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1 Introduction

The Gross-Zagier theorem [6] relates the first central derivative of the base change (to an imaginary

quadratic field E = Q[v/—D]) L-function of an elliptic curve A over Q to the Nerén-Tate height of the

Heegner point. Through a parameterization of A by a modular curve ¢ : Xo(N) — A and under the

Heegner hypothesis, the theory of complex multiplication defines a special divisor (the Heegner divisor)

on Xo(NV) and its image under ¢ yields rational point #g € A(E). Then their theorem is an identity
L'(fg,1) 1 (Pg, Pg)nr

(f,f)  /ID[ deg(d)

where f is the (normalized) cusp form of weight two associated to A, (f, f) is the Petersson inner product,
and (Zg, Pg)nt is the Néron-Tate height pairing for A over E.
The arithmetic Gan-Gross-Prasad conjecture (see [4, Section 27] and [23, Subsection 3.2]) is a gener-

alization of the Gross-Zagier theorem to high dimensional Shimura varieties (see variants by Rapoport
et al. [16]). In the arithmetic Gan-Gross-Prasad conjecture, one considers the product Shimura variety
attached to unitary or orthogonal groups and a special algebraic cycle, generalizing the above modular
curve Xo(N) and the Heegner divisor &g, respectively. This conjecture is inspired by the (usual) Gan-
Gross-Prasad conjecture relating period integrals on classical groups to special values of Rankin-Selberg
tensor product L-functions. In [8], Jacquet and Rallis proposed a relative trace formula (RTF) approach
to this last conjecture in the case of unitary groups. Inspired by their approach, in [23] Zhang proposed
a relative trace formula approach to the arithmetic Gan-Gross-Prasad conjecture for unitary Shimura
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varieties. This approach reduces the problem to certain local statements, notably the arithmetic funda-
mental lemma (AFL) conjecture formulated by Zhang [23], and the arithmetic transfer (AT) conjecture
formulated by Rapoport et al. [15,17].

In the AFL and AT conjectures, we consider the local counterpart of special cycles on Shimura varieties,
i.e., cycles on Rapoport-Zink formal moduli spaces of p-divisible groups. The AFL and AT conjectures
then predict a relation between the local intersection numbers and special values of the derivative of
relative orbital integrals. The theorem of Rapoport-Zink on the uniformization of Shimura varieties
relates the local cycles to the global ones, and this allows us to relate the intersection numbers of the
global cycles to those of local ones. Similarly, the relative trace formula of Jacquet-Rallis on the general
linear group allows us to understand special values of L-functions in terms of certain relative orbital
integrals.

The goal of this article is to explain some geometric constructions in Zhang’s recent proof [26] of the
AFL conjecture over Q, for p large (see Theorem 2.3). We will recall the special divisors introduced
by Kudla and Rapoport [10] on the integral models Mvn of certain unitary Shimura varieties. Then we
will introduce the main new construction, a class of “derived” complex multiplication (CM) cycles on
the same Mvn, which can be viewed as elements in the Chow group (of 1-cycles) of Mvn We will first
introduce the analogous CM cycles on the moduli space of principally polarized abelian varieties A, (see
Subsection 3.6), and then the construction extends easily to the integral models M, (see Subsection 3.7).

Some related survey articles on the AFL conjecture and the arithmetic Gan-Gross-Prasad conjecture
are 20,24, 25].

It is a pleasure to dedicate this article to Professor Lo Yang on the occasion of his 80th birthday.
Professor Yang’s mathematical work has tremendously influenced my generation, and his effort devoted
to the development of mathematics in China has benefitted many scholars in the past decades.

2 The arithmetic fundamental lemma conjecture

2.1 The statement of AFL

In this subsection we recall the statement of the AFL conjecture [17,23].

Let F' be a finite extension of Q, for an odd prime p. Let Of be the ring of integers in F', and denote
by ¢ the number of elements in the residue field of Op. Let E be the completion of a maximal unramified
extension of F.

Let F'/F be an unramified quadratic extension, and np/,p : F* — {1} the associated quadratic
character np/p(a) = (—1)"1(@).

Let V,, be the unitary Rapoport-Zink formal moduli space over Spf O . Over the residue field kof O P
there is a unique Hermitian formal Op-module (X,,ix,,Ax,) of signature (n — 1,1) such that X, is
supersingular, up to Op-linear quasi-isogeny compatible with the polarization. Then N, represents the
functor over Spf O that associates to each Spf O z-scheme S the set of isomorphism classes of quadruples
(X, 1, A, p) over S, where the final entry is an O p-linear quasi-isogeny of height zero defined over the special
fiber,

p: X xs8 =X, XspecE§7

such that p*((Ax,)g) = Ag (a framing). Here, S := S Xgpt 0, Speck.
The formal scheme N, is smooth over Spf O of relative dimension n — 1. One can construct an
F'/F-Hermitian space V,, attached to (X,,,x,, Ax,, ):

V, = Hom?)F/ (E,X,),

where E = X but with the conjugate action of Op: (so the Kottwitz signature is (1, 0) rather than (0,1)).
Here and henceforth Hom® := Hom ), Q. Then the group

Aut®(Xy,, ix,, Ax,, ) = U(V,)(F),
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acts naturally on A,, by changing the framing.
Let Ny—1n = Nu—1 Xspro, Nn. Then N, 1, admits an action by the product of two unitary groups
G(F), where G := U(V,_1) x U(V,). There is a natural closed embedding §: V,,_1 — N,. Let

A Nn—l — Nn—l,n

be the graph morphism of §. We denote by A, _, the image of A. It is invariant under the action of
the subgroup H(F'), where

H:=U(V,_1) 2+ G=U(V,_1) x UV,)

is embedded diagonally.

An element g = (gn—1,9n) € G(F) is called regular semisimple (relative to H x H) if the orbit HgH
is Zariski closed in G, and the stabilizer is trivial. A regular semisimple (for short, “rs”) element is
called strongly regular semisimple (for short, “srs”) if it satisfies the additional condition that ggil “ On
€ U(V,,)(F) is regular semisimple in the usual sense (i.e., its characteristic polynomial has distinct roots).
For g € G(F),s, we consider the intersection product on N;,_1, of Ay

-, with its translate gAy,
defined through the derived tensor product of the structure sheaves,

1 —17

L
Int(Q) = (Aj\/‘",Ng : AN,L,I)/\/',,L,L,L = X(an,na OANn—l ®OQ'AN”1)' (2'1)

Here, x denotes the Euler-Poincaré characteristic for the relative cohomology along the map 7 : X =
Np—1,n = Spf Op, i.e., for coherent sheaves F and G on X,

L
X(X,]—' X g) = > (—1)"Wlengthy Rim.(Tor{* (F,G)). (2.2)
Ox i,jEZ
When g is regular semisimple, the (formal) schematic intersection ANgA is a proper scheme over Spf O,
and hence the Euler-Poincaré characteristic is a finite integer.
We now recall the relative orbital integrals. Consider the triple (G, H}, Hy) where G’ = Rp//p(GLyn—1
x GL,,), and
Hll = RF’/FGLn—17 Hl2 = GLn—l X GLn

Consider the quadratic character of H)(F):
1=t ¢ (A1, hn) € Hy(F) = nf fo(det(hy—1) )05 (det (ha)).
Let f' € €°(G'(F)) and s € C. For a regular semisimple (relative to Hj, := Hi x Hj) element
v € G/(F),s we introduce the (weighted) orbital integral
Orb(y, f,s) = / f'(hy ' yhy)|det(hy)|*n(hs) dhy dhs. (2.3)
Hy 5 (F)

Here the Haar measure is normalized such that vol(H} 5(Or)) = 1. We set

A0rb(v, f) := 4

!
dS Orb(77f 7S>‘

s=0

Conjecture 2.1 (Arithmetic fundamental lemma (AFL) conjecture). Let v € G'(F)gs match an
element g € G(F)gs. Then

w(y) 00rb(7, 1g/(0,)) = —2Int(g) - logq.

Here the matching relation between orbits is defined in [17,23] (see also [26, Section 2]), and w(7)
is a certain transfer factor. In the original formulation [23], one only assumes that vy and g are regular
semisimple. For global applications, the restriction to strongly regular semisimple elements is harmless.

We may interpret the orbital integrals in terms of “counting lattices” (see [19, Section 7]). See [17,
Section 4] for some other equivalent formulations of the AFL conjecture, including a variant of the orbital
integrals in terms of the symmetric space S,, defined by (2.9) below.
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2.2 The status

Theorem 2.2. (i) The AFL Conjecture 2.1 holds when n = 2, 3.
(ii) The AFL Conjecture 2.1 holds for minuscule elements g € G(F) in the sense of [19].

Part (i) was proved in [23]; a simplified proof when p > 5 is given by Mihatsch [13] by “reduction to
Lie algebra”. Part (ii) was proved by Rapoport et al. [19] when p > & + 1 (a simplified proof is given by
Li and Zhu [11]), and by He et al. [7] for general p.

Recently the author has proved the following theorem.

Theorem 2.3 (See [26]). The AFL Conjecture 2.1 holds when F = Q, with p > n.

In the rest of the article, we will explain two geometric ingredients in proving this theorem:

e an equivalent version of the AFL conjecture, and this part is of local nature (see Subsection 2.3);

e some global intersection problems (see Section 3), where the local intersection problems are “em-
bedded” into the global ones.
In both parts, an important point of view is to change the intersection of two high codimensional cycles
to the intersection of a 1-cycle and a divisor. The advantage of this change is that, in the global setting,
we can utilize the modularity of the generating series of the collection of special divisors (see Remarks 3.2
and 3.6).

2.3 An alternative formulation of AFL via special divisors

Now we introduce a variant of the AFL conjecture via special divisors [9].

Recall from [9], for every non-zero u € V,,, Kudla and Rapoport have defined a special divisor Z(u)
in AV,. This is the locus where the quasi-homomorphism u: E — X,, lifts to a homomorphism from the
canonical lifting £ of E to the universal object over A,,. By [9, Proposition 3.5], Z(u) is a locally principal
divisor (or empty) whenever u # 0. Then 6: N,,_1 — N, induces an isomorphism by [9, Lemma 5.2]

Nin—1 = Z(up) (2.4)

for a special vector ug with unit norm.

Relative to the (diagonal) action of U(V,,) on U(V,,) x V,,, we can define the notion of regular semisim-
plicity (“rs”) and strongly regular semisimplicity (“srs”), for an element (g, u) € (U(V,,) x V,,)(F'), similar
to the action of H x H on G =U(V,,_1) x U(V,,).

For a pair (g,u) € (U(V,) x V,)(F),, we introduce our first variant of the intersection number
(see (2.2))

L
Int(g,u) == X(Nn x Ny, Or, ® OA(z(u))). (2.5)

This is again a finite integer. This intersection number has appeared in the AFL conjecture in the context
of Fourier-Jacobi cycles in the work of Liu [12].

For g € U(V,,), let T'y C Ny, Xspro, Ny be the graph and define the (naive) fixed point locus NV as
the (formal) schematic intersection (i.e., fiber product of formal schemes)

NZ =T, NAy,.
We also form a “derived fixed point locus” A9, i.e., the derived tensor product

L
"W¢i=0r, Q) Oay, (2.6)

O-'\/n XNn

viewed as an element in the Grothendieck group K((NJ) of coherent sheaves on NY.
For a pair (g,u) € (U(Vy,) x V,,)(F),s, we define another variant of the intersection number

L
Int(g, u) = X(Nm W R OZ(u>>. 27)
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Similar to (2.1) and (2.5), this is a finite integer. As alluded earlier, this is now the intersection of a
1-cycle and a divisor, rather than two high codimensional cycles in (2.1) and (2.5).

Remark 2.4. By the projection formula for the closed immersion A : N,, — N,, x N, one can show
that the two intersection numbers in (2.5) and (2.7) are equal. This is the reason we use the same
notation.

Remark 2.5. By (2.4), one can show that, for g € U(V,,)(F).s such that (1,g) € G(F)ys,

Int(g,up) = Int((1,9)),

where Int((1, g)) is defined by (2.1).
Remark 2.6. One can define a U(V,,)(F)-invariant map

inv: (U(V,) X V,)(F) = F'[T)deg=n x F'" (2.8)
sending (g,u) to (a,b) where
a = char(g) € F'[T)deg=n,

and

b= (b)}y € F'™ with b; = (g°owu,u).
Then the intersection number Int(g,«) depends only on the invariants (a,b) of regular semisimple (g, u),
and thus we may write Int(g, v) = Int(a,b).

One can adjust the definition of the relative orbital integral (2.3) as follows. Consider the symmetric
space
Sp = {g S RGSFI/F GL,, | gg9 = 1n}~ (29)

Let V! := F™ x (F™)* and H' := GL,,. Consider the (diagonal) action of H' on the product S,, x V! by
h- (7, (ur,u)) = (R~ yh, (R~ g, ugh)).

For (y,u') € (S x V2)(F)s, ® € €2°((Sn x V,))(F)) and s € C, we define

Orb((’% u/)a (I)/a S) = / F) (I)/(h ' (’% u/))|det hlgnF'/F(det(h)) dh.
H/'(F

Here the Haar measure is normalized such that vol(H' (OF)) = 1. We set

D0b((y, '), &) i= =

Vi !
| Orb((,u), @,5).

s=0

Conjecture 2.7 (Arithmetic fundamental lemma conjecture, the semi-Lie algebra version [26]).  Sup-
pose that (v,u') € (S X V!)(F)ss matches an element (g,u) € (U(V,) X V) (F)as. Then

OJ(’)/, U’/) 60rb(('y, U’/)a 1(Sn><V7’L)(OF)) = _Int(ga u) : log q.

Here the matching relation between orbits is defined in [26, Section 2], and w(vy, u') is a certain transfer
factor.

Along the proof of Theorem 2.3, a key observation is the following “inductive” nature of the two
statements combined:
Proposition 2.8 (See [26]). Assume that ¢ > n where q denotes the cardinality of the residue field
of Op. Then

(i) Conjecture 2.1 for V,, is equivalent to Conjecture 2.7 for V,,_1.

(ii) Congecture 2.1 for V,, implies Conjecture 2.7 for V,, and (g,u) € (U(V,) x V,)(F)ss where the
norm of u is a unit.

Part (ii) essentially follows from Remark 2.5. Part (i) is much more subtle and was not noticed for
quite a while (see [26]).
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3 Some global intersection problems

The proof of Theorem 2.3 in [26] is through the study of some global intersection problems arising from
the arithmetic Gan-Gross-Prasad conjecture (for U, x U,4+1 and U,, x U,,), where the local intersection
numbers are “embedded” into the global situation. In this expository article, we only aim to intro-
duce three global intersection problems in their simplest cases, corresponding to (2.1), (2.5) and (2.7),
respectively. We refer the reader to [12,16,26] for more details.

We will first define several moduli stacks of abelian schemes with certain additional structures, and
Hecke correspondences on some of them. For simplicity, we will only spell out their points over a test
scheme S (always assumed to be locally noetherian); the morphisms are usually self-evident. We will
only consider the “base case” of these moduli stacks, i.e., without any “level-structure”.

3.1 The moduli space of principally polarized abelian varieties .4,

Let g € N. Let A; = A, 1 be the Siegel moduli space of principally polarized abelian varieties, i.e., for
a scheme S, A,(S5) is the groupoid of (A, ) where A — S is an abelian scheme of relative dimension g,
and \: A — AV is a principal polarization.

The functor A4, is represented by a Deligne-Mumford stack, separated of finite type and smooth over
Spec Z with relative dimension % (see [14]). Tt admits a smooth (toroidal) compactification [2].

We consider the Hecke stack Hk 4,, whose S-points are tuples (A, \, A, X', ), where (A, \), (A", \')
€ Ay(S), and ¢ : A — A’ is a quasi-isogeny (i.e., Q-isogeny) such that ¢*(\') = A\. We have two natural

projection maps, sending the tuple to the “head” (A, \) and the “tail” (A’, \'), respectively:

Hk 4,
A, Ajg.

By the theory of Hilbert scheme, the morphism (7, 72) : Hka, — Ay x Ay is representable by a relative
scheme (of non-finite type). We may impose a bound to the “denominator” of the quasi-isogeny ¢. For
d € N, let Hki‘q be the (open-and-closed) subfunctor, where we further require that d- ¢ : A — A’ is
an isogeny (not merely a quasi-isogeny). Then the two projection maps Hk‘ig — Ay are proper, and if
we restrict them to Spec Z[1/d], the two projection maps are finite étale (see [2, Chapter VIIL.3]; in fact,
Faltings and Chai considered the “Hecke stack” Isog, which allows quasi-isogeny ¢ of more general type
than ours).

3.2 Moduli space of Picard type M.,

The moduli functor A, defines a canonical integral model for a Shimura variety associated to the sym-
plectic group. We now move to define an analog for unitary groups. Here, we follow the treatment of
Kudla and Rapoport [10]. The more general situation is studied in [16,18].

We fix an imaginary quadratic field £ = Q[v/—D] where —D < 0 is a fundamental discriminant.
Assume that the prime 2 is unramified in F (i.e., D is odd). Let Og be the ring of integers in E.

Let n € N. Let M,, be the following moduli space of “Picard type”: for a scheme S over Spec Og,
M, (S) is the groupoid of (A4, ¢, \), where (A, A) € A,(S) and ¢ : Op — Endg(A) is an action of Og on A
such that

e the Kottwitz condition of signature (n — 1, 1) holds, i.e., the characteristic polynomial

char(i(a) | Lie A) = (T — p(a))" 1T — ¢(a@)) € Og[T] for all a <€ Op,

where ¢ : Op — Og denotes the structure morphism and a — @ the Galois conjugation, and
e the Rosati involution induced by A on Op via ¢ is the Galois conjugation, i.e.,

Rosy(t(a)) = v(a) for all a € Op.
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We also consider a “companion” of M;: let M7 be the functor defined similarly except that the Kottwitz
signature is (1, 0) rather than (0, 1).

The functor M,, is represented by a Deligne-Mumford stack, separated of finite type over Spec Op. Its
restriction to Spec Og[1/D] is smooth of relative dimension n — 1 (see [10]).
Remark 3.1.  Strictly speaking, the moduli space M., is not an integral model of a Shimura variety.
Rather, its generic fiber is a disjoint union of (copies) Shimura varieties attached to n-dimensional Her-
mitian spaces V' that admit self-dual lattices. We refer to [10, Sections 2 and 4] for this subtle point. In
any case, each connected component of the orbifold M,,(C) is a quotient of the unit ball in C*~! by an
arithmetic group of the form Aut(L), where L is a self-dual Hermitian lattice.

Next, we consider the Hecke stack Hk r,,,, whose S-points are tuples (A4, ¢, A\, A’/ N, ), where (A, ¢, \),
(A, N) € M, (S), and ¢ : A — A’ is a quasi-isogeny such that ¢*(\) = A and ¢*(¢/) = . We have
two natural projection maps, sending the tuple to (A4, ¢, A) and (A’,//, \'), respectively:

Ford e N, let kawn be the (open-and-closed) subfunctor, where we further require that the quasi-isogeny
d-p:A— Ais an isogeny. Then the two projection maps my, s : Hk}i\/[n — M, are proper, and if we
restrict them to Spec Z[1/d], both are finite étale.

Finally, when d = 1, the diagonal morphism A : M,, = M,, x M,, induces an isomorphism

HKY =5 A,
3.3 The first intersection problem

Denote M,, = M7 x M,,. There is a natural morphism defined by taking “products” in terms of their
moduli interpretation

6n71 . Mnfl — M’n

(3.1)
(AQ, Lo, )\0, Ab, Lb, )\b) — (Ao, Lo, )\07 Ab X Ao, Lb X Lo, )\b X )\0)
Then the arithmetic diagonal cycle is the graph of the above morphism
Ap_q: M’nfl — Mnfl,n = Mnfl X J/\/lvn (32)

Here, the fiber product is taken over the base Spec Og[1/D]. Note that one can also replace the target
in (3.2) by Mj x M,,_1 x M,,. .
Note that the Hecke stack Hk‘f\,ln introduced earlier can be extended to M, by base change along
M7 — Spec Og[1/D]:
d
HkG,

M, M.

(di,d2) . dy
Hk = ij\7

For simplicity we denote
do
X Hk/\7 .

n—1 n

Then the first intersection problem is to take the fiber product,

Aldd2) Hk(442)

Moy 1 l
"l 'l (Anflenfl) 't 't
Mn—l X Mn—l > Mn—l,n X Mn—l,n
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and to study the class in the Chow group
(An1, Ay ) ([HK )] € Cho(A%’dZ))Q.

n—1
Here, (A,_1,A,_1)" is the Gysin homomorphism with respect to the morphism (A, _1,A,_1) (see [3,5]),
which is a regular local immersion. This class in Chow group is closely related to the variants of the
arithmetic Gan-Gross-Prasad conjecture formulated by Rapoport et al. [16].
We consider a special case where dy =1 and d2 = d € N. Then the intersection problem is essentially
reduced to the following cartesian diagram:

d d
AL HKL (3.3)
e
- Aodp—1 - -
Mn—l Mn X Mna

and the class in the Chow group
(Ao d,—1)'(HkG; 1) € Cho(AY; e

-1
Since this will be a special case of the second intersection problem below, we postpone a more detailed
analysis.

3.4 Special divisors

We recall the construction by Kudla and Rapoport [10] of (global) special divisors on the moduli stack
M, = M7 x M,,. Let Z be the moduli functor over M,, = M7 x M,,, whose S-points are tuples

(A07 Lo, )‘07143 2 )‘7 (rb)a

where (Ao, to, Ao) € Mi(S), (4,1, A) € My (S5) and ¢ € Homo, (Ao, A).
Given a geometric point (Ag, Lo, Mo, 4,t, A) € M,,(Spec k) for any algebraically closed field x, one can
associate an F/Q-Hermitian space as follows. Let

V (Ao, A) = Homg, _(Ag, A), (3.4)
which is an F-vector space, endowed with a Hermitian pairing by the formula
(z,y) = Ay oy ooz € End}, (Ag) = F

It is positive definite by [10, Lemma 2.7]. Call degg(z) := (z,2) € Q the Hermitian degree of z €
V(Ap, A). Tt induces a locally constant map (in Zariski topology)

degp: Z — N.
Let Z,, denote the preimage of m € N, an open-and-closed substack of Z. The forgetful morphism

i Zm — My,

is finite and unramified. Its image is a locally principal divisor on M,,.
It is easy to see that, when m = 1, the morphism §,,_; induces an isomorphism

22 My,
Remark 3.2. One can define a generating series with coefficients in the Chow group
cot Y Zmq™ € Ch'(M,)qldl,
m2>1

where ¢ is a suitable multiple of the first Chern class of the Hodge bundle w (see [1, Subsection 2.4]). Then
a theorem of Bruinier et al. [1] asserts that this generating series is (the g-expansion of) a holomorphic
form of weight n. In fact, in loc. cit, more is proved by upgrading special divisors Z,, to elements in the
(Arakelov) arithmetic Chow group of the toroidal compactification of a regular integral model over the
full ring of integers Op.
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3.5 The second intersection problem

With the collection of special divisors Z,,,, we come to the second intersection problem, i.e., to take the
fiber product

AL Hk (3.5)

l l(MJZ)

Aoim, —_~ —~

Zm — Mn X Mn
and to study the class in the Chow group

(A 0im)'([HkY; 1) € Cho(AZ, o (3.6)

The case m = 1 specializes to (3.3). Later we will decompose Adzm into a disjoint union of connected
components, and hence decompose the above zero cycle into summands. When the connected components
are proper with support on special fibers, it makes sense to take the degree of the corresponding summand
of the zero cycle.

3.6 CM cycles on A,

In this and the next subsection we come to a key construction in the proof of Theorem 2.3 in [26]. We
first introduce the CM cycles on Ag; they are simpler to describe than their analog on M,, and Mvn

We consider the “fixed point of the Hecke correspondence Hku,”, i.e., the fiber product AY* of the
Hecke correspondence and the diagonal in A, x Ayg:

Alk Hk 4,
|l
A, 2 Ay x Ay

Here, the fiber product A4, x A, is taken over the base SpecZ. Then the S-points of Agk are tuples
(A, N\, ), where ¢ € End°(A) such that ¢*(\) = A. To any geometric point (A, \, ) € A?k(/{) for an
algebraically closed field k, we can associate a “characteristic polynomial”

char(A, A, ¢) =det (T — ¢ | Vi(A)) € Q[T ]deg=2g

where V(A) = Ty(A) @z, Q¢ is the rational f-adic Tate module for a prime ¢ invertible in the field .
The coefficients of the characteristic polynomial lie in Q, because they can be computed as intersection
numbers between algebraic cycles (with Q-coefficients) on powers of A. Moreover, since ¢ preserves a
symplectic form on Vy(A), the characteristic polynomial is self-reciprocal.

We obtain a locally constant map (in Zariski topology for the source and the discrete topology for the
target)

char: Agk — Q[T]acg=24- (3.7)
Replacing Hk 4, by Hkig (of finite type), we obtain
chary: .AI;k’d — Q[T deg=2g>

whose image is finite and contained in the smaller ring Z[1/d)[T]acg=24-
For a self-reciprocal monic polynomial a € Q[T]geg=24, let .Ag(a) denote the preimage of a. It is an
open-and-closed substack of Agk’d. We have a (finite) disjoint union

At = T Ada). (3.8)

a€lm(charg)
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Remark 3.3. There is a similar situation on moduli stacks of Shtukas (see [22, Subsection 6.2.7]).

Let a be in the image of the map char. Denote the Q-algebra

By the self-reciprocality of a, the Q-algebra Q[a] carries an involution induced by T' — 1/T. Let a be
regular semisimple in the sense that a has no repeated roots. Then Q[a] is necessarily a CM algebra (i.e.,
a product of CM fields) of degree [Q[a] : Q] = 2g. In this case, we may call A¢(a) the naive CM cycle
(indexed by a).

Remark 3.4. Fix d € N. Let a be regular semisimple. Let R, be the order Z[dT] in Q[a] = Q[T]/(a),
which is stable under the involution just defined. Let agq be the “characteristic polynomial of d - ¢” (i.e.,
aq(T) = a(dT)). Then aq € Z[T], and R, ~ Z[T]/(aq). Up to isomorphism, the stack A%(a) depends
only on the order R, with its involution. In fact, the S-points of the stack Ag(a) can be described as
tuples (A,¢, A), where ¢ : R, — End(A) such that Rosy induces the given involution on R, (without the
Kottwitz condition). Therefore we may also denote A% (a) by AZ 5 .

The naive CM cycles forget how the two stacks in the fiber product sit above the ambient A4, x A,.
Therefore we consider the intersection product, i.e., the Gysin homomorphism with respect to A,

A': Chy(Hk% )g — Chy (A%

This is well defined since A, is smooth over SpecZ, and hence A is a regular local immersion [3,5]. We
define “the derived fixed point cycle”

FAS = AY([HKY ]) € Chy(AFS)g.
By (3.8), we have a decomposition

Chi(A)y = P Chi(Al(a))e.

a€lm(charg)

We denote the a-th component by
“A%(a) € Chy(AL(a))q.

Remark 3.5. Fix d € N. Let a be regular semisimple. Unlike the naive CM cycle .Ag(a)7 which
depends only on the order R, with its involution, the derived CM cycle H‘Ag(a) does depend on more
refined invariants than R,. Informally speaking, it depends on a presentation of R, as Z[T|/(aq)-

3.7 CM cycles on M,,

The construction of the (derived) CM cycles on A, can be verbatim carried over to M,, and Mvn Let
us focus on M,,. We consider the “fixed point of the Hecke correspondence Hk — ”:

M,
Mfk Hk o
M, & M, x M,

Here and henceforth, we work with the base Spec Og[1/D]. Using the action of Og, we can upgrade the
map (3.7) to a locally constant map (in Zariski topology for the source and the discrete topology for the
target)

charg: Mvﬁk — E[T)deg=n:
and its restriction to the degree d part

charg 4: Mfkvd — E[T)deg=n- (3.9)
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We have the analog of (3.8)

Mikd = I M), (3.10)

a€lm(charg,q)

of the Gysin homomorphism -
A': Chy, (HKY; )o — Chu(My5)q,

of “the derived fixed point cycle”
M = AN([HKY ]) € Chy (MER)g, (3.11)
and the decomposition into a sum

Mi= Y Mg e P Ch(Mi) (3.12)

a€lm(charg q) a€lm(charg q)
3.8 The third intersection problem

Now we come to the third intersection problem, i.e., to take the fiber product

AL MTd (3.13)
z, im Mn
and to study the class in the Chow group
AL, = (im) (M) € Cho(AZ, o, (3.14)

under the Gysin homomorphism (4,,)": Chl(ﬂgk’d)@ — Cho(A% )o.
The composition of the map charp 4 (3.9) with A% — M54 gives us a locally constant map

charE}d: Adzm — E[T]deg:n7 (315)

and hence induces a decomposition into a disjoint union

Az = JI A% () (3.16)

a€lm(charg q)

Corresponding to (3.12), the class (3.14) is a sum

ML o= Y AL (a). (3.17)

a€lm(charg q)

Remark 3.6. The three global intersection problems (3.3), (3.5) and (3.13) correspond to the local
ones (2.1), (2.5) and (2.7), respectively. As mentioned earlier, the third one is an intersection between
1-cycles and divisors, while the first two involve high codimensional cycles. This makes it possible to
take advantage of the modular generating series of special divisors (see Remark 3.2). Moreover, the
decomposition (3.17) gives us some refined information, for example, for a fixed regular semisimple a, we
can consider the generating series (for a suitable constant term c)

co + Z LA%m (CL) qm7

m>1

viewing the coefficients as elements in Chg(/T/l/n)Q. This generating series itself is not immediately useful.
Nevertheless, the coeflicients can be upgraded to elements in the (Arakelov) arithmetic Chow group, and
the upgraded generating series then plays a key role in [26].
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Now we indicate the connection between the three intersection problems. We can break (3.5) into two
cartesian diagrams:

Az, MT“ — Hk; (3.18)
Zm i ./,\;l/n S j\\/l/n X an

and hence by functoriality of Gysin homomorphisms
(A o) = (im) o AL

It follows that the class (3.6) in Chg (A% ) can be expressed in terms of the Gysin pull-back of the

derived fixed point cycle (3.14):
(Ao ([HK 1) = (i) 0 A'([HKY )
= (im) (“M3).
Remark 3.7. On Ay, besides the Hodge (line) bundle w (see [2, p.24]), there do not exist such
a natural collection of special divisors as Z,, on M,,. For a regular semi-simple a € Q[T]geg=2g4, it

is an interesting question to study the arithmetic degree of the metrized Hodge bundle & along the
1-cycle "A%(a):

Q

deg, , & := (@, H‘A;l(a))Ag eR.

For the precise meaning of the pairing, see [26, Subsection 9.1]. This should be related to the Falt-
ings height of CM abelian varieties (but contains a little more information due to the contribution of
components supported on special fibers).

3.9 From the global to the local

We would like to indicate how to connect the global intersection problem to the local ones in the AFL
conjecture.
One can show that, if a € E[T]aeg—n is irreducible, then A% (a) (3.16) is proper over a finite sub-

scheme of Spec Og[1/D] (in fact, supported on the supersingular locus of M,, above inert primes [16,
Theorem 8.5]). We take the arithmetic degree

Int? (a) := deg( H‘Adzm (a)).

Here for an element & € Chg(X)g on a DM stack X = A% (a), and 7 : X — B a proper morphism
with finite image in B = Spec Og[1/D], the push-forward m,(§) is a zero cycle on B of the form

> &k, &eQ

v€E|B|

(a finite sum of prime divisors v of B). Then the arithmetic degree is defined as

deg(g) = Z §vlogg, € R,

v€E|B|

where ¢, is the cardinality of the residue field at v.
In fact, there is a refinement of the locally constant map (3.15),

Vg AL — E[T]qeg—n x E" (3.19)
sending a geometric point (Ag, to, Ao, 4, L, A, d, ) € AdZm(Ii) to (a,b) € E[T]geg=n X E™, where
a = charg(p), and b= (b))} with b; = (¢"0¢, ).

Here ¢ € V(Ag, A) (see (3.4)), and ¢ € End°(A) is a quasi-isogeny acting on V(Ao, A). By definition, we
have by = m. The map (3.19) is a global analog of (2.8).
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Remark 3.8. The invariants (a,b) in (3.19) may be viewed as the number field analog of those invari-
ants appearing in the (relative) “Hitchin moduli space” in Yun’s proof of the Jacquet-Rallis fundamental
lemma for local fields with positive characteristics [21].

Now we define A% (a,b) to be the preimage inv;}n(a, b), and refine the decomposition (3.17),

LAdZm ((L) = Z LAdZm (a7 b)v
beE™
where the b-th summand in the right-hand side is by definition the b-th component of the left-hand side
according to the direct sum

Cho(A% (a))g = €P Cho(A%, (a,b))g-

beE™

Similar to Int% (a), we define
Int?(a, b) := deg("A%, (a,b)),

m

where we have dropped m in the notation since m = by is determined by b € E™. If a € E [T]deg:n is
irreducible, we obtain a decomposition

Int? (a) = Z Int?(a, b).

b=(b;)j =5 €E™, bo=m

Finally, we are ready to state the global-to-local relation. Fix an irreducible ¢ € E[T]qeg=n, and
b € E™ such that by # 0. Then one can show that Adzm (a,b) (if non-empty) must have support in
the supersingular locus above a unique place v of Q, and this place is necessarily inert in E (see [16,
Theorem 8.5]). Assume that v { dD. Then there exists a positive definite n-dimensional F/Q-Hermitian
space V that is non-split at v, and a suitable function @} = @ @, € €((U(V) x V)(A})) such
that the global intersection number decomposes

V#v,00

Int?(a, b) = Orb((a,b), ®Y) - Int,(a, b) log g, (3.20)

where Int,(a,b) is the local intersection number defined by (2.7) and Remark 2.6 (relative to the un-
ramified quadratic extension F,/Q,). Here, A% is the ring of finite adeles of Q away from v, and the
orbital integral Orb ((a,b), ®3) = [, .., o Orb((a,b), ®,) is taken with respect to the action of U(V') on
U(V) x V (see Remark 2.6). A precise statement of (3.20) can be found [26, Theorem 9.3], proved along
with the same line of [23, Theorem 3.11] and [16, Theorem 8.15].

Remark 3.9. The E/Q-Hermitian space V is uniquely determined by (a,b), and the function @Y =
&, 40,00 Pv can be made explicit (see Remark 3.1).
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