapped to static types,
which we need for θ
∆ D to hold. The other is to have the substitution introduce as few type
variables as possible.

solve(·)(·) satisfies the following properties.

• Soundness: if θ ∈ solve∆(D), then θ
∆ D.
• Completeness: if θ
∆ D, then there exist two substitutions θ ′ and θ ′′ such that
– θ ′ ∈ solve∆(D);
– for every α , αθ ′(θ ∪ θ ′′) 4 α(θ ∪ θ ′′) and, if αθ ′ is static, αθ ′(θ ∪ θ ′′) = α(θ ∪ θ ′′).

• If θ ∈ solve∆(D), then var(D)θ ⊆ ∆ ∪ var Û4(D)θ .

The last property states that a solution θ returned by solve introduces as few variables as possible.
In particular, the variables it introduces in D are only those in ∆ and those that appear in the
solutions of variables in var Û4(D) (whose solutions must be static). To ensure this, we perform the
substitution { ®α ≔ ®X ′}. This property implies that we avoid useless materializations of ? to type
variables (and thus the insertion of useless casts at compilation): for example, it ensures that, in
let y = x in e , if x has type ?, then y is given type ? too. In the declarative system, it can be typed

also as ∀α . α , but then the compiled expression has a cast: let y = Λα . x 〈? ⇒
ℓ
α〉 in E. We prefer the

compilation without this cast, which is why we replace as many α variables as possible with ?.

2.3.3 Structured Constraints and Constraint Generation. In the absence of let-polymorphism, the
type constraints we presented suffice to describe the conditions for a program to be well-typed

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:13

〈〈x : t〉〉 = ∃α . (x Û4 α) ∧ (α Û≤ t) α ♯ t

〈〈c : t〉〉 = (bc Û≤ t)

〈〈(λx . e) : t〉〉 = ∃α1,α2. (def x : α1 in 〈〈e : α2〉〉) ∧ (α1 Û4 α1) ∧ (α1→α2 Û≤ t) α1,α2 ♯ t, e

〈〈(λx : τ . e) : t〉〉 = ∃α1,α2. (def x : τ in 〈〈e : α2〉〉) ∧ (τ Û4 α1) ∧ (α1→α2 Û≤ t) α1,α2 ♯ t, τ , e

〈〈e1 e2 : t〉〉 = ∃α . 〈〈e1 : α → t〉〉 ∧ 〈〈e2 : α〉〉 α ♯ t, e1, e2
〈〈(e1, e2) : t〉〉 = ∃α1,α2. 〈〈e1 : α1〉〉 ∧ 〈〈e2 : α2〉〉 ∧ (α1 × α2 Û≤ t) α1,α2 ♯ t, e1, e2

〈〈πi e : t〉〉 = ∃α1,α2. 〈〈e : α1 × α2〉〉 ∧ (αi Û≤ t) α1,α2 ♯ t, e

〈〈let ®α x = e1 in e2 : t〉〉 = let x : ∀®α ;α[〈〈e1 : α〉〉]
var(e1)\ ®α . α in 〈〈e2 : t〉〉 α ♯ ®α, e1

Fig. 4. Constraint generation.

(following the approach of Wand [1987], augmented with materialization constraints). With let-
polymorphism, instead, we would need either to mix constraint generation and solving or to copy
constraints for let-bound expressions multiple times. To avoid this, we use a kind of constraint that
includes binding, following Pottier and Rémy [2005].
A structured constraint is a term generated by the following grammar:

C ::= (t Û≤ t) | (τ Û4 α) | (x Û4 α) | def x : τ in C | ∃ ®α .C | C ∧C | let x : ∀®α ;α[C] ®α . α in C

Structured constraints are considered equal up to α-renaming of bound variables. In ∃®α .C , the ®α

variables are bound in C . In let x : ∀®α ;α[C1]
®α ′
. α in C2, α and the ®α variables are bound in C1.

Structured constraints include type constraints and five other forms. A constraint (x Û4 α)
asks that the type scheme for x has an instance that materializes to the solution of α . Existential
constraints ∃®α .C bind the type variables ®α occurring in C; this simplifies freshness conditions, as
in Pottier and Rémy [2005]. C ∧C is simply the conjunction of two constraints, while def and let

constraints are generated to type λ-abstractions and let-expressions, as explained below.
Figure 4 defines a function 〈〈(·) : (·)〉〉 such that, for every expression e and every static type t ,

〈〈e : t〉〉 expresses the conditions that must hold for e to have type tθ for some substitution θ .
We point out some peculiarities of the rules. For variables, we generate a constraint combining

materialization and subtyping. This allows us to use the form (x Û4 α) instead of (x Û4 t); more
importantly, it means the same definition for constraint generation can be reused when we add
subtyping. For a λ-abstraction, constraint generation wraps the constraint for the body in a def
constraint to introduce the type of the parameter. In the absence of annotations, the constraint
(α1 Û4 α1) is used to ensure that the parameter will have a static type. For annotated functions,
the constraint (τ Û4 α1) allows the domain of the function to be materialized. This is needed,
for example, to obtain solvable constraints for the abstraction (λx : ?. x) in a context expecting
Int → Int. For let, we build a let constraint including the constraints of the two expressions and
recording the variables that must be generalized (®α) and those that must not (var(e1) \ ®α)5. In all
rules, the side conditions force the choice of fresh variables.

2.3.4 Constraint Solving. While our definition of constraints is mostly based on the work of Pottier
and Rémy [2005], we describe constraint solving differently, following Castagna et al. [2016]. We
solve structured constraints in two steps: we convert a structured constraint to a type constraint
set with the constraint simplification system of Figure 5; then, we compute a solution using the type
constraint solving algorithm of §2.3.2. Because of let-polymorphism, constraint simplification also
uses type constraint solving internally to compute partial solutions.

5We include the latter for convenience: actually, they can be recomputed from the rest since var(e1) = var(〈〈e1 : α 〉〉) \ {α }.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:14 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Γ;∆ ⊢ (t1 Û≤ t2) { {t1 Û≤ t2} Γ;∆ ⊢ (τ Û4 α) { {τ Û4 α }

Γ;∆ ⊢ (x Û4 α) { {τ { ®α ≔ ®β} Û4 α }

Γ(x) = ∀®α . τ
®β fresh

(Γ, x : τ);∆ ⊢ C { D

Γ;∆ ⊢ def x : τ in C { D

Γ;∆ ⊢ C { D

Γ;∆ ⊢ (∃ ®α .C) { D
®α fresh

Γ;∆ ⊢ C1 { D1 Γ;∆ ⊢ C2 { D2

Γ;∆ ⊢ C1 ∧C2 { D1 ∪ D2

Γ;∆ ∪ ®α ⊢ C1 { D1 (Γ, x : ∀®α, ®β . αθ1);∆ ⊢ C2 { D2

Γ;∆ ⊢ let x : ∀®α ;α[C1]
®α ′

. α in C2 { D2 ∪ equiv(θ1,D1)

θ1 ∈ solve∆∪ ®α (D1)

®α ♯ Γθ1
®β = var(αθ1) \ (var(Γθ1) ∪ ®α ∪ ®α ′)

®α,α fresh

where equiv(θ,D) =def
{
(α Û4 α)

�� α ∈ var Û4(D) ∪ var(D)θ
}
∪

⋃
α ∈ dom(θ)
αθ static

{
(α Û≤ αθ), (αθ Û≤ α)

}

Fig. 5. Constraint simplification.

Constraint simplification is a relation Γ;∆ ⊢ C { D. The Γ is a type environment used to assign
types to the variables in constraints of the form (x Û4 α). ∆ is a finite subset of Vα and is used to
record variables that must not be instantiated. When simplifying constraints for a whole program,
we take Γ to be empty and ∆ to be the set of free type variables in the program (presumably empty
as well). Finally, C is the constraint to be simplified and ∆ the result of simplification.

The rules are syntax-directed and deterministic (modulo the choice of fresh variables). Subtyping
and materialization constraints are left unchanged. Variable constraints (x Û4 α) are converted to
materialization constraints by replacing x with a fresh instance of its type scheme. To simplify a def
constraint, we update the environment and simplify the inner constraint. For ∃®α .C , we simplify C
after performing α-renaming, if needed, to ensure that ®α is fresh. To simplify C1 ∧C2, we simplify
C1 and C2 and take the union of the resulting sets.

Finally, the rule for let constraints is of course the most complicated. To simplify a constraint
let x : ∀®α ;α[C1]

®α ′
. α in C2, we perform five steps:

(1) we simplify the constraint C1 to obtain a set D1;
(2) we apply the solve algorithm to D1 to obtain a solution θ1, if one exists;
(3) we compute the type scheme for x by generalizing the type given by the solution;
(4) we simplify the constraint C2 in the expanded environment to obtain a set D2;
(5) finally, we add to D2 the set equiv(θ1,D1), whose purpose is to constrain the solution to be

an instantiation of θ1 and to yield static types where needed.

In steps (1) and (2), we add ®α to ∆ to ensure that the ®α variables are not instantiated while solving
C1, otherwise we could not generalize them later. The type αθ1 for x is generalized by quantifying
over the ®α variables (checking that they are not introduced in the environment by θ1) as well as

over ®β , which contains all variables in αθ1 that do not appear in any of Γθ1, ®α , or ®α ′. Recall that
we record in ®α ′ the variables that cannot be generalized (typically because they appeared in the
expression but not in the decoration of the let construct).
We use the set equiv(θ1,D1) to constrain a solution θ to adhere to θ1 in two ways. First, θ must

map to static types all variables in var Û4(D1) (which θ1 had to map to static types) and all variables
introduced by θ1. Also, θ must satisfy αθ1θ = αθ whenever αθ1 is a static type. To ensure the latter,
we add the two subtyping constraints (α Û≤ αθ1) and (αθ1 Û≤ α). Adding both is redundant here

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:15

(both require equality), but they are needed when we add subtyping. The freshness conditions are
stated informally here. In the Appendix, we give a definition where we track explicitly the variables
we introduce and state the conditions precisely (Figure 11).

The results of type inference can also be used to compile expressions. In particular, when e is an
expression, D is a derivation of Γ;∆ ⊢ 〈〈e : t〉〉 { D, and θ
∆ D, we can compute a cast language
expression LeMD

θ
. For reasons of space, the (straightforward) definition of LeMD

θ
is in the Appendix.

The following results hold.

Theorem 2.8 (Soundness of type inference). Let D be a derivation of Γ; var(e) ⊢ 〈〈e : t〉〉 { D.

Let θ be a type substitution such that θ
var(e) D. Then, we have Γθ ⊢ e { LeMD
θ
: tθ .

Theorem 2.9 (Completeness of type inference). If Γ ⊢ e : τ , then, for every fresh type variable
α , there exist D and θ such that Γ; var(e) ⊢ 〈〈e : α〉〉 { D and {α ≔ τ } ∪ θ
var(e) D.

The latter result, combined with completeness of solve, ensures that inference can compute most
general types for all expressions. In particular, starting from a program (i.e., a closed expression)
e , we pick a fresh variable α and generate 〈〈e : α〉〉. Theorem 2.9 ensures that, if the program is
well-typed, we can find a derivation D for ∅;∅ ⊢ 〈〈e : α〉〉 { D and D has a solution. Since solve
is complete, we can compute the principal solution θ of D. Then, αθ is the most general type for
the program and LeMD

θ
is its compilation driven by the derivation D.

2.3.5 An Example of Type Inference. Let e be the term let α x = (λy : α .y) in 1 +
(
x ((λz : ?. z) 3)

)

(we assume to have a + operator in the language). Since x ((λz : ?. z) 3) is used as a number, to be
well-typed it should be given type Int. In the declarative system, λz : ?. z has type ? → ?, which can
be materialized to Int → Int; then its application to 3 has type Int; therefore applying the identity
function x , we also get type Int. Inference can find this solution, as follows. We use a type variable
β as the expected type, and we generate the constraints below. We have:

C = 〈〈e : β〉〉 = 〈〈let α x = (λy : α .y) in 1 +
(
x ((λz : ?. z) 3)

)
: β〉〉 = let x : ∀α ;α1[C1]

ϵ . α1 in C2

C1 = 〈〈(λy : α .y) : α1〉〉

= ∃α2,α3.
(
def y : α in 〈〈y : α3〉〉

)
∧ (α Û4 α2) ∧ (α2 → α3 Û≤ α1)

C2 = 〈〈1 +
(
x ((λz : ?. z) 3)

)
: β〉〉 = (Int Û≤ β) ∧ 〈〈x ((λz : ?. z) 3) : Int〉〉

= (Int Û≤ β) ∧
(
∃α4. 〈〈x : α4 → Int〉〉

∧
(
∃α5. 〈〈(λz : ?. z) : α5 → α4〉〉 ∧ (b3 Û≤ α5)

))

〈〈y : α3〉〉 = ∃α6. (y Û4 α6) ∧ (α6 Û≤ α3)

〈〈x : α4 → Int〉〉 = ∃α7. (x Û4 α7) ∧ (α7 Û≤ α4 → Int)

〈〈(λz : ?. z) : α5 → α4〉〉 = ∃α8,α9.
(
def z : ? in ∃α10. (z Û4 α10) ∧ (α10 Û≤ α9)

)

∧ (? Û4 α8) ∧ (α8 → α9 Û≤ α5 → α4)

We simplify C in the empty environment with ∆ = ∅. To do this, we first simplify C1: we have
∅; {α } ⊢ C1 {

{
(α Û4 α6), (α6 Û≤ α3), (α Û4 α2), (α2 → α3 Û≤ α1)

}
. Then, through unification we

can obtain the solution θ1 = {α1 ≔ (α → α),α2 ≔ α,α3 ≔ α,α6 ≔ α }. We obtain the expanded
environment x : ∀α . α → α . Then, we simplify C2. We have (x : ∀α . α → α);∅ ⊢ C2 { D2 with
D2 =

{
(γ→γ Û4 α7), (α7 Û≤ α4→Int), (? Û4 α10), (α10 Û≤ α9), (? Û4 α8), (α8→α9 Û≤ α5→α4), (b3 Û≤ α5)

}
.

The final constraint set is D = D2 ∪ equiv(θ1,D1), with

equiv(θ1,D1) = {(α Û4 α), (α1 Û≤ α → α), (α → α Û≤ α1),
(α2 Û≤ α), (α Û≤ α2), (α3 Û≤ α), (α Û≤ α3), (α6 Û≤ α), (α Û≤ α6)} .

A solution to D is

θ = θ1 ∪ {α4 ≔ Int,α5 ≔ Int,α7 ≔ (Int → Int),α8 ≔ Int,α9 ≔ Int,α10 ≔ Int, β ≔ Int,γ ≔ Int} .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:16 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Let D be the derivation of constraint simplification that we have described. Then, the compiled
expression LeMD

θ
is (omitting identity casts)

let x = (Λα . λα→αy.y) in
(
x [Int]

) (
(λ?→Intz. z〈? ⇒

ℓ1
Int〉)〈? → Int ⇒

ℓ2
Int → Int〉 3

)
.

3 GRADUAL TYPINGWITH SUBTYPING

In this section, we add subtyping to the system of the previous section. We just outline the main
differences and the necessary additions without giving the details. In particular, we present only the
declarative systems since developing the algorithmic counterpart requires set-theoretic operations
on types, a topic that we thoroughly deal with in Section 4. For this section we prioritize simplicity,
which is why we give a simple syntactic definition for subtyping instead of the more complex but
extension-robust semantic definition of it, that is postponed to Section 4.

3.1 Declarative System

3.1.1 Subtyping. We suppose to start from a predefined subtyping preorder relation ≤ on B (e.g.,
Odd ≤ Int ≤ Real) and we extend it to the set Tτ of gradual types by the inductive application of
the following inference rules:

? ≤ ? α ≤ α

τ1 ≤ τ ′1 τ2 ≤ τ ′2

τ1 × τ2 ≤ τ ′1 × τ ′2

τ ′1 ≤ τ1 τ2 ≤ τ ′2

τ1 → τ2 ≤ τ ′1 → τ ′2

These rules are standard: covariance for products, co-contravariance for arrows. Just notice that,
from the point of view of subtyping, the dynamic type ? is only related to itself, just like a type
variable (cf. [Siek and Taha 2007]).

3.1.2 Type System. The extension of the source gradual language with subtyping could not be
simpler: it suffices to add the standard subsumption rule to the declarative typing rules of Figure 1:

[Subsume]
Γ ⊢ e : τ ′

Γ ⊢ e : τ
τ ′ ≤ τ

The definition of the dynamic semantics does not require any essential change, either. The cast
calculus is the same as in Section 2.2, except that the [Subsume] rule above must be added to
its typing rules and the two cast reduction rules that use type equality must be generalized to
subtyping (again, type soundness will be a consequence of the conservativity of the system in
Section 4), namely:

[Collapse] V 〈ρ ⇒
p
?〉〈? ⇒

q
ρ ′〉 ֒→ V if ρ ≤ ρ ′

[Blame] V 〈ρ ⇒
p
?〉〈? ⇒

q
ρ ′〉 ֒→ blame q if ρ � ρ ′

The definition of the compilation of the source language into the “new” cast calculus does not
change either (subsumption is neutral for compilation). The proof that compilation preserves types
stays essentially the same, since we have just added the subsumption rule to both systems.

3.2 Type Inference

The changes required to add subtyping to the declarative system are minimal: define the subtyping
relation, add the subsumption rule, and recheck the proofs since they need slight modifications. On
the contrary, defining algorithms to decide the relations we just defined is more complicated. As
we saw in Section 2.3, this amounts to (1) generating a set of constraints and (2) solving it.

Constraint generation is not problematic. The form of the constraints and the generation algo-
rithm given in Section 2.3 already account for the extension with subtyping: hence, they do not
need to be changed, neither here nor in the next section. Constraint resolution, instead, is a different

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:17

matter. In the previous section, constraints of the form α Û≤ t were actually equality constraints
(i.e., α Û= t) that could be solved by unification. The same constraints now denote subtyping, and
their resolution requires the computation of intersections and unions. To see why, consider the
following OCaml code snippet (that does not involve any gradual typing):

fun x -> if (fst x) then (1 + snd x) else x

We want our system to deduce for this definition the following type:

(Bool×Int) → (Int | (Bool×Int))

To that end, a constraint generation system like the one we present in the next section would
assign to the function the type α → β and generate the following set of four constraints: {(α Û≤
Bool×1), (α Û≤ 1×Int), (Int Û≤ β), (α Û≤ β)}, where 1 denotes the top type (that is, the supertype of
all types). The first constraint is generated because fst x is used in a position where a Boolean is
expected; the second comes from the use of snd x in an integer position; the last two constraints
are produced to type the result of an if_then_else expression (with a supertype of the types of
both branches). To compute the solution of two constraints of the form α Û≤ t1 and α Û≤ t2, the
resolution algorithm must compute the greatest lower bound of t1 and t2 (or an approximation
thereof); likewise for two constraints of the form s1 Û≤ β and s2 Û≤ β the best solution is the least
upper bound of s1 and s2. This yields Bool × Int for the domain —i.e., the intersection of the upper
bounds for α— and (Int | (Bool×Int)) for the codomain—i.e., the union of the lower bounds for β .
In summary, to perform type reconstruction in the presence of subtyping, one must be able to

compute unions and intersections of types. In some cases, as for the domain in the example above,
the solution of these operations is a type of ML (or of the language at issue): then the operations
can be meta-operators computed by the type-checker but not exposed to the programmer. In other
cases, as for the codomain in the example, the solution is a type which might not already exist in the
language: therefore, the only solution to type the expression precisely is to add the corresponding
set-theoretic operations to the types of the language.

The full range of these options can be found in the literature. For instance, Pottier [2001] defines
intersection and union as meta-operations, and it is not possible to simplify the constraints to derive
a type like the one above. Hosoya et al. [2000] implement a hybrid solution in which intersections
are meta-operations while full-fledged unions —which are necessary to encode XML types— are
included in types. Other systems include both intersections and unions in the types, starting from
the earliest work by Aiken and Wimmers [1993] to more recent work by Dolan and Mycroft [2017].
Union and intersection types are the most expressive solution but also the one that is technically
most challenging; this is why the cited works impose some restrictions on the use of unions and
intersections (e.g., no unions in covariant position and no intersections in contravariant ones).
In the next section, we embrace unrestricted union and intersection types, adding them to both
static and gradual types. In particular, we follow the approach of semantic subtyping by Frisch et al.
[2008], which also requires the addition of negation and recursive types.

4 GRADUAL TYPINGWITH SET-THEORETIC TYPES

In this section we add set-theoretic types to our system. From a syntactic viewpoint, this means
we add union and negation type connectives, plus the empty (or bottom) type, to all the previous
categories of types; intersection and the top type are encoded. We also introduce recursive types:
besides the interest of recursive types per se, we need them to solve subtyping constraints following
a technique introduced by Courcelle [1983]. Instead of using explicit recursion, say, by a µ-binder,
we define types coinductively as infinite trees satisfying regularity and contractivity conditions.
Such a definition is equivalent to one using µ-binders, but it fits our framework better.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:18 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Definition 4.1 (Type syntax). The sets Tt , Tτ , and TT are the sets of terms t , τ , and T produced
coinductively by the following grammars

static types t ::= α | b | t × t | t → t | t ∨ t | ¬t | 0

gradual types τ ::= ? | α | b | τ × τ | τ → τ | τ ∨ τ | ¬τ | 0

type frames T ::= X | α | b | T ×T | T → T | T ∨T | ¬T | 0

and that satisfy the following conditions:
• (regularity) the term has a finite number of different sub-terms;
• (contractivity) every infinite branch of a type contains an infinite number of occurrences of the
product or arrow type constructors.

We introduce the following abbreviations for types: τ1 ∧ τ2 =
def

¬(¬τ1 ∨ ¬τ2), τ1 \ τ2 =
def

τ1 ∧ ¬τ2,
1 =

def
¬0, and likewise for type frames. We refer to b, ×, and → as type constructors and to ∨, ∧, ¬,

and \ as type connectives.
The contractivity condition is crucial because it removes ill-formed types such as τ = τ ∨ τ

(which does not carry any information about the set denoted by the type) or τ = ¬τ (which cannot
represent any set). It also ensures that the binary relation ⊲ ⊆ T 2

τ defined by τ1 ∨ τ2 ⊲ τi , ¬τ ⊲ τ is
Noetherian (that is, strongly normalizing). This gives an induction principle on Tτ that we will use
without any further reference to the relation.6 The same applies to type frames. Regularity is only
necessary to ensure the decidability of the subtyping relation.
The semantics of the new types and connectives is given in terms of the subtyping relation:

union and intersection are, respectively, the least upper bound and the greatest lower bound of the
relation, while 0 and 1 are the extrema of the lattice. Therefore, to give meaning to this extension,
we extend the subtyping relation of Section 3. We come here to the limits of the syntactic approach:
not only is giving inference rules for set-theoretic types hard, but it also yields a system that is
hardly intelligible. Therefore we follow the semantic subtyping approach of Frisch et al. [2008]:
we give an interpretation of types as sets and then use this interpretation to define the subtyping
relation in terms of set containment. We would like to view a type as the set of the values that have
that type. However, values cannot be used directly to define the interpretation because of a problem
of circularity. Indeed, in a higher-order language, values include well-typed λ-abstractions; hence
to know which values inhabit a type —and thus define the interpretation— we need to have already
defined the type system (to type λ-abstractions, in particular their bodies), which depends on the
subtyping relation, which in turn depends on the interpretation of types. To break this circularity,
types are instead interpreted as subsets of an interpretation domain, written D and defined below.

Definition 4.2 (Interpretation domain). The interpretation domain D is produced inductively
by the following grammar

D ∋ d ::= cL | (d,d)L | {(d,dΩ), . . . , (d,dΩ)}
L dΩ ::= d | Ω

where L ranges over Pfin(V
α∪VX) (i.e., on finite sets of variables), c ∈ C, and Ω is a symbol not in C.

The elements of D correspond, intuitively, to the results of evaluating expressions. Expressions
can produce constants or pairs of results, so we include both in D. In a higher-order language,
the result of a computation can also be a function. Functions are represented by finite relations
of the form {(d1,d1

Ω
), . . . , (dn,dn

Ω
)}, where Ω (which is a constant not in D) can appear in second

components to signify that the function fails (i.e., evaluation is stuck) on the corresponding input.
6The induction principle derived from the relation “⊲” states that we can use induction on type connectives but not on type
constructors. This is well-founded because contractivity ensures that there are finitely many type connectives between two
type constructors. For instances of applications of this principle, see Definition B.3 and the proof of Proposition B.10 in the
appendix. All formal details can be found in Appendix B.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:19

The restriction to finite relations is standard in semantic subtyping [Frisch et al. 2008]: intuitively,
one wants the domain to represent all function values; but the use of infinite relations is not possible
for cardinality reasons (since D cannot contain its function space), therefore we include in D all
finite approximations of the computable functions7 in D, which reproduces the construction of
Scott’s domains. Finally, the elements of D are tagged by finite sets of type variables. As explained
later, these tags are used to define the set-theoretic interpretation of type variables. In particular,
we write tags(d) for the outermost set of variables labeling d , that is, tags(cL) = tags((d1,d2)

L) =
tags({(d1,d

′
1), . . . , (dn,d

′
n)}

L) = L. The next step is to define the interpretation of types into subsets
of D. We do it for type frames and, thus, for static types as well.

Definition 4.3 (Set-theoretic interpretation). We define the set-theoretic interpretation of
type frames J · K : TT → P(D) as follows:

JαK = {d | α ∈ tags(d) } JT1 ∨T2K = JT1K ∪ JT2K

JX K = {d | X ∈ tags(d) } J¬T K = D \ JT K

JbK = { cL | c ∈ B(b) } J0K = ∅
JT1 ×T2K = { (d1,d2)

L | d1 ∈ JT1K ∧ d2 ∈ JT2K }
JT1 → T2K = { {(d1,d

′
1), . . . , (dn,d

′
n)}

L | ∀i . di ∈ JT1K =⇒ d ′
i ∈ JT2K }

Strictly speaking the definition above is for inductive types. The reader will find in the appendix
(Definition B.3) a formal definition that handles the coinductive definition of types and such that
the equalities given in Definition 4.3 hold.

The interpretation of type connectives in semantic subtyping is mandatory: the interpretation of
a union type is the union of the interpretations, negation is set-theoretic complementation, and 0

is the empty set. The interpretation of type constructors, instead, is not a priori fixed: it depends on
the characteristics of the language we want to use the types for. This dependence is hardly visible
in the interpretation of basic and product types: for basic types, we assume that a function B(·)
maps each basic type to a set of constants, while products are interpreted as Cartesian products.

The interpretation of arrow types instead is more open-ended and has a more important impact
on the definition of the subtyping relation. In particular, in Definition 4.3 the arrow typeT1 → T2 is
interpreted as the set of (finite) graphs that map elements inT1 only to elements inT2. For instance,
Int → Bool contains all the functions that when applied to an integer either diverge or return a
Boolean value; Int → 0 is the set of all functions that diverge on integer arguments (if they do
not diverge, they must return a value in the empty set, which is impossible); 0 → 1 is the set
of all functions. The type systems assigns a type to an expression only if the expression returns
values only in that type; this implies that all expressions of the empty type 0 are diverging. This
particular interpretation of function spaces fits languages that are: (1) non-deterministic: since the
definition does not prevent the interpretation of a function space to contain a relation with two pairs
(d,d1) and (d,d2) with d1 , d2; (2) non-terminating since the definition does not force a relation in
JT1 → T2K to have as first projection the whole JT1K; (3) with overloaded functions: since it does not
make the two types (T1∨T2) → (T ′

1 ∧T
′
2) and (T1 → T ′

1)∧(T2 → T ′
2) equivalent (see Castagna [2005,

§4.5] for details); and (4) strict: since the interpretation identifies divergence and type emptiness
(see Petrucciani et al. [2018, §5] for a thorough discussion of this point). Languages with different
characteristics may then require a different interpretation for arrows.

Finally, notice that the elements of D are labeled by finite sets of variables and that the interpre-
tation of a variable is the set of all the elements it tags. This is a technique proposed by Gesbert et al.
[2015] to let type variables range over arbitrary subsets of D, implementing the idea of convex
model defined by Castagna and Xu [2011]. We refer the reader to the cited papers for more details.

7A computable function f can be approximated by the set of finite graph functions д such that ∀x . д(x)⇓ ⇒ д(x)= f (x).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:20 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Definition 4.4 (Subtyping). The subtyping relation ≤T between type frames is defined by

T1 ≤T T2 ⇐⇒
def

JT1K ⊆ JT2K

We write ≃T for the subtype equivalence relation defined asT1 ≃T T2 ⇐⇒
def

(T1 ≤T T2) ∧ (T2 ≤T T1).

The subtyping relation is decidable. We invite the reader to peruse Castagna and Frisch [2005]
for a simple introduction to semantic subtyping which shows how to derive a subtyping algorithm
from the set-theoretic interpretation. A detailed description of the implementation of the subtyping
algorithm can be found in Castagna [2018]. For the extension of subtyping to type variables the
reader can refer to Castagna and Xu [2011] and Gesbert et al. [2015].

4.1 Materialization and Subtyping for Set-Theoretic Types

In the previous section we have defined subtyping on type frames (and static types, which are a
subset of type frames), but not on gradual types. This section shows how to define the two relations
we need for the type system: materialization and subtyping on gradual types.

For materialization, nothing needs to change. Definition 2.2, based on discrimination and type
substitutions, is equally valid here though we have changed the syntax of types. Conversely, an
inductive definition would no longer work because types are defined coinductively.

As for subtyping, in Section 3 we treated ? exactly like a type variable. We might be tempted to
do the same here: τ1 ≤ τ2 would hold if and only if T1 ≤T T2 holds, where Ti is τi in which every
occurrence of ? is replaced by a distinguished frame variable X ◦. This relation is not satisfactory.
Indeed, note that it would validate ? \ ? ≤ 0 (because X ◦ \ X ◦ ≤T 0). As a consequence, combined
with materialization, it would imply that the declarative type system would type every program,
even fully static and nonsensical ones (it would insert casts that always fail).8 Therefore to define
subtyping, the idea of replacing ? with type variables requires some care: we must distinguish
occurrences that appear below negation from those that do not.
We say that an occurrence of a frame variable X in a type frame T is positive if it is below an

even number of negations and negative otherwise. A type frame is polarized if no frame variable

has both positive and negative occurrences in it.9 We write T pol

T
for the set of polarized type frames.

The polarized discriminations of a gradual type are defined as ⋆pol(τ) =def ⋆ (τ) ∩ T
pol

T
.

Using polarized discrimination, we can define subtyping as follows.

Definition 4.5 (Subtyping on gradual types). The subtyping relation ≤ between gradual types
is defined by

τ1 ≤ τ2 ⇐⇒
def

∃T1 ∈ ⋆
pol(τ1),T2 ∈ ⋆

pol(τ2).T1 ≤T T2

We write ≃ for the subtype equivalence relation defined as τ1 ≃ τ2 ⇐⇒
def

(τ1 ≤ τ2) ∧ (τ2 ≤ τ1).

It is easy to check that this is a conservative extension of the definition in Section 3: if τ1 and τ2
are non-recursive and do not contain union, negation, or 0, then τ1 ≤ τ2 holds if and only if it can
be derived by those inductive rules.
This definition of subtyping could be computationally problematic because of the existential

quantification. However, it turns out that we do not need to check every discrimination. It is enough
to use the discrimination in which just two frame variables appear (thus eliminating the existential
quantification): one (say, X 1) to replace all positive occurrences of ? and another (say, X 0) for all
negative ones. Given τ , we denote this discrimination as τ ⊕ . The following result holds.

Proposition 4.6. Let τ1 and τ2 be gradual types. Then, τ1 ≤ τ2 holds if and only if τ ⊕
1 ≤T τ ⊕

2 .

8This is because any type could then be converted to any other type: for example, Int ≤ Int\(?\?) 4 Int\(Int\?) ≤ 0 ≤ Bool.
9The notion of polarized type frame is not directly related to the polarity of blame labels.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:21

This only holds for subtyping: for materialization, we must consider discriminations using more
variables to replace positive occurrences of ? (to allow, for instance, ? → ? 4 Int → Bool).

This result proves not only that subtyping on gradual types is decidable, but also that it reduces
in linear time to subtyping on static types (clearly, τ ⊕ can be computed from τ in linear time).
Note that we have defined positive and negative occurrences based solely on negation. They

do not coincide with covariant and contravariant occurrences: in X → Y , X is contravariant but
positive; in (¬X) → Y , it is covariant but negative. However, using variance instead of polarity to
define ⋆pol and τ ⊕ gives exactly the same relation (we elaborate on this in Appendix B.4 and B.5.)

The following result shows that we can commute subtyping and materialization so that material-
ization always occurs first, which is useful for type inference.

Proposition 4.7. If τ1 ≤ τ2 4 τ3, then there exists a τ ′2 such that τ1 4 τ ′2 ≤ τ3.

4.2 Cast Calculus

We extend the cast language of Section 2 to support set-theoretic types. Expressions and typing
rules remain as in Section 2.2, except that we use the new definition of gradual types for casts,
annotations and type applications, and that we add the typing rule [Subsume] as in §3.1.1.
The operational semantics must be redefined insofar as it depends on the syntax of types. The

first definition we extend is that of grounding. The idea is the same as in §2.2.3: to compute an
intermediate type between two types that are in the materialization relation. However, in §2.2.3
one of these two types was always ? for non-trivial materializations (so that [Collapse] and
[Blame] could then eliminate it); but now, because of type connectives, both endpoints may be
different from ?. For example, the cast 〈(Int → Int) ∧ (Bool → Bool) ⇒

p
(Int → Int) ∧ ?〉 makes

a transition between Bool → Bool and ?, which can be decomposed by first transitioning to the
intermediate type ? → ?, as done in Section 2. The intermediate type for this cast would therefore
be (Int → Int) ∧ (? → ?) and the endpoint (Int → Int) ∧ ?. The intuition to generalize this idea is
to apply the grounding operation of Section 2 recursively under type connectives, as formalized in
the following definition.

Definition 4.8 (Grounding and Relative Ground Types). For all types τ , τ ′ ∈ Tτ such that
τ ′ 4 τ , we define the grounding of τ with respect to τ ′, noted τ /τ ′, as follows:

(τ1 ∨ τ2)/(τ ′1 ∨ τ ′2) = (τ1/τ ′1) ∨ (τ2/τ ′2)
¬τ /¬τ ′ = ¬(τ /τ ′)

(τ1 ∨ τ2)/? = (τ1/?) ∨ (τ2/?) ¬τ /? = ¬(τ /?)
(τ1 → τ2)/? = ? → ? (τ1 × τ2)/? = ? × ?

b/? = b 0/? = 0

α /? = α τ /τ ′ = τ ′ otherwise

A type τ is ground with respect to τ ′ if and only if τ /τ ′ = τ .

Note that τ ′ 4 τ is a precondition to computing τ /τ ′. Therefore to ease the presentation any
further reference to τ /τ ′ will implicitly imply that τ ′ 4 τ .
In Section 2, ground types are types ρ such that ρ/? = ρ. They are “skeletons” of types whose

only information is the top-level constructor. The values of the form V 〈ρ ⇒
p
?〉 record the essence

of the loss of information induced by materialization. We extend this definition to match the new
definition of grounding by saying that a type τ is ground with respect to τ ′ if τ /τ ′ = τ . Then, the
expressions of the form V 〈τ ⇒

p
τ ′〉 are values whenever τ is ground with respect to τ ′. Intuitively,

casts of this form lose information about the top-level constructors of a type: an example is the
cast 〈(Int → Int) ∧ (? → ?) ⇒

p
(Int → Int) ∧ ?〉, where we lose information about the ? → ? part,

which becomes ?. Once again, this kind of cast records the essence of this loss.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:22 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Cast Reductions.

[ExpandL] V 〈τ1 ⇒
p
τ2〉 ֒→ V 〈τ1 ⇒

p τ1/τ2〉〈τ1/τ2 ⇒
p
τ2〉 if τ1/τ2 , τ1, τ1/τ2 , τ2

[ExpandR] V 〈τ1 ⇒
p
τ2〉 ֒→ V 〈τ1 ⇒

p τ2/τ1〉〈τ2/τ1 ⇒
p
τ2〉 if τ2/τ1 , τ1, τ2/τ1 , τ2

[CastId] V 〈τ ⇒
p
τ 〉 ֒→ V

[Collapse] V 〈τ1 ⇒
p
τ2〉〈τ

′
1 ⇒

q
τ ′2〉 ֒→ V if τ1 ≤ τ ′2

with τ
′
2/τ ′1 = τ

′
2 and (τ1/τ2 = τ1 or τ2/τ1 = τ1)

[Blame] V 〈τ1 ⇒
p
τ2〉〈τ

′
1 ⇒

q
τ ′2〉 ֒→ blame q if τ1 � τ ′2

with τ
′
2/τ ′1 = τ

′
2 and (τ1/τ2 = τ1 or τ2/τ1 = τ1)

[UpSimpl] V 〈τ1 ⇒
p
τ2〉〈τ

′
1 ⇒

q
τ ′2〉 ֒→ V 〈τ1 ⇒

p
τ2〉 if τ2 ≤ τ ′2 , τ1/τ2 = τ2, τ

′
2/τ ′1 = τ

′
2

[UpBlame] V 〈τ1 ⇒
p
τ2〉〈τ

′
1 ⇒

q
τ ′2〉 ֒→ blame q if τ2 � τ ′2 , τ1/τ2 = τ2, τ

′
2/τ ′1 = τ

′
2

[UnboxSimpl] V 〈τ1 ⇒
p
τ2〉 ֒→ V if type(V) ≤ τ2, τ2/τ1 = τ2, V is unboxed

[UnboxBlame] V 〈τ1 ⇒
p
τ2〉 ֒→ blame p if type(V) � τ2, τ2/τ1 = τ2, V is unboxed

Standard Reductions.

[CastApp] V 〈τ ⇒
p
τ ′〉V ′ ֒→ (V V ′〈τ ′1 ⇒

p̄
τ1〉)〈τ2 ⇒

p
τ ′2〉 if τ

′
/τ = τ or τ /τ ′ = τ ′

where 〈τ ⇒
p
τ ′〉 ◦ type(V ′) = 〈τ1 → τ2 ⇒

p
τ ′1 → τ ′2〉

[CastProj] πi (V 〈τ ⇒
p
τ ′〉) ֒→ (πi V)〈τi ⇒

p
τ ′i 〉 if τ

′
/τ = τ or τ /τ ′ = τ ′

where πi (〈τ ⇒
p
τ ′〉) = 〈τi ⇒

p
τ ′i 〉

[SimplApp] V 〈τ ⇒
p
τ ′〉V ′ ֒→ V V ′ if τ /τ ′ = τ

[SimplProj] πi (V 〈τ ⇒
p
τ ′〉) ֒→ πi V if τ /τ ′ = τ

[FailApp] V 〈τ ⇒
p
τ ′〉V ′ ֒→ blame p if 〈τ ⇒

p
τ ′〉 ◦ type(V ′) undef.

[FailProj] πi (V 〈τ ⇒
p
τ ′〉) ֒→ blame p if πi (〈τ ⇒

p
τ ′〉) undef.

Fig. 6. Cast Reductions for the Cast Calculus

We have accounted for one kind of cast value, but we also need to update the definition of cast
values of the form V 〈τ1 → τ2 ⇒

p
τ ′1 → τ ′2〉 (and similarly for pairs), because function types are

not necessarily syntactic arrows anymore (they can be unions and/or intersections thereof). This
can be done by considering the opposite case of the previous definition, that is, types such that
τ /τ ′ = τ ′. Intuitively, a cast 〈τ ⇒

p
τ ′〉 where τ /τ ′ = τ ′ does not lose or gain information about the

top-level constructors of a type: it only acts below the top constructors. That is, both the origin and
target of such a cast have the same syntactic structure “above” constructors, the same “skeleton”.
For example, 〈(Int → Int) ∧ (? → ?) ⇒

p
(Int → Int) ∧ (Bool → Bool)〉 is such a cast.

Putting everything together, we obtain the following new definition of values:

V ::= c | λτ→τx . E | (V ,V) | Λ ®α . E

| V 〈τ1 ⇒
p
τ2〉 where τ1 , τ2 and where τ1/τ2 = τ1 or τ1/τ2 = τ2 or τ2/τ1 = τ1

We say that a value is unboxed if it is not of the form V 〈τ1 ⇒
p
τ2〉. We next need to define a new

operator “type” on values (except type abstractions) to resolve particular casts:

type(c) = bc type(λτ1→τ2x . E) = τ1 → τ2

type((V1,V2)) = type(V1) × type(V2) type(V 〈τ1 ⇒
p
τ2〉) = τ2

The semantics of the cast calculus for set-theoretic types is given in Figure 6. We only include
the rules that are different from Section 2; the other rules (for let, non-cast applications, type
applications, etc.) are unchanged.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:23

The rules [ExpandL] and [ExpandR] are the immediate counterparts of the rules of the same
name presented in Section 2, adapted for the new grounding operator. The other rules of this
group use the information provided by the grounding operator to reduce to types that can be
easily compared. For example, consider V 〈τ1 ⇒

p
τ2〉〈τ

′
1 ⇒

q
τ ′2〉. If τ1/τ2 = τ1, then τ1 contains all the

information about type constructors which the cast lost by going into τ2. Likewise, if τ
′
2/τ ′1 = τ

′
2 ,

then all the information about type constructors is in τ ′2 , so the second cast adds constructor
information. Therefore, to simplify the expressions, it suffices to compare τ1 and τ ′2 , which is what
is done in the rules [Collapse] and [Blame] (the set-theoretic counterparts of their namesakes
in Section 2.2.3). The remaining rules for cast reductions follow the same idea, but handle cases
that only arise because of set-theoretic types. For example, we can give a constant a dynamic type
by subtyping (e.g., Int ≤ Int∨? implies 3 : Int∨?), and thus we can immediately cast the type
of a constant to a more precise type, as in the expression 3〈Int ∨ ? ⇒

p
Int ∨ (? → ?)〉. The rules

[UnboxSimpl] and [UnboxBlame] handle such cases by checking if the cast can be removed. The
intuition is that the dynamic part of such casts is useless since it has been introduced by subtyping.

The rules for applications and projections also need to be updated because function and product
types can now be unions and intersections of arrows or products. For applications, we define a
new operator, written ◦, which, given a function cast and the type of the argument, computes an
approximation of the cast such that both its origin and target types are arrows, so that the usual rule
for cast applications defined in Section 2 can be applied. More formally, the operation 〈τ ⇒

p
τ ′〉 ◦ τv

computes a cast 〈τ1 → τ2 ⇒
p
τ ′1 → τ ′2〉 such that τv ≤ τ ′1 , τ

′
2 = min{τ | τ ′ ≤ τv → τ }, τ ≤ τ1 → τ2,

and such that the materialization relation between the two parts of the cast is preserved. This
ensures that the resulting approximation is still well-typed. The definition of this operator is quite
involved, so we relegate it to the appendix (see Definition B.68). The most important point of
this definition is that it requires both types of the cast to be syntactically identical above their
constructors, which explains the presence of the grounding condition in [CastApp]. Moreover, this
operator can also be undefined in some cases, such as if the origin type of the cast is not an arrow
type or if the second type is empty (e.g. 〈(? → ?) ∧ ¬(Int → Int) ⇒

p
(Int → Int) ∧ ¬(Int → Int)〉).

Such ill-formed casts are handled by [FailApp]. We apply the same idea to projections and define
an operator, written πi , that computes an approximation of the first or second component of
a cast between two product types. This yields the rules [CastProj] and [FailProj]. The two
remaining rules, [SimplApp] and [SimplProj], handle cases that only appear due to the presence of
set-theoretic types. For instance, it is now possible to apply (or project) a value that has a dynamic
type: V 〈(Int → Int) ∧ (? → ?) ⇒

p
(Int → Int) ∧ ?〉V ′. Here, by subtyping, the function has both

type Int → Int and ?, so it can be applied but it is also dynamic. We show that such casts are
unnecessary and can be harmlessly removed; the rules [SimplApp] and [SimplProj] do just that.
We next state the usual type soundness lemmas and theorems for this cast calculus.

Lemma 4.9 (Progress). For every term E such that ∅ ⊢ E : ∀®α .τ , either there exists a value V
such that E = V , or there exists a term E ′ such that E ֒→ E ′, or there exists a label p such that
E ֒→ blame p.

Lemma 4.10 (Subject Reduction). For all terms E, E ′ and every context Γ, if Γ ⊢ E : ∀®α .τ and
E ֒→ E ′, then Γ ⊢ E ′ : ∀®α .τ .

Theorem 4.11 (Soundness). For every term E such that ∅ ⊢ E : ∀®α .τ , either there exists a valueV
such that E ֒→∗ V , or there exists a label p such that E ֒→∗ blame p, or E diverges.

Another important result for our calculus is Blame Safety, introduced by Wadler and Findler
[2009], which guarantees that the statically typed part of a program cannot be blamed. In our

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:24 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

system, recall that the typing rules that we presented in Section 2.2 enforce the correspondence
between the polarity of the label of a cast and the direction of materialization. That is, we only have
casts of the form 〈τ ⇒

p
τ ′〉 where τ ′ 4 τ (i.e., τ ≤n τ ′) for a negative p and τ 4 τ ′ (i.e., τ ′ ≤n τ) for

a positive p. Since all this information is encoded in the typing rules, blame safety is a corollary of
Lemma 4.10, and can be stated without resorting to positive and negative subtyping:

Corollary 4.12 (Blame Safety). For every term E such that ∅ ⊢ E : ∀®α .τ , and every blame label
ℓ, E 6֒ →∗ blame ℓ̄.

Lastly, an important aspect of the cast language defined in this section is that it is a conservative
extension of the cast calculus defined in Section 3; this justifies the choice of the reduction rules.
Denoting by Sub the system defined in Section 3 and by Set the system defined in this section,
there is a strong bisimulation relation between Set and Sub, as stated by the following result.

Theorem 4.13 (Conservativity). For every term E such that ∅ ⊢SUB E : τ , E ֒→Sub E ′ ⇐⇒
E ֒→Set E

′ and E ֒→Sub blame p ⇐⇒ E ֒→Set blame p.

4.3 Type Inference

To add set-theoretic types to the source language, we do not need to change the syntax, except, of
course, by allowing set-theoretic types in annotations. The typing rules remain as in Section 2.1,
plus the rule [Subsume] from Section 3.1 which now uses the subtyping relation of Definition 4.4;
likewise for compilation, which is the same as in §2.2.4 plus a rule for subsumption that acts as the
identity on the compiled expressions. Type inference requires adaptation, though. In Section 2.3, we
have described it for the system without subtyping. That description was intended to be extended
here; this motivated some design choices, such as the use of subtyping constraints. Now we describe
what must be changed to adapt the system to set-theoretic types.

4.3.1 Type Constraints and Solutions. We keep the same definition for type constraints except, of
course, for the different definition of types. However, the conditions for a type substitution θ to be
a solution of a constraint D in ∆ must be changed: subtyping constraints now require subtyping
instead of equality. So we write θ
∆ D when:

• for every (t1 Û≤ t2) ∈ D, we have t1θ ≤ t2θ ;
• for every (τ Û4 α) ∈ D, we have τθ 4 αθ and, for all β ∈ var(τ), βθ is a static type;
• dom(θ) ∩ ∆ = ∅.

4.3.2 Type Constraint Solving. To solve type constraint sets, we replace unification with an algo-
rithm designed for set-theoretic types and semantic subtyping.

In particular, we use the tallying algorithm of Castagna et al. [2015]. Given a set t1 Û≤ t2 of
subtyping constraints, tallying computes a finite set Θ of type substitutions such that, for all θ ∈ Θ

and (t1 Û≤ t2) ∈ t1 Û≤ t2, we have t1θ ≤T t2θ . The set computed by tallying can contain multiple
incomparable substitutions (unlike unification, where the principal solution to the problem is a
unique substitution). For example, the constraint (α × β) Û≤ (Int × Int) ∨ (Bool × Bool) has two
solutions, {α ≔ Int, β ≔ Int} and {α ≔ Bool, β ≔ Bool}, which are not comparable. Nevertheless,
the tallying algorithm of Castagna et al. [2015] is sound and complete with respect to the tallying

problem (i.e., checking whether there exists a substitution solving a set t1 Û≤ t2 of subtyping
constraints) insofar as the set of substitutions computed by the algorithm is principal: any other
solution is an instance of one in the set.

We want to use tallying to define an algorithm to solve type constraints. Previously, we converted
materialization constraints (τ Û4 α) to equality constraints (T Û= α) and used unification. To do the
same here, we first need to extend tallying to handle such equality constraints. This is easy to do in

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:25

our case by adding simple pre- and post-processing steps.10 The resulting algorithm tally Û=
(·)(·) is

defined in the appendix. It satisfies the following property:

∀θ ∈ tally Û=
∆

(
t1 Û≤ t2 ∪T Û= α

)
.




∀(t1 Û≤ t2) ∈ t1 Û≤ t2. t1θ ≤T t2θ

∀(T Û= α) ∈ T Û= α . Tθ = αθ

dom(θ) ⊆ var
(
t1 Û≤ t2 ∪T Û= α

)
\ ∆

Using tally Û=, we can define the version of solve for set-theoretic types following the same
approach as before. However, there are two difficulties.
The main difficulty is the presence of recursive types and their behaviour with respect to

materialization. Consider the recursive type defined by the equation τ = (? × τ) ∨ b, where b is
some basic type. It corresponds to the type of lists of elements of type ?, terminated by a constant
in b. Since recursive types in our definition are infinite regular trees (and not finite trees with
explicit binders), τ = (?×τ) ∨b and τ ′ = (?× ((?×τ ′) ∨b)) ∨b denote exactly the same type. What
types can τ materialize to? Clearly, both τ1 = (Int× τ2) ∨b and τ2 = (Int× ((Bool× τ2) ∨b)) ∨b are
possible. Indeed, ? occurs infinitely many times in τ . Materialization could in principle allow us
to change each occurrence to a different type. However, since types must be regular trees, only a
finite number of occurrences can be replaced with different types (otherwise, the resulting tree
would not be a gradual type). While finite, this number is unbounded.

Recall that step 1 of solve picked a discrimination Tj of each τj such that no frame variable
appeared more than once in Tj . If we consider the recursive type τ above, there is no T such that
T †
= τ and that T has no repeated frame variables: it would need to have infinitely many frame

variables and thus be non-regular. While we will never need infinitely many variables, we do not
know in advance (in this pre-processing step) how many we will need.

A solution to this would be to change the tallying algorithm so that discrimination is performed
during tallying. Then, it could be done lazily, introducing as many frame variables as needed.
However, this sacrifices some of the modularity of our current approach.

Currently, we give a definition where no constraint is placed on how many frame variables are
used to replace ?. Of course, a sensible choice is to use different variables as much as possible except
for the infinitely many occurrences of ? in a recursive loop.
There is a second difficulty. For a subtyping constraint (t1 Û≤ t2), a substitution θ computed

by tallying ensures t1θ ≤T t2θ . However, what we want is rather (t1θ)† ≤ (t2θ)
†. This does not

necessarily hold unless the type frames t1θ and t2θ are polarized. For example, if the constraint is
(α Û≤ 0) and the substitution is {α ≔ X \X }, we have X \X ≤T 0 but ? \ ? � 0. We define solve so
that it ensures polarization in these cases by tweaking the variable renaming step we already had.

Having described these differences, we can give the definition of the algorithm. Let D be of the
form { (t1i Û≤ t2i) | i ∈ I } ∪ { (τj Û4 α j) | j ∈ J }: then solve∆(D) is defined as follows.

(1) Let T Û= α be { (Tj Û= α j) | j ∈ J , τj , α j } where, for each j ∈ J , T †
j = τj ;

(2) Compute Θ = tally Û=
∆

(
{ (t1i Û≤ t2i) | i ∈ I } ∪T Û= α

)
;

(3) Return { (θ0θ
′
0)
† |Vα | θ0 ∈ Θ }, where, for every θ0 ∈ Θ, θ ′0 is computed as follows:

(a) θ ′
0 = { ®X ≔ ®α ′} ∪ { ®α ≔ ®X ′}

(b) A = var Û4(D)θ0 ∪
⋃

i ∈I

(
var±(t1i θ0) ∪ var±(t2i θ0)

)

(c) ®X = VX ∩A and ®α = var(D) \ (∆ ∪ dom(θ0) ∪A)

(d) ®α ′ and ®X ′ are vectors of fresh variables

In step 3b, we write var±(T) to denote the set of all variables (both α and X) that have both
positive and negative occurrences in T . A type frame T is polarized when var±(T) ∩ VX

= ∅: the

10 We rely on some properties of the constraints we generate: e.g., we never have both (T1 Û= α) and (T2 Û= α) with T1 , T2.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:26 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

renaming substitution θ ′0 is constructed to ensure this for all type frames t1i θ0θ
′
0 and t

2
i θ0θ

′
0. This

algorithm is sound, though not complete: if θ ∈ solve∆(D), then θ
∆ D.

4.3.3 Structured Constraints, Generation, and Simplification. The syntax of structured constraints
can be kept unchanged except for the change in the syntax of types. Constraint generation is
also unchanged. Constraint simplification still uses the same rules, but it relies on the new solve

algorithm. Soundness still holds, with the same statement as Theorem 2.8.

Theorem 4.14 (Soundness of type inference). LetD be a derivation of Γ; var(e) ⊢ 〈〈e : t〉〉 { D.

Let θ be a type substitution such that θ
var(e) D. Then, we have Γθ ⊢ e { LeMD
θ
: tθ .

However, completeness no longer holds, mainly as a consequence of the possible materializations
of ? in recursive types. Therefore, the first step to attempt to recover completeness for inference
would be to study how to change the solve algorithm to make it complete.

Note also that type constraint solving can now produce more than one incomparable solution. So
constraint simplification is non-deterministic: in the rule for let constraints, there can be multiple
solutions to try. Soundness ensures that any solution will give a type and a compiled expression
that are sound with respect to the declarative system.

We conclude the technical presentation of this work with a word about decidability. Althought
we did not always explicitly state it, all the algorithms we presented in this paper terminate, either
because we reduce them to existing typing and subtyping problems that are known to be decidable
(e.g., subtyping and materialization for gradual types) or because of some obvious decreasing
measure (e.g., constraint simplification). This, combined with the soundness and completeness
results implies the decidability of all properties (or just the semi-decidability when, like in the case
of type inference for set-theoretic polymorphic gradual types, only soundness holds).

5 RELATED WORK

The contributions of this paper include the replacement of consistency with the materialization
rule and the integration of gradual typing with set-theoretic types (intersection, union, negation,
recursive) and Hindley-Milner polymorphism (with inference). The integration of all of these
features is novel, but prior work has studied the combination of subsets of these features.
Castagna and Lanvin [2017] study the combination of gradual typing with set-theoretic types,

but without polymorphism. They employ the approach of Garcia et al. [2016] that uses abstract
interpretation to guide the design of the operations on types. Compared to the work of Castagna
and Lanvin [2017], the present paper adds Hindley-Milner polymorphism with type inference and
gives a new operational semantics that includes blame tracking and better lines up with the prior
work on gradual typing. Ortin and García [2011] also investigate the combination of intersection
and union types with gradual typing, but without higher-order functions and polymorphism. Toro
and Tanter [2017] introduce a new kind of union type inspired by gradual typing, that provides
implicit downcasts from a union to any of its constituent types. There is some overlap in the
intended use-cases of these gradual union types and our design, though there are considerable
differences as well, given that our work handles polymorphism and the full range of set-theoretic
types. A similar overlap exists with the work by Jafery and Dunfield [2017] who introduce gradual
sum types, yet, with the same kind of limitations as Toro and Tanter [2017]. Ângelo and Florido
[2018] study the combination of gradual typing and intersection types, but in a somewhat limited
form, as the design does not support subtyping or the other set-theoretic types.
As discussed in the introduction, Siek and Vachharajani [2008a] showed how to do unification-

based inference in a gradually typed language. Garcia and Cimini [2015] took this a step further
and provide inference for Hindley-Milner polymorphism and prove that their algorithm yields

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:27

principal types. The present paper builds on this prior work and contributes the additional insight
that a special-purpose constraint solver is not needed to handle gradual typing, but an off-the-shelf
unification algorithm can be used in combination of some pre and post-processing of the solution.
In another line of work, Rastogi et al. [2012] develop a flow-based type inference algorithm for
ActionScript to facilitate type specialization and the removal of runtime checks as part of their
optimizing compiler. Campora et al. [2017] improve the support for migrating from dynamic to
static typing by integrating gradual typing with variational types. They define a constraint-based
type inference algorithm that accounts for the combination of these two features.
The combination of gradual typing with subtyping has been studied by many authors in the

context of object-oriented languages. Siek and Taha [2007] showed how to augment an object
calculus with gradual typing. Their declarative type system uses consistency in the elimination
rules and has a subsumption rule to support subtyping. Their algorithmic type system combines
consistency and subtyping into a single relation, consistent-subtyping. Many subsequent works
adapted consistent-subtyping to different settings [Bierman et al. 2014; Garcia et al. 2016; Ina and
Igarashi 2011; Lehmann and Tanter 2017; Maidl et al. 2014; Swamy et al. 2014; Xie et al. 2018].

There is a long history of type inference with intersection types [Kfoury and Wells 2004; Ronchi
Della Rocca 1988]. The style of type inference known as soft typing employed union types [Aiken
et al. 1994; Cartwright and Fagan 1991]. The set-constraints of Aiken andWimmers [1993] employed
both intersection and union types. Our work builds on recent results by Castagna et al. [2016]
regarding type inference for languages with set-theoretic types and Hindley-Milner inference. Our
work extends their approach to handle gradual typing. The addition of subtyping to a language
presents a significant challenge for type inference, and there is a long line of work on this prob-
lem [Aiken and Wimmers 1993; Dolan and Mycroft 2017; Fuh and Mishra 1988; Mitchell 1991;
Pottier 2001]. This challenge is intertwined with that of inference with intersection and union
types, as we discussed in Section 3.2.

Ours is not the first line of work that tries to attack the syntactic hegemony currently ruling the
gradual types community. The first and, alas hitherto unique, other example of this is the already
cited work of Garcia et al. [2016] on “Abstracting Gradual Typing” (AGT) (and its several follow-ups)
which was a source of inspiration both for our work and for Castagna and Lanvin [2017]. AGT uses
abstract interpretation to relate gradual types to sets of static types. This is done via two functions:
a concretization function that maps a gradual type τ into the set of static types obtained by replacing
static types for all occurrences of ? in τ ; an abstraction function that maps a set of static types to
the gradual type whose concretization best approximates the set. Like AGT, we map gradual types
into sets of static types, although they are different from those obtained by concretization, since
we use type variables rather than generic static types. As long as only concretization is involved,
we can follow and reproduce the AGT approach in ours: (1) AGT concretizations of a type τ can be
defined in our system as the set of static types to which τ can materialize; (2) this definition can
then be used to give a different characterization of the AGT’s consistency relation; and (3) by using
that characterization we can show consistency to be decidable, define consistent subtyping, and
show that the problem of deciding consistent subtyping in AGT reduces in linear time to deciding
semantic subtyping.
But then it is not possible to follow the approach further since the AGT definition of the

abstraction function is inherently syntactic and, thus, is unfit to handle type connectives whose
definition is fundamentally of semantic nature. In other terms, we have no idea about whether —let
alone how— AGT could handle set-theoretic types and this is why we had to find a new semantic
characterizations of constructions that in AGT are smoothly obtained by a simple application of
the abstraction function.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:28 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

On the topic of gradual typing and polymorphism, there has been considerable work on explicit
parametric polymorphism, in the context of System F [Ahmed et al. 2011, 2017; Igarashi et al.
2017] and Java Generics [Ina and Igarashi 2011]. The presence of first-class polymorphism, as in
System F, requires considerable care in the operational semantics of a cast calculus. In contrast,
the second-class polymorphism (in the sense of Harper [2006]) in this paper does not significantly
impact the operational semantics because casts do not need to handle the universal type.

The operational semantics for cast calculi are informed by research on runtime contract enforce-
ment, especially regarding blame tracking [Findler and Felleisen 2002]. There is a large body of
research on contracts; the most closely related to this paper are the intersection and union contracts
of Keil and Thiemann [2015] and the polymorphic contracts of Sekiyama et al. [2017].

6 FUTURE WORK

This work lays a foundation for integrating gradual typing and full set-theoretic types and, as such,
it opens many new questions and issues. There are in particular two practical issues that we want
to address in the near future.
The first is to address a restriction we imposed to our system: namely, that it is not possible

to assign intersection types to a function. Forbidding that (other than by subsumption) was an
early design choice of this work, motivated by several reasons: its absence would complicate the
dynamic semantics of the cast calculus (see Castagna and Lanvin [2017], where this restriction is
not present); it would make type reconstruction and constraint solving much more difficult, and
it would have probably hindered completeness even for simple systems; a system without this
restriction would have been interesting only if the language had a type-case construct, which we
wanted to avoid for simplicity and for sticking as close as possible to ML. The drawback is that we
have function types that are less expressive than they could be. For instance, as noted by one of the
referees of POPL, the type deduced for mymap in Section 1 is not completely satisfactory insofar
as it does not capture the precise correlation between input and output. As a matter of fact, the
following program (which transforms lists into arrays and viceversa) would get the same type:

let mymap2 (condition) (f) (x : (α array | α list) & ?) =

if condition then Array.to_list(Array.map f x) else Array.of_list(List.map f x)

We plan to remove this restriction in future, so as to allow the system to check that (the unannotated
version of) mymap has the type

Bool → (α → β) → (((α array & ?) → β array) & ((α list & ?) → β list))

and that the new mymap2 function has instead type

Bool → (α → β) → (((α array & ?) → β list) & ((α list & ?) → β array))

two types where the correlation between the input and the output is more precisely described. In
the long term not only we would like to check the types above, but also we plan to develop flow
analyses that are able to infer such types for code without any type annotation.

The second practical issue we want to address is the implementation of the cast calculus. While it
is still subject of a lively debate whether the insertion of casts significantly penalizes performances
or not (see Takikawa et al. [2016] vs. Bauman et al. [2017]), it is clear that a naive implementation
of the semantics of Figure 6 would be impractical. Therefore, we plan to study how to improve
the performance of the compiled code. For that we will follow a two-pronged approach: on the
one hand, we will try to define abstract machines and suitable restrictions of the cast calculus
with set-theoretic types to target performance; on the other hand, we plan to use the fact that the
declarative semantics of our gradual language provides a choice of different compilation strategies
(corresponding to different ways of using the [Materialize] rule) that can be selected according

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:29

to some code analysis. We hope that by coupling the two we can achieve important performance
gains in the compiled code.

7 CONCLUSIONS

The original goal of this work was to combine polymorphic gradual typing and set-theoretic types.
We soon realized that the task was hard, because the systems were intrinsically different: gradual
typing is of syntactic nature (“?” is a syntactic placeholder), while set-theoretic types rely on a
semantic-based definition of subtyping. To overcome this discrepancy, the only feasible option
seemed to be to give a semantic-oriented interpretation of gradual types: dealing syntactically with
set-theoretic types is unfeasible. This had to be done from scratch, since all existing formalizations
of gradual typing were essentially syntax-based, even the remarkable AGT approach of Garcia et al.
[2016]: although it gives an interpretation of gradual types via a “concretization” function, it relies
on an “abstraction” function whose definition is syntax-based.
The solution we found to this impasse was to give a semantic interpretation of gradual types

indirectly, by mapping them into sets of types that already had a semantic interpretation, namely
those of Castagna and Xu [2011]. Switching to a more semantic-oriented formalization makes all
the chickens come home to roost. We realized that gradual typing, which was hitherto blurred
in the typing rules, could be neatly perceived and captured by a subsumption-like rule using the
preorder on types that we refer to as materialization. We also realized that the materialization
preorder was orthogonal to the much more common preorder on types that is subtyping and that,
therefore, the two preorders could be coupled without much interference (but a lot of interplay).
More than that: when, for pedagogical purposes, we studied a restricted version of our system

(no set-theoretic types and no subtyping, that is, the system of Section 2) we realized that the
restriction of materialization to non set-theoretic types yielded a well-known relation with many
names (precision, less-or-equally-informative, and, ouch, naive subtyping). While the relation was
well known, it had never been singled out in a dedicated, structural rule of the type system. We did
so, and thereby we demonstrated how adding the [Materialize] rule alone is enough to endow a
declarative type system with graduality. We believe that this declarative formulation is a valuable
contribution to the understanding of gradual typing and complements the algorithmic systems on
which previous work has focused. As an example, materialization gives a new meaning to the cast
calculus: its expressions encode the proofs of the declarative systems, and casts, in particular, spot
the places where [Materialize] was used. Casts thus satisfy much stronger invariants than by
using consistency, allowing for a simpler statement of blame safety.
That said, it is not all a bed of roses. While materialization may enlighten the cast calculus

by a previously unseen logical meaning, to define its reduction rules we had to go back to the
down-and-dirty syntax of types, which is not so easy (as witnessed by the 80-page appendix).
Nevertheless, we believe that our declarative formalization makes graduality more intelligible and
that our work raises new questions and opens fresh, unforeseen perspectives such as: what is the
logical meaning of gradual types, what is a complete inference system for gradual set-theoretic
types, what is a denotational semantics of the cast calculus and could it be used to simplify, revise,
and, above all, understand the operational one, how can all of this be transposed to real-world
programming languages. We plan to explore all these issues in future work.

ACKNOWLEDGMENTS

We wish to thank the anonymous POPL reviewers for their detailed comments. This work was
partially supported by a Google PhD Fellowship Program for Victor Lanvin and is partially based
upon work supported by the National Science Foundation under Grant No. 1518844 and 1763922.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:30 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

REFERENCES

Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. 2011. Blame for all. ACM SIGPLAN Notices 46, 1
(2011), 201–214.

Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017. Theorems for Free for Free: Parametricity, With and
Without Types. In International Conference on Functional Programming (ICFP).

Alexander Aiken and Edward L. Wimmers. 1993. Type Inclusion Constraints and Type Inference. In Proceedings of the

Conference on Functional Programming Languages and Computer Architecture (FPCA ’93). ACM, New York, NY, USA,
31–41. https://doi.org/10.1145/165180.165188

Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. 1994. Soft typing with conditional types. In POPL ’94: Proceedings
of the 21st ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM Press, New York, NY, USA,
163–173.

Pedro Ângelo and Mário Florido. 2018. Gradual Intersection Types. In Workshop on Intersection Types and Related Systems.
Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. 2017. Sound Gradual Typing: Only

Mostly Dead. Proc. ACM Program. Lang. 1, OOPSLA, Article 54 (Oct. 2017), 24 pages. https://doi.org/10.1145/3133878
Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In ECOOP 2014 – Object-Oriented

Programming, Richard Jones (Ed.). Lecture Notes in Computer Science, Vol. 8586. Springer Berlin Heidelberg, 257–281.
John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2017. Migrating Gradual Types. Proc. ACM Program.

Lang. 2, POPL (Dec. 2017), 15:1–15:29.
Robert Cartwright and Mike Fagan. 1991. Soft typing. In Conference on Programming Language Design and Implementation

(PLDI). ACM Press, 278–292.
Giuseppe Castagna. 2005. Semantic subtyping: challenges, perspectives, and open problems. In ICTCS 2005, Italian Conference

on Theoretical Computer Science (Lecture Notes in Computer Science). Springer, 1–20.
Giuseppe Castagna. 2018. Covariance and Contravariance: a fresh look at an old issue (a primer in advanced type systems

for learning functional programmers). (2018). First version: 02/2013, last revision: 09/2018. Unpublished manuscript.
Giuseppe Castagna and Alain Frisch. 2005. A gentle introduction to semantic subtyping. In Proceedings of PPDP ’05, the

7th ACM SIGPLAN International Symposium on Principles and Practice of Declarative Programming, pages 198-208, ACM
Press (full version) and ICALP ’05, 32nd International Colloquium on Automata, Languages and Programming, Lecture
Notes in Computer Science n. 3580, pages 30-34, Springer (summary). Lisboa, Portugal. Joint ICALP-PPDP keynote talk.

Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with Union and Intersection Types. Proc. ACM Program. Lang.

1, ICFP ’17, Article 41 (Sept. 2017).
Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. 2015. Polymorphic Functions with Set-Theoretic Types.

Part 2: Local Type Inference and Type Reconstruction. In Proceedings of the 42nd ACM Symposium on Principles of

Programming Languages (POPL ’15). ACM, 289–302.
Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. 2016. Set-theoretic Types for Polymorphic Variants. In

Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP 2016). ACM, New York,
NY, USA, 378–391. https://doi.org/10.1145/2951913.2951928

Giuseppe Castagna and Zhiwu Xu. 2011. Set-theoretic Foundation of Parametric Polymorphism and Subtyping. In ICFP ’11:

16th ACM-SIGPLAN International Conference on Functional Programming. 94–106.
Bruno Courcelle. 1983. Fundamental properties of infinite trees. Theoretical Computer Science 25 (1983), 95–169.
Stephen Dolan and Alan Mycroft. 2017. Polymorphism, Subtyping, and Type Inference in MLsub. In Proceedings of the

44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 60–72.
https://doi.org/10.1145/3009837.3009882

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. Technical Report NU-CCS-02-05.
Northeastern University.

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic Subtyping: dealing set-theoretically with
function, union, intersection, and negation types. J. ACM 55, 4 (2008), 1–64.

You-Chin Fuh and Prateek Mishra. 1988. Type inference with subtypes. In ESOP ’88, H. Ganzinger (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 94–114.

Ronald Garcia. 2013. Calculating Threesomes, with Blame. In ICFP ’13: Proceedings of the International Conference on

Functional Programming.
Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs. In Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, 303–315.
Ronald Garcia, Alison M Clark, and Éric Tanter. 2016. Abstracting gradual typing. In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM, 429–442.
Nils Gesbert, Pierre Genevès, and Nabil Layaïda. 2015. A Logical Approach to Deciding Semantic Subtyping. ACM Trans.

Program. Lang. Syst. 38, 1 (2015), 3. https://doi.org/10.1145/2812805

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

Gradual Typing: A New Perspective 16:31

Robert Harper. 2006. Programming Languages: Theory and Practice. Carnegie Mellon University. Available on the web:
http://fpl.cs.depaul.edu/jriely/547/extras/online.pdf.

Fritz Henglein. 1994. Dynamic typing: syntax and proof theory. Science of Computer Programming 22, 3 (June 1994), 197–230.
Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. 2000. Regular Expression Types for XML. In ICFP ’00 (SIGPLAN

Notices), Vol. 35(9). http://www.cis.upenn.edu/~hahosoya/papers/regsub.ps
Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. 2017. On Polymorphic Gradual Typing. In International Conference on

Functional Programming (ICFP). ACM.
Lintaro Ina and Atsushi Igarashi. 2011. Gradual typing for generics. In Proceedings of the 2011 ACM international conference

on Object oriented programming systems languages and applications (OOPSLA ’11).
Khurram A. Jafery and Joshua Dunfield. 2017. Sums of Uncertainty: Refinements go gradual. In Symposium on Principles of

Programming Languages (POPL).
Matthias Keil and Peter Thiemann. 2015. Blame Assignment for Higher-order Contracts with Intersection and Union. In

Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). ACM, New York,
NY, USA, 375–386.

Assaf J. Kfoury and Joe B. Wells. 2004. Principality and type inference for intersection types using expansion variables.
Theoretical Computer Science 311, 1 (2004), 1 – 70.

Nicolás Lehmann and Éric Tanter. 2017. Gradual Refinement Types. In Symposium on Principles of Programming Languages

(POPL).
André Murbach Maidl, Fabio Mascarenhas, and Roberto Ierusalimschy. 2014. Typed Lua: An Optional Type System for Lua.

In Proceedings of the Workshop on Dynamic Languages and Applications (Dyla’14). ACM, New York, NY, USA, Article 3,
10 pages.

Alberto Martelli and Ugo Montanari. 1982. An Efficient Unification Algorithm. ACM Trans. Program. Lang. Syst. 4, 2 (1982),
258–282.

John C. Mitchell. 1991. Type inference with simple subtypes. Journal of Functional Programming 1, 3 (1991), 245–285.
https://doi.org/10.1017/S0956796800000113

Francisco Ortin and Miguel García. 2011. Union and intersection types to support both dynamic and static typing. Inform.

Process. Lett. 111, 6 (2011), 278 – 286. https://doi.org/10.1016/j.ipl.2010.12.006
Tommaso Petrucciani, Giuseppe Castagna, Davide Ancona, and Elena Zucca. 2018. Semantic subtyping for non-strict

languages. Technical Report. https://arxiv.org/abs/1810.05555.
François Pottier. 2001. Simplifying subtyping constraints: a theory. Inf. Comput. 170, 2 (2001), 153–183.
François Pottier and Didier Rémy. 2005. The essence of ML type inference. In Advanced Topics in Types and Programming

Languages, Benjamin C. Pierce (Ed.). MIT Press, Chapter 10, 389–489.
Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. 2012. The ins and outs of gradual type inference. In Symposium on

Principles of Programming Languages (POPL). 481–494.
Simona Ronchi Della Rocca. 1988. Principal type scheme and unification for intersection type discipline. Theor. Comput. Sci.

59, 1-2 (1988), 181–209.
Taro Sekiyama, Atsushi Igarashi, and Michael Greenberg. 2017. Polymorphic Manifest Contracts, Revised and Resolved.

ACM Trans. Program. Lang. Syst. 39, 1 (Feb. 2017), 3:1–3:36.
Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Proceedings of Scheme and Functional

Programming Workshop. ACM, 81–92.
Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In European Conference on Object-Oriented Programming

(LCNS), Vol. 4609. 2–27.
Jeremy G. Siek, Peter Thiemann, and Philip Wadler. 2015a. Blame and coercion: together again for the first time. In ACM

SIGPLAN Notices, Vol. 50. ACM, 425–435.
Jeremy G. Siek and Manish Vachharajani. 2008a. Gradual typing with unification-based inference. In Proceedings of the 2008

Symposium on Dynamic languages. ACM, 7.
Jeremy G. Siek and Manish Vachharajani. 2008b. Gradual Typing with Unification-based Inference. Technical Report

CU-CS-1039-08. University of Colorado at Boulder.
Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015b. Refined criteria for gradual typing. In

LIPIcs-Leibniz International Proceedings in Informatics, Vol. 32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Nikhil Swamy, Cédric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen, Pierre-Yves Strub, and Gavin Bierman.

2014. Gradual Typing Embedded Securely in JavaScript. In ACM Conference on Principles of Programming Languages

(POPL).
Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual

Typing Dead?. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’16). ACM, 456–468. https://doi.org/10.1145/2837614.2837630

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

16:32 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek

Matías Toro and Éric Tanter. 2017. A Gradual Interpretation of Union Types. In Proceedings of the 24th Static Analysis

Symposium (SAS 2017) (Lecture Notes in Computer Science), Vol. 10422. Springer-Verlag, New York City, NY, USA, 382–404.
PhilipWadler and Robert Bruce Findler. 2009. Well-typed programs can’t be blamed. In European Symposium on Programming.

Springer, 1–16.
Mitchell Wand. 1987. A simple algorithm and proof for type inference. Fundamenta Informaticae 10 (1987), 115–122.
Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira. 2018. Consistent Subtyping for All. In Programming Languages and

Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham, 3–30.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 16. Publication date: January 2019.

