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1 Introduction

The Gross-Zagier theorem [6] relates the first central derivative of the base change (to an imaginary

quadratic field E = Q[
√
−D]) L-function of an elliptic curve A over Q to the Nerón-Tate height of the

Heegner point. Through a parameterization of A by a modular curve ϕ : X0(N) → A and under the

Heegner hypothesis, the theory of complex multiplication defines a special divisor (the Heegner divisor)

on X0(N) and its image under ϕ yields rational point PE ∈ A(E). Then their theorem is an identity

L′(fE , 1)

(f, f)
=

1√
|D|

⟨PE ,PE⟩NT

deg(ϕ)
,

where f is the (normalized) cusp form of weight two associated to A, (f, f) is the Petersson inner product,

and ⟨PE ,PE⟩NT is the Néron-Tate height pairing for A over E.

The arithmetic Gan-Gross-Prasad conjecture (see [4, Section 27] and [23, Subsection 3.2]) is a gener-

alization of the Gross-Zagier theorem to high dimensional Shimura varieties (see variants by Rapoport

et al. [16]). In the arithmetic Gan-Gross-Prasad conjecture, one considers the product Shimura variety

attached to unitary or orthogonal groups and a special algebraic cycle, generalizing the above modular

curve X0(N) and the Heegner divisor PE , respectively. This conjecture is inspired by the (usual) Gan-

Gross-Prasad conjecture relating period integrals on classical groups to special values of Rankin-Selberg

tensor product L-functions. In [8], Jacquet and Rallis proposed a relative trace formula (RTF) approach

to this last conjecture in the case of unitary groups. Inspired by their approach, in [23] Zhang proposed

a relative trace formula approach to the arithmetic Gan-Gross-Prasad conjecture for unitary Shimura

http://crossmark.crossref.org/dialog/?doi=10.1007/s11425-019-9559-4&domain=pdf
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math.scichina.com
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varieties. This approach reduces the problem to certain local statements, notably the arithmetic funda-

mental lemma (AFL) conjecture formulated by Zhang [23], and the arithmetic transfer (AT) conjecture

formulated by Rapoport et al. [15, 17].

In the AFL and AT conjectures, we consider the local counterpart of special cycles on Shimura varieties,

i.e., cycles on Rapoport-Zink formal moduli spaces of p-divisible groups. The AFL and AT conjectures

then predict a relation between the local intersection numbers and special values of the derivative of

relative orbital integrals. The theorem of Rapoport-Zink on the uniformization of Shimura varieties

relates the local cycles to the global ones, and this allows us to relate the intersection numbers of the

global cycles to those of local ones. Similarly, the relative trace formula of Jacquet-Rallis on the general

linear group allows us to understand special values of L-functions in terms of certain relative orbital

integrals.

The goal of this article is to explain some geometric constructions in Zhang’s recent proof [26] of the

AFL conjecture over Qp for p large (see Theorem 2.3). We will recall the special divisors introduced

by Kudla and Rapoport [10] on the integral models M̃n of certain unitary Shimura varieties. Then we

will introduce the main new construction, a class of “derived” complex multiplication (CM) cycles on

the same M̃n, which can be viewed as elements in the Chow group (of 1-cycles) of M̃n. We will first

introduce the analogous CM cycles on the moduli space of principally polarized abelian varieties Ag (see

Subsection 3.6), and then the construction extends easily to the integral models M̃n (see Subsection 3.7).

Some related survey articles on the AFL conjecture and the arithmetic Gan-Gross-Prasad conjecture

are [20,24,25].

It is a pleasure to dedicate this article to Professor Lo Yang on the occasion of his 80th birthday.

Professor Yang’s mathematical work has tremendously influenced my generation, and his effort devoted

to the development of mathematics in China has benefitted many scholars in the past decades.

2 The arithmetic fundamental lemma conjecture

2.1 The statement of AFL

In this subsection we recall the statement of the AFL conjecture [17,23].

Let F be a finite extension of Qp for an odd prime p. Let OF be the ring of integers in F , and denote

by q the number of elements in the residue field of OF . Let F̆ be the completion of a maximal unramified

extension of F .

Let F ′/F be an unramified quadratic extension, and ηF ′/F : F× → {±1} the associated quadratic

character ηF ′/F (a) = (−1)val(a).

Let Nn be the unitary Rapoport-Zink formal moduli space over Spf OF̆ . Over the residue field k of OF̆

there is a unique Hermitian formal OF ′-module (Xn, ιXn , λXn) of signature (n − 1, 1) such that Xn is

supersingular, up to OF -linear quasi-isogeny compatible with the polarization. Then Nn represents the

functor over Spf OF̆ that associates to each Spf OF̆ -scheme S the set of isomorphism classes of quadruples

(X, ι, λ, ρ) over S, where the final entry is an OF -linear quasi-isogeny of height zero defined over the special

fiber,

ρ : X ×S S → Xn ×Spec k S,

such that ρ∗((λXn
)S) = λS (a framing). Here, S := S ×Spf OF̆

Spec k.

The formal scheme Nn is smooth over Spf OF̆ of relative dimension n − 1. One can construct an

F ′/F -Hermitian space Vn attached to (Xn, ιXn , λXn):

Vn := Hom◦
OF ′ (E,Xn),

where E = X1 but with the conjugate action of OF ′ (so the Kottwitz signature is (1, 0) rather than (0, 1)).

Here and henceforth Hom◦ := Hom
⊗

Z Q. Then the group

Aut◦(Xn, ιXn , λXn) −→∼ U(Vn)(F ),
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acts naturally on Nn by changing the framing.

Let Nn−1,n = Nn−1 ×Spf OF̆
Nn. Then Nn−1,n admits an action by the product of two unitary groups

G(F ), where G := U(Vn−1)×U(Vn). There is a natural closed embedding δ : Nn−1 → Nn. Let

∆: Nn−1 → Nn−1,n

be the graph morphism of δ. We denote by ∆Nn−1 the image of ∆. It is invariant under the action of

the subgroup H(F ), where

H := U(Vn−1) −→∆ G = U(Vn−1)×U(Vn)

is embedded diagonally.

An element g = (gn−1, gn) ∈ G(F ) is called regular semisimple (relative to H × H) if the orbit HgH

is Zariski closed in G, and the stabilizer is trivial. A regular semisimple (for short, “rs”) element is

called strongly regular semisimple (for short, “srs”) if it satisfies the additional condition that g−1
n−1 · gn

∈ U(Vn)(F ) is regular semisimple in the usual sense (i.e., its characteristic polynomial has distinct roots).

For g ∈ G(F )rs, we consider the intersection product on Nn−1,n of ∆Nn−1 with its translate g∆Nn−1 ,

defined through the derived tensor product of the structure sheaves,

Int(g) := (∆Nn−1 , g ·∆Nn−1)Nn−1,n := χ

(
Nn−1,n,O∆Nn−1

L⊗
Og·∆Nn−1

)
. (2.1)

Here, χ denotes the Euler-Poincaré characteristic for the relative cohomology along the map π : X =

Nn−1,n → Spf OF̆ , i.e., for coherent sheaves F and G on X ,

χ

(
X ,F

L⊗
OX

G
)

:=
∑
i,j∈Z

(−1)i+j lengthOF̆
Riπ∗(Tor

OX
j (F ,G)). (2.2)

When g is regular semisimple, the (formal) schematic intersection ∆∩g∆ is a proper scheme over Spf OF̆ ,

and hence the Euler-Poincaré characteristic is a finite integer.

We now recall the relative orbital integrals. Consider the triple (G′,H′
1,H

′
2) where G

′ = RF ′/F (GLn−1

×GLn), and

H′
1 = RF ′/FGLn−1, H′

2 = GLn−1 ×GLn.

Consider the quadratic character of H′
2(F ):

η = ηn−1,n : (hn−1, hn) ∈ H′
2(F ) 7→ ηn−2

F ′/F (det(hn−1))η
n−1
F ′/F (det(hn)).

Let f ′ ∈ C∞
c (G′(F )) and s ∈ C. For a regular semisimple (relative to H ′

1,2 := H ′
1 × H ′

2) element

γ ∈ G′(F )rs we introduce the (weighted) orbital integral

Orb(γ, f ′, s) =

∫
H′

1,2(F )

f ′(h−1
1 γh2)|det(h1)|sη(h2) dh1 dh2. (2.3)

Here the Haar measure is normalized such that vol(H′
1,2(OF )) = 1. We set

∂Orb(γ, f ′) :=
d

ds

∣∣∣∣
s=0

Orb(γ, f ′, s).

Conjecture 2.1 (Arithmetic fundamental lemma (AFL) conjecture). Let γ ∈ G′(F )srs match an

element g ∈ G(F )srs. Then

ω(γ) ∂Orb(γ,1G′(OF )) = −2 Int(g) · log q.

Here the matching relation between orbits is defined in [17, 23] (see also [26, Section 2]), and ω(γ)

is a certain transfer factor. In the original formulation [23], one only assumes that γ and g are regular

semisimple. For global applications, the restriction to strongly regular semisimple elements is harmless.

We may interpret the orbital integrals in terms of “counting lattices” (see [19, Section 7]). See [17,

Section 4] for some other equivalent formulations of the AFL conjecture, including a variant of the orbital

integrals in terms of the symmetric space Sn defined by (2.9) below.
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2.2 The status

Theorem 2.2. (i) The AFL Conjecture 2.1 holds when n = 2, 3.

(ii) The AFL Conjecture 2.1 holds for minuscule elements g ∈ G(F ) in the sense of [19].

Part (i) was proved in [23]; a simplified proof when p > 5 is given by Mihatsch [13] by “reduction to

Lie algebra”. Part (ii) was proved by Rapoport et al. [19] when p > n
2 +1 (a simplified proof is given by

Li and Zhu [11]), and by He et al. [7] for general p.

Recently the author has proved the following theorem.

Theorem 2.3 (See [26]). The AFL Conjecture 2.1 holds when F = Qp with p > n.

In the rest of the article, we will explain two geometric ingredients in proving this theorem:

• an equivalent version of the AFL conjecture, and this part is of local nature (see Subsection 2.3);

• some global intersection problems (see Section 3), where the local intersection problems are “em-

bedded” into the global ones.

In both parts, an important point of view is to change the intersection of two high codimensional cycles

to the intersection of a 1-cycle and a divisor. The advantage of this change is that, in the global setting,

we can utilize the modularity of the generating series of the collection of special divisors (see Remarks 3.2

and 3.6).

2.3 An alternative formulation of AFL via special divisors

Now we introduce a variant of the AFL conjecture via special divisors [9].

Recall from [9], for every non-zero u ∈ Vn, Kudla and Rapoport have defined a special divisor Z(u)

in Nn. This is the locus where the quasi-homomorphism u : E → Xn lifts to a homomorphism from the

canonical lifting E of E to the universal object over Nn. By [9, Proposition 3.5], Z(u) is a locally principal

divisor (or empty) whenever u ̸= 0. Then δ : Nn−1 → Nn induces an isomorphism by [9, Lemma 5.2]

Nn−1 −→∼ Z(u0) (2.4)

for a special vector u0 with unit norm.

Relative to the (diagonal) action of U(Vn) on U(Vn)×Vn, we can define the notion of regular semisim-

plicity (“rs”) and strongly regular semisimplicity (“srs”), for an element (g, u) ∈ (U(Vn)×Vn)(F ), similar

to the action of H×H on G = U(Vn−1)×U(Vn).

For a pair (g, u) ∈ (U(Vn) × Vn)(F )rs, we introduce our first variant of the intersection number

(see (2.2))

Int(g, u) := χ

(
Nn ×Nn, OΓg

L⊗
O∆(Z(u))

)
. (2.5)

This is again a finite integer. This intersection number has appeared in the AFL conjecture in the context

of Fourier-Jacobi cycles in the work of Liu [12].

For g ∈ U(Vn), let Γg ⊂ Nn ×Spf OF̆
Nn be the graph and define the (naive) fixed point locus N g

n as

the (formal) schematic intersection (i.e., fiber product of formal schemes)

N g
n := Γg ∩∆Nn .

We also form a “derived fixed point locus” L N g
n , i.e., the derived tensor product

LN g
n := OΓg

L⊗
ONn×Nn

O∆Nn
, (2.6)

viewed as an element in the Grothendieck group K ′
0(N g

n ) of coherent sheaves on N g
n .

For a pair (g, u) ∈ (U(Vn)× Vn)(F )rs, we define another variant of the intersection number

Int(g, u) := χ

(
Nn,

LN g
n

L⊗
OZ(u)

)
. (2.7)
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Similar to (2.1) and (2.5), this is a finite integer. As alluded earlier, this is now the intersection of a

1-cycle and a divisor, rather than two high codimensional cycles in (2.1) and (2.5).

Remark 2.4. By the projection formula for the closed immersion ∆ : Nn → Nn ×Nn, one can show

that the two intersection numbers in (2.5) and (2.7) are equal. This is the reason we use the same

notation.

Remark 2.5. By (2.4), one can show that, for g ∈ U(Vn)(F )rs such that (1, g) ∈ G(F )rs,

Int(g, u0) = Int((1, g)),

where Int((1, g)) is defined by (2.1).

Remark 2.6. One can define a U(Vn)(F )-invariant map

inv : (U(Vn)× Vn)(F ) → F ′[T ]deg=n × F ′n (2.8)

sending (g, u) to (a, b) where

a = char(g) ∈ F ′[T ]deg=n,

and

b = (bi)
n−1
i=0 ∈ F ′n with bi = ⟨gi ◦ u, u⟩.

Then the intersection number Int(g, u) depends only on the invariants (a, b) of regular semisimple (g, u),

and thus we may write Int(g, u) = Int(a, b).

One can adjust the definition of the relative orbital integral (2.3) as follows. Consider the symmetric

space

Sn := {g ∈ ResF ′/F GLn | gg = 1n}. (2.9)

Let V ′
n := Fn × (Fn)∗ and H′ := GLn. Consider the (diagonal) action of H′ on the product Sn × V ′

n by

h · (γ, (u1, u2)) = (h−1γh, (h−1u1, u2h)).

For (γ, u′) ∈ (Sn × V ′
n)(F )rs, Φ

′ ∈ C∞
c ((Sn × V ′

n)(F )) and s ∈ C, we define

Orb((γ, u′),Φ′, s) :=

∫
H′(F )

Φ′(h · (γ, u′))|deth|sηF ′/F (det(h)) dh.

Here the Haar measure is normalized such that vol(H′(OF )) = 1. We set

∂Orb((γ, u′),Φ′) :=
d

ds

∣∣∣∣
s=0

Orb((γ, u′),Φ′, s).

Conjecture 2.7 (Arithmetic fundamental lemma conjecture, the semi-Lie algebra version [26]). Sup-

pose that (γ, u′) ∈ (Sn × V ′
n)(F )srs matches an element (g, u) ∈ (U(Vn)× Vn)(F )srs. Then

ω(γ, u′) ∂Orb((γ, u′),1(Sn×V ′
n)(OF )) = −Int(g, u) · log q.

Here the matching relation between orbits is defined in [26, Section 2], and ω(γ, u′) is a certain transfer

factor.

Along the proof of Theorem 2.3, a key observation is the following “inductive” nature of the two

statements combined:

Proposition 2.8 (See [26]). Assume that q > n where q denotes the cardinality of the residue field

of OF . Then

(i) Conjecture 2.1 for Vn is equivalent to Conjecture 2.7 for Vn−1.

(ii) Conjecture 2.1 for Vn implies Conjecture 2.7 for Vn and (g, u) ∈ (U(Vn) × Vn)(F )srs where the

norm of u is a unit.

Part (ii) essentially follows from Remark 2.5. Part (i) is much more subtle and was not noticed for

quite a while (see [26]).
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3 Some global intersection problems

The proof of Theorem 2.3 in [26] is through the study of some global intersection problems arising from

the arithmetic Gan-Gross-Prasad conjecture (for Un ×Un+1 and Un ×Un), where the local intersection

numbers are “embedded” into the global situation. In this expository article, we only aim to intro-

duce three global intersection problems in their simplest cases, corresponding to (2.1), (2.5) and (2.7),

respectively. We refer the reader to [12,16,26] for more details.

We will first define several moduli stacks of abelian schemes with certain additional structures, and

Hecke correspondences on some of them. For simplicity, we will only spell out their points over a test

scheme S (always assumed to be locally noetherian); the morphisms are usually self-evident. We will

only consider the “base case” of these moduli stacks, i.e., without any “level-structure”.

3.1 The moduli space of principally polarized abelian varieties Ag

Let g ∈ N. Let Ag = Ag,1 be the Siegel moduli space of principally polarized abelian varieties, i.e., for

a scheme S, Ag(S) is the groupoid of (A, λ) where A → S is an abelian scheme of relative dimension g,

and λ : A → A∨ is a principal polarization.

The functor Ag is represented by a Deligne-Mumford stack, separated of finite type and smooth over

SpecZ with relative dimension g(g+1)
2 (see [14]). It admits a smooth (toroidal) compactification [2].

We consider the Hecke stack HkAg
, whose S-points are tuples (A, λ,A′, λ′, φ), where (A, λ), (A′, λ′)

∈ Ag(S), and φ : A → A′ is a quasi-isogeny (i.e., Q-isogeny) such that φ∗(λ′) = λ. We have two natural

projection maps, sending the tuple to the “head” (A, λ) and the “tail” (A′, λ′), respectively:

HkAg

π1

||zz
zz
zz
zz π2

""E
EE

EE
EE

E

Ag Ag.

By the theory of Hilbert scheme, the morphism (π1, π2) : HkAg → Ag ×Ag is representable by a relative

scheme (of non-finite type). We may impose a bound to the “denominator” of the quasi-isogeny φ. For

d ∈ N, let HkdAg
be the (open-and-closed) subfunctor, where we further require that d · φ : A → A′ is

an isogeny (not merely a quasi-isogeny). Then the two projection maps HkdAg
→ Ag are proper, and if

we restrict them to SpecZ[1/d], the two projection maps are finite étale (see [2, Chapter VII.3]; in fact,

Faltings and Chai considered the “Hecke stack” Isogg which allows quasi-isogeny φ of more general type

than ours).

3.2 Moduli space of Picard type Mn

The moduli functor Ag defines a canonical integral model for a Shimura variety associated to the sym-

plectic group. We now move to define an analog for unitary groups. Here, we follow the treatment of

Kudla and Rapoport [10]. The more general situation is studied in [16,18].

We fix an imaginary quadratic field E = Q[
√
−D] where −D < 0 is a fundamental discriminant.

Assume that the prime 2 is unramified in E (i.e., D is odd). Let OE be the ring of integers in E.

Let n ∈ N. Let Mn be the following moduli space of “Picard type”: for a scheme S over SpecOE ,

Mn(S) is the groupoid of (A, ι, λ), where (A, λ) ∈ An(S) and ι : OE → EndS(A) is an action of OE on A

such that

• the Kottwitz condition of signature (n − 1, 1) holds, i.e., the characteristic polynomial

char(ι(a) | LieA) = (T − φ(a))n−1(T − φ(a)) ∈ OS [T ] for all a ∈ OE ,

where φ : OE → OS denotes the structure morphism and a 7→ a the Galois conjugation, and

• the Rosati involution induced by λ on OE via ι is the Galois conjugation, i.e.,

Rosλ(ι(a)) = ι(a) for all a ∈ OE .
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We also consider a “companion” of M1: let M∗
1 be the functor defined similarly except that the Kottwitz

signature is (1, 0) rather than (0, 1).

The functor Mn is represented by a Deligne-Mumford stack, separated of finite type over SpecOE . Its

restriction to SpecOE [1/D] is smooth of relative dimension n− 1 (see [10]).

Remark 3.1. Strictly speaking, the moduli space Mn is not an integral model of a Shimura variety.

Rather, its generic fiber is a disjoint union of (copies) Shimura varieties attached to n-dimensional Her-

mitian spaces V that admit self-dual lattices. We refer to [10, Sections 2 and 4] for this subtle point. In

any case, each connected component of the orbifold Mn(C) is a quotient of the unit ball in Cn−1 by an

arithmetic group of the form Aut(L), where L is a self-dual Hermitian lattice.

Next, we consider the Hecke stack HkMn , whose S-points are tuples (A, ι, λ,A′, ι′, λ′, φ), where (A, ι, λ),

(A′, ι′, λ′) ∈ Mn(S), and φ : A → A′ is a quasi-isogeny such that φ∗(λ′) = λ and φ∗(ι′) = ι. We have

two natural projection maps, sending the tuple to (A, ι, λ) and (A′, ι′, λ′), respectively:

HkMn

π1

{{ww
ww
ww
ww π2

##H
HHH

HHH
HH

Mn Mn.

For d ∈ N, let HkdMn
be the (open-and-closed) subfunctor, where we further require that the quasi-isogeny

d · φ : A → A′ is an isogeny. Then the two projection maps π1, π2 : HkdMn
→ Mn are proper, and if we

restrict them to SpecZ[1/d], both are finite étale.

Finally, when d = 1, the diagonal morphism ∆ : Mn → Mn ×Mn induces an isomorphism

Hkd=1
Mn

−→∼ ∆Mn .

3.3 The first intersection problem

Denote M̃n = M∗
1 ×Mn. There is a natural morphism defined by taking “products” in terms of their

moduli interpretation

δn−1 : M̃n−1 7→ M̃n

(A0, ι0, λ0, A
♭, ι♭, λ♭) 7→ (A0, ι0, λ0, A

♭ ×A0, ι
♭ × ι0, λ

♭ × λ0).
(3.1)

Then the arithmetic diagonal cycle is the graph of the above morphism

∆n−1 : M̃n−1 → M̃n−1,n := M̃n−1 × M̃n. (3.2)

Here, the fiber product is taken over the base SpecOE [1/D]. Note that one can also replace the target

in (3.2) by M∗
1 ×Mn−1 ×Mn.

Note that the Hecke stack HkdMn
introduced earlier can be extended to M̃n by base change along

M∗
1 → SpecOE [1/D]:

HkdM̃n

π1

||yy
yy
yy
yy π2

""E
EE

EE
EE

E

M̃n M̃n.

For simplicity we denote

Hk(d1,d2) := Hkd1

M̃n−1
×Hkd2

M̃n
.

Then the first intersection problem is to take the fiber product,

∆
(d1,d2)

M̃n−1

//

��

Hk(d1,d2)

��
M̃n−1 × M̃n−1

(∆n−1,∆n−1) // M̃n−1,n × M̃n−1,n
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and to study the class in the Chow group

(∆n−1,∆n−1)
!([Hk(d1,d2)]) ∈ Ch0(∆

(d1,d2)

M̃n−1
)Q.

Here, (∆n−1,∆n−1)
! is the Gysin homomorphism with respect to the morphism (∆n−1,∆n−1) (see [3,5]),

which is a regular local immersion. This class in Chow group is closely related to the variants of the

arithmetic Gan-Gross-Prasad conjecture formulated by Rapoport et al. [16].

We consider a special case where d1 = 1 and d2 = d ∈ N. Then the intersection problem is essentially

reduced to the following cartesian diagram:

∆d
M̃n−1

//

��

HkdM̃n

(π1,π2)

��
M̃n−1

∆◦δn−1 // M̃n × M̃n,

(3.3)

and the class in the Chow group

(∆ ◦ δn−1)
!([HkdM̃n

]) ∈ Ch0(∆
d
M̃n−1

)Q.

Since this will be a special case of the second intersection problem below, we postpone a more detailed

analysis.

3.4 Special divisors

We recall the construction by Kudla and Rapoport [10] of (global) special divisors on the moduli stack

M̃n = M∗
1 ×Mn. Let Z be the moduli functor over M̃n = M∗

1 ×Mn, whose S-points are tuples

(A0, ι0, λ0, A, ι, λ, ϕ),

where (A0, ι0, λ0) ∈ M∗
1(S), (A, ι, λ) ∈ Mn(S) and ϕ ∈ HomOE (A0, A).

Given a geometric point (A0, ι0, λ0, A, ι, λ) ∈ M̃n(Specκ) for any algebraically closed field κ, one can

associate an E/Q-Hermitian space as follows. Let

V (A0, A) = Hom◦
OE

(A0, A), (3.4)

which is an E-vector space, endowed with a Hermitian pairing by the formula

⟨x, y⟩ := λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ End◦OE

(A0) ≃ E.

It is positive definite by [10, Lemma 2.7]. Call degE(x) := ⟨x, x⟩ ∈ Q the Hermitian degree of x ∈
V (A0, A). It induces a locally constant map (in Zariski topology)

degE : Z → N.

Let Zm denote the preimage of m ∈ N, an open-and-closed substack of Z. The forgetful morphism

im : Zm → M̃n

is finite and unramified. Its image is a locally principal divisor on M̃n.

It is easy to see that, when m = 1, the morphism δn−1 induces an isomorphism

Z1 −→∼ M̃n−1.

Remark 3.2. One can define a generating series with coefficients in the Chow group

c0 +
∑
m>1

Zm qm ∈ Ch1(M̃n)Q[[q]],

where c0 is a suitable multiple of the first Chern class of the Hodge bundle ω (see [1, Subsection 2.4]). Then

a theorem of Bruinier et al. [1] asserts that this generating series is (the q-expansion of) a holomorphic

form of weight n. In fact, in loc. cit, more is proved by upgrading special divisors Zm to elements in the

(Arakelov) arithmetic Chow group of the toroidal compactification of a regular integral model over the

full ring of integers OE .
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3.5 The second intersection problem

With the collection of special divisors Zm, we come to the second intersection problem, i.e., to take the

fiber product

∆d
Zm

//

��

HkdM̃n

(π1,π2)

� �
Zm

∆◦im // M̃n × M̃n

(3.5)

and to study the class in the Chow group

(∆ ◦ im)!([HkdM̃n
]) ∈ Ch0(∆

d
Zm

)Q. (3.6)

The case m = 1 specializes to (3.3). Later we will decompose ∆d
Zm

into a disjoint union of connected

components, and hence decompose the above zero cycle into summands. When the connected components

are proper with support on special fibers, it makes sense to take the degree of the corresponding summand

of the zero cycle.

3.6 CM cycles on Ag

In this and the next subsection we come to a key construction in the proof of Theorem 2.3 in [26]. We

first introduce the CM cycles on Ag; they are simpler to describe than their analog on Mn and M̃n.

We consider the “fixed point of the Hecke correspondence HkAg”, i.e., the fiber product AHk
g of the

Hecke correspondence and the diagonal in Ag ×Ag:

AHk
g

//

��

HkAg

(π1,π2)

��
Ag

∆ // Ag ×Ag.

Here, the fiber product Ag × Ag is taken over the base SpecZ. Then the S-points of AHk
g are tuples

(A, λ, φ), where φ ∈ End◦(A) such that φ∗(λ) = λ. To any geometric point (A, λ, φ) ∈ AHk
g (κ) for an

algebraically closed field κ, we can associate a “characteristic polynomial”

char(A, λ, φ) = det (T − φ | Vℓ(A)) ∈ Q[T ]deg=2g,

where Vℓ(A) = Tℓ(A)
⊗

Zℓ
Qℓ is the rational ℓ-adic Tate module for a prime ℓ invertible in the field κ.

The coefficients of the characteristic polynomial lie in Q, because they can be computed as intersection

numbers between algebraic cycles (with Q-coefficients) on powers of A. Moreover, since φ preserves a

symplectic form on Vℓ(A), the characteristic polynomial is self-reciprocal.

We obtain a locally constant map (in Zariski topology for the source and the discrete topology for the

target)

char : AHk
g → Q[T ]deg=2g. (3.7)

Replacing HkAg by HkdAg
(of finite type), we obtain

chard : AHk,d
g → Q[T ]deg=2g,

whose image is finite and contained in the smaller ring Z[1/d][T ]deg=2g.

For a self-reciprocal monic polynomial a ∈ Q[T ]deg=2g, let Ad
g(a) denote the preimage of a. It is an

open-and-closed substack of AHk,d
g . We have a (finite) disjoint union

AHk,d
g =

⨿
a∈Im(chard)

Ad
g(a). (3.8)
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Remark 3.3. There is a similar situation on moduli stacks of Shtukas (see [22, Subsection 6.2.7]).

Let a be in the image of the map char. Denote the Q-algebra

Q[a] := Q[T ]/(a).

By the self-reciprocality of a, the Q-algebra Q[a] carries an involution induced by T 7→ 1/T . Let a be

regular semisimple in the sense that a has no repeated roots. Then Q[a] is necessarily a CM algebra (i.e.,

a product of CM fields) of degree [Q[a] : Q] = 2g. In this case, we may call Ad
g(a) the naive CM cycle

(indexed by a).

Remark 3.4. Fix d ∈ N. Let a be regular semisimple. Let Ra be the order Z[dT ] in Q[a] = Q[T ]/(a),

which is stable under the involution just defined. Let ad be the “characteristic polynomial of d · φ” (i.e.,

ad(T ) = a(dT )). Then ad ∈ Z[T ], and Ra ≃ Z[T ]/(ad). Up to isomorphism, the stack Ad
g(a) depends

only on the order Ra with its involution. In fact, the S-points of the stack Ad
g(a) can be described as

tuples (A, ι, λ), where ι : Ra → End(A) such that Rosλ induces the given involution on Ra (without the

Kottwitz condition). Therefore we may also denote Ad
g(a) by Ad

g,Ra
.

The naive CM cycles forget how the two stacks in the fiber product sit above the ambient Ag × Ag.

Therefore we consider the intersection product, i.e., the Gysin homomorphism with respect to ∆,

∆! : Chg(HkdAg
)Q → Ch1(AHk,d

g )Q.

This is well defined since Ag is smooth over SpecZ, and hence ∆ is a regular local immersion [3, 5]. We

define “the derived fixed point cycle”

LAd
g := ∆!([HkdAg

]) ∈ Ch1(AHk,d
g )Q.

By (3.8), we have a decomposition

Ch1(AHk,d
g )Q =

⊕
a∈Im(chard)

Ch1(Ad
g(a))Q.

We denote the a-th component by
LAd

g(a) ∈ Ch1(Ad
g(a))Q.

Remark 3.5. Fix d ∈ N. Let a be regular semisimple. Unlike the naive CM cycle Ad
g(a), which

depends only on the order Ra with its involution, the derived CM cycle LAd
g(a) does depend on more

refined invariants than Ra. Informally speaking, it depends on a presentation of Ra as Z[T ]/(ad).

3.7 CM cycles on Mn

The construction of the (derived) CM cycles on Ag can be verbatim carried over to Mn and M̃n. Let

us focus on M̃n. We consider the “fixed point of the Hecke correspondence HkM̃n
”:

M̃Hk
n

//

��

HkM̃n

��
M̃n

∆ // M̃n × M̃n.

Here and henceforth, we work with the base SpecOE [1/D]. Using the action of OE , we can upgrade the

map (3.7) to a locally constant map (in Zariski topology for the source and the discrete topology for the

target)

charE : M̃Hk
n → E[T ]deg=n,

and its restriction to the degree d part

charE,d : M̃Hk,d
n → E[T ]deg=n. (3.9)
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We have the analog of (3.8)

M̃Hk,d
n =

⨿
a∈Im(charE,d)

M̃d
n(a), (3.10)

of the Gysin homomorphism

∆! : Chn(HkdM̃n
)Q → Ch1(M̃Hk,d

n )Q,

of “the derived fixed point cycle”

LM̃d
n := ∆!([HkdM̃n

]) ∈ Ch1(M̃Hk,d
n )Q, (3.11)

and the decomposition into a sum

LM̃d
n =

∑
a∈Im(charE,d)

LM̃d
n(a) ∈

⊕
a∈Im(charE,d)

Ch1(M̃d
n(a))Q. (3.12)

3.8 The third intersection problem

Now we come to the third intersection problem, i.e., to take the fiber product

∆d
Zm

//

��

M̃Hk,d
n

��
Zm

im // M̃n

(3.13)

and to study the class in the Chow group

L∆d
Zm

:= (im)!(LM̃d
n) ∈ Ch0(∆

d
Zm

)Q, (3.14)

under the Gysin homomorphism (im)! : Ch1(M̃Hk,d
n )Q → Ch0(∆

d
Zm

)Q.

The composition of the map charE,d (3.9) with ∆d
Zm

→ M̃Hk,d
n gives us a locally constant map

charE,d : ∆
d
Zm

→ E[T ]deg=n, (3.15)

and hence induces a decomposition into a disjoint union

∆d
Zm

=
⨿

a∈Im(charE,d)

∆d
Zm

(a). (3.16)

Corresponding to (3.12), the class (3.14) is a sum

L∆d
Zm

=
∑

a∈Im(charE,d)

L∆d
Zm

(a). (3.17)

Remark 3.6. The three global intersection problems (3.3), (3.5) and (3.13) correspond to the local

ones (2.1), (2.5) and (2.7), respectively. As mentioned earlier, the third one is an intersection between

1-cycles and divisors, while the first two involve high codimensional cycles. This makes it possible to

take advantage of the modular generating series of special divisors (see Remark 3.2). Moreover, the

decomposition (3.17) gives us some refined information, for example, for a fixed regular semisimple a, we

can consider the generating series (for a suitable constant term c0)

c0 +
∑
m>1

L∆d
Zm

(a) qm,

viewing the coefficients as elements in Ch0(M̃n)Q. This generating series itself is not immediately useful.

Nevertheless, the coefficients can be upgraded to elements in the (Arakelov) arithmetic Chow group, and

the upgraded generating series then plays a key role in [26].
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Now we indicate the connection between the three intersection problems. We can break (3.5) into two

cartesian diagrams:

∆d
Zm

//

��

M̃Hk,d
n

//

��

HkdM̃n

��
Zm

im // M̃n
∆ // M̃n × M̃n,

(3.18)

and hence by functoriality of Gysin homomorphisms

(∆ ◦ im)! = (im)! ◦∆!.

It follows that the class (3.6) in Ch0

(
∆d

Zm

)
Q can be expressed in terms of the Gysin pull-back of the

derived fixed point cycle (3.14):

(∆ ◦ im)!([HkdM̃n
]) = (im)! ◦∆!([HkdM̃n

])

= (im)!(LM̃d
n).

Remark 3.7. On Ag, besides the Hodge (line) bundle ω (see [2, p. 24]), there do not exist such

a natural collection of special divisors as Zm on M̃n. For a regular semi-simple a ∈ Q[T ]deg=2g, it

is an interesting question to study the arithmetic degree of the metrized Hodge bundle ω̂ along the

1-cycle LAd
g(a):

degd,a ω̂ := (ω̂, LAd
g(a))Ag ∈ R.

For the precise meaning of the pairing, see [26, Subsection 9.1]. This should be related to the Falt-

ings height of CM abelian varieties (but contains a little more information due to the contribution of

components supported on special fibers).

3.9 From the global to the local

We would like to indicate how to connect the global intersection problem to the local ones in the AFL

conjecture.

One can show that, if a ∈ E[T ]deg=n is irreducible, then ∆d
Zm

(a) (3.16) is proper over a finite sub-

scheme of SpecOE [1/D] (in fact, supported on the supersingular locus of M̃n above inert primes [16,

Theorem 8.5]). We take the arithmetic degree

Intdm(a) := deg( L∆d
Zm

(a)).

Here for an element ξ ∈ Ch0(X)Q on a DM stack X = ∆d
Zm

(a), and π : X → B a proper morphism

with finite image in B = SpecOE [1/D], the push-forward π∗(ξ) is a zero cycle on B of the form∑
v∈|B|

ξv[v], ξv ∈ Q

(a finite sum of prime divisors v of B). Then the arithmetic degree is defined as

deg(ξ) =
∑
v∈|B|

ξv log qv ∈ R,

where qv is the cardinality of the residue field at v.

In fact, there is a refinement of the locally constant map (3.15),

invd,m : ∆d
Zm

→ E[T ]deg=n × En (3.19)

sending a geometric point (A0, ι0, λ0, A, ι, λ, ϕ, φ) ∈ ∆d
Zm

(κ) to (a, b) ∈ E[T ]deg=n × En, where

a = charE(φ), and b = (bi)
n−1
i=0 with bi = ⟨φi ◦ ϕ, ϕ⟩.

Here ϕ ∈ V(A0, A) (see (3.4)), and φ ∈ End◦(A) is a quasi-isogeny acting on V(A0, A). By definition, we

have b0 = m. The map (3.19) is a global analog of (2.8).
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Remark 3.8. The invariants (a, b) in (3.19) may be viewed as the number field analog of those invari-

ants appearing in the (relative) “Hitchin moduli space” in Yun’s proof of the Jacquet-Rallis fundamental

lemma for local fields with positive characteristics [21].

Now we define ∆d
Zm

(a, b) to be the preimage inv−1
d,m(a, b), and refine the decomposition (3.17),

L∆d
Zm

(a) =
∑
b∈En

L∆d
Zm

(a, b),

where the b-th summand in the right-hand side is by definition the b-th component of the left-hand side

according to the direct sum

Ch0(∆
d
Zm

(a))Q =
⊕
b∈En

Ch0(∆
d
Zm

(a, b))Q.

Similar to Intdm(a), we define

Intd(a, b) := deg( L∆d
Zm

(a, b)),

where we have dropped m in the notation since m = b0 is determined by b ∈ En. If a ∈ E[T ]deg=n is

irreducible, we obtain a decomposition

Intdm(a) =
∑

b=(bi)
n−1
i=0 ∈En, b0=m

Intd(a, b).

Finally, we are ready to state the global-to-local relation. Fix an irreducible a ∈ E[T ]deg=n, and

b ∈ Em such that b0 ̸= 0. Then one can show that ∆d
Zm

(a, b) (if non-empty) must have support in

the supersingular locus above a unique place v of Q, and this place is necessarily inert in E (see [16,

Theorem 8.5]). Assume that v - dD. Then there exists a positive definite n-dimensional E/Q-Hermitian

space V that is non-split at v, and a suitable function Φv
d =

⊗
ν ̸=v,∞ Φν ∈ C∞

c ((U(V ) × V )(Av
f )) such

that the global intersection number decomposes

Intd(a, b) = Orb((a, b),Φv
d) · Intv(a, b) log qv, (3.20)

where Intv(a, b) is the local intersection number defined by (2.7) and Remark 2.6 (relative to the un-

ramified quadratic extension Ev/Qv). Here, Av
f is the ring of finite adeles of Q away from v, and the

orbital integral Orb ((a, b),Φv
d) =

∏
ν ̸=v,∞ Orb ((a, b),Φν) is taken with respect to the action of U(V ) on

U(V )× V (see Remark 2.6). A precise statement of (3.20) can be found [26, Theorem 9.3], proved along

with the same line of [23, Theorem 3.11] and [16, Theorem 8.15].

Remark 3.9. The E/Q-Hermitian space V is uniquely determined by (a, b), and the function Φv
d =⊗

ν ̸=v,∞ Φν can be made explicit (see Remark 3.1).
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