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Abstract

This paper focuses on inverse reinforcement learning (IRL) for autonomous robot navigation using

semantic observations. The objective is to infer a cost function that explains demonstrated behavior

while relying only on the expert’s observations and state-control trajectory. We develop a map en-

coder, which infers semantic class probabilities from the observation sequence, and a cost encoder,

defined as deep neural network over the semantic features. Since the expert cost is not directly ob-

servable, the representation parameters can only be optimized by differentiating the error between

demonstrated controls and a control policy computed from the cost estimate. The error is optimized

using a closed-form subgradient computed only over a subset of promising states via a motion plan-

ning algorithm. We show that our approach learns to follow traffic rules in the autonomous driving

CARLA simulator by relying on semantic observations of cars, sidewalks and road lanes.

Keywords: Inverse reinforcement learning, semantic mapping, learning from demonstration

1. Introduction

Autonomous systems operating in unstructured, partially observed, and changing real-world envi-

ronments need an understanding of context to evaluate the safety, utility, and efficiency of their

performance. For example, while a bipedal robot may navigate along sidewalks, an autonomous

car needs to follow the road lane structure and the traffic signs. Designing a cost function that

encodes such rules by hand is cumbersome, if not infeasible, especially for complex tasks. How-

ever, it is often possible to obtain demonstrations of desirable behavior that indirectly capture the

role of semantic context in the task execution. Semantic labels provide rich information about the

relationship between object entities and their surroundings. In this work, we consider an inverse re-

inforcement learning (IRL) problem in which observations containing semantic information about

the environment are available.

There has been significant progress in semantic segmentation techniques, including deep neural

networks for RGB image segmentation (Papandreou et al., 2015; Badrinarayanan et al., 2017; Chen

et al., 2018) or point cloud labeling via a 2D spherical depth projection (Wu et al., 2018; Dohan

et al., 2015). Maps that store semantic information can be generated from segmented images (Sen-

gupta et al., 2012; Lu et al., 2019). Gan et al. (2019); Sun et al. (2018) generalize binary occupancy

grid mapping (Hornung et al., 2013) to multi-class semantic mapping in 3D. In this work, we pa-

rameterize the navigation cost of an autonomous vehicle as a nonlinear function of such semantic

features to explain the demonstrations of an expert.
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Learning a cost function from demonstration requires a control policy that is differentiable with

respect to the cost parameters. Computing policy derivatives has been addressed by several sucess-

ful IRL approaches (Neu and Szepesvári, 2007; Ratliff et al., 2006; Ziebart et al., 2008). Early

works assume that the cost is linear in the feature vector and aim at matching the feature expec-

tations of the learned and expert policies. Ratliff et al. (2006) computes subgradients of planning

algorithms so that expected reward of an expert policy is better than any other policy by a margin.

Value iteration networks (VIN) (Tamar et al., 2016) show that the value iteration algorithm can be

approximated by a series of convolution and maxpooling layers, allowing automatic differentiation

to learn the cost function end-to-end. Ziebart et al. (2008) develops a dynamic programming algo-

rithm to maximize the likelihood of observed expert data and learns a policy of maximum entropy

(MaxEnt) distribution. Many works (Levine et al., 2011; Wulfmeier et al., 2016; Song, 2019) ex-

tend MaxEnt to learn a nonlinear cost using Gaussian Processes or deep neural networks. Finn et al.

(2016) uses sample-based approximation of the MaxEnt objective on high-dimensional continuous

systems. However, the cost in most existing work is learned offline using full observation sequences

from the expert demonstrations. A major contribution of our work is to develop cost representations

and planning algorithms that rely only on causal partial observations.

Achieving safe and robust navigation is directly coupled with the quality of the environment

representation and the cost function specifying desirable behaviors. The traditional approach com-

bines geometric mapping of occupancy probability or distance to the nearest obstacle (Hornung

et al., 2013; Oleynikova et al., 2017) with hand-specified planning cost functions. Recent advances

in deep reinforcement learning demonstrated that control inputs may be predicted directly from

sensory observations (Levine et al., 2016). However, special model designs (Khan et al., 2018) that

serve as a latent map are needed in navigation tasks where simple reactive policies are not feasi-

ble. Gupta et al. (2017) decompose visual navigation into two separate stages explicitly: mapping

the environment from first-person RGB images and planning through the constructed map with

VIN. Our model also seperates the two stages but integrates semantic information to obtain a richer

map representation. In addition, Wang et al. (2020) propose a differentiable mapping and planning

framework to learn the expert cost function. They parameterize cost function as a neural network

over the binary occupancy map probability, which is integrated from previous partial observations.

They further propose an efficient A* (Hart et al., 1968) planning algorithm that computes the policy

at the current state and backpropagates gradients in closed-form to optimize the cost parameters. We

extend their work by incorporating semantic observation to the map representation and evaluating

the model in the CARLA autonomous driving simulator (Dosovitskiy et al., 2017).

We propose a model that learns to navigate from first-person semantic observations and make

the following contributions. First, we propose a cost function representation composed of a map en-

coder, capturing semantic class probabilities from the streaming observations, and a cost encoder,

defined as a deep neural network over the semantic features. Second, we optimize the cost pa-

rameters using a closed-form subgradient of the cost-to-go only over a subset of promising states,

obtained by an efficient planning algorithm. Finally, we verify our model in autonomous navigation

experiments in urban environments provided by the CARLA simulator (Dosovitskiy et al., 2017).

2. Problem Formulation

Consider a robot navigating in an unknown environment X with the task of reaching a goal state

xg ∈ X . Let xt ∈ X be the robot state, capturing its pose, twist, etc., at discrete time t. For a
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The problem setup is illustrated in Fig. 1. While Eqn. (1) is a standard deterministic shortest

path (DSP) problem, the challenge is to make it differentiable with respect to θ, which is necessary

for the loss in (2) to propagate back through the DSP problem to update the cost parameters θ.

Once the parameters are optimized, the robot can generalize to navigation tasks in new partially

observable environments by evaluating the cost ct based on the observations P 1:t iteratively and

(re)computing the associated policy πt.

3. Cost Function Representation

We propose a cost function representation with two components: a semantic map encoder with

parametersψ and a cost encoder with parametersφ. The model is differentiable by design, allowing

its parameters to be optimized by the subsequent planning algorithm described in Sec. 4.

3.1. Semantic Map Encoder

The semantic probability of different environment areas is encoded in a hidden state ht given the

trajectory and observations x1:t,P 1:t. Specifically, we discretize the state space X into J cells and

let m =
[

m1, . . . ,mJ
]T

∈ KJ be the random vector of true semantic labels over the cells. Since

m is unknown to the robot, we maintain the semantic occupancy posterior P(m = k|x1:t,P 1:t)

where k =
[

k1, . . . , kJ
]T

, kj ∈ K, given the history of states x1:t and observations P 1:t. The

representation complexity may be simplified significantly if one assumes independence among the

map cells mj : P(m = k|x1:t,P 1:t) =
∏J

j=1 P(m
j = kj |x1:t,P 1:t).

Inspired by the binary occupancy grid mapping (Thrun et al., 2005; Hornung et al., 2013), we

extend the recurrent updates for the multi-class semantic probability of each cell mj .

Definition 1 The log-odds ratio of semantic classes associated with cell mj at time t is

ht,j =
[

h0t,j , . . . , h
K
t,j

]T
, hkt,j := log

P(mj = k|x1:t,P 1:t)

P(mj = 0|x1:t,P 1:t)
for k ∈ K. (3)

Its recurrent Bayesian update is hkt+1,j = hkt,j+log p(P t+1|mj=k,xt+1)
p(P t+1|mj=0,xt+1)

. Note that by definition h0t,j =

0. The update increment is a log-odds observation model and we assume the observationP t+1 given

the cell mj is independent of the previous observations P 1:t. The semantic class posterior can be

recovered from the semantic log-odds ratio ht,j via a softmax function P(mj = k|x1:t,P 1:t) =
σk(ht,j), where σ : RK+1 → R

K+1 satisfies the following properties

σ(z) =
[

σ0(z), . . . , σK(z)
]T

, σk(z) =
exp (zk)

∑

k′∈K exp (zk′)
, log

σk(z)

σk′(z)
= zk − zk

′

. (4)

We provide a simple observation model to instantiate Eq. (3). Consider all cells mj that lie on

the ray between robot state x and a labeled point (pl,yl) in the point cloud P . Let d(x,mj) be the

distance between the robot position and the center of mass of the cell mj .

Definition 2 The inverse observation model relating the label of cell mj to the ray between robot

state x and labeled point (pl,yl) is defined as a softmax function with parameters ψl, scaled by the

distance, δpl = d(mj ,x)− ‖pl‖2, which is truncated at a threshold ǫ:

P(mj = k|x, (pl,yl)) =

{

σk(diag(ψl)ylδpl) if δpl ≤ ǫ

σk(h0,j) if δpl > ǫ
. (5)
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The function diag(·) returns a diagonal matrix from a vector and the prior occupancy log-odds ratio

h0,j depends on the environment (e.g., h0,j = 0 specifies a uniform prior over the semantic classes).

Proposition 3 Given the definitions of the log-odds ratio in Eq. (3) and the inverse observation

model in Eq. (5), the log-odds update rule for the semantic probability at cell mj is ht+1,j =
ht,j +

∑

(pl,yl)∈P t+1

[

gj(xt, (pl,yl))− h0,j

]

, where the log-odds inverse observation model for

cells mj along the ray from xt to pl can be simplied using (4) as:

gj(xt, (pl,yl)) =

{

diag(ψl)ylδpl if δpl ≤ ǫ

h0,j if δpl > ǫ
. (6)

A more expressive multi-layer neural network may be used to parameterize the inverse obser-

vation model instead of the linear transformation diag(ψl)ylδpl of the semantic probability and

distance differential along the l-th ray in Eq (5):

gj(xt, (pl,yl);ψl) =

{

NN(yl,pl, d(xt,m
j);ψl) if δpl ≤ ǫ

h0,j if δpl > ǫ
. (7)

In summary, the map encoder starts with prior log-oddsh0, updates them recurrently viaht+1 =
ht + g(xt,P t;ψ)− h0, where the inverse sensor log-odds gj(xt, (pl,yl);ψl) is specified for the

j-th cell along the l-th ray in (6) or (7). The posterior P(m = k|x1:t,P 1:t) is the softmax of ht.

3.2. Cost Encoder

The cost encoder uses the semantic occupancy grid prosterior σ(ht) to define the cost function esti-

mate ct(x,u) at a given state-control pair (x,u). A convolutional neural network (CNN) (Goodfel-

low et al., 2016) with parameters φ can extract cost features from the environment map: ct(x,u) =
CNN(ht,x,u;φ). We implement an encoder-decoder neural network architecture (Badrinarayanan

et al., 2017) to parameterize the cost function from semantic class probabilities. The idea is to

perform downsamples and upsamples at multiple scales to provide both local and global context

between semantic probability and cost.

4. Cost Learning via Differentiable Planning

We follow the planning algorithm in Wang et al. (2020) that enables efficient cost optimization

and briefly review the steps below. The parameters θ of the cost representation ct(x,u;P 1:t,θ)
developed in Sec. 3 are optimized by differentiating L(θ) in (2) through the DSP problem in (1).

Motion planning algorithms, such as A* (Likhachev et al., 2004), solve problem (1) efficiently and

determine the optimal cost-to-go Q∗
t (x,u) only over a subset of promising states. This is sufficient

to obtain the subgradient of Q∗
t (xt,ut) with respect to ct along the optimal path by applying the

subgradient method (Shor, 2012; Ratliff et al., 2006).

A backwards A* search applied to problem (1) with start state xg, goal state x ∈ X , and

predecessors expansions according to transition f provides an upper bound to the optimal cost-to-

go: Q∗
t (x,u) ≤ ct(x,u)+g(f(x,u)), where g are the values computed by A* for expanded nodes

in the CLOSED list and visited nodes in the OPEN list. Strict equality is obtained only if f(x,u)
belongs to the CLOSED list. A Boltzmann policy πt(u | x) may be defined using the g-values for

all x ∈ CLOSED ∪ OPEN ⊆ X and a uniform distribution over U for all other states.
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Algorithm 1: Train cost parameters θ

input : D=
{

(xt,n,u
∗

t,n,P t,n,xg,n)
}Tn,N

t=1,n=1

while θ not converged do

L(θ)← 0;

for n = 1, . . . , N and t = 1, . . . , Tn do

Update ct,n based on xt,n and P t,n as in Sec. 3;

Obtain Q∗

t,n(x,u) from (1) with stage cost ct,n;

Obtain πt,n(u|xt,n) from Q∗

t,n(xt,n,u);
L(θ)← L(θ)− log πt,n(u

∗

t,n|xt,n);

end

Update θ ← θ − α∇L(θ) via Prop. 4;

end

Algorithm 2: Test control policy πt
input : Start state xs, goal state xg , cost

parameters θ

Current state xt ← xs;

while xt 6= xg do

Make an observation P t;

Update ct based on xt and P t as in Sec. 3;

Obtain πt(u|xt) from Q∗

t (xt,u) ;

Update xt ← f(xt,ut) via

ut := argmax
u

πt(u|xt);

end

We rewrite Q∗
t (xt,ut) in a form that makes its subgradient with respect to ct(x,u) obvious. Let

T (xt,ut) be the set of feasible trajectories τ of horizon T that start at xt, ut, satisfy transition f

and terminate at xg. Let τ ∗ ∈ T (xt,ut) be an optimal trajectory corresponding to the optimal cost-

to-go function Q∗
t (xt,ut). Define µτ (x,u) :=

∑T−1
k=t 1(xk,uk)=(x,u) as a state-control visitation

function indicating if (x,u) is visited by τ . The optimal cost-to-go function Q∗
t (xt,ut) can be

viewed as a minimum over T (xt,ut) of the inner product of the cost function ct and the visitation

function µτ :

Q∗
t (xt,ut) = min

τ∈T (xt,ut)

∑

x∈X ,u∈U

ct(x,u)µτ (x,u) (8)

where X can be assumed finite because both T and U are finite. Applying the subgradient method

(Shor, 2012; Ratliff et al., 2006) to (8) shows that
∂Q∗

t (xt,ut)
∂ct(x,u)

= µτ∗(x,u) is a subgradient of the

optimal cost-to-go. This result and the chain rule allow us to obtain a subgradient of L(θ).

Proposition 4 A subgradient of the loss function L(θ) in (2) with respect to θ can be obtained as:

∂L(θ)

∂θ
= −

N
∑

n=1

Tn
∑

t=1

∂ log πt,n(u
∗
t,n | xt,n)

∂θ
= −

N
∑

n=1

Tn
∑

t=1

∑

ut,n∈U

∂ log πt,n(u
∗
t,n | xt,n)

∂Q∗
t,n(xt,n,ut,n)

∂Q∗
t,n(xt,n,ut,n)

∂θ

= −
N
∑

n=1

Tn
∑

t=1

∑

ut,n∈U

(

1{ut,n=u∗

t,n}
− πt,n(ut,n|xt,n)

)

∑

(x,u)∈τ∗

∂Q∗
t,n(xt,n,ut,n)

∂ct(x,u)

∂ct(x,u)

∂θ

The computation graph implied by Prop. 4 is illustrated in Fig. 1. The graph consists of a cost

representation layer and a differentiable planning layer, allowing end-to-end minimization of L(θ)
via stochastic subgradient descent. Training and testing algorithms are shown in Alg. 1 and Alg. 2.

5. Experiments

5.1. Experiment Setup

We evaluate our approach using the CARLA simulator (0.9.6) (Dosovitskiy et al., 2017), which

provides high-fidelity autonomous vehicle simulation in urban environments. Demonstration data

for training the cost function representation is collected from maps {Town01, T own02, T own03,
T own04}, while map Town05 is used for testing. Town05 is the largest map and includes different
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street layouts, junctions, and a freeway. In each map, we collect 100 expert trajectories by running

the autonomous navigation agent provided by the CARLA Python API. The expert finds the shortest

path between two query points, while respecting traffic rules, such as staying on the road, and

keeping in the current lane. Features not related to the experiment are disabled, including spawning

other vehicles and pedestrians, and changing traffic signal. Each vehicle trajectory is discretized

into a 128 × 128 grid of 1 meter resolution. The robot state x is the grid cell location while the

control u takes the robot to one of its 8 neighbor grid cells. Trajectories that do not fit in the grid

are discarded.

The ego vehicle is equipped with a lidar sensor that has 20 meters maximum range and 360◦

horizontal field of view. The vertical field of view ranges from 0◦ (facing forward) to −30◦ (facing

down) with 5◦ resolution. A total of 56000 lidar rays is generated per scan P t while each point

measurement is returned only if it hits an obstacle. The ego vehicle is also equipped with 4 semantic

segmentation cameras that display objects of 13 different classes in RGB images, including road,

road line, sidewalk, vegetation, car, building, etc. The 4 cameras face front, left, right and rear, each

capturing a 90◦ horizontal field of view. The semantic label of each lidar point is retrieved from the

semantic segmentation image by projecting the lidar point in the camera’s frame.

5.2. Models and Metrics

We compare our model with two baseline algorithms: Wulfmeier et al. (2016) and Wulfmeier et al.

(2016) + semantics. Wulfmeier et al. (2016) use a neural network to learn a cost from lidar point

clouds without semantics. The input to the neural network is a grid that stores the mean and variance

of points in each cell, as well as a binary indicator of cell visibility. We augment the grid features

with the mode of semantic labels in each cell to get the model Wulfmeier et al. (2016) + semantics

as a fair comparison with ours. Neural networks are implemented in the PyTorch library (Paszke

et al., 2019) and trained with the Adam optimizer (Kingma and Ba, 2014) until convergence.

The evaluation metrics include: negative log-likelihood (NLL), control accuracy (Acc), trajec-

tory success rate (Traj. Succ. Rate) and Modified Hausdorff Distance (MHD). More precisely, given

a test set Dtest =
{

(xt,n,u
∗
t,n,P t,n,xg,n)

}Tn,N

t=1,n=1
and a learned policy π with paramters θ∗, we

define NLL(Dtest, π) = − 1∑N
n=1

Tn

∑N,Tn

n=1,t=1 log πt,n(u
∗
t,n|xt,n;P 1:t,n,θ

∗) and Acc(Dtest, π) =

1∑N
n=1

Tn

∑N,Tn

n=1,t=1 1{u∗

t,n=argmaxπt,n(·|xt,n;P 1:t,n,θ
∗)}. Traj. Succ. Rate records the success rate of

the learned policy by iteratively rolling out its predicted controls. A trajectory is regarded as suc-

cessful if it reaches the goal within twice the number of steps of the expert trajectory without hitting

an obstacle. MHD compares the rolled out trajectory τL by the learned policy and the expert tra-

jectory τE and is defined as: MHD(τL, τE) = max
{

1
TL

∑TL

t=1 d(τ
t
L, τE),

1
TE

∑TE

t=1 d(τ
t
E , τL)

}

where d(τ t
A, τB) measures the minimum Euclidean distance from state τ t

A to any state in τB .

5.3. Results and Discussion

Fig. 2 shows the performance of our model versus Wulfmeier et al. (2016) and Wulfmeier et al.

(2016) + semantics using the metrics described above. Ours learns to generate policies closest to

the expert in new environments by scoring best in NLL and Acc. The predicted trajectory is also

closest to the expert by achieving the minimum MHD. The results demonstrate that the semantic

map encoder captures more geometric as well as semantic information so that the cost function can

7
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Model NLL Acc (%) Traj. Succ. Rate (%) MHD

Wulfmeier et al. (2016) 0.595 86.1 92 4.521

Wulfmeier et al. (2016) + semantics 0.613 82.7 88 4.479

Ours 0.446 90.5 91 3.036

Figure 2: Test result from CARLA Town05 map. Best model for each evaluation metric is in bold.

Ground truth 
semantic map

Semantic map 

encoder at step 40

Cost function 

at step 40

Cost function 

at step 80

Semantic map 

encoder at step 80

Figure 3: Example of a predicted trajectory in red at an intersection and the goal in blue. The groud truth

semantic map, predicted semantic map and cost map at two time steps are shown. Our model learns the

sidewalk is costly to traverse.

be optimized and generate trajectories which match the expert behaviors. We notice that simply tak-

ing the mode of the semantic labels in each grid cell degrades the performance of Wulfmeier et al.

(2016). We conjecture that taking the mode is a deterministic assignment, which could provide con-

flicting semantic information, while our model endorses a probabilistic semantic map encoder with

Bayesian updates to avoid information loss. Fig. 3 shows an example of the predicted trajectory at

an intersection. The semantic map visualizes the class of highest probability, which mostly reflects

the ground truth. Sub-cell objects like roadlines are captured in the semantic map distribution but

not visualized in the most probable class. It is interesting to find that our model assigns low cost to

road in front of the robot, medium cost for sidewalks, and high cost to road behind itself. This cost

assignment is actually effective for the robot to navigate to the goal.

6. Conclusion

We propose an inverse reinforcement learning approach for infering navigation costs from demon-

strations with semantic observations. Our model introduces a new cost representation composed of

a probabilistic semantic occupancy encoder and a cost encoder defined over the semantic features.

The cost function can be optimized via backpropagation with closed-form (sub)gradient. Exper-

iments in the CARLA simulator show that our model outperforms methods that do not encode

semantic information probabilistically over time. Our work offers a promising solution for learning

semantic features in navigation and may enable efficient online learning in challenging conditions.
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