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Abstract

Big data can easily be contaminated by outliers or contain variables
with heavy-tailed distributions, which makes many conventional meth-
ods inadequate. To address this challenge, we propose the adaptive
Huber regression for robust estimation and inference. The key obser-
vation is that the robustification parameter should adapt to the sample
size, dimension and moments for optimal tradeoff between bias and
robustness. Our theoretical framework deals with heavy-tailed distri-
butions with bounded (1 + d)-th moment for any § > 0. We establish
a sharp phase transition for robust estimation of regression parameters
in both low and high dimensions: when § > 1, the estimator admits
a sub-Gaussian-type deviation bound without sub-Gaussian assump-
tions on the data, while only a slower rate is available in the regime
0 < § < 1 and the transition is smooth and optimal. In addition, we
extend the methodology to allow both heavy-tailed predictors and ob-
servation noise. Simulation studies lend further support to the theory.
In a genetic study of cancer cell lines that exhibit heavy-tailedness, the

proposed methods are shown to be more robust and predictive.
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1 Introduction

Modern data acquisitions have facilitated the collection of massive and high dimen-
sional data with complex structures. Along with holding great promises for discov-
ering subtle population patterns that are less achievable with small-scale data, big
data have introduced a series of new challenges to data analysis both computation-
ally and statistically (Loh and Wainwright, 2015; Fan et al., 2018). During the last
two decades, extensive progress has been made towards extracting useful information
from massive data with high dimensional features and sub-Gaussian tails' (Tibshi-
rani, 1996; Fan and Li, 2001; Efron et al., 2004; Bickel, Ritov and Tsybakov, 2009).
We refer to the monographs, Bithlmann and van de Geer (2011) and Hastie, Tib-
shirani and Wainwright (2015), for a systematic coverage of contemporary statistical
methods for high dimensional data.

The sub-Gaussian tails requirement, albeit being convenient for theoretical analy-
sis, is not realistic in many practical applications since modern data are often collected
with low quality. For example, a recent study on functional magnetic resonance imag-
ing (fMRI) (Eklund, Nichols and Knutsson, 2016) shows that the principal cause of
invalid fMRI inferences is that the data do not follow the assumed Gaussian shape,
which speaks to the need of validating the statistical methods being used in the field
of neuroimaging. In a microarray data example considered in Wang, Peng and Li
(2015), it is observed that some gene expression levels have heavy tails as their kurto-
sises are much larger than 3, despite of the normalization methods used. In finance,

the power-law nature of the distribution of returns has been validated as a stylized

LA random variable Z is said to have sub-Gaussian tails if there exists constants ¢; and ¢y such
that P(|Z| > t) < ¢; exp(—cat?) for any t > 0.



fact (Cont, 2001). Fan et al. (2016) argued that heavy-tailed distribution is a stylized
feature for high dimensional data and proposed a shrinkage principle to attenuate the
influence of outliers. Standard statistical procedures that are based on the method of
least squares often behave poorly in the presence of heavy-tailed data® (Catoni, 2012).
It is therefore of ever-increasing interest to develop new statistical methods that are
robust against heavy-tailed errors and other potential forms of contamination.

In this paper, we first revisit the robust regression that was initiated by Peter
Huber in his seminal work Huber (1973). Asymptotic properties of the Huber es-
timator have been well studied in the literature. We refer to Huber (1973), Yohai
and Maronna (1979), Portnoy (1985), Mammen (1989) and He and Shao (1996, 2000)
for an unavoidably incomplete overview. However, in all of the aforementioned pa-
pers, the robustification parameter is suggested to be set as fixed according to the
95% asymptotic efficiency rule. Thus, this procedure can not estimate the model-
generating parameters consistently when the sample distribution is asymmetric.

From a nonasymptotic perspective (rather than an asymptotic efficiency rule), we
propose to use the Huber regression with an adaptive robustification parameter, which
is referred to as the adaptive Huber regression, for robust estimation and inference.
Our adaptive procedure achieves the nonasymptotic robustness in the sense that the
resulting estimator admits exponential-type concentration bounds when only low-
order moments exist. Moreover, the resulting estimator is also an asymptotically
unbiased estimate for the parameters of interest. In particular, we do not impose
symmetry and homoscedasticity conditions on error distributions, so that our problem
is intrinsically different from median/quantile regression models, which are also of
independent interest and serve as important robust techniques (Koenker, 2005).

We made several major contributions towards robust modeling in this paper. First

and foremost, we establish nonasymptotic deviation bounds for adaptive Huber re-

2We say a random variable X has heavy tails if P(|X| > t) decays to zero polynomially in 1/t as
t — o0.



gression when the error variables have only finite (1 4 §)-th moments. By providing
a matching lower bound, we observe a sharp phase transition phenomenon, which is
in line with that discovered by Devroye et al. (2016) for univariate mean estimation.
Second, a similar phase transition for regularized adaptive Huber regression is estab-
lished in high dimensions. By defining the effective dimension and effective sample
size, we present nonasymptotic results under the two different regimes in a unified
form. Last, by exploiting the localized analysis developed in Fan et al. (2018), we
remove the artificial bounded parameter constraint imposed in previous works; see
Loh and Wainwright (2015) and Fan, Li and Wang (2017). In the supplementary
material, we present a nonasymptotic Bahadur representation for the adaptive Huber
estimator when 0 > 1, which provides a theoretical foundation for robust finite-sample
inference.

The rest of the paper proceeds as follows. The rest of this section is devoted
to related literature. In Section 2, we revisit the Huber loss and robustification
parameter, followed by the proposal of adaptive Huber regression in both low and high
dimensions. We sharply characterize the nonasymptotic performance of the proposed
estimators in Section 3. We describe the algorithm and implementation in Section 5.
Section 6 is devoted to simulation studies and a real data application. In Section 4,
we extend the methodology to allow possibly heavy-tailed covariates/predictors. All

the proofs are collected in the supplemental material.

1.1 Related Literature

The terminology “robustness” used in this paper describes how stable the method
performs with respect to the tail-behavior of the data, which can be either sub-
Gaussian /sub-exponential or Pareto-like (Delaigle, Hall and Jin, 2011; Catoni, 2012;
Devroye et al., 2016). This is different from the conventional perspective of robust

statistics under Huber’s e-contamination model (Huber, 1964), for which a number of



depth-based procedures have been developed since the groundbreaking work of John
Tukey (Tukey, 1975). Significant contributions have also been made in Liu (1990),
Liu, Parelius, and Singh (1999), Zuo and Serfling (2000), Mizera (2002) and Mizera
and Miiller (2004). We refer to Chen, Gao and Ren (2018) for the most recent result
and a literature review concerning this problem.

Our main focus is on the conditional mean regression in the presence of heavy-
tailed and asymmetric errors, which automatically distinguishes our method from
quantile-based robust regressions (Koenker, 2005; Belloni and Chernozhukov, 2011;
Wang, 2013; Fan, Fan and Barut, 2014; Zheng, Peng and He, 2015). In general,
quantile regression is biased towards estimating the mean regression coefficient un-
less the error distributions are symmetric around zero. Another recent work that is
related to ours is Alquier, Cottett and Lecué (2017). They studied a general class of
regularized empirical risk minimization procedures with a particular focus on Lips-
chitz losses, which includes the quantile, hinge and logistic losses. Different from all
these work, our goal is to estimate the mean regression coefficients robustly. The ro-
bustness is witnessed by a nonasymptotic analysis: the proposed estimators achieve
sub-Gaussian deviation bounds when the regression errors have only finite second
moments. Asymptotically, our proposed estimators are fully efficient: they achieve
the same efficiency as the ordinary least squares estimators.

An important step towards estimation under heavy-tailedness has been made by
Catoni (2012), whose focus is on estimating a univariate mean. Let X be a real-valued
random variable with mean p = E(X) and variance 0? = var(X) > 0, and assume
that Xi,..., X, are independent and identically distributed (i.i.d.) from X. For any
prespecified exception probability ¢ > 0, Catoni constructs a robust mean estimator

fic(t) that deviates from the true mean p logarithmically in 1/¢, that is,

P(|ric(t) — pl <to/n'?] > 1 —2exp(—ct?), (1)



while the empirical mean deviates from the true mean only polynomially in 1/t2,
namely subGaussian tails versus Cauchy tail in terms of ¢. Further, Devroye et al.
(2016) developed adaptive sub-Gaussian estimators that are independent of the pre-
specified exception probability. Beyond mean estimation, Brownlees, Joly and Lugosi
(2015) extended Catoni’s idea to study empirical risk minimization problems when
the losses are unbounded. Generalizations of the univariate results to those for matri-
ces, such as the covariance matrices, can be found in Catoni (2016), Minsker (2018),
Giulini (2017) and Fan, Li and Wang (2017). Fan, Li and Wang (2017) modified
Huber’s procedure (Huber, 1973) to obtain a robust estimator, which is concentrated
around the true mean with exponentially high probability in the sense of (1), and
also proposed a robust procedure for sparse linear regression with asymmetric and

heavy-tailed errors.

Notation: We fix some notations that will be used throughout this paper. For any
vector u = (uy,...,uq)" € R and ¢ > 1, |Jul|, = (ijl |u;]9)1/7 is the £, norm. For
any vectors u, v € R, we write (u,v) = uTv. Moreover, we let ||uly = Z?Zl 1(uj #
0) denote the number of nonzero entries of w, and set ||u| = maxi<j<q|u;|. For
two sequences of real numbers {a,},>1 and {b,},>1, @, S b, denotes a, < Cb, for

< b,

~Y

some constant C' > 0 independent of n, a, 2 b, if b, < a,, and a, < b, if a,
and b, < a,. For two scalars, we use a A b = min{a, b} to denote the minimum of a
and b. If A is an m X n matrix, we use ||A]| to denote its spectral norm, defined by
|A|| = max,ecsn—1 ||Aull2, where S"! = {u € R" : |Ju||y = 1} is the unit sphere in
R™. For an n X n matrix A, we use Apax(A) and Apin(A) to denote the maximum
and minimum eigenvalues of A, respectively. For two n X n matrices A and B, we
write A < B if B — A is positive semi-definite. For a function f : R — R, we use

Vf € R? to denote its gradient vector as long as it exists.



2 Methodology

We consider i.i.d. observations (yi,®1),. .., (yn, ,) that are generated from the fol-

lowing heteroscedastic regression model
yi = (z:,B%) +&;, with E(gle;) =0 and v;5 = E(|g;|'"?) < oo. (2)

Assuming that the second moments are bounded (§ = 1), the standard ordinary least
squares (OLS) estimator, denoted by B‘ﬂs, admits a suboptimal polynomial-type devi-
ation bound, and thus does not concentrate around B* tightly enough for large-scale
simultaneous estimation and inference. The key observation that underpins this sub-
optimality of the OLS estimator is the sensitivity of quadratic loss to outliers (Huber,
1973; Catoni, 2012), while the Huber regression with a fixed tuning constant may
lead to nonnegligible estimation bias. To overcome this drawback, we propose to em-
ploy the Huber loss with an adaptive robustification parameter to achieve robustness
and (asymptotic) unbiasedness simultaneously. We begin with the definitions of the

Huber loss and the corresponding robustification parameter.

Definition 1 (Huber Loss and Robustification Parameter). The Huber loss () (Hu-

ber, 1964) is defined as

x?/2, if || < 7,
l(z) =

T|lz| —7%/2, if |z| > T,

where 7 > 0 is referred to as the robustification parameter that balances bias and

robustness (Fan, Li and Wang, 2017).

The loss function ¢.(z) is quadratic for small values of z, and becomes linear
when x exceeds 7 in magnitude. The parameter 7 therefore controls the blending
of quadratic and ¢; losses, which can be regarded as two extremes of the Huber loss

with 7 = oo and 7 — 0, respectively. Comparing with the least squares, outliers
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are down weighted in the Huber loss. We will use the name, adaptive Huber loss, to
emphasize the fact that the parameter 7 should adapt to the sample size, dimension
and moments for a better tradeoff between bias and robustness. This distinguishes
our framework from the classical setting. As 7 — oo is needed to reduce the bias
when the error distribution is asymmetric, this loss is also called the RA-quadratic
(robust approximation to quadratic) loss in Fan, Li and Wang (2017).

Define the empirical loss function £.(8) = n~' > - (y; — (z;, 3)) for B € R%.

The Huber estimator is defined through the following convex optimization problem:

B, = arg min £.(3). (3)

BeRY

In low dimensions, under the condition that v; = n=' Y7  E(|g;|'™°) < oo for some
§ > 0, we will prove that 8, with 7 =< min{v;/"™® )/} nmax{/(14+6).1/2} (the first
factor is kept in order to show its explicit dependence on the moment) achieves
the tight upper bound d"/?7~0"D = q1/2p~-min{d/(144),1/2}  The phase transition at
d = 1 can be easily observed (see Figure 1). When higher moments exist (6 > 1),
robustification leads to a sub-Gaussian-type deviation inequality in the sense of (1).

In the high dimensional regime, we consider the following regularized adaptive

Huber regression with a different choice of the robustification parameter:

By € arg min {£-(8)+A1l11}. (4)

where 7 < v5{n/(log d) }»>{1/0+9):1/2} and \ < vs{(log d) /n}™im{d/(1+0)1/2} with vy =

min{vg/u%), viﬂ

}. Let s be the size of the true support S = supp(3*). We will show
that the regularized Huber estimator achieves an upper bound that is of the order
sY2{(log d) /n}™in{8/(+0)1/2} for estimating B* in fo-error with high probability.

To unify the nonasymptotic upper bounds in the two different regimes, we define

the effective dimension, deg, to be d in low dimensions and s in high dimensions.



n ¢ d<n
(n/logd)™¢, d>n

1/2

Figure 1: Phase transition in terms of /-error for the adaptive Huber estimator. With fixed

effective dimension, |8, — 8% 2 = n;f?/(lJré), when 0 < 6 < 1; ||Br — 8%z = ne_ffl/2, when

0 > 1. Here neg is the effective sample size: neg = n in low dimensions while neg = n/logd
in high dimensions.

In other words, d.g denotes the number of nonzero parameters of the problem. The
effective sample size, neg, is defined as neg = n and ne.g = n/logd in low and high
dimensions, respectively. We will establish a phase transition: when ¢ > 1, the
proposed estimator enjoys a sub-Gaussian concentration, while it only achieves a
slower concentration when 0 < ¢ < 1. Specifically, we show that, for any § €

1/(149) Ui/Z} max{1/(14+6).1/2)

(0,00), the proposed estimators with 7 =< min{v; off achieve

the following tight upper bound, up to logarithmic factors:

18, — B*|, S dif nog™™ P12 with high probability. (5)

This finding is summarized in Figure 1.



3 Nonasymptotic Theory

3.1 Adaptive Huber Regression with Increasing Dimensions

We begin with the adaptive Huber regression in the low dimensional regime. First,
we provide an upper bound for the estimation bias of Huber regression. We then
establish the phase transition by establishing matching upper and lower bounds on
the ly-error. The analysis is carried out under both fixed and random designs. The
results under random designs are provided in the supplementary material. We start

with the following regularity condition.

Condition 1. The empirical Gram matrix S, := n™ 'Y " @;& is nonsingular.

Moreover, there exist constants ¢; and ¢, such that ¢; < Apnin(Syn) < Anax(Sn) < cu.

For any 7 > 0, BT given in (3) is natural M-estimator of

B; = arg min E{L.(B)} = arg min Z E{l-(yi — (1, 8))}, (6)

BeERE T

where the expectation is taken over the regression errors. We call 3; the Huber re-
gression coefficient, which is possibly different from the vector of true parameters 3*.
The estimation bias, measured by ||3% — 3*||2, is a direct consequence of robustifica-
tion and asymmetric error distributions. Heuristically, choosing a sufficiently large 7
reduces bias at the cost of losing robustness (the extreme case of 7 = oo corresponds

to the least squares estimator). Our first result shows how the magnitude of 7 affects

the bias ||3; — B*||2. Recall that vy =n='> "  v; 5 with v;5 = E(|&;|'™).

Proposition 1. Assume Condition 1 holds and that v is finite for some § > 0. Then,

the vector 3 of Huber regression coefficients satisfies

182 — B*||2 < 2¢,Pusr™? (7)

10



provided 7 > (4U5M2)1/(1+5) for0 < § < lorr > (21}1)1/2M for & > 1, where

M — maXlSZ‘gTL ||Sr_1,1/2mz||2

The total estimation error HBT — B*||2 can therefore be decomposed into two parts

18- =87, < 8- - B:ll, + |I8: =87, -

Total error estimation error  approximation bias

where the approximation bias is of order 77%. A large 7 reduces the bias but compro-
mises the degree of robustness. Thus an optimal estimator is the one with 7 diverging
at a certain rate to achieve the optimal tradeoff between estimation error and approx-
imation bias. Our next result presents nonasymptotic upper bounds on the /y-error
with an exponential-type exception probability, when 7 is properly tuned. Recall that

1/(146) 1/2

vs = min{v; ) vl7?} for any 6 > 0.

Theorem 1 (Upper Bound). Assume Condition 1 holds and vs < oo for some ¢ >
0. Let L = maxXj<i<, |||l and assume n > C(L,¢)d?*t for some C(L,¢;) > 0
depending only on L and ¢;. Then, for any ¢t > 0 and 7y > v, the estimator B\T with

7 = 7o(n/t)m@{1/(0+0).1/2} gatisfies the bound

; )min{a/(1+5),1/2}

AT— < 4c; "Ly ! —
18- — 87|, < 4¢'L d/2(
n

with probability at least 1 — (2d + 1)e™".

Remark 1. It is worth mentioning that the proposed robust estimator depends on the

§/ (1+0), Adaptation to the unknown moment is indeed another

unknown parameter v
important problem. In Section 6, we suggest a simple cross-validation scheme for
choosing 7 with desirable numerical performance. A general adaptive construction
of 7 can be obtained via Lepski’s method (Lepski, 1991), which is more challenging

due to unspecified constants. In the supplementary material, we discuss a variant of

Lepski’s method and establish its theoretical guarantee.
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Remark 2. We do not assume E(|e;|'*°|z;) to be a constant, and hence the proposed
method accommodates heteroscedastic regression models. For example, ; can take
the form of o(x;)v;, where o : R? — (0, 00) is a positive function, and v; are random

variables satisfying E(v;) = 0 and E(]v;|'*?) < .

Remark 3. We need the scaling condition to go roughly as n > d*t under fixed
designs. With random designs, we show that the scaling condition can be relaxed to

n 2 d+t. Details are given in the supplementary material.

Theorem 1 indicates that, with only bounded (1 + §)-th moment, the adaptive
Huber estimator achieves the upper bound d'/2np=mn{8/(0+0).1/2} "yp to a logarithmic
factor, by setting ¢t = log(nd). A natural question is whether the upper bound in (8)
is optimal. To address this, we provide a matching lower bound up to a logarithmic
factor. Let P;® be the class of all distributions on R whose (1+9)-th absolute central
moment equals vs. Let X = (zy,...,x,)T = (z!,..., %) € R™ be the design matrix

and U, = {u:u € {-1,1}"}.

Theorem 2 (Lower Bound). Assume that the regression errors ¢; are i.i.d. from a dis-
tribution in Pg° with § > 0. Suppose there exists a u € U, such that XM || in >
« for some a > 0. Then, for any t € [0,n/2] and any estimator ,@ = ,@(yl, ey Yn, t)

possibly depending on ¢, we have

sup P|||B - B

PeP;°

" )min{§/(1+5),1/2}] _ot

1 12t e
, = ac, vsd (n > 5

where ¢, > Anax(Sn)-

Theorem 2 reveals that root-n consistency with exponential concentration is im-
possible when § € (0,1). It widens the phenomenon observed in Theorem 3.1 in
Devroye et al. (2016) for estimating a mean. In addition to the eigenvalue assump-

tion, we need to assume that there exists a u € U, C R” such that the minimum

12



angle between n~'u and x’ is non-vanishing. This assumption comes from the intu-
ition that the linear subspace spanned by x’ is at most of rank d and thus cannot
span the whole space R". This assumption naturally holds in the univariate case
where X = (1,...,1)T and we can take u = (1,...,1)" and a = 1. More gener-
ally, | XTw/n||min = min{|uTz!|/n, ..., |[uTz?|/n}. Taking |uTx!|/n for an example,
since u € {—1,+1}", we can assume that each coordinate of &' is positive. In this
case, w'x!/n = > | |z}|/n > min;|z}|, which is strictly positive with probability
one, assuming x! is drawn from a continuous distribution.

Together, the upper and lower bounds show that the adaptive Huber estimator
achieves near-optimal deviations. Moreover, it indicates that the Huber estimator

with an adaptive 7 exhibits a sharp phase transition: when § > 1, BT converges to 3*

1/2 5/(1+6)

at the parametric rate n="/=, while only a slower rate of order n~ is available

when the second moment does not exist.

Remark 4. We provide a parallel analysis under random designs in the supple-
mentary material. Beyond the nonasymptotic deviation bounds, we also prove a
nonasymptotic Bahadur representation, which establishes a linear approximation of
the nonlinear robust estimator. This result paves the way for future research on con-
ducting statistical inference and constructing confidence sets under heavy-tailedness.
Additionally, the proposed estimator achieves full efficiency: it is as efficient as the
ordinary least squares estimator asymptotically, while the robustness is characterized

via nonasymptotic performance.

3.2 Adaptive Huber Regression in High Dimensions

In this section, we study the regularized adaptive Huber estimator in high dimensions
where d is allowed to grow with the sample size n exponentially. The analysis is
carried out under fixed designs, and results for random designs are again provided

in the supplementary material. We start with a modified version of the localized
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restricted eigenvalue introduced by Fan et al. (2018). Let H,(8) = V2£.(3) denote
the Hessian matrix. Recall that S = supp(8*) C {1,...,d} is the true support set

with |S| = s.

Definition 2 (Localized Restricted Eigenvalue, LRE). The localized restricted eigen-

value of H, is defined as

Ky (m,7y,r) = sup {(u,HT(ﬁ)u) (u,B) € C(m,%r)},

k_(m,~,r) = inf {(u,HT(B)u> (u,B) € C(m,%r)},

where C(m,v,r) == {(u,B8) € S x R? : VJ C {1,...,d} satisfying S C J,|J| <
m, |[wge|li < yllws, [|B — B*||1 < r}is alocal ¢1-cone.
The LRE is defined in a local neighborhood of 8* under ¢;-norm. This facilitates

our proof, while Fan et al. (2018) use the ¢y-norm.

Condition 2. H, satisfies the localized restricted eigenvalue condition LRE(k, ~y, r),

that is, k; < k_(k,7,r) < ky(k,7v,7) < Ky for some constants k,, k; > 0.

The condition above is referred to as the LRE condition (Fan et al., 2018). It is a
unified condition for studying generalized loss functions, whose Hessians may possibly
depend on B. For Huber loss, Condition 2 also involves the observation noise. The

following definition concerns the restricted eigenvalues of S,, instead of H..

Definition 3 (Restricted Eigenvalue, RE). The restricted maximum and minimum

eigenvalues of S,, are defined respectively as

:0+(m77) = Slip {<'U,, Snu> AS C(m,fy)},

p—(m,v) = igf {{u,S,u) :uweC(m,7)},

where C(m,v) := {u € S ! : VJ C {1,...,d} satisfying S C J,|J| < m, [Juse|; <
Vw1

14



Condition 3. S, satisfies the restricted eigenvalue condition RE(k, ), that is, x; <

p—(k,v) < pi(k,v) < Kk, for some constants k,, k; > 0.

To make Condition 2 on H, practically useful, in what follows, we show that
Condition 3 implies Condition 2 with high probability. As before, we write vy =

n~tY s and L = maxi<i<p ||| co-

Lemma 1. Condition 3 implies Condition 2 with high probability: if 0 < x; <
p—(k,v) < pi(k,v) < Ky, < oo for some k > 1 and v > 0, then it holds with
probability at least 1 — e that, 0 < r;/2 < k_(k,v,7) < ky(k,v,7) < Ky < 00
provided 7 > max{8Lr, c;(L?*kvs)"/ )} and n > c,L*k*, where ci,c; > 0 are

constants depending only on (7, ;).

With the above preparations in place, we are now ready to present the main results

on the adaptive Huber estimator in high dimensions.

Theorem 3 (Upper Bound in High Dimensions). Assume Condition 3 holds with
(k,v) = (2s,3), v < oo for some 0 < § < 1. For any ¢ > 0 and 75 > v, let
7 = 1o(n/t)x{/A+0:1/2F and X\ > 4L7y(t/n)™n{/(0+0).1/2}  Then with probability at

least 1 — (2s 4+ 1)e™", the ¢;-regularized Huber estimator ,@m defined in (4) satisfies
Bos — 8], < 352 )

as long as n > C(L, k;)s*t for some C(L, x;) depending only on (L, x;). In particular,

with ¢ = (1 + ¢)log d for ¢ > 0 we have

1 log d min{d/(1+6),1/2}

n

1Bon — B, < s /{

with probability at least 1 —d .

The above result demonstrates that the regularized Huber estimator with an adap-

tive robustification parameter converges at the rate s'/2{(log d) /n}™»{0/(1+0).1/2} ith
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overwhelming probability. Provided the observation noise has finite variance, the pro-
posed estimator performs as well as the Lasso with sub-Gaussian errors. We advo-
cate the adaptive Huber regression method since sub-Gaussian condition often fails

in practice (Wang, Peng and Li, 2015; Eklund, Nichols and Knutsson, 2016).

Remark 5. As pointed out by a reviewer, if one pursues a sparsity-adaptive ap-
proach, such as the SLOPE (Bogdan et al., 2015; Bellec et al., 2018), the upper bound
on y-error can be improved from /slog(d)/n to /slog(ed/s)/n. With heavy-tailed
observation noise, it is interesting to investigate whether this sharper bound can
be achieved by Huber-type regularized estimator. We leave this to future work as
a significant amount of additional work is still needed. On the other hand, since
log(ed/s) =1+ 1logd —logs and s < n, log(ed/s) scales the same as logd so long as

logd > alogn for some a > 1.

Remark 6. Analogously to the low dimensional case, here we impose the sample size
scaling n > s?logd under fixed designs. In the supplementary material, we obtain
minimax optimal ¢1-, f5- and prediction error bounds for B\T, A with random designs

under the scaling n 2 slogd.

Finally, we establish a matching lower bound for estimating 8*. Recall the defi-

nition of U,, in Theorem 2.

Theorem 4 (Lower Bound in High Dimensions). Assume that ¢; are independent
from some distribution in P;°. Suppose that Condition 3 holds with £ = 2s and
v = 0. Further assume that there exists a set A with [A| = s and u € U, such
that ||X4u/n||mn > « for some o > 0. Then, for any A > 0 and s-sparse estimator

-~ ~

B=0B1,--.,Yn, A) possibly depending on A, we have

sup B 16— 5], > v
PcP,?

8

1/2 min{d/(1+6),1/2}
as (Alogd) ] S 914

Ky 2n

as long as n > 2(Alogd + log 2).
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Together, Theorems 3 and 4 show that the regularized adaptive Huber estimator
achieves the optimal rate of convergence in /y-error. The proof, which is given in the
supplementary material, involves constructing a sub-class of binomial distributions
for the regression errors. Unifying the results in low and high dimensions, we arrive

at the claim (5) and thus the phase transition in Figure 1.

4 Extension to Heavy-tailed Designs

In this section, we extend the idea of adaptive Huber regression described in Section 2
to the case where both the covariate vector & and the regression error £ exhibit heavy
tails. We focus on the high dimensional regime d > n, where 8* € R? is sparse
with s = ||8*]lo < n. Observe that, for Huber regression, the linear part of the
Huber loss penalizes the residuals, and therefore robustifies the quadratic loss in the
sense that outliers in the response space (caused by heavy-tailed observation noise)
are down weighted or removed. Since no robustification is imposed on the covariates,
intuitively, the adaptive Huber estimator may not be robust against heavy-tailed
covariates. In what follows, we modify the adaptive Huber regression to robustify
both the covariates and regression errors.

To begin with, suppose we observe independent data {(y;, x;)}~, from (y,x),
which follows the linear model y = (x, 3*) + . To robustify x;, we define truncated
covariates £F = (U (741), ..., Yu(wia))", where ¢ (z) := min{max(—w, z),w} and
w > 0 is a tuning parameter. Then we consider the modified adaptive Huber estima-

tor (see Fan et al. (2016) for a general robustification principle)

Brema € ang min {£3(8) + A8 . (1)

where £Z(8) =n~' 3" 0 (y; — (®F,B)) and A > 0 is a regularization parameter.

Let S be the true support of B* with sparsity |S| = s, and denote by HZ(8) =
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V2LZ(3) the Hessian matrix of the modified Huber loss. To investigate the deviation

property of B\T,w, A, we impose the following mild moment assumptions.

Condition 4. (i) E(g) = 0, 0> = E(¢?) > 0 and v3 := E(e?) < oo; (ii) The

T

covariate vector @ = (x1,...,74)T € R is independent of € and satisfies M, =

maxj<;<d ]E(.fl?;l) < 0.

We are now in place to state the main result of this section. Theorem 5 below
demonstrates that the modified adaptive Huber estimator admits exponentially fast
concentration when the convariates only have finite fourth moments, although at the

cost of stronger scaling conditions.

Theorem 5. Assume Condition 4 holds and let HZ(-) satisfy Condition 2 with k =
2s, v =3 and r > 12/{1_1)\3. Then, the modified adaptive Huber estimator Br,w,,\
given in (11) satisfies, on the event &(7,w@, A) = {[(VLZ(8*))s|l« < A/2}, that

H/BT,W,)\ - B*HQ S 3/€;151/2)\'
For any ¢ > 0, let the triplet (7, c, \) satisfy

A > 2My|| B o s P + 8{”21\421/2 + M| B3 8%}

t t
+2(202M2+2M4||B*||§s)1/2\/;+w7—, (12)

n
where v, = E(|e]?) and M, = maxi<j<qE(z3). Then P{E(7,w,\)} > 1 — 2se".

Remark 7. Assume that the quantities v, My and ||3*||2 are all bounded. Taking

t < logd in (12), we see that B\nw, » achieves a near-optimal convergence rate of order

sy/(logd)/n when the parameters (7,w, \) scale as

1/4 1/4
oGz = n F slogd
TS (logd) @ (10gd> o n
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We remark here that the theoretically optimal 7 is different from that in the sub-

Gaussian design case. See Theorem B.2 in the supplementary material.

5 Algorithm and Implementation

This section is devoted to computational algorithm and numerical implementation.
We focus on the regularized adaptive Huber regression in (4), as (3) can be easily
solved via the iteratively reweighted least squares method. To solve the convex opti-
mization problem in (4), standard optimization algorithms, such as the cutting-plane
or interior point method, are not scalable to large-scale problems.

In what follows, we describe a fast and easily implementable method using the
local adaptive majorize-minimization (LAMM) principle (Fan et al., 2018). We say

that a function g(3|3™*)) majorizes f(3) at the point 3*) if

9(BIB™) = f(B) and g(B"|B") = F(BY).

To minimize a general function f(8), a majorize-minimization (MM) algorithm ini-
tializes at B, and then iteratively computes B* 1) = arg mingepa g(B|B™)) for

k=0,1,.... The objective value of such an algorithm decreases in each step, since

major. min. init.
FBRY) < g(BMY | BW) < (B | BW) = F(BY). (13)
As pointed out by Fan et al. (2018), the majorization requirement only needs to hold
locally at B**1) when starting from B*). We therefore locally majorize £.(3) in (4)
at 8% by an isotropic quadratic function

2
27

a(BI8Y) = £.(8%) + (VL(8Y), B~ B9) + % |8 - g%

where ¢ is a quadratic parameter such that g,(3*V|38%) > £.(B8%*V). The
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Algorithm 1 LAMM algorithm for regularized adaptive Huber regression.

1: Algorithm: {B%® ¢, 12 < LAMM(\, BO) ¢, € )
2. Input: X\, BO ¢, €

3: Initialize: ¢(“®) < max{¢g, v, ¢“F~D}

4: for k=0,1,... until ||B**+) — B*¥)||, < ¢ do

5: Repeat

6: B+ Th.o, (B%)

T If gk(ﬁ(k+1)|,3(k)) < ET(B(kH)) then ¢ < v,0%
8 Until g,(B8%V|BW) > £, (B*+)

9: Return {8*+ ¢}

10: end for

11: Output: B = gk+1

isotropic form also allows a simple analytic solution to the subsequent majorized
optimization problem:

min (VL.(69).6 - 8%) + S8 - % 1l |

BeRd

It can be shown that (14) is minimized at

B = T3, (89) = 5(8Y) = 6 VL(B9). 67N,

where S(x, A) is the soft-thresholding operator defined by S(x, \) = sign(z;) max(|x;|—
A,0). The simplicity of this updating rule is due to the fact that (14) is an uncon-
strained optimization problem.

To find the smallest ¢, such that gi(3%+D|B*) > £, (B*+V), the basic idea
of LAMM is to start from a relatively small isotropic parameter ¢, = ¢{ and then
successfully inflate ¢, by a factor v, > 1, say v, = 2. If the solution satisfies
gr(B*HD|BH)) > £.(B%+1) we stop and obtain %+, which makes the target value
non-increasing. We then continue with the iteration to produce next solution until
the solution sequence {B*}5°  converges. A simple stopping criterion is ||3*+1) —
B¥)|, < € for a sufficiently small €, say 1074 We refer to Fan et al. (2018) for a

detailed complexity analysis of the LAMM algorithm.
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Table 1: Results for adaptive Huber regression (AHR) and ordinary least squares
(OLS) when n = 100 and d = 5. The mean and standard deviation (std) of ¢5-error
based on 100 simulations are reported.

Noise AHR OLS
mean std mean std
Normal 0.566 0.189 0.567 0.191

Student’s ¢  0.806 0.651 1.355 2.306
Log-normal 3.917 3.740 8.529 13.679

6 Numerical Studies

6.1 Tuning Parameter and Finite Sample Performance

For numerical studies and real data analysis, in the case where the actual order
of moments is unspecified, we presume the variance is finite and therefore choose

robustification and regularization parameters as follows:

o\ 1/2 e\ /2
T=c¢ X0 (ntﬁ> and A\=c\ X0 <ntﬁ> ,

where 0% = n7 'Y (y; — §)? with § = n™' )" | y; serves as a crude preliminary
estimate of 02, and the parameter ¢ controls the confidence level. We set t = logn
for simplicity except for the phase transition plot. The constant ¢, and ¢, are chosen
via 3-fold cross-validation from a small set of constants, say {0.5,1,1.5}.

We generate data from the linear model
Yi = <.’E¢,,6*>+€i, izl,...,n, (15)

where ¢; are i.i.d. regression errors and 3* = (5, -2,0,0,3,0,...,0)T € R Indepen-
——

d—5
dent of ¢;, we generate x; from standard multivariate normal distribution N(0,1;).

In this section, we set (n,d) = (100, 5), and generate regression errors from three dif-

ferent distributions: the normal distribution N (0,4), the ¢t-distribution with degrees
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of freedom 1.5, and the log-normal distribution log N'(0,4). Both ¢ and log-normal
distributions are heavy-tailed, and produce outliers with high chance.

The results on /y-error for adaptive Huber regression and the least squares es-
timator, averaged over 100 simulations, are summarized in Table 1. In the case of
normally distributed noise, the adaptive Huber estimator performs as well as the least
squares. With heavy-tailed regression errors following Student’s ¢ or log-normal dis-
tribution, the adaptive Huber regression significantly outperforms the least squares.
These empirical results reveal that adaptive Huber regression prevails across various
scenarios: not only it provides more reliable estimators in the presence of heavy-tailed

and /or asymmetric errors, but also loses almost no efficiency at the normal model.

6.2 Phase Transition

In this section, we validate the phase transition behavior of || B\T — (%] empirically.
We generate continuous responses according to (15), where 3* and x; are set the same
way as before. We sample independent errors as €; ~ tqr, Student’s t-distribution with
df degrees of freedom. Note that t4¢ has finite (14 6)-th moments provided § < df —1
and infinite df-th moment. Therefore, we take 6 = df — 1 — 0.05 throughout.

In low dimensions, we take (n,d) = (500, 5) and a sequence of degrees of freedoms
(df’s): dfe{1.1,1.2,...,3.0}; in high dimensions, we take (n,d) = (500, 1000), with
the same choice of df’s. Tuning parameters (7, \) are calibrated similarly as before.

Indicated by the main theorems, it holds

1. (Low dimension):

~ . ) 1
—log (18- — B*]2) = mlog(n) - 1+510g(v(5), 0<d<1,
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Figure 2: Negative log (y-error versus § in low (left panel) and high (right panel)
dimensions.

2. (High dimension):

n

logd) B lj—é

—log (HBT — B|2) = : j 5 log ( log(vs), 0<¢ <1,
which are approximately log(n) x §/(1+9) and log(n/logd) x §/(1+0), respectively,
when n is sufficiently large.

Figure 2 displays the negative log />-error versus ¢ in both low and high dimensions
over 200 repetitions for each (n,d) combination. The empirically fitted curve closely
resembles the theoretical curve displayed in Figure 1. These numerical results are in
line with the theoretical findings, and empirically validate the phase transition of the
adaptive Huber estimator.

We also compared the /s-error of the adaptive Huber estimator with that of the
OLS estimator for ¢t-distributed errors with varying degrees of freedoms. As shown in
Figure 3, adaptive Huber exhibits a significant advantage especially when ¢ is small.

The OLS slowly catches up as § increases.
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Figure 3: Comparison between the (regularized) adaptive Huber estimator and the
(regularized) least squares estimator under {s-error.
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Figure 4: The {y-error versus sample size n (left panel) and the fo-error versus effective
sample size neg = n/logd (right panel).

6.3 Effective Sample Size

In this section, we verify the scaling behavior of ||/§T—,3* |2 with respect to the effective
sample size. The data are generated in the same way as before except that the errors

are drawn from ;5. As discussed in the previous subsection, we take & = 0.45 and

24



then choose the robustification parameter as 7 = ¢,vs(n/log d)*/+9 where vy is the
(14 9)-th sample absolute central moment. For simplicity, we take ¢, = 0.5 here since
our goal is to demonstrate the scaling behavior as n grows, instead of to achieve the
best finite-sample performance.

The left panel of Figure 4 plots the /y-error || Bﬂ » — (3*]|2 versus sample size over
200 repetitions when the dimension d € {100, 500,5000}. In all three settings, the
ly-error decays as the sample size grows. As expected, the curves shift to the right
when the dimension increases. Theorem 3 provides a specific prediction about this
scaling behavior: if we plot the (y-error versus effective sample size (n/logd), the

curves should align roughly with the theoretical curve

R N
1Bos - 81 = (1)

for different values of d. This is validated empirically by the right panel of Figure 4.
This near-perfect alignment in Figure 4 is also observed by Wainwright (2009) for

Lasso with sub-Gaussian errors.

6.4 A Real Data Example: NCI-60 Cancer Cell Lines

We apply the proposed methodologies to the NCI-60, a panel of 60 diverse human
cancel cell lines. The NCI-60 consists of data on 60 human cancer cell lines and can
be downloaded from http://discover.nci.nih.gov/cellminer/. More details on
data acquisition can be found in Shankavaram et al. (2007). Our aim is to inves-
tigate the effects of genes on protein expressions. The gene expression data were
obtained with an Affymetrix HG-U133A/B chip, log, transformed and normalized
with the guanine dytosine robust multi-array analysis. We then combined the same
gene expression variables measured by multiple different probes into one by taking
their median, resulting in a set of p = 17,924 predictors. The protein expressions

based on 162 antibodies were acquired via reverse-phase protein lysate arrays in their
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Figure 5: Histogram of kurtosises for the protein and gene expressions. The dashed
red line at 3 is the kurtosis of a normal distribution.

original scale. One observation had to be removed since all values were missing in
the gene expression data, reducing the number of observations to n = 59.

We first center all the protein and gene expression variables to have mean zero,
and then plot the histograms of the kurtosises of all expressions in Figure 5. The
left panel in the figure shows that, 145 out of 162 protein expressions have kurtosises
larger than 3; and 49 larger than 9. In other words, more than 89.5% of the protein
expression variables have tails heavier than the normal distribution, and about 30.2%
are severely heavy-tailed with tails flatter than ¢, the ¢t-distribution with 5 degrees of
freedom. Similarly, about 36.5% of the gene expression variables, even after the log,-
transformation, still exhibit empirical kurtosises larger than that of ¢5. This suggests
that, regardless of the normalization methods used, genomic data can still exhibit
heavy-tailedness, which was also pointed out by Purdom and Holmes (2005).

We order the protein expression variables according to their scales, measured by
the standard deviation. We show the results for the protein expressions based on
the KRT19 antibody, the protein keratin 19, which constitutes the variable with
the largest standard deviation, serving as one dependent variable. KRT19, a type

I keratin, also known as Cyfra 21-1, is encoded by the KRT19 gene. Due to its
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high sensitivity, the KRT19 antibody is the most used marker for the tumor cells
disseminated in lymph nodes, peripheral blood, and bone marrow of breast cancer
patients (Nakata et al., 2004). We denote the adaptive Huber regression as AHuber,
and that with truncated covariates as TAHuber. We then compare AHuber and
TAHuber with Lasso. Both regularization and robustification parameters are chosen
by the ten-fold cross-validation.

To measure the predictive performance, we consider a robust prediction loss: the

mean absolute error (MAE) defined as

Ntest

MAE(B) = Z }y;est B <wEeSt7ﬁ>|,
Ttest i=1
where yf** and x!®*, i = 1,... N, denote the observations of the response and

predictor variables in the test data, respectively. We report the MAE via the leave-
one-out cross-validation. Table 2 reports the MAE, model size and selected genes
for the considered methods. TAHuber clearly shows the smallest MAE, followed by
AHuber and Lasso. The Lasso produces a fairly large model despite the small sample.
Now it has been recognized that Lasso tends to select many noise variables along with
the significant ones, especially when data exhibit heavy tails.

The Lasso selects a model with 42 genes but excludes the KRT19 gene, which
encodes the protein keratin 19. AHuber finds 11 genes including KRT19. TAHu-
ber results in a model with 7 genes: KRT19, MT1E, ARHGAP29, MALL, ANXAS3,
MAL2, BAMBI. First, KRT19 encodes the keratin 19 protein. It has been reported
in Wu et al. (2008) that the MT1F expression is positively correlated with cancer cell
migration and tumor stage, and the MT1F isoform was found to be present in estro-
gen receptor-negative breast cancer cell lines (Friedline et al., 1998). ANXA3is highly
expressed in all colon cell lines and all breast-derived cell lines positive for the oestro-
gen receptor (Ross et al., 2000). A very recent study in Zhou et al. (2017) suggested

that silencing the ANXAS expression by RNA interference inhibits the proliferation
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Table 2: We report the mean absolute error (MAE) for protein expressions based on
the KRT19 antibody from the NCI-60 cancer cell lines, computed from leave-one-out
cross-validation. We also report the model size and selected genes for each method.

Method MAE Size Selected Genes

Lasso 764 42 FBLIMI, MTIE, EDN2, F3, FAM102B, S100A1},
LAMBS, EPCAM, FN1, TMJSFi, UCHL1, NMU,
ANXAS, PLACS, SPP1, TGFBI, CD7}, GPX3, EDNI,
CPVL, NPTX2, TES, AKR1B10, CA2, TSPYL5, MALZ,
GDA, BAMBI, CST6, ADAMTS15, DUSP6, BTGI,
LGALSS, IFI27, MEIS2, TOXS, KRT23, BST2, SLPI,
PLTP, XIST, NGFRAP1

AHuber  6.74 11 MTI1E, ARHGAP29, CPCAM, VAMPS, MALL,
ANXAS, MAL2, BAMBI, LGALSS3, KRT19, TFF3

TAHuber 5.76 7 MT1E, ARHGAP29, MALL, ANXAS, MAL2, BAMBI,
KRT19

and invasion of breast cancer cells. Moreover, studies in Shangguan et al. (2012)
and Kretzschmar (2000) showed that the BAMBI transduction significantly inhibited
TGF-3/Smad signaling and expression of carcinoma-associated fibroblasts in human
bone marrow mesenchymal stem cells (BM-MSCs), and disrupted the cytokine net-
work mediating the interaction between MSCs and breast cancer cells. Consequently,
the BAMBI transduction abolished protumor effects of BM-MSCs in vitro and in an
orthotopic breast cancer xenograft model, and instead significantly inhibited growth
and metastasis of coinoculated cancer. MAL2 expressions were shown to be elevated
at both RNA and protein levels in breast cancer (Shehata et al., 2008). It has also
been shown that MALL is associated with various forms of cancer (Oh et al., 2005;
Landi et al., 2014). However, the effect of ARHGAP29 and MALL on breast cancer

remains unclear and is worth further investigation.
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Supplementary Materials

In the supplementary materials, we provide theoretical analysis under random designs,

and proofs of all the theoretical results in this paper.

Acknowledgments

The authors thank the Editor, Associate Editor, and two anonymous referees for their
valuable comments. This work is supported by a Connaught Award, NSERC Grant
RGPIN-2018-06484, NSF Grants DMS-1662139, DMS-1712591, and DMS-1811376,
NIH Grant 2R01-GM072611-14, and NSFC Grant 11690014.

References

ALQUIER, P., COTTET, V. and LECUE, G. (2017). Estimation bounds and sharp
oracle inequalities of regularized procedures with Lipschitz loss functions. Preprint.

Available at arXiv:1702.01402.

BELLONI, A. and CHERNOZHUKOV, V. (2011). ¢;-penalized quantile regression in

high-dimensional sparse models. The Annals of Statistics, 39 82-130.

BeLLEC, P.C., LECUE, G. and TsyBakov, A.B. (2018). Slope meets Lasso:

Improved oracle bounds and optimality. The Annals of Statistics, 46 3603-3642.

BickeL, P.J., RiTtov, Y. and TsyBAKOV, A.B. (2009). Simultaneous analysis of

Lasso and Dantzig selector. The Annals of Statistics, 37 1705-1732.

BoGDAN, M., VAN DEN BERG, E., SaBaTTI, C., SU, W. and CANDES, E. J.
(2015). SLOPE-Adaptive variable selection via convex optimization. The Annals
of Applied Statistics, 9 1103-1140.

29



BrROWNLEES, C., Jory, E. and Lugosi, G. (2015). Empirical risk minimization for

heavy-tailed losses. The Annals of Statistics, 43 2507-2536.

BUHLMANN, P. and VAN DE GEER, S. (2011). Statistics for High-Dimensional Data:

Methods, Theory and Applications. Springer, Heidelberg.

Catont, O. (2012). Challenging the empirical mean and empirical variance: A
deviation study. Annales de I'Institut Henri Poincaré - Probabilités et Statistiques,

48 1148-1185.

Catoni, O. (2016). PAC-Bayesian bounds for the Gram matrix and least squares

regression with a random design. Preprint. Available at arXiv:1603.05229.

CHEN, M., Gao, C. and REN, Z. (2018). Robust covariance and scatter matrix
estimation under Huber’s contamination model. The Annals of Statistics, 46, 1932—

1960.

ConT, R. (2001). Empirical properties of asset returns: Stylized facts and statistical

issues. Quantitative Finance, 1, 223-236.

DELAIGLE, A., HALL, P. and JiN, J. (2011). Robustness and accuracy of methods
for high dimensional data analysis based on Student’s t-statistic. Journal of the

Royal Statistical Society, Series B, 73 283-301.

DEVROYE, L., LERASLE, M., Lucosi, G. and OLIVEIRA, R.I. (2016). Sub-

Gaussian mean estimators. The Annals of Statistics, 44 2695-2725.

EFrON, B., HASTIE, T., JOHNSTONE, I. and TiBSHIRANI, R. (2004). Least angle

regression. The Annals of Statistics, 32 407-499.

ExLunD, A., NicHoLs, T. and KNUTSsON, H. (2016). Cluster failure: Why fMRI
inferences for spatial extent have inflated false-positive rates. Proceedings of the

National Academy of Sciences, 113 7900-7905.

30



Fan, J., FAN, Y. and BAaruT, E. (2014). Adaptive robust variable selection. The

Annals of Statistics, 42 324-351.

FAN, J., L1, Q. and WANG, Y. (2017). Estimation of high dimensional mean regres-
sion in the absence of symmetry and light tail assumptions. Journal of the Royal

Statistical Society, Series B, 79 247-265.

FaN, J. and L1, R. (2001). Variable selection via nonconcave penalized likelihood

and its oracle properties. Journal of the American Statistical Association, 96 1348—

1360.

Fan, J., Liu, H., SuN, Q. and ZHANG, T. (2018). I-LAMM for sparse learning:
Simultaneous control of algorithmic complexity and statistical error. The Annals

of Statistics, 96 1348-1360.

FAN, J., WANG, W. and ZHU, Z. (2016). A shrinkage principle for heavy-tailed data:

High-dimensional robust low-rank matrix recovery. Available at arXiv:1603.08315.

FrRIEDLINE, J. A., GARRETT, S.H., SomJi, S., Topp, J.H. and SENS, D. A.
(1998). Differential expression of the MT-1E gene in estrogen-receptor-positive and-
negative human breast cancer cell lines. The American Journal of Pathology, 152

23-27.

GIuLINT, I. (2017). Robust PCA and pairs of projections in a Hilbert space. Electronic

Journal of Statistics, 11 3903-3926.

HasTiE, T., TIBSHIRANI, R. and WAINWRIGHT, M. J. (2015). Statistical Learning

with Sparsity: The Lasso and Generalizations. CRC Press.

HE, X. and SHAO, Q.-M. (1996). A general Bahadur representation of M-estimators

and its application to linear regression with nonstochastic designs. The Annals of

Statistics, 24 2608-2630.

31



HE, X. and SHAO, QQ.-M. (2000). On parameters of increasing dimensions. Journal

of Multivariate Analysis, 73 120-135.

HUBER, P.J. (1964). Robust estimation of a location parameter. The Annals of

Mathematical Statistics, 35 73-101.

HUBER, P. J. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo.
The Annals of Statistics, 1 799-821.

KOENKER, R. (2005). Quantile Regression. Cambridge University Press, New York.

KRETZSCHMAR, M. (2000) Transforming growth factor-8 and breast cancer: trans-
forming growth factor-$/Smad signaling defects and cancer. Breast Cancer Re-

search, 2 107-115.

LANDI, A., VERMEIRE, J., IANNUCCI, V., VANDERSTRAETEN, H., NAESSENS,
E., BENTAHIR, M. and VERHASSELT, B. (2014). Genome-wide shRNA screening
identifies host factors involved in early endocytic events for HIV-1-induced CD4

down-regulation. Retrovirology, 11 118-129.

Lepski, O.V. (1991). Asymptotically minimax adaptive estimation. I. Upper
bounds. Optimally adaptive estimates. IEEE Transactions on Information The-

ory, 36 682-697.

Liu, R.Y. (1990). On a notion of data depth based on random simplices. The Annals

of Statistics, 18 405-414.

Liu, R.Y., PAreLIUs, J. M. and SINGH, K. (1999). Multivariate analysis by data
depth: Descriptive statistics, graphics and inference, (with discussion and a rejoin-

der by Liu and Singh). The Annals of Statistics, 27 783-858.

Lon, P. and WAINWRIGHT, M. J. (2015). Regularized M-estimators with noncon-

32



vexity: Statistical and algorithmic theory for local optima. Journal of Machine

Learning Research, 16 559-616.

MAMMEN, E. (1989). Asymptotics with increasing dimension for robust regression

with applications to the bootstrap. The Annals of Statistics, 17 382—400.

MINSKER, S. (2018). Sub-Gaussian estimators of the mean of a random matrix with

heavy-tailed entries. The Annals of Statistics, 46 2871-2903.

Mizera, 1. (2002). On depth and deep points: A calculus. The Annals of Statistics,
30 1681-1736.

MizerA, I. and MULLER, C. H. (2004). Location-scale depth. Journal of the Amer-

ican Statistical Association, 99 949-966.

NAKATA, B., TAKASHIMA, T., OGAwWA, Y., ISHIKAWA, T. and HIRAKAWA, K.
(2004). Serum CYFRA 21-1 (cytokeratin-19 fragments) is a useful tumour marker
for detecting disease relapse and assessing treatment efficacy in breast cancer.

British Journal of Cancer, 91 873-878.

OH, J. H., YANG, J. O., HAHN, Y., KimM, M. R., BYyun, S.S., JEON, Y. J., KiMm,
J. M., Song, K. S., Non, S. M., KiMm, S. and Yoo, H.S. (2005). Transcriptome

analysis of human gastric cancer. Mammoalian Genome, 16 942-954.

PorTNOY, S. (1985). Asymptotic behavior of M estimators of p regression param-
eters when p?/n is large; II. Normal approximation. The Annals of Statistics, 13

1403-1417.

PurpoMm, E. and HOLMES, S. P. (2005). Error distribution for gene expression data.

Statistical Applications in Genetics and Molecular Biology, 4: 16.

Ross, D.T., Scuerr, U., EisEN, M. B., PErou, C. M., REES, C., SPELLMAN,

P., IvyEr, W., JEFFREY, S.S., VAN DE RIJN, M., PERGAMENSCHIKOV, A.,

33



Leg, J.C.F., LASHKARI, D., SHALON, D., MYERS, T. G., WEINSTEIN, J. N.,
BoTsTEIN, D. and BROwN, P. O. (2000). Systematic variation in gene expression

patterns in human cancer cell lines. Nature Genetics, 24, 227-235.

SHANGGUAN, L., T1, X., KRAUSE, U., HA1, B., ZHAO, Y., YANG, Z. and L1U, F.
(2012). Inhibition of TGF-5/Smad signaling by BAMBI blocks differentiation of
human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes

their protumor effects. Stem Sells, 30 2810-2819.

SHANKAVARAM, U.T., REINHOLD, W. C., NISHIZUKA, S., MAJOR, S., MORITA,
D., CHAry, K. K., REIMERS, M. A., SCHERF, U. KAHN, A., DoLGINOW, D.,
CossmaN, J., KALDJIAN, E.P., SCUDIERO, D. A., PETRICOIN, E., LIOTTA,
L., LEg, J. K. and WEINSTEIN, J.N. (2007). Transcript and protein expression
profiles of the NCI-60 cancer cell panel: An integromic microarray study. Molecular

Cancer Therapeutics, 40 2877-29009.

SHEHATA, M., BIECHE, 1., BouTROS, R., WEIDENHOFER, J., FANAYAN, S.,
SPALDING, L., ZEPs, N., ByTH, K., BRIGHT, R. K., LIDEREAU, R. and BYRNE,
J. A. (2008). Nonredundant functions for tumor protein D52-like proteins support

specific targeting of TPD52. Clinical Cancer Research, 14 5050-5060.

TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society, Series B, 58 267-288.

TUKEY, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the

International Congress of Mathematicians, 2 523-531.

WAINWRIGHT, M. J. (2009). Sharp thresholds for high-dimensional and noisy spar-
sity recovery using ¢1-constrained quadratic programming (Lasso). IEEE Transac-

tions on Information Theory, 55 2183-2202.

34



WAaNG, L. (2013). The L; penalized LAD estimator for high dimensional linear re-

gression. Journal of Multivariate Analysis, 120 135-151.

WAaANG, L., PENG, B. and L1, R. (2015). A high-dimensional nonparametric multi-

variate test for mean vector. Journal of the American Statistical Association, 110

1658-1669.

WaNG, L., Wu, Y. and L1, R. (2012). Quantile regression for analyzing heterogene-
ity in ultra-high dimension. Journal of the American Statistical Association, 107

214-222.

Wu, Y., Siapaty, M.S., BErReENS, M. E., HamMpTON, G.M. and THEODOR-
EscU, D. (2008). Overlapping gene expression profiles of cell migration and tumor
invasion in human bladder cancer identify metallothionein E1 and nicotinamide

N-methyltransferase as novel regulators of cell migration. Oncogene, 27 6679-6689.

YoHAI V.J. and MARONNA, R. A. (1979). Asymptotic behavior of M-estimators

for the linear model. The Annals of Statistics, 7 258-268.

ZHENG, Q., PENG, L. and He, X. (2015). Globally adaptive quantile regression

with ultra-high dimensional data. The Annals of Statistics, 43 2225-2258.

Zuou, T., Li, Y., YaNG, L., Liu, L., Ju, Y. and L1, C. (2017). Silencing of
ANXAS3 expression by RNA interference inhibits the proliferation and invasion of

breast cancer cells. Oncology Reports, 37 388-398.

Zuo, Y. and SERFLING, R. (2000). General notions of statistical depth function.

The Annals of Statistics, 28 461-482.

35



Supplementary material

A A Lepski-type method

Adapting the unknown robustification parameter depends on the value of the variance
provided it exists. Through Lepski’s renowned adaptation method (Lepski, 1991),
this can be done without actually knowing the variance in advance. Assume that
vy =ntY " E(e?) < oo and let ouax, Omin > 0 be such that o, < v%/z < Opmax-
Here, parameters o,,.x and o, serve as crude preliminary upper and lower bounds

/2

for vi , respectively.

For a prespecified a > 1, let 0; = oyina’ and define the set
j:ja: {j:071727'--:0min§0-j <a0max}

with its cardinality satisfying card(J) < 1+1og,(0max/min). For every predetermined
t > 0, compute a collection of Huber estimators {3;,}c7, where 7; = o;(n/t)"/? for

j e J. Set

j = min {j € J:|8¥*(B., - B.)||, < 8Lo; dl/Q\/g for all k > j,k € J},

7 ~1/2 . _ : i :
where L := maxi<;<, ||Sn / Z;||oo assuming S,, = n~ !>  x;x is positive definite.

The final data-driven estimator is then defined as 3 = ’BTT

Theorem A.1. For any t > 0, the data-dependent estimator B satisfies the bound

~ t
|, < 12aLvi/2d1/2\/; (A.1)

with probability at least 1 — (2d + 1) log, (a0 max/Omin)e ", provided the sample size
satisfies n > 8 max(4L3d, L*d?)t.

[SY2(8 — 8%)

Lepski-type construction relies on preliminary crude upper and lower bounds for
v% / 2, which are usually unknown in advance. In practice, one can take oy, = /K and
Omax = K& for some K > 1, where 62 := (n—d) ™' 327 (3 — (a;, 8°%))? and B is the
least squares estimator. Moreover, one may choose a = 1.5 and t = logn or log(nd).
However, the effectiveness of this method depends on how sharp the constants are
in the theoretical bounds. We note that all constants in Theorems 1 and A.1 are
explicit, although they might not be sharp. Finding sharp constants remains open.
Since the current content already consists of long and technical arguments, we will

not pursue this particular goal in this paper.



Proof of Theorem A.1. Following the proof of Theorem 1 which is given in Appendix C,

1/2 1/2

it can be similarly proved that, for any 7 = 79(n/t)"/* with 79 > v;’",

Y8 — 8|, < 4Tm 'y (A2)

with probability at least 1 — (2d + 1)e™" as long as n > 8 max(4L2d, L*d?)t.

Let j* = min{j € J : 0; > vi/Q} and note that vi/Q < o < avi/Q. By the

definition of 3,
~ t
i)
~ t
, > 4Lo; dl/Q\/;}.

~ t
9 S 4LO']' dl/z\/;}

such that € C {j < j*}. From (A.2) we see that for each j > j*,

G>iec U {Hs;%j—aw)

JETJ>5*

- U {Hsi/?@ iy

JjeT:j25*

Define the event

£= {Hs;/%@j—ﬁ*)

JjeT:j=5*

~ t
2§4L0’jd1/2 E

I8Y/*(8-, - B°)

the union bound, we obtain that

with probability at least 1 — (2d + 1)e" under the prescribed sample size scaling. By
rers 3 e{sE -

~ t
, > 4Lo; dl/Q\/i}
n
jeJjzi*

< (2d+1)|T)e”" < (2d+ 1){1 +log, (Omax/Omin) e "
On the event &, /j\ < j* and thus
18328 = 8Y)l, < 188, = Bl + [18:%(Bx,. = 8]

- t o~ t - t
< 8Lo- dV? | = 4 4Lo.. dY?y /= < 12aLo a2 =
J n Vi n 1 n

Together, the last two displays yield (A.1). O




B Random Design Analysis

In this section, we derive counterparts of the results in Section 3 under random
designs. First we impose the following moment conditions on the covariates and
regression errors.

Condition 1. In linear model (2), the covariate vectors x; € R? are ii.d. from
a sub-Gaussian random vector x, i.e. P([(u,Z)| > y) < 2exp(—y?||ul|3/A2) for all
y € Rand u € R? where & = 72z with ¥ = (01.)1<j1<a = E(zz") being positive
definite and Ay > 0 is a constant. The regression errors ¢; are independent and satisfy
E(gi|x;) = 0 and v; 5 = E(|e;]'°| ;) < oo almost surely for some & > 0.

Throughout this section, for simplicity, we assume the independent regression
errors €; in model (2) are homoscedastic in the sense that v; 5 does not depend on
x;. The conditional heteroscedastic model can be allowed with slight modifications
as before. With this setup, we write

1 ¢ o 1/(148) 1/2
- E ( ) d = , , 0>0.
Vs pa v;s and vy = min{v; v’ 7}

Assuming the d x d matrix ¥ = E(za") is positive definite, we use || - |2 to denote
the rescaled f5-norm on R%:

lullss = [Z%uls,  w e R
Moreover, we use 1, to denote the derivative of Huber loss, that is,

. (z) =l (x) = sign(z) min(|z|,7), = €R. (B.1)

B.1 Huber regression in low dimensions

In the low dimensional regime “d < n”, we consider the Huber estimator

,/3\7 = arg min £, (3),
BeRd
where £.(8) = n~ 'Y L (y; — (x;,B)) is the empirical Huber loss function and
7 > 0 is the robustification parameter. Under Condition 1, the following theorem
provides (i) exponential-type concentration inequalities for BT when 7 is properly
calibrated, and (ii) a nonasymptotic Bahadur representation result under the finite
variance condition on regression errors, i.e. § = 1.

Theorem B.1. Suppose Condition 1 holds.



(I) For any t > 0 and 79 > v, the estimator 8, with 7 = 7o{n/(d+t)}mx{1/(1+9).1/2}
satisfies

. d +¢ min{d/(1+6),1/2}
P B — 87, = Clro( ) < 2t (B.2)
’ n

as long as n > Cy(d + t), where C1,Cy > 0 depend only on Aj.

(IT) Assume that v; < co. For any ¢ > 0 and 75 > vi/g, the estimator ,@T with

T = To\/n/(d + t) satisfies

n

P{HW(@ 8 - = Y (e
=1

d+1t
> 037'0 + } < 3€7t <B3)
2

provided n > Cy(d + t), where C3 > 0 depends only on Ay.

With random designs, the first part of Theorem B.1 provides concentration in-
equalities for the fy-error under finite (1+ ¢)-th moment conditions with § > 0; when
the second moments are finite, the second part gives a finite-sample approximation of
,@T — B* by a sum of independent random vectors. The remainder of such an approxi-
mation exhibits sub-exponential tails. Unlike the least squares estimator, the adaptive
Huber estimator does not admit an explicit closed-form representation, which causes
the main difficulty for analyzing its asymptotic and nonasymptotic properties. The-
orem B.1 reveals that, up to a higher-order remainder, the distributional property of
,@T mainly depends on a linear stochastic term that is much easier to deal with.

Regarding the truncated random variable v, (g;), the following result shows that
the differences between the first two moments of 1, (g;) and ¢; depend on both 7 and
the moments of ;. The higher moment ¢; has, the faster these differences decay as a
function of 7. We summarize this observation in the following proposition. We drop
1 for ease of presentation.

Proposition B.1. Assume that E(g) = 0, 0% = E(¢?) > 0 and E(|¢|*"*) < oo from
some k > 0. Then we have

IEy.(2)| < min {77 'o?, 7 "E(|e*™") }.
Moreover, if k > 0,
o® =25 E(|ePt) < E{y2(e)} < o

Proposition B.1, along with Theorem B.1, shows that the adaptive Huber esti-
mator achieves nonasymptotic robustness against heavy-tailed errors, while enjoying
high efficiency when 7 diverges to oo. In particular, taking ¢ = logn, we see that



under the scaling n 2 d, the robust estimator BT with 7 < y/n/(d + logn) satisfies

' :O(d—l—logn)
) n

with probability at least 1 — O(n™!). From an asymptotic point of view, this implies

~

BB =S wnle)s
i=1

that if the dimension d, as a function of n, satisfies
d=o(n) asn — oo,

then for any deterministic vector a € R¢, the distribution of (a, BT — (3*) is close to
that of n™1>°" ¥, (g:)(a, X7 ;). If &4, ..., &, are independent from ¢ with variance
o? and E(|e|*™") < oo for some k > 0, taking 7 < y/n/(d + logn) in Proposition B.1
implies that n=/23"" 4, (¢;){a, ¥~ a;) follows a normal distribution with mean zero

1/2

and variance o?%||X71/2al|3 asymptotically.

B.2 Huber regression in high dimensions

In the high dimensional setting where d > n and s = ||3*||o < n, we investigate the
{1-regularized Huber estimator

B € aug min {£,(8) + N8I} (B.4)

under Condition 1, where 7 and A represent, respectively, the robustification and
regularization parameters.

Theorem B.2. Assume Condition 1 holds and that the unknown 3* is sparse with
s = ||8*|lo. Then any optimal solution B3, ) to the convex program (B.4) with

n max{1/(1+4§),1/2}
— > B.
T=1 <logd) (10 > vs) (B.5)

and A scaling as Agomaxo{ (log d) /n}™{0/(1+0).1/2} gatisfies the bounds

R B log g\ min{8/(+9).1/2}
_ 3* < U2y 1/2 g
||BT,/\ Billss S K 00maxT0 S ( -
N . B lop g\ min{8/(1+9).1/2)
and HIBT,)\ - /8 1 5 Ky 1"400max7_0 5( 5 > (BG)

2
max

slogd, where C' > 0 is a
constant only depending on Aj, Opmax = maxj<j<q a;]/ ?and K, = Amin(2).

with probability at least 1 — 3d~! as long as n > C/@fla

Provided the distribution of ¢; has finite variance, i.e. § = 1, Theorem B.2 as-
serts that the ¢;-regularized Huber regression with properly tuned (7, A) gives rise to

5



statistically consistent estimators with ¢;- and /s-errors scaling as s4/(logd)/n and
V/s(log d)/n, respectively, under the sample size scaling n 2 slogd. These rates are
the minimax rates enjoyed by the standard Lasso with Gaussian/sub-Gaussian errors
(Bickel, Ritov and Tsybakov, 2009; Wainwright, 2009).

The results of Theorem B.2 are useful complements to those in Theorem 4 under
fixed designs. Taking t = log d therein, we see that the ¢y-error bound in (10) almost
coincides with that in (B.6) up to constant factors. The sample size scaling under
random designs is optimal and better than the scaling under fixed designs: the former
is of order O(slogd), while the latter is of order O(s*logd). Technically, the sample
size scaling is required to ensure the restricted strong convexity of Huber loss in a
neighborhood of 3*; see Lemma 1 in the main text and Lemma C.4 below. Since
most existing works on analyzing high dimensional M-estimators beyond the least
squares have focused on random designs (see, e.g. Belloni and Chernozhukov (2011),
Negahban et al. (2012) and the references therein), it is not clear what the optimal
sample size scaling is under fixed designs, although it is possible that the additional
s factor in Theorem 4 is purely an artifact of the proof technique. We refer to van de
Geer (2008) for a study of generalized linear models in high dimensions. To achieve the
oracle rate for the excess risk, the sparsity s is required to be of order O(y/n/logn),
or equivalently, the required sample size scales as s?logn.

We complete this section by a prediction error bound for ,@T, », Which is a direct
consequence of Theorem B.2.

Corollary B.1. Under the conditions of Theorem B.2, it holds

log d min{5/(1+6),1/2}
)

< k2 A OnaxTo 8112
\/—‘ l ax

with probability at least 1 —5d~!, where X = (1, ..., ®,)" is the n x d design matrix.

C Proofs of Main Theorems

Throughout the proofs, we use ¢, = £, as in definition (B.1) and let || - |52 be the
2 = ||ZY2ul]; for u € RY

rescaled f5-norm on R¢

C.1 Auxiliary Lemmas

First we collect several auxiliary lemmas. Our first lemma concerns the localized
analysis that can be utilized to remove the parameter constraint in previous works.
It is established in Fan et al. (2018) and we reproduce it here for completeness.

Lemma C.1. Let D.(B1, 82) = L(B1) —L(B2) —(VL(B2), B1—B2) and Dz (B, B2) =
Dr(B,B2) + De(B2, B1). For B, = B* +n(B — B*) with n € (0,1] and any convex



loss functions £, we have
Dz(8y, 8%) < nDz(B,87).

Proof of Lemma C.1. Let Q(n) = D.(B,, 8*) = L(B,) — L(B*) —(VL(B"), 8, — B).
Noting that the derivative of £(3,) with respect to 7 is %E( ,) = (VL(B,), 8—06"),
we have

Q'(n) = (VL(B,) — VL(B"),B - B7).
Then, the symmetric Bregman divergence D% (8, — 8*) can be written as

DBy, B7) = (VL(By) — VL(B™),n(B - B7)) =nQ'(n), 0<n<L

Taking n = 1 in the above equation, we have @'(1) = D%(8, 3*) as a special case. If
Q(n) is convex, then @’(n) is non-decreasing and thus

D3 (By, 87) =nQ'(n) < nQ'(1) = nDL(8,87).

[t remains to show the convexity of n € [0, 1] — Q(n); or equivalently, the convex-
ity of £(8,) and (VL(B*),8* — 3,), respectively. First, note that 3,, as a function
of n, is linear in 7, that is, Bayn+asm = 018y + a2B,, for all n;,n, € [0,1] and
ar,ap > 0 satisfying oq + ap = 1. Then, the convexity of n — L(8,) follows from
this linearity and the convexity of the Huber loss. The convexity of the second term
follows directly from the bi-linearity of the inner product. O

The following two lemmas provide restricted strong convexity properties for the
Huber loss in a local vicinity of the true parameter under both fixed and random
designs.

Lemma C.2. Assume that Condition 1 holds and that vs =n=' > " E(|e;]'™) < 00

for some 0 < § < 1. Then for any ¢,7 > 0, the Hessian matrix V2£,(8) with 7 > 2Mr

satisfies that, with probability greater than 1 — e,

_ min Amin (V2L (8))
BER™||B—p*|2<r
> {1— (2Mr/7)*}ep — M2{(2/7)" 005 + (2n) 212}, (C.1)

where M = maxi<i<n le”g

Proof of Lemma C.2. To begin with, note that

HL(8) = V°L.(8) = - > wal1 (I — =7 6] < 7).
=1



where S,, is given in Condition 1. For each B € R?, define its centered and rescaled
version By = B — B* such that y; — (x;, B) = &; — (x;, Bo). Using the inequality that

1(|yZ —(z, B)] > 7') < 1(\5i| > 7'/2) + 1(|(:ci,,80>| > 7'/2),

we have, for any w € S¥1 and B € R? satisfying ||Bo|l. < 7,
(u, H,(B)u)

> 8}/l = 3w w1 (1] > 7/2) = S (w1 ([, Bl > 7/2)
i=1 =1

1 4
1/2, 112 n2 )t ‘ 2 1Ql/2,, |2
> 3 2ul} - s ol { - 31l > 7/2) + Al IS ult}
2 '«
>cdl— (M — =N 1(lg| > 7/2),
> a1~ @M/}~ 31|l > 7/2)

i=1

provided that 7 > 2Mr. For any z > 0, it follows from Hoeffding’s inequality that,

—2nz2

with probability at least 1 —e ,

—Z (les| > 7/2) < ZIP’ lei| > 7/2) +

This, together with the inequality P(|e;] > 7/2) < (2/7)'*°v;5 and Condition 1,

—2nz2

implies that, with probability at least 1 — e ,
(u,H,(B)u) > {1 — (2Mr/7)* e — M*{(2/7)" Pvs + 2 }.

This proves (C.1) immediately by taking z = \/t/(2n). O

Lemma C.3. Assume v; < oo for some 0 < 6 < 1 and (E(u,z)")'/* < A;||ul|, for
all u € R? and some constant A; > 0. Moreover, let 7,7 > 0 satisfy

T > 2max {(41)5)1/(1“),4%1?7“} and n > (7/r)*(d+1). (C.2)

Then with probability at least 1 — e,

(VLA(B) — VL,(B),8—5) >

(C.3)

uniformly over B € Oy(r) = {8 € R?: |3 — B*||s2 < 1}



Proof of Lemma C.3. To begin with, note that
T(B) == <V£ (B) = VL(B"),8—B)
= _Z{¢T Yi mza >) _wT(yi_ <$17/8>)}<w27/8_ﬁ*>

Z{T/JT 51 7' Yi <$u/3>)}<w17/6 - IB*>]‘{SZ}7 (04)

where 1{&;} denotes the indication function of the event

& ={lasl <7/2) n{[{@i, 8= B < 7B~ B7|Is2/(2r) }-
On &;, it holds |y; — (x;, B)| < |es| + {x:, B—B")| < 7/2+7/2 =7 for all B € Oy(r).
Since ¢! (x) =1 for |z| < 7, the right-hand of (C.4) can be bounded from below by

> (@B 8P| B - B < 718 - B lna/ @0} {lal < 7/2}. (CH)

To bound the right-hand of (C.5), the main difficulty is that the indicator function
is non-smooth. To deal with this issue, we define the following “smoothed” functions:
for any R > 0, write

x? if |z] < R/2,
(r—R)? ifR/2<z<R,
x) = and = 1(ly| < R).
¢r(z) (t+R? if —R<z<-R/2. vr(y) = Uyl < R)

0 if |x| > R,
It is easy to see that the function ¢g is R-Lipschitz and satisfies
1|2 < R/2) < ¢r(x) < 2*1(|2 < R). (C.6)

Together, (C.4), (C.5) and (C.6) imply
1 n
T(B) 2 9(B) = > br1p—prlmasen (@i B — B7))@rja(e:). (C.7)
=1

For r > 0, define A(r) = supgeo,s) [9(8) ~ Eg(B)|/[18 — 8% 5. such that

TB) . EgB)
B=F%. ~ 18- A,

— A(r) (C.8)

for all B € Oy(r). In the following, we establish lower and upper bounds for Eg(3)



and A(r), respectively, starting with the former.
For B € R?, write § = B — B*. By (C.7) and Markov’s inequality,

> %ZEm,af - %ZE“‘“ 21 (.8)| = 7652/ (47))
——ZE x;,0)"1(|e;| > 7/2)

> 6T86 —v5(2/7) 08T — (47«/7)2||5||§22l § E(x;,&)*
n
=1
> [16]|52{1 — vs(2/7)"° — (4A7r/7)}.

Provided 7 > 2 max{ (4vs)"/(1+9 4A2%r},

Eg(8) > 18 — B}, for all B € R (C9)

Next we bound the supremum A(r). Write g(8) = n~'>_7" | ¢:(3). Noting that
0 < ¢r(r) < R*/4 and 0 < ¢(y) < 1, we have

0 < gi(B) < (7/4r)*||B — B"[15,-

By Theorem 7.3 in Bousquet (2003), for any = > 0, A(r) satisfies the bound

A(r) <EA(r) + {EA(r)}V%( /27‘\/74—071\/» /4r (C.10)

with probability at least 1 — e~®, where by (C.6),

BN Eg?(8)
o2 =~ sup ————=— < Al
D e T

For the expected value EA(r), using the symmetrization inequality and the connection
between Gaussian complexity and Rademacher complexity, we obtain that EA(r) <

V21 E{supgee, ) |Gpl}, where

1 « G *
n Z m¢7||5—6*\\2,2/(27“)(<m“ B = B7))era(ei)
i=1 ,

and G; are i.i.d. standard normal random variables that are independent of {(y;, ;) }7;.
Let E* be the conditional expectation given {(y;, z;)}7;. Since {Gg: B € Oy(r)} is

10



a conditional Gaussian process, for any By € ©y(r) we have

E*{ sup |Gg|}§E*]GBO|+2E*{ sup Gﬂ}. (C.11)
BEBG(r) BEOB(r)

Further, taking the expectation with respect to {(y;, x;)}" ', on both sides, (C.11)
remains valid with E* replaced by E. We write 8* as (f7, ,8 T with #; denoting
the first coordinate of 3* and 8* € R, Recalling ¢r(u) < min(u2, R%/4), we take
mzm<MWWWWmmmomm=mmmmqmwmi
(4r)~tTn='/2. To bound the conditional expectation E*{supgeg, ) Ga} in (C.11), w
employ the Gaussian comparison theorem as in the proof of Lemma 11 in Loh and
Wainwright (2015)

Denote by var* the conditional variance given {(y;, x;)}’,. For 8,3 € ©q(r),
write 6 = 3 — B* and &' = @' — B*. By conditional normality, we quickly compute
and bound the variance of Gg — Gg:

2
T T i75 7|8 ||s.2/(2r ia(s/
var*(Gp — Ggr) < _2907/2 Prlislza/2n (T, 0)  Prjs)s, e ;(@ D
16113 » 10"]15:

Using the property ¢.g(cx) = c*¢r(z) for any ¢ > 0, we find that

161152 19,2
¢T "Is,2/(2r mivél ¢T =2 7"( Z; 5)
1912/ ar) (1 670) = T Oridisafon) gy (@00 9)

It follows from the above calculations and the Lipschitz property of ¢z that
Var*(GB — GI@/)
1~ 1 16']|=2 ’
S 5 MTend ¢7’ d||ls.2/(2r ((wzu 6>) - ¢T d|so/(2r (—7<33“5>
n2 ; ||5||4§72{ 16]ls,2/(2r) 16]l=,2/(27) ||5||2,2

1 "2 (2,8 50\’
J— T2(<m7 > _ <m/7 >> . <C12)
4\ [[6][s2 1052
Let G,...,G! be ii.d. standard normal random variables that are independent of

all the previous variables, and define a new process

N (@B )

Z - i .
7 o &8 - Bl

As an immediate consequence of (C.12), we have var*(Gg — Gg) < var*(Zg — Zg ).
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Therefore, by the Gaussian comparison inequality (Ledoux and Talagrand, 1991),

:L Z G,

i=1

E*{ sup Gﬁ}gﬂE*{ sup Zﬂ}< -E*

BEB(r) BEB(r) 2

where Z; = X7'/2x;. Taking the expectation with respect to {(y;, «;)}?", on both

sides gives E{supgee, () Ga} < (7/m)E[n~' 31, Gizilla < (7/r)y/d/n. From this
and the unconditional version of (C.11), we obtain

EA(r) < ¢_<2T\/> 471/_) (C.13)

Together, (C.10) with z = ¢ and (C.13) imply that as long as n = (7/r)*(d + t)
A(r) < 1/4 with probability at least 1 — e~*. Combining this with (C.5) and (C.
proves the stated result.

N

Recall that ©g(r) = {8 € R? : |3 — B*||z2 < r}. Let C = {B € R?: ||(B
B)sclli < 3|l(B — B%)sll1} be an f1-cone in R? where S C {1,...,d} denotes the
support of 3*. As a counterpart of Lemma C.3 in high dimensions, Lemma C.4 below
shows that the adaptive Huber loss satisfies the restricted strong convexity condition
over O(r) N C with high probability.

Lemma C.4. Assume v; < oo for some 0 < § < 1 and (E(u, Z)*)"/* < A, |lul|, for
all u € R? and some constant A; > 0. Let (n,d, 7,r) satisfy

7 > 2max { (4v5) ) 443} and n 2 K H(Agr/7)? max 0 s log d, (C.14)
)=
Then with probability at least 1 — d !,

(VLAB) —VL,(B),8—5) >

(C.15)

uniformly over 8 € Oy(r) NC.

Proof of Lemma C.4. The proof is based on an argument similar to that in the proof
of Lemma C.3. With slight abuse of notation, we keep using A(r) as the supremum
of a random process:

B 19(B) — Eg(B)|
A= s 1B —FlB,

Provided 7 > 2 max{(4vs)"/(1+% 4A2r} it can be shown that

T(B) 1
18— B*%, — 2

V

— A(r) forall B€©y(r)nC. (C.16)

12



According to (C.10), it remains to bound EA(r). Following the proof of Lemma C.3,
it suffices to focus on the (conditional) Gaussian process

n

o L /<wzaﬂ_/6*>
Zﬁ - 29n, ;Gznﬂ _ /3*“2,27 IB € @O(T) mca

where G are i.i.d. standard normal random variables that are independent of all
other random variables. For every B € ©y(r) NC, it is easy to see that

18 =81 <4v5(8 = B2 < 45, *V5 8 — B |ls2s

implying

sup  Zg < 2/11_1/2\/5Z
BBy (r)NC r

o0

1 n

Keep all other statements the same, we obtain

1 n

EA(r) < v2r (8/{1_1/2\/5 E
r

_|_

-
dry/n |
With x; = (I‘ﬂ, .. ,«Tz‘d)T S Rd, note that
1 1 ¢
= Glx; l Glx;;

Since G'z;; are sub-exponential /sub-gamma random variables, from Corollary 2.6 in
Boucheron, Lugosi and Massart (2013) we find that

1 n

Substituting this into (C.10) and taking x = logd, we obtain that with probability
at least 1 —d !,

— Imax
1<j<d

[e.e]

E

logd logd
§A0maxaj1-;2< %8¢ 4 2% )

- 1<j<d n n

T(B)
18 — B*[1%,

> — uniformly over B € ©y(r)NC

1
4

for all sufficiently large n that scales as k; '(Ag7/r)? maxi<j<q0;; slogd up to an
absolute constant. This proves (C.15). O

Lemmas C.5 and C.6 provide concentration inequalities for | S~Y/2V L, (8")]|, and
IVL:(8%)||c0, respetively.

Lemma C.5. Assume Condition 1 holds with 0 < § < 1. Then with probability at

13



least 1 — 2e7¢,

=712V L, (8Y) + v (C.17)

9 S 4\/5_/40 —f- 21407'

vsT0(d 4 t) d+t
n

Proof of C.5. Assume without loss of generality that ¢ > log 2, or equivalently, 2¢~ <
1; otherwise 2¢* > 1 so that the bound is trivial. To bound || Z~Y2VL,(8%), first
define the centered random vector

¢ =X VL(B") - VEL( =——Z{@mz E(&#:)},

where & = 1-(¢;). To evaluate the f,-norm, there exits a 1/2-net A, of the unit
sphere S71 in R? with [Nyj| < 5¢ such that [|€*]]y < 2maxyen, , [(uw,€*)]. Under
Condition 1, it holds for every u € S¢! that E|(u,z)|* < AF kT'(k/2) for all k > 1.
By direct calculations,

n n
D E(&{u, &) < 245770 vy = 245 nusT' 0,
= =1

- - k!
ZE‘@'(U, z;)|" < §(A07/2)k’22143 nvsT % for all k > 3.

It then follows from Bernstein’s inequality that

1-5
P{|(u,§*)| > 2401/ wr_ T, (AO/Q)E} <2e " for any z > 0.
n n

Taking the union bound over u € Njj, we obtain that with probability at least

1—5%.2e77,
vsT1 g TT
1€7]2 < 440 — +Ao—. (C.18)

Next, for the deterministic part |S~V2VEL,(8*)]|2, it is easy to see that

e, (5], = s 4> Bleun @) <

uecSd—1 1 £

Combining this and (C.18) with x = 2(d+t), we reach the bound (C.17) which holds
with probability at least 1 — 2e72 > 1 — e, O

Lemma C.6. Assume Condition 1 holds with 0 < § < 1. Then with probability at

14



least 1 — 2d 1,

1751 1
VLA(B) oo < m maxa <2\/_A \/WTWJFAOT ngJrvaT_é)'

Proof of Lemma C.6. The proof is based on Bernstein’s inequality and the union
bound. Define & = v, (g;) for i = 1,...,n such that VL. (8*) = —n' > | {x;. For
every 1 < j <d, note that |E(&z;;)| = ]]E{IE(@\:UU):UUH < 01/2 77%. Moreover, from
the proof of Lemma C.5 we see that

ZE(&Z,I‘”)z S UjjnU5T1_6,
i=1
ZE\&:CU]'“ 2Aoaﬂnv(57 (A001/27'/2)k > for k > 3.
By Bernstein’s inequality, for any = > 0 it holds

1/2 VT 0% 1/2T%
< 24005\ | =+ Aoy

with probability at least 1 — 2e~*. By the union bound and taking z = 2logd in the

’% Z(fiﬂfzj - Efil'ij)

=1

last display, we arrive at the stated result. O

C.2 Proof of Proposition 1

Define the error vector A = *— 3% and function h(8) =n~' Y7 | E{l, (yi— (i, 8))},
B € R%. By the optimality of 3 and the mean value theorem, we have Vh(3!) = 0
and thus

(A V*h(B)A) = (Vh(@") = Th(B}). A) = (VA(8'), A) = > B{ux(2) oy, A,
. (C.19)

where 51 = \3"+ (1 — \)3 for some 0 < )\ < 1.

CASE 1. First we consider the case of 0 < § < 1. Since E(g;) = 0, we have
—E{¢-(g:)} = E{e;1(|es| > 7) — 71(e; > 7) + 71(e; < —7)} and therefore

|E{¢T(61)}| S ]E{(|61| — T)1(|8Z| > T)} S Ui’(;T_é. (CQO)
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Taking €; = y; — (x;, Bl), we see that
~ 1 <&
hW(B) =S, — =Y P(&| > 1)z} C.21
V(B = S0~ SO R(E| > e (©21)

Note that

E{t:(e0)}

i |1+9 . 1-6 '1+5_ﬁ 19 ) ) 1-6
<E 5 e 1 (les] < 7) 4+ [ T 0] 5 e | 1(les] > 7) p vt 0.

This, together with the convexity of & implies that A(8;) < Ah(8*) + (1 — A)h(87) <

T

h(B*) < vsT'™°, where vs = n~* > v;5. For the lower bound, note that h(3) >
n'E{(1]y; — (x;, B)] — 72/2)}1(|y; — (x;, B)| > 7)} for all B € R Putting these

y , 1y , g
upper and lower bounds on h(8;) together yields

n ) n
%;Eﬁﬂﬂg@l >7) < ;—_nlzlpﬂa > 1)+

as a consequence of which n=! 3" P(|;] > 7) < 2vs77!7°. Combining this with
(C.21), we deduce that as long as 7 > (205 M?)/(1+9),

~ 1 <& _
ATVZR(B)A > S, All7 - Y P&l > 7) (@i, A)?
=1
> [|S)2Al3 - 2/1S, 2 Al max |81 2a |5 vsr ™'
> (1 — 205 M 179)||SY2A| 2,

This provides a lower bound for the left-hand side of (C.19). On the other hand, using
(C.20) and Hélder’s inequality to bound the right-hand side of (C.19), the claim (7)
for 0 < 6 < 1 follows immediately.

CASE 2. Next we assume § > 1 and note that v;; = E(e?). In this case, we have
E{l;(g;)} < 3vip and [E{¢-(g:)}| < vis77°. Then, following the same arguments as

above, it can be shown that as long as 7 > viﬂmn,
(1 —oym2772)|ISY2A |2 < (A, V2h(B))A) < [SY2Ally vs7~°. (C.22)
This proves (7) for § > 1 and hence completes the proof. n
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C.3 Proof of Theorem 1

Without loss of generality, we assume ¢ > 1 throughout the proof; otherwise, 3e™* > 1
and the stated result holds trivially. For simplicity, we write ,@ = ,@T. Note that for
any prespecified r > 0, we can construct an intermediate estimator, denoted by Bnn =
,3*4—77(3—6*), such that HB\W—,B*HQ < r. To see that, we take n = 1 if H,@—ﬁ*Hg <r;
otherwise, we can always choose some 1 € (0,1) so that || Em — B*|l2 = r. Applying
Lemma C.1 gives

(VL(Bry) = VLB, Bry — B*) < (VL(B) — VLB, 8- B, (C23)

-~

where VL,(8) = 0 according to the Karush-Kuhn-Tucker condition. By the mean
value theorem for vector-valued functions, we have

1
VL (Br) ~ VEAB) = [ VL1 08 + tBry) it (Buy ~ 5)
0
If, there exists some ag > 0 such that

min Amin (V2L > ao, C.24
BER:|B—*[2<r ( (8)) 2 ag (C24)

then we have aol|B,, — 87|12 < IVL(8)|2lBr.y — B*|l2. Canceling the common
factor on both sides yields

18- — B, < ag* || VL (87) (C.25)

9

Define the random vector £ = VL, (3*), which can be written as
=23 e
— n - \&i)Lj-

By definition (B.1), ¢1(z) = 77" (12). We write U; =n~' 3" (2;/ L)1 (g;/7) for
j=1,...,d, such that [|€*]|2 < d"/?||€"||ee = Ld*?*T max;<j<q|¥;]. With 0 < < 1,
it is easy to see that the function v (-) satisfies

—log(1 —u+ [ul*") < ¥ (u) < log(1 +u+ [u]'™) (C.26)
for all u € R. It follows that

(2ij/L)n(ei/T) < (wi3/L)Uxyg = 0)log(1 + /T + [es/7]')
— (JIU/L)1<1’Z] < 0) log(l — Ei/T + |€Z'/T|1+6).

This, together with the inequality (1 + u)” < 14+ wv for v > —1 and 0 < v < 1,

17



implies

exp{(xi; /L)1 (ei/7)}
S (1 + gi/T _|_ |€i/7_|1+5)(Z‘ij/L)1(ajij20) + (1 - gi/T + |€i/7_|1-‘,—(5)—(3&’1']'/[/)1(381']'(0)
< 1+ (e3/7) (@i /L) + lei/ 7],

Consequently, we have
Efexp(n¥;)} = [ [ Eexp{(zi;/L)va(ei/m)} < [[(1+ 0677 7°) < exp(osnr='7%),
i=1 i=1

where we used the inequality 1 + u < e* in the last step. For any z > 0, using
Markov’s inequality gives

P(U; > vs52) < exp(—vsnz)E{exp(n¥;)} < exp{osn(r—7° — 2)}.

As long as 7 > (2/2)Y(+0) we have P(W; > v52) < e %"/2. On the other hand,
it can be similarly shown that P(—V¥; > v5z) < e %"*/2. For any t > 0, taking
z = 2t/(vsn) in these two inequalities yields that as long as 7 > (vsn/t)Y/(1+9),

P(||€*]]2 > 2Ld"*rn~ ')
d
<P(€ |00 > 2Lmn M) <> P(1¥,] > 2n7't) < 2dexp(—t). (C.27)

J=1

Taking r = 7/(4v/2M), it follows from Lemma C.2 and the definition of 7 that
with probability at least 1 — e™*, (C.24) holds with ag = ¢;/2 provided

n 2> max (8M4cl_2, 24+5M201_1)t.
Combining (C.25) and (C.27) implies that, with probability at least 1 — (2d + 1)e™*,

HETJ] - /8*

y < 4Lcl_1d1/27'n_1t.
Provided n > 16v/2c; ' LM d'/?t, the intermediate estimator Em will lie in the interior

of the ball with radius r. By our construction in the beginning of the proof, this
enforces 7 = 1 and thus 8 = 3,,. O
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C.4 Proof of Theorem 2

We start by defining a simple class of distributions for the response variable y as
Py = {IP’C+,IP’C_}, where

Pr({0}) =1—=7, Pi({c}) =, and PL({0}) =1 =, P ({—c}) = .

Here, we suppress the dependence of P and P on + for convenience. It follows that,
for any 0 < 0 <1, the (1 4 0)-th absolute central moment vs of y with law either P
or P is

vs = ||y (1 =) {’ + (1 —7)°}. (C.28)

For i = 1,...,n, let (y1;,y2) be independent pairs of real-valued random variables
satisfying

P(y1i = y2i = 0) = 1 =, Py = ¢, y2i = —¢;) =7, and yy; ~ PL Yai ~ PE

Let g = (g1, - k)" for k= 1,2, and € € (0,1/2). Taking v = log{1/(2€)}/(2n)
with £ > e™"/2, we obtain 1 —~ > 1/2 and

IP’(yl = Yy :O) =(1—y)"> {exp (%)} > 2€.
By assumption, we know that there is an n-dimensional vector u € {—1,+1}" with
each coordinate taking —1 or 1 such that || X" u||nim > a. Note that this assumption
naturally holds for the mean model, where X = (1,...,1)T and « can be taken as 1.
Now we take ¢, 8] and B3; such that ¢ = cu for a ¢ > 0, X3} = ¢y and B = -0,
which indicates that
11

~XTu, and
n

1
8 = (-x"x)
n
L poy-1l o a1/
‘ (—XTX> “XTy > oy
n n 2 Cy,

1811,

>y

Let Bk(yk) be any estimator possibly depending on &, then the above calculation

vields
max {P (|8, - 8|, > ere,"a2a), B(||B> — By|, > ere, ' d/%a) }
> P(11B: - Bill, > v % or B~ B3], > evey d' o)
> BB =B) > Py =) > 51— 2 €, (C.29)
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where we suppress the dependence of ,@k on y; for simplicity. Using the fact that
¢y > v/ (4/2)9/049) further implies

3, — 3 dY2q (log(1/(2€)) ) ¥/ (1+9)
Pl”ﬁl -], 2 oo Lo [ el B ]

§/(1+9)
V18- g, > e e (s

J Cu 2n
Now since P, C P;°, taking log{1/(2£)} = 2t implies the result for the case where
d € (0,1]. When 6 > 1, the second moment exists, and therefore using the fact that
v1 < oo completes the proof. n

C.5 Proof of Theorem 3

We start with the proof of Lemma 1.

Proof of Lemma 1. Let H, = V2L,(3), where we suppress the dependence on 3.
Then for any (u,3) € C(k,v,r), we have

(u,Hyu) = uT{% Zn:ar:zzclTlﬂyZ —(x,6;)] < T)}u

1 n 1 n
> ||SY | — - > (u,@)?1(|(x;, 8 — 7)) >7/2)—~ D (u,m)*1(lei| >7/2)
i=1 =1
2r 1 &
> HSW'MH;—7 121%||wi||m||Si/2u|I%—ggg>;<u,:vz->25;1(|e¢|>r/2)-

(C.30)

As ||x;||co < L for any 1 <i < n, we have
[, )| < Nlzilloollulli < (1+)l|@illocllesl < LEVZ(1+7).

Moreover, for any t > 0, applying Hoeffding’s inequality yields that, with probability

at least 1 — e,

1 n 9 1+51 n P 9 1+6 ;
—E 1(|e; 2y < [ = —E i \—=1|- \/ &
n (‘5 | = T/ ) - (7’) n ‘= Vi + 2n (7’) Vs + 2n

Putting the above calculations together, we obtain

<’U,,H.,—u> > HSTlL/Zu,H; — 27-*1TLHSrIL/2uH§ _ ]{7(1 + 7)2L2(21+6U6T7175 + t/2 n*1/2).
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Consequently, as long as 7 > 8Lr, the following inequality

1
(u,H,u) > §/<ol — k(L +7)2 L2 (2" 0010 -\ /t/2n72) > S, (C.31)

W

holds uniformly over (u,3) € C(k,~,r) with probability at least 1 — e~*, where the
last inequality in (C.31) holds whenever 7 > (1 + ~)%/(1+0) 5 1/ (IH) (1210, y1/046) anq
n 2 (1+7)*k;2L*k*t. On the other side, it can be easily shown that (u, H,u) < k,.
This completes the proof of the lemma. O]

The following lemma is taken from Fan et al. (2018) with slight modification,
which shows that the solution 8 = 3, falls in a ¢;-cone.

Lemma C.7 ({;-cone Property). For any &€ such that S C &, if [[VL(8)[|ec < A/2,
then [[(B — B")eclli < 3]1(8 - B*)¢1-

Now we are ready to prove the theorem.

Proof of Theorem 3. Tt suffices to prove the statement for 6 € (0,1]. We start by
constructing an intermediate estimator 377 = 6*+17(B (3*) such that ||B77 B <r
for some r > 0 to be specified. We take n = 1 if HB B*||1 < r, and choose n € (0,1)
so that || /377 B*|l = r otherwise. Lemma C.7, B,, also falls in a ¢;-cone:

1B, = B)sellh < 3118, — B)sl1- (C.32)

Under Condition 3, it follows from Lemma 1 that with probability at least 1 — e™?,

S8, = 8713 < (VL:(B,) = VLAB). B, — B

as long as 7 > max{(L?kvs)/+% Lr} and n > L*k*t. Applying Lemma C.1 and
following the same calculations as in Lemma B.7 of Fan et al. (2018), we obtain

Ry, = %
18y = 87115 < {s"A+ [VL(B")s 2 HIBy = B7)s 2,
which, combined with ||[VL;(8%)s|le < A/2, implies that
18, — 8712 < 3k 152\ (C.33)

Inequahtles in (C.32) imply that ||,67, Bl < 4”(577 ) H1 < 451/2||,67, B2 <
12k, 's\ < r. By the construction of [3,7, we conclude that [377 [3 and thus the stated
result holds. It remains to bound the probability that event {||VL (8%)s|lcc < A/2}
occurs. Recall the gradient of £, evaluated at 3%, i.e. VL. (8%) = —n~ ' Y1 ¢, (g)) ;.
Following the same argument used in the proof of Theorem 1, we take 7 = 7o(n/t)"/(1+9)
for some 75 > vs and reach P{||VL,(8%)s|loc > 2LTn 't} < 2se'. This, together
with (C.33), proves (9).
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Finally, taking t = (1 4+ ¢)logd for some ¢ > 0 yields that with probability at
least 1 — (25 +1)d~'7¢, [|[VL(8%) sl < 2L70{(1+¢)(logd)/n}?/+9) As implied by
Condition 3 with k& = 2s, we have 2s + 1 < d and thus (10) follows immediately. [

C.6 Proof of Theorem 4

The proof of this theorem follows the similar argument to that of Theorem 2. It
suffices to prove the result for 6 € (0, 1]. Similar to the proof of Theorem 2, We start by
defining a simple class of distributions for the response variable y as P, , = {Pcy,P._},
where

Pr({0}) =1—1, Pi({c}) =7, and P ({0}) =1 -1, Po({—c}) = .

Here, we suppress the dependence of P and P, on ~ for convenience. It follows that,
for any 0 < 0 < 1, the (1 4 0)-th absolute central moment v of y with law either P
or P is

v = el (1 = ){ + (1= 9)} (C.34)
We define the following s-sparse sign-ball i, as
U, ={u:ue{-1,1}"}.

By assumption, there exist u € U, and A with |A| = s such that || X u|mm/n > «.
Take 37, 35 supported on A and ¢ € R" such that ¢ = cu for a ¢ > 0, X8} = ¢y and
Bs = —3;. Let P* be the distribution of y; = X3} + € and P_ that of y, = X35 + €.
Clearly, we have

E(e;) =0 and E(le;|'") = *9(1 =) {7’ + (1 -7)’}.
Let A be the support of 37. Then, we have
(814 = e (-XEX.) " TXGu, and
187112 > ey kg st 2 IXEu/nlmin > ek, st 2a.

Let Bk(yk) be any s-sparse estimator. With the above setup, we have

fax {P(Hﬁl = Bi|l, = eyryts2a), (|| B2 — B3|, = ey /@7131/204)}

> %IP’<H31 —Bi|l; = evry'sYa or ||Be — B|, = e H5181/2a>
1~ o~ 1
> ép(/@ﬁ =) > §P(y1 =1y, =0) (C.35)
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where we suppress the dependence of Bk on y; for simplicity. For the last quantity
in the displayed inequality above, taking v = log{1/(2t)}/(2n) with ¢ > e¢™"/2, we
obtain 1 —~ > 1/2 and

IP’(yl = Y :O) =(1—-y)"> {exp (%)}n > 2t.

Using the fact that ¢y > py/ () ~v/2)%/(+9) this further implies
g g 5

N 1 1/(2¢ 0/(146)
]P)[”ﬁl_ , ZU;/(H(S) —1&81/2{ og{1/( )}}

K
2n
\/P

Now since P, , C P;°, taking t = d~*/2 implies the result for the case where § € (0, 1].
When § > 1, the second moment exists. Thus using v; < oo completes the proof. [

8. - 8ill,

2n

6/(146
049) 151 {log{l/@t)}} o 1 -

C.7 Proof of Theorem 5

The proof is almost identical to that of Theorem 3. We only need to derive a prob-
ability bound for the event {||€%5]|cc < A/2} under the assumed scaling and moment
conditions, where &* := VLZ(3%).

Recall that 7 = (z5,...,25)T with T = Yg(zy) for i = 1,...,n and j =

.,d. Define z; = (z;1, ..., 2i4)" = &;— ¥, where z;; = {a:zj —wsign(x;;) H1(|@i;| >
w). Moreover, write z;s = (2;5;1(j € S)) € R? and ¢; = &; + (z;,3*). In this
notation, we have & = —n~'Y7" Y- (¢)xT. From the identity E{y.(e;)z]

]E{(zz,ﬁ*ﬂg} — E{e; — Tsign(ei)}x51(|e,~| > T), we see that

< My||B*[iw* + T*QE(’Q|3|1‘Z )
< M| i + 4 {E(eiPleg) + 18° B E(I =315}
< MyIBll 5477 + 4> {0, MY 1 M8 357

Then it holds

IE(€) oo < Ma|8%l|2 52 + 4772 {00, + M| 87|35} (C.36)
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For each j fixed, note that
ZE{‘% wT 61 }2 < Z]E{xm & + <z27 *>2)} < n(U2M2 + M4Hﬁ*‘|38),
k! k=2, (2 |2
and ZE\x We(en)|" < S (@7/2) n(o? My + My||B*||3s) for all k > 3.

Applying Bernstein’s inequality gives

n

3 [aunlen) — Elafue(e)}]| < (2Me + MG B )y 2 + s

’ 2n
=1

with probability at least 1 — 2e~*. Taking the union bound over j € S, we obtain

that, with probability at least 1 — 2se™,

t

* % « 12 |t
€5 — E(€5) oo < (202My + 2M,4 )| 87|13 5) " \/;+ wTo -

This, together with (C.36), implies that P{&(7, @, \)} > 1 — 2se" provided

A > 2M|B7[l2 "2 + 8{wsMy"* + My B3 5}

t t
+2(20% M + 2My || 8*|)3 3)1/2\/;+ @

This is the stated result. O

C.8 Proof of Theorem B.1

To begin with, define the parameter set Og(r) = {3 € R? : |3 —3*||s2 < 7} for some
r > 0 to be specified, and let Bm € O¢(r) be the intermediate estimator introduced
in the proof of Theorem 1.

PROOF OF (B.2). In view of (C.23) and (C.25), lying in the heart of the arguments
is to derive deviation inequalities for || X~1/2V L, (8*)||2 under the moment condition
that vs < oo for some 0 < 6 < 1, and to establish the restricted strong convexity for
the Huber loss L, i.e. there exists some x > 0 such that

<V‘CT<IB) - V‘CT(B*)?/B - ﬁ*> 2 '%Hﬁ - /8*“3

holds uniformly over 3 in a neighborhood of 3*.
First, from (C.17) in Lemma C.5 we see that

d d+1
IS12VL(8Y)|), < ro = AV2AWY 002 [EEE gy L T
n n

70
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with probability at least 1—e. Next, since Bnn € Oy(r) and according to Lemma C.3,
we take r = 7/(4A?) such that under the scaling (C.2),

~ ~ 1, ~
(VLA(Bra) = VLB, B = B) 2 4|Br — Bl

with probability at least 1—e~*. Together, the last two displays and (C.23) imply that
with probability at least 1 — 2e™, HBW — B*||s2 < 4rg < r provided n > Cy(d + t),
where C} > 0 is a constant depending only on Ay. Following the same arguments as
we used in the proof of Theorem 1, this proves (B.2).

PrOOF OF (B.3). From the preceding proof, we see that
P{B € Oy(r)} >1 -2 (C.37)

as long as n > Cy(d +t), where 1, = 4ry. Moreover, define random processes ¢(3) =

L,(8) — EL(8) and
B(B)=X72{VL,(B) - VL(B")} — B3B3 - ). (C.38)

To bound || B(B,)||2 = |ZY2(8; — B*) + £~Y2VL.(8")]|s, the key is to bound the
supremum of the empirical process {B(8) : B € ©y(r)}. To that end, we deal with
B(B) — E{B(B)} and E{B(3)} separately, starting with the latter. By the mean
value theorem,

E{B(B)} = = *{VEL,(B) — VEL.(8")} - ="*(8 - 8)
_ {271/2V2E£T(E>271/2 N Id}zl/Q(IB . 5*%

where 3 is a convex combination of 3 and B*. Therefore,

sup HE{B }|| <rx sup HE 1292 L. (B)X 1/2—IdH.
BE€Bo(r) Be€Bo(r)

For B € ©y(r) and u € S !, write § = £Y2(3 — 8*) such that ||§]|s < 7. Let 4; >0
be the constant in Lemma C.3 that scales as Ag. It follows that

[u" {ZTVAVEL (B)E 7 — 1 }u| = ZE{l i — (@4, B)| > 7)(u, T:)?}

n

1
< ; E(S ; ~i 2 < -2 A4 -2 5 2 < A4 2 72
< ;{v 1+ E( a:>(u,a:>}_vl7' + AT 7265 < vt P+ ,
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which, further implies

sup HIEJ{B(,B)}H2 <ot 24+ AP (C.39)
BEOo(r)

Next, we consider B(8) — E{B(8)} = Z7Y2{V({(B) — V¢(B*)}. With § =
31/2(3 — B*), define a new process B(8) = B(8) — E{B(3)}, satisfying B(0) = 0
and E{B(6)} = 0. Note that, for every u,v € S¥! and A € R,

Eexp {A\Vnu'VsB(8)v}

=

)\2 ~ ~ ~ ~ AL, @) (0,3 u,T)(v,T
S (1+ EE[{(’U,,JIZ>2<’U’$Z>2+ (E|<u’w><v7w>|)2}e\/ﬁ(|( 23 ) (0,24)|+E|(u, ) (v, >)])

1

<.
Il

1AL \2 LR AN 2L A2 ~ ~ PLj o,z (v,@;
{1+eﬁ—]E(eﬁ|< i) (v, Z>|) +eﬁ—E(<u,mi>2(v,mi>26ﬁ|< i) (0, >)}
n

IA

1

1

DLA? X DL A2 d Pl
{1+eﬁ— max E(evr ™ >2) +evi = max E((w,®)%evr ™ >2)}
n wesd-1 n weSd-1

<

—.

s
Il
—

1AL RE 1AL o Pliw s
< exp {e\/ﬁ/\2 max E(eﬁm’m)z) + evrA\? max E((w,az)‘leﬁ(w’m)Q)}.

weSd—1 weSd—1

Under Condition 1, there exist constants Cy, C's > 0 depending only on Ag such that,

for any |\ < \/n/Cy,

sup Eexp {A\/nu'VsB(d)v} < exp(C5A*/2).

u,veSI—1
With the above preparations and applying Theorem A.3 in Spokoiny (2013), we reach
P{ sup || B(8) —E{B(B8)}||> > 6C5(8d + 275)1/27‘} <e
BEO(r)

as long as n > Cy(8d + 2t). Together with (C.39), this yields

sup ||V - 8°) - BTV{VL(B) - VL (8},

BEB(r1)
< o172 4 A2 £ 605(8d + 2t) Y20 2y

with probability at least 1—e~*. Combine this bound with (C.37) to obtain the stated
result (B.3). O

C.9 Proof of Proposition B.1

Since E(e) = 0, we have E{¢.(¢)} = —E{(e — 7)1(e > 1)} + E{(—e — 7)1(e < —7)}.
Thus, for any 2 < ¢ < 2 + &, [E.(e)] < E{le] — 7)1(le] > 7)} < 7172E(Je]?). In
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particular, taking ¢ to be 2 and 2 + k proves the first conclusion. Next, note that
E{y%(e)} = E(e?) — {Ee*1(le| > 7) — 7°P(|e| > 7)}. Letting n = |¢|, we deduce that

E{n*1(n > 1)} = 2E/ 1(n > y)1(n > 1)y dy
0
:2]?’(?7>T)/ ydy+2/ yP(n>y)dy=72P(n>T)+2/ yP(n > y) dy.
0 T r

By Markov’s inequality, [~ yP(n > y)dy < E(n*™) [Zy~ ' dy = s~ 7" E(n*™).
Putting the above calculations together proves the second inequality. O]

C.10 Proof of Theorem B.2

For simplicity, we write [/3\ = B\T’,\ and assume without loss of generality that 0 <
0 < 1. As in the proof of Theorem B.1, we construct an intermediate estimator
,8 =03+ 77(,8 (B*) satisfying Han — B*||z2 < r for some r > 0 to be specified. We
take n = 1 if Hﬁ B*|ls2 < r; otherwise if ||B\— B*|ls2 > r, there exists n € (0,1)
such that ”:&7 — 3*||s2 = r. Lemma C.1 demonstrates that

(VL(By) — VLB, B, — B") < n(VL(B) — VL(B"),8 - B). (C.40)

Next, let S C {1,...,d} be the support of B* and define the ¢;-cone C C R%:

C={BeR":|(B—B8)slh <3l(B—Bsl}
We claim that
B €C on the event {A>2[|[VL(8)]}, (C.41)
from which it follows
1811 = 105l + 18511 < 4105l < 4+/5 (18] (C42)

where & := B — B*. To prove (C.41), first, from the optimality of ,@ we see that

L.(B) = £(8%) < A(187]l, = 18I11)- (C.43)

By direct calculation, we have

18Il = 18711y = 1185 + dsclls = 185l — 18l = (185111 + 185 ]11)

> [1dse]ls = [[0s]hr-

Under the scaling A > 2||VL.(8%)]|, it follows from the convexity of £, and Cauchy-
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Schwarz inequality that

L(B) = L(B") > (VL(B),8) > —[IVL(B)| 18]I
Ao~ —~
—§(||55c 1+ [16s]]1)- (C.44)

Together, (C.43) and (C.44) imply 0 < 2(3||ds|y — [|ds¢|)1) and thus 3 € C.
By necessary conditions of extrema in the convex optimization problem (B.4),

(VL(B) + 2,8 — B <0

where z € 8”@\\1 satisfies (z, 3" — B} < |B*|l1 = HEHl Under the scaling A >
2||VL(B8)]|oo, it holds

. . . A~

(VL(B) = VLA(B"),B8—8") < A8 = 1B8l1) + S8 =Bk
. . A~ A o~ .

< A(l19slr = l10sellh) + S8 =Bk < 5(3H55H1 — [|0sel1)-

Together with (C.40), this implies

(VLB ~ VEAB). By~ B7) < Sn(3Bsll — [Bsh). (C9)

Moreover, we introduce gn = ,577 — 3" and note that g,] = 775. By (C.41), we also have
En € C under the assumed scaling.

Let ©Q, be the event on which (C.15) holds. Then P(Q¢) < d~! under the scaling
(C.14) and it holds on Q, N{A > 2||VL.(8*)||«} that

1

1/2
A LA M

(VLA(B,) = VLAB"). By~ B7) >
Substituting this lower bound into (C.45) yields
TRIB a8 2 < S AnllBslly < SAS2 Bl = D258,
Canceling ||g77||2 on both sides delivers
18, |52 < 65, 252X and (|8, ]l < 24r; s\ (C.46)

under the scaling A > 2||VL,(8")||- and (C.14) .
It remains to calibrate the parameters 7, A and r. First, applying Lemma C.6 with

28



7 = 19(n/logd)"/(+%) we see that

log d\ %/(1+9)
VL (8 < ¢1 max a;fro( Oi )

1<5<d

with probability at least 1 —2d~', where ¢; = (2v2 + 1)Ag + 1. We therefore choose
A= max1<J<do To{(log d)/n}‘;/ 149) for some constant ¢y > 2¢, such that A\ >
2||\VL(B) oo Wlth probability at least 1 — 2d~!. Next, according to (C.14), the
restricted strong convexity (C.15) holds with r < /11_1/2/10 Maxi<j<d O'jl-j/QT (logd)/n.
Putting the above calculations together, we conclude that

loge d 6/(1+6)
)
n

Hﬁn — ﬁ*Hzg < 602/1;1/2 max o1/ *7 s* ( (C.4T)

1<5<d i

with probability at least 1—3d !, assuming the scaling n > x; ' A2A% max;<j<40;; slogd.
By the construction of Bn, with the same probability we must have n = 1 and therefore
8= 6,7 The stated result (B.6) then follows from (C.46). O

C.11 Proof of Corollary B.1

Recall that xq,...,x, are ii.d. random vectors from a sub-Gaussian vector x =
(z1,...,2q)" with E(xz") = . Let ¥ = XX7'/2 be an n x d matrix whose rows
are independent isotropic sub-Gaussian random vectors. Since k; = Apnin(X) > 0,
Definition 1 in Rudelson and Zhou (2013) holds with sy = s, kg = 3, A = X!/2 and
K(so, ko, A) = ;"% Taking & = 1 in Theorem 16 of Rudelson and Zhou (2013) we
obtain that, with probability at least 1 — 2d~!,

XB=8 _ 1 w288 _,

Va B-Bs2 Vi IZV2(8 -6

for all 3 € C as long as n > k; 'Ad maxo<<q0j; slogd. This, together with (C.41)
and (C.47), proves (B.7). O
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