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Abstract. The complexity of graph homomorphism problems has been
the subject of intense study for some years. In this paper, we prove
a decidable complexity dichotomy theorem for the partition function
of directed graph homomorphisms. Our theorem applies to all non-
negative weighted forms of the problem: given any fixed matrix A with
non-negative algebraic entries, the partition function ZA(G) of directed
graph homomorphisms from any directed graph G is either tractable in
polynomial time or #P-hard, depending on the matrix A. The proof
of the dichotomy theorem is combinatorial, but involves the definition
of an infinite family of graph homomorphism problems. The proof of
its decidability on the other hand is algebraic and based on properties
of polynomials.
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1. Introduction

The complexity of counting graph homomorphisms has received
much attention (Bulatov 2013; Bulatov & Dalmau 2007; Bulatov
& Grohe 2005; Cai et al. 2013a; Dyer et al. 2007; Dyer & Green-
hill 2000; Goldberg et al. 2010). The problem can be defined over
both directed and undirected graphs, and the directed version of
the problem turns out to be significantly more challenging. In par-
ticular, Feder and Vardi showed that the decision problems defined
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by directed graph homomorphisms are as general as the Constraint
Satisfaction Problems (CSPs), and it is known that a complexity
dichotomy for the former implies the full dichotomy conjecture for
all decision CSPs (Feder & Vardi 1999). While no such implication
is known for counting problems, our understanding of the problem
over directed graphs is more limited compared to that over undi-
rected graphs.

Let G and H be two graphs. We follow the standard definition
of graph homomorphisms, where G is allowed to have multiple
edges but no self-loops and H can have both multiple edges and
self-loops. 1 We say ξ : V (G) → V (H) is a graph homomorphism
from G to H if ξ(u)ξ(v) is an edge in E(H) for all uv ∈ E(G). Here
if H is an undirected graph, then G is also an undirected graph; if
H is directed, then G is also directed. The undirected problem is
a special case of the directed one.

For a fixed H, we are interested in the complexity of the follow-
ing integer functionZH(G): The input is a graph G, and the output
is the number of graph homomorphisms from G to H. More gen-
erally, we can define ZA(·) for any fixed m × m matrix A = (Ai,j):

ZA(G) =
∑

ξ:V →[m]

∏

uv∈E

Aξ(u),ξ(v)

for any directed graph G = (V,E). Note that the input G is a
directed graph in general. However, if A is a symmetric matrix,
then one can always view G as an undirected graph. Moreover, if
A is a {0, 1}-matrix, then ZA(·) is exactly ZH(·), where H is the
graph whose adjacency matrix is A.

Graph homomorphisms can express many interesting counting
problems over graphs. For example, if we take H to be an undi-
rected graph over two vertices {0, 1} with an edge (0, 1) and a loop
(1, 1) at 1, then a graph homomorphism from G to H corresponds
to a Vertex Cover of G (by taking the set of vertices of G that
are mapped to vertex 1 in H), and ZH(G) is simply the number
of vertex covers of G. As another example, if H is the complete
graph on k vertices without self-loops, then ZH(G) is the number

1 Our results are actually stronger in that our tractability result allows for
loops in G, while our hardness result holds for G without loops.
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of k-Colorings of G. Freedman et al. (2007) characterized what
graph functions can be expressed as ZA(·).

For increasingly more general families C of matrices A, the
complexity of ZA(·) has been studied and dichotomy theorems have
been proved. A dichotomy theorem for a given family C of matrices
A states that for any A ∈ C, the problem of computing ZA(·) is
either in polynomial time or #P -hard (note that all such problems
belong to P#P, or more precisely FP#P, the class of all functions2

computable by a polynomial-time Turing machine with access to
a #P oracle). A decidable dichotomy theorem further requires
that the dichotomy criterion is computably decidable: There is a
finite-time classification algorithm that, given any A in C, decides
whether ZA(·) is in polynomial time or #P-hard. Most results
have been obtained for undirected graphs.

Symmetric matrices A, and ZA(G) over undirected G:
Hell & Nešetřil (1990, 2004) showed that given any symmetric
{0, 1} matrix A, deciding whether ZA(G) > 0 is either in P or
in NP-complete. Then Dyer & Greenhill (2000) showed that given
any symmetric {0,1} matrix A, the problem of computing ZA(·)
is either in P or in #P-complete. Bulatov & Grohe (2005) gen-
eralized their result to all non-negative symmetric matrices A.3

They obtained an elegant dichotomy theorem which basically says
that ZA(·) is in P if every block of A has rank at most one and
is #P-hard otherwise. Goldberg et al. (2010) proved a beautiful
dichotomy for all symmetric real matrices. Finally, a dichotomy
theorem for all symmetric complex matrices was proved by Cai
et al. (2013a). We remark that all these dichotomy theorems for
symmetric matrices above are polynomial-time decidable, meaning
that given any matrix A, one can decide in polynomial time (in
the input size of A) whether ZA(·) is in P or #P-hard.

2 We will abuse the notation slightly and use P to denote polynomial-time
computable predicates as well as functions.

3 More exactly, they proved a dichotomy theorem for symmetric matrices
A in which every entry Ai,j is a non-negative algebraic number. Our result in
this paper applies similarly to all non-negative algebraic numbers. Throughout
the paper, we use R to denote the set of real algebraic numbers and refer to
them as real numbers when it is clear from the context.
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General matrices A and ZA(G) over directed graphs G:
In a paper that received the best paper award at ICALP in 2006,
Dyer et al. (2007) proved a dichotomy theorem for directed graph
homomorphism problems ZH(·) that are restricted to directed and
acyclic graphs H. They introduced the notion of Lovász-goodness

and proved that ZH(·) is in P if the graph H is layered 4 and Lovász-

good and is #P-hard otherwise. The property of Lovász-goodness
turns out to be polynomial-time decidable.

In 2008, Bulatov (2013, 2008) obtained a sweeping dichotomy
theorem for all unweighted (i.e., {0, 1}-valued) counting Constraint
Satisfaction Problems (#CSP for short). Later, Dyer & Richerby
(2010) presented an alternative proof. The dichotomy theorem of
Bulatov implies a dichotomy for ZH(·) over directed graphs H, but
its decidability was unclear since its dichotomy criterion5 requires
one to check a condition on an infinitary object. The decidability
of the dichotomy theorem of Bulatov was left as an open problem
in Bulatov (2008). This was resolved by Dyer & Richerby (2013)
in the journal version of their 2010 conference paper after the pre-
liminary version of the present paper (Cai & Chen 2010) appeared
(see discussion on “Recent Developments on the Complexity of
#CSP”). The techniques of Dyer and Richerby generalize to ra-
tional weights, but in a more complicated way, via the translation
of Bulatov et al. (2012). In contrast, the present paper gives a
direct proof that applies to all non-negative algebraic weights; the
techniques of Bulatov et al. (2012) depend heavily on the weights
being rational.

In this paper, we prove a dichotomy theorem for the family of
all non-negative algebraic matrices. We show that for every fixed
m×m matrix A with non-negative algebraic entries, the problem of
computing ZA(·) is either in P or in #P-hard. Furthermore, our di-
chotomy criterion is decidable: We present a finite-time algorithm

4 A directed acyclic graph is layered if one can partition its vertices into k

sets V1, . . . , Vk, for some k ≥ 1, such that every edge goes from Vi to Vi+1 for
some i : 1 ≤ i < k.

5 A dichotomy criterion is a well-defined mathematical property over the
family of matrices A being considered such that ZA(·) is in P if A has this
property and is #P-hard otherwise.
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which, given a non-negative and algebraic matrix A, determines
whether ZA(·) is in P or #P-hard. In particular, for the special
family of matrices with {0, 1} entries, our result gives an alterna-
tive dichotomy criterion6 to that of Bulatov (2008) and Dyer &
Richerby (2010), which we show is decidable.

The main obstacle we encountered in obtaining the dichotomy
theorem is due to the abundance of new intricate but tractable
cases, when moving from acyclic graphs to general directed graphs.
For example, H does not have to be layered for the problem ZH(·)
to be tractable (see Figure 1.1 for an example). Because of the
generality of directed graphs, it seems impossible to have a simply
stated criterion [e.g., Lovász-goodness, as was used in the acyclic
case by Dyer et al. (2007)] which is both powerful enough to com-
pletely characterize all the tractable cases and also easy to check.
However, we manage to find a dichotomy criterion as well as a
finite-time algorithm to decide whether A satisfies it or not.

In particular, the dichotomy theorem of Dyer et al. (2007) for
the acyclic case fits into our framework as follows. In our di-
chotomy, we start from an m × m matrix A and then define, in
each round, a (possibly infinite) set of new matrices. The size of
the matrices defined in round i + 1 is strictly smaller than that of
round i (so there can be at most m rounds). The dichotomy then
states that ZA(·) is in P if and only if every block of any matrix
defined in the process above is of rank 1 (see Section 1.1 and Sec-
tion 1.2 for details). For the special acyclic case treated by Dyer
et al. (2007), let A be the adjacency matrix of H which is acyclic
and has k layers, then at most k rounds are necessary to reach a
conclusion about whether ZA(·) = ZH(·) is in P or #P-hard. The
general case is more difficult. For example, let H be a directed
graph obtained from a k-layered graph by adding edges from Vk

6 Both our dichotomy criterion (when specialized to {0, 1} matrices) and
the one of Bulatov characterize {0, 1} matrices A with ZA(·) in P, and thus,
they must be equivalent assuming P �= P#P, i.e., A satisfies our criterion if
and only if it satisfies the one of Bulatov. As a corollary, our result implies
a finite-time algorithm for checking the dichotomy criterion of Bulatov (2013)
[and the version of Dyer & Richerby (2010)] for the case of {0, 1} matrices,
assuming that P �= P#P. However, we are not able to prove unconditionally

that these dichotomy criteria for {0, 1} matrices are equivalent.
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back to V1. Then deciding whether ZA(·) is in P or #P-hard be-
comes much harder compared to the original k-layered graph in
the sense that we may need many more than k rounds to reach a
conclusion.

Recent developments on the complexity of #CSP:
Significant advances have been made on the complexity of #CSP

after a preliminary version of this paper appeared (Cai & Chen
2010). First of all, in the journal version of their 2010 conference
paper, Dyer & Richerby (2013) showed that their dichotomy cri-
terion for unweighted #CSP is indeed decidable in NP. This was
extended to #CSP with non-negative and rational weights by Bu-
latov et al. (2012), and then to #CSP with non-negative weights by
Cai et al. (2011), both decidable in NP. Later, Cai & Chen (2012)
obtained a complexity dichotomy for #CSP with complex weights,
though the decidability of its dichotomy criterion remains open.

Compared to Cai et al. (2011), our dichotomy theorem is weaker:
(1) While Cai et al. (2011) covers #CSP with non-negative weights,
ours only covers counting directed graph homomorphisms with
non-negative weights, which can be equivalently viewed as a spe-
cial case of non-negative #CSP for which the language consists of
a single binary function; (2) The criterion of Cai et al. (2011) is
shown to be not only decidable but in NP. However, we believe
that the approach of our dichotomy in this paper is still of interest
because of the following reasons: (1) Compared to the recent se-
ries of dichotomy theorems for #CSP (Bulatov 2013; Bulatov et al.

2012; Cai & Chen 2012; Cai et al. 2011; Dyer & Richerby 2013),
the current paper has a more natural and combinatorial approach
that is designed specifically for directed graph homomorphisms.
This goes for the tractability algorithm and the decidability algo-
rithm, both of which are more germane to the problem of counting
directed graph homomorphisms. (2) Our method does not use the
machinery of Universal Algebra, which played a critical role in all
the #CSP papers and thus may find applications when Universal
Algebra is not known to be applicable such as Holant problems (Cai
et al. 2013b, 2014). (3) Assuming that P �= P#P, our dichotomy
criterion is equivalent to that of Bulatov (2013) [and that of Dyer
& Richerby (2013)] over ZA(·) with {0, 1}-matrices A. However, it
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remains an open problem to show this equivalence unconditionally.
Such a proof may improve our understanding of these criteria and
shed new light on the decidability of the dichotomy for #CSP with
complex values (Cai & Chen 2012).

1.1. Intuition of the dichotomy: domain reduction. For an
integer m ≥ 1 we denote [m] = {1, . . . ,m}; for m = 0 we denote
[0] = ∅. Let A be the m×m non-negative matrix being considered,
and let G = (V,E) be an input directed graph. Before giving a
more formal sketch of the dichotomy theorem, we use a simple
example to illustrate one of the most important ideas of this work:
domain reduction.

For this purpose, we need to introduce the concept of labeled

directed graphs. A labeled directed graph G over domain [m] is
a directed graph in which each directed edge e is labeled with
an m × m matrix A[e] and each vertex v is labeled with an m-
dimensional vector w[v]. The partition function of G is defined as

Z(G) =
∑

ξ:V →[m]

∏

v∈V

w
[v]
ξ(v)

∏

uv∈E

A
[uv]
ξ(u),ξ(v).

In particular, ZA(G) = Z(G0) where G0 has the same graph struc-
ture as G; every edge of G0 is labeled with the same A; and every
vertex of G0 is labeled with 1, the m-dimensional all-1 vector.

Roughly speaking, starting from the input G, we build (in
polynomial time) a finite sequence of new labeled directed graphs
G0, G1, G2, . . . ,Gh one by one. Gk+1 is constructed from Gk by using
the domain reduction method which we are going to describe next.
On the one hand, the domains of these labeled graphs shrink along
with k. This means, the size of the edge weight matrices associated
with the edges of Gk (or equivalently, the dimension of the vectors
associated with the vertices of Gk) strictly decreases along with k.
On the other hand, Z(Gk+1) = Z(Gk) for all k ≥ 0 and thus,

ZA(G) = Z(G0) = · · · = Z(Gh).

As the domain size decreases monotonically, the number of graphs
Gk in this sequence is at most m. To prove our dichotomy, we show
that, either something bad happens which forces us to stop the
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Figure 1.1: A directed graph H such that ZH(·) is tractable

domain reduction process, in which case we show that ZA(·) is #P-
hard; or we can keep reducing the domain until the computation
becomes trivial, in which case we show that ZA(·) is in P.

A =

A1,1 A1,3

A2,1 A2,3

A3,5 A3,7

A4,5 A4,7

A5,2 A5,4

A6,2 A6,4

A7,6 A7,8

A8,6 A8,8

Figure 1.2: The 8 × 8 block-rank-1 matrix A

We say a non-negative matrix A is block-rank-1 if one can sepa-
rately permute its rows and columns to get a block diagonal matrix
in which every block is of rank at most 1. Bulatov & Grohe (2005)
(see Theorem 2.3) showed that ZA(·) is #P-hard when A is not
block-rank-1. So we assume below that A is block-rank-1; other-
wise the problem is already known to be #P-hard. As an example,
let A be the 8×8 block-rank-1 non-negative matrix with 16 positive
entries as shown in Figure 1.2, and let

T =
{

(A1, B1), (A2, B2), (A3, B3), (A4, B4)
}

denote its block structure, where As = {2s− 1, 2s} for each s ∈ [4],

B1 = {1, 3}, B2 = {5, 7}, B3 = {2, 4} and B4 = {6, 8},
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Figure 1.3: Input directed graph G

so that Ai,j > 0 if and only if i ∈ As and j ∈ Bs, for some s ∈
[4]. Because A is block-rank-1, there also exist two 8-dimensional
positive vectors α and β such that Ai,j = αi · βj for all (i, j) such
that i ∈ As and j ∈ Bs for some s ∈ [4].

Now let G = (V,E) be the directed graph in Figure 1.3, where
|V | = 6 and |E | = 6. We illustrate the domain reduction process
by constructing the first labeled directed graph G1 in the sequence
as follows. To simplify the presentation, we let y ∈ [8]6 (instead
of ξ : V → [8]) denote an assignment, where yi ∈ [8] denotes the
value of vertex i in Figure 1.3 for every i ∈ [6].

First, let y ∈ [8]6 be any assignment with a nonzero weight:
Ayi,yj

> 0 for every edge ij ∈ E. Since A has the block structure
T , for every ij ∈ E, there exists a unique index s ∈ [4] such that
yi ∈ As and yj ∈ Bs. This inspires us to introduce a new variable
x� ∈ [4] for each edge e� ∈ E, � ∈ [6] (as shown in Figure 1.3).
For every possible assignment of x = (x1, x2, . . . , x6) ∈ [4]6, we use
Y [x] to denote the set of all possible assignments y ∈ [8]6 such
that for every e� = ij, yi ∈ Ax�

and yj ∈ Bx�
. Now we have

ZA(G) =
∑

x∈[4]6

∑

y∈Y [x]

wt(y), where wt(y) =
∏

ij∈E

Ayi,yj
.

Second, we further simplify the sum above by noticing that if
x2 �= x3 in x, then Y [x] must be empty because the two edges e2

and e3 share the same head in G. In general, we only need to sum
over the case when x1 = x2 = x3 and x4 = x5, since otherwise the
set Y [x] is empty. As a result, we have
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ZA(G) =
∑

x1=x2=x3
x4=x5

x6

∑

y∈Y [x]

wt(y).

The advantage of introducing x�, � ∈ [6], is that, once x is
fixed, one can always decompose Ayi,yj

as a product αyi
· βyj

, for
all y ∈ Y [x] and all ij ∈ E, since y belonging to Y [x] guarantees
that (yi, yj) falls inside one of the four blocks of A. This allows us
to greatly simplify wt(y): If y ∈ Y [x], then

wt(y) = Ay1,y3 · Ay1,y2 · Ay2,y3 · Ay3,y4 · Ay3,y5 · Ay5,y6

= αy1βy3αy1βy2αy2βy3αy3βy4αy3βy5αy5βy6 .

Also notice that Y [x], for any x, is a direct product of subsets of
[8]: y ∈ Y [x] if and only if

y1 ∈ L1 = Ax1

y2 ∈ L2 = Ax3 ∩ Bx1 = Ax1 ∩ Bx1

y3 ∈ L3 = Ax4 ∩ Ax5 ∩ Bx2 ∩ Bx3 = Ax4 ∩ Bx1

y4 ∈ L4 = Bx4

y5 ∈ L5 = Ax6 ∩ Bx4

y6 ∈ L6 = Bx6 .

As a result, ZA(G) becomes
(1.1)
∑

x1,x4,x6

∑

yi∈Li, i∈[6]

(

(αy1)
2αy2βy2

)

·
(

(αy3)
2(βy3)

2
)

· βy4 · (αy5βy5) · βy6 .

Finally, we construct the following labeled directed graph G1

over domain [4]. There are three vertices a, b, and c, which corre-
spond to x1, x4, and x6, respectively; there are two directed edges
ab and bc. The weights are as follows. The vertex weight vector of
a is

w
[a]
� =

∑

y1∈A�, y2∈A�∩B�

(αy1)
2 · (αy2βy2), for every � ∈ [4];

the vertex weights of b and c are the same:

w
[b]
� = w

[c]
� =

∑

y∈B�

βy, for every � ∈ [4].
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The edge weight matrix C[ab] of ab is

C
[ab]
k,� =

∑

y3∈Bk∩A�

(αy3)
2(βy3)

2, for all k, � ∈ [4];

and the edge weight matrix C[bc] of bc is

C
[bc]
k,� =

∑

y5∈Bk∩A�

αy5βy5 , for all k, � ∈ [4].

Using (1.1) and the definition of Z(G1), one can verify that ZA(G) =
Z(G1), and thus, we have reduced the domain size from 8 (which is
the number of rows and columns in A) to 4 (which is the number
of blocks in A). However, we also seem to have paid a high price.
Two issues are worth pointing out here:

1. Unlike in ZA(G), different edges in G1 have different edge
weight matrices in general. For example, the matrices
associated with ab and bc are different, for general α and β.
Actually, the set of matrices that may appear as an edge
weight of G1, constructed from all possible directed graphs G
after one round of domain reduction, is infinite in general.

2. Unlike in ZA(G), we have to introduce vertex weights in G1.
Similarly, vertices may have different vertex weight vectors,
and the set of vectors that may appear as a vertex weight of
G1, constructed from all possible G after one round of
domain reduction, is infinite in general.

It is also worth noticing that {0, 1}-matrices are not that special
under this framework. Even if the A we start with is {0, 1}, the
edge and vertex weights of G1 immediately become general non-
negative integers right after the first round of domain reduction,
and we have to deal with integer weights afterward.

These two issues pose a difficulty because we need to carry out
the domain reduction process several times, until the computation
becomes trivial. However, the reduction process described above
crucially used the assumption that A is block-rank-1 (otherwise one
cannot replace Ai,j with αi ·βj). Thus, there is no way to continue
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this process if some edge weight matrix in G1 is not block-rank-1.
To deal with this case, we show that if this happens for some G,
then ZA(·) is #P-hard. Informally, we have

Theorem 1.2 (Informal). For any G, if one of the edge matrices
in Gk (constructed from G after k rounds of domain reductions),
for some k ≥ 1, is not block-rank-1, then ZA(·) is #P-hard.

Theorem 1.2 for k = 1 follows directly from Bulatov & Grohe
(2005). However, due to the two issues discussed earlier, edge
weights and vertex weights of G1 are drawn from infinite sets in
general, and thus, even proving it for k = 2 is highly non-trivial.

After obtaining Theorem 1.2, which essentially gives us a di-
chotomy theorem for non-negative matrices, it remains unclear
whether the dichotomy is decidable. The difficulty is that, to de-
cide whether ZA(·) is in P or #P-hard, one needs to check infinitely
many matrices (all the edge weight matrices that appear in the do-
main reduction process, from all possible directed graphs G) and
to see whether all of them are block-rank-1. To do this, we give
an algebraic proof using properties of polynomials. We manage
to show that it is not necessary to check these matrices one by
one, but only need to check whether or not the entries of A satisfy
finitely many polynomial constraints.

1.2. Proof sketch. We assume below that A is non-negative
and block-rank-1 since the case when A is not block-rank-1 has
already been dealt with by Bulatov & Grohe (2005). To show that
ZA(·) is either in P or #P-hard, we use the following two steps.

In the first step, we define from A a finite sequence of pairs:

(X0,Y0), (X1,Y1), . . . , (Xh,Yh), for some h : 0 ≤ h < m,

where X0 = {1}, Y0 = {A} and 1 denotes the m-dimensional all-1
vector. Each pair (Xk,Yk), k ∈ [h], is defined from (Xk−1,Yk−1).
Roughly speaking, Yk (respectively, Xk) is the set of all edge ma-
trices (respectively, vertex vectors) that may appear in Gk, after k
rounds of domain reductions. There also exist positive integers

m = m0 > m1 > · · · > mh ≥ 1
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such that every Yk, k ∈ [h], is a set of mk × mk non-negative
matrices, and every Xk, k ∈ [h], is a set of mk-dimensional non-
negative vectors. Although the sets Xk and Yk are infinite in
general (which is the reason why we used the word “define” instead
of “construct”), the definition of (Xk,Yk) guarantees the following
two properties:

1. For each k ∈ [h], matrices in Yk share the same support

structure: for all B,B′ ∈ Yk, we have Bi,j > 0 ⇔ B′
i,j > 0;

2. Every matrix B in Yh is a permutation matrix.

The definition of (Xk,Yk) from (Xk−1,Yk−1) can be found in
Section 4. In Section 7 we prove that, for all k ∈ [h] and B ∈
Yk, the problem of computing ZB(·) is polynomial-time reducible
to that of ZA(·). From this, we obtain the hardness part of our
dichotomy theorem using Bulatov & Grohe (2005): If there exists
a matrix B ∈ Yk for some k ∈ [h] such that B is not block-rank-1,
then ZA(·) is #P-hard.

Now we assume that all matrices in Yk, k ∈ [h], are block-rank-
1. To finish the proof, we only need to show that if this is true,
then ZA(·) is indeed in P. To this end, we use the domain reduction

process to construct from the input graph G a sequence of labeled

directed graphs G1, . . . ,Gh such that

1. Z(G1) = ZA(G) and Z(Gk+1) = Z(Gk) for all k : 1 ≤ k < h;

2. For every k ∈ [h], we have A[e] ∈ Yk for all edges e in Gk

and w[v] ∈ Xk for all vertices v in Gk.

This sequence can be constructed in polynomial time, because the
construction of Gk+1 from Gk can be done very efficiently as de-
scribed in Section 1.1, and also because the number of graphs in
the sequence is at most m. By the two properties above, we have
ZA(G) = Z(Gh); every edge weight matrix A[e] in Gh is a permu-

tation matrix. As a result, we can compute ZA(G) in polynomial
time since Z(Gh) can be computed efficiently.

This finishes the proof of our dichotomy theorem: Given any
non-negative matrix A, the problem of computing ZA(·) is either
in polynomial time or #P-hard. Moreover, to decide which case
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it is, we only need to check whether the matrices in Yk, k ∈ [h],
satisfy the following condition:

The Block-Rank-1 Condition: Every matrix B ∈ Yk,
k ∈ [h], is block-rank-1.

However, as mentioned earlier, each of the sets Yk, k ∈ [h], is
infinite in general, so one cannot check the matrices one by one.
Instead, we express the block-rank-1 condition as a finite collection
of polynomial constraints over Yk. The way (Xk,Yk) is defined
from (Xk−1,Yk−1) allows us to prove that, to check whether every
matrix in Yk (or every vector in Xk) satisfies a certain polynomial
constraint, one only needs to check a finitely many polynomial
constraints for (Xk−1,Yk−1). Therefore, to check whether Yk, k ∈
[h], satisfies the block-rank-1 condition we only need to check a
finitely many polynomial constraints for (X0,Y0). Since X0 = {1}
and Y0 = {A} are both finite, this can be done in a finite number
of steps.

2. Preliminaries

We write R+ to denote the set of non-negative algebraic numbers.
Throughout the rest of the paper, we deal with non-negative al-
gebraic numbers (or vectors/matrices with non-negative algebraic
entries) only and will refer to them simply as non-negative (real)
numbers for convenience. We can also work with any reasonable
model of computation for algebraic numbers, e.g., the one used by
Lenstra (1992), Thurley (2009) and Cai et al. (2013a). This issue
does not seem central to this paper because when the complexity
of ZA(·) is concerned, the matrix A is fixed and its entries are
considered as constants. The input size only depends on the size
of the input graph.

We say G = (G, V , E) is a labeled directed graph over [m] =
{1, . . . , m} for some positive integer m, if

1. G = (V,E) is a directed graph (which may have parallel
edges but no self-loops);

2. Every vertex v ∈ V is labeled with an m-dimensional
non-negative vector V(v) ∈ R

m
+ as its vertex weight; and
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3. Every edge uv ∈ E is labeled with an m × m (though not
necessarily symmetric) non-negative matrix E(uv) ∈ R

m×m
+

as its edge weight.

Let G = (G, V , E) be a labeled directed graph, where G =
(V,E). For each v ∈ V , we use w[v] = V(v) to denote its vertex
weight vector, and for each uv ∈ E, we use C[uv] = E(uv) to denote
its edge weight matrix. Then we define Z(G) as follows:

Z(G) =
∑

ξ:V →[m]

wt(G, ξ), where wt(G, ξ) =
∏

v∈V

w
[v]
ξ(v)

∏

uv∈E

C
[uv]
ξ(u), ξ(v)

denotes the weight of the assignment ξ.
Let C be an m × m non-negative matrix. We are interested in

the complexity of ZC(·):

ZC(G) = Z(G), for any directed graph G = (V,E),

where G = (G, V , E) is the labeled directed graph with V(v) = 1 ∈
R

m
+ for all v ∈ V and E(uv) = C for all edges uv ∈ E.

Definition 2.1 (Pattern and block pattern). We say P is an m×
m pattern if P ⊆ [m]×[m]. P is said to be trivial if P = ∅. A non-
negative m × m matrix C is of pattern P , if for all i, j ∈ [m], we
have Ci,j > 0 if and only if (i, j) ∈ P. C is also called a P-matrix.
We say T is an m × m block pattern if

(i) T =
{

(A1, B1), . . . , (Ar, Br)
}

for some r ≥ 0;

(ii) Ai ⊆ [m], Ai �= ∅, Bi ⊆ [m] and Bi �= ∅ for all i ∈ [r]; and

(iii) Ai ∩ Aj = Bi ∩ Bj = ∅, for all i �= j ∈ [r].

T is said to be trivial if T = ∅. A block pattern T naturally defines
a pattern P, where

P =
{

(i, j)
∣

∣∃k ∈ [r] such that i ∈ Ak and j ∈ Bk

}

.

We also say P is consistent with T . Finally, we say a non-negative
m×m matrix C is of block pattern T , if C is of pattern P defined
by T . C is also called a T -matrix.
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Definition 2.2. We say an m × m non-negative matrix C is
block-rank-1 if

(i) Either C = 0 is the zero matrix (and is of block pattern
T = ∅); or

(ii) C is of block pattern T , for some m × m block pattern
T = {(A1, B1), . . . , (Ar, Br)} with r ≥ 1, and for every
k ∈ [r], the sub-matrix of C indexed by Ak and Bk is
(exactly) rank 1.

Let C be a non-negative block-rank-1 matrix of block pattern
T . Then there exists a unique pair (α,β) of non-negative m-
dimensional vectors such that

(i) For every i ∈ [m], αi > 0 ⇐⇒ i ∈
⋃

k∈[r] Ak; and

βi > 0 ⇐⇒ i ∈
⋃

k∈[r] Bk;

(ii) Ci,j = αi · βj for all i, j ∈ [m] such that Ci,j > 0; and

(iii) If r ≥ 1, then
∑

j∈Ai
αj = 1 for every i ∈ [r].

The pair (α,β) is called the (vector) representation of C. Note
that we have α = β = 0 when C = 0.

It is clear that T and (α,β) together uniquely determine a
non-negative block-rank-1 matrix.

The following theorem concerning the complexity of ZC(·) is
proved by Bulatov & Grohe (2005) [also see Grohe & Thurley
(2011)].

Theorem 2.3 (Bulatov & Grohe 2005). Let C be a non-negative
m × m matrix. If C is not block-rank-1, then the problem of
computing ZC(·) is #P-hard.

Let T be an m × m non-trivial block pattern where T =
{(A1, B1), . . . , (Ar, Br)} for some r ≥ 1. It defines the following
r×r pattern P = gen(T ): For all i, j ∈ [r], (i, j) ∈ P if and only if
Bi ∩Aj �= ∅. (To avoid ambiguity, we always assume that Aj’s in T
are indexed using a canonical ordering when deriving P = gen(T )
from T , e.g., sorted by the smallest elements in Aj’s.) Note that
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P = gen(T ) can be trivial, i.e., P = ∅, even if T is non-trivial.
Next, we introduce a generalized version of ZC(·). Let m ≥ 1

and (P,Q) be a pair in which

1. P is a finite, nonempty set of non-negative m-dimensional
vectors with 1 ∈ P; and

2. Q is a finite, nonempty set of m × m non-negative matrices.

We then use Z(·) to define the function ZP,Q(·) as follows:

ZP,Q(G) = Z(G),

where G = (G, V , E) is a labeled directed graph with V(v) ∈ P for
any vertex v ∈ V (G), and E(uv) ∈ Q for any edge uv ∈ E(G).
Note that ZP,Q(·) captures exactly #CSPs with non-negative con-
straint functions of arity at most two. As a special case, ZC(·) is
exactly ZP,Q(·) with P = {1} and Q = {C}.

Finally, let m ≥ 1 and (X,Y) and (X′,Y′) be two pairs such
that:

1. X and X′ are two nonempty (and possibly infinite) sets of
non-negative m-dimensional vectors with 1 ∈ X and 1 ∈ X′;

2. Y and Y′ are two nonempty (and possibly infinite) sets of
non-negative m × m matrices.

Definition 2.4 (Reduction). We say (X′,Y′) is polynomial-time
reducible to (X,Y) if for every finite and nonempty subset P′ ⊆ X′

with 1 ∈ P′ and every finite and nonempty subset Q′ ⊆ Y′, there
exist a finite and nonempty subset P ⊆ X with 1 ∈ P and a finite
and nonempty subset Q ⊆ Y, such that ZP′,Q′(·) is polynomial-
time reducible to ZP,Q(·).

3. Main theorems

We prove a complexity dichotomy theorem for all counting prob-
lems ZC(·) where C is any non-negative matrix. Actually, our
main theorem is more general and applies to ZP,Q(·) over all finite

P-pairs (P,Q) as defined below.
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Definition 3.1. Let P be an m × m pattern. An m-dimensional
non-negative vector w is said to be

– positive: wi > 0 for all i ∈ [m]; and

– P-weakly positive: for all i ∈ [m], wi > 0 ⇔ (i, i) ∈ P.

We call (X,Y) a P-pair if

(i) X is a nonempty (and possibly infinite) set of positive or
P-weakly positive vectors with 1 ∈ X;

(ii) Y is a nonempty (and possibly infinite) set of m × m
(non-negative) P-matrices.

We say it is a finite P-pair if both sets are finite. We normally use
(P,Q) to denote a finite P-pair.

Similarly, for any m × m block pattern T , we can define T -
weakly positive vectors as well as T -pairs by replacing the P above
with the pattern defined by T .

We prove the following complexity dichotomy theorem:

Theorem 3.2 (Complexity Dichotomy). Let P be an m×m pat-
tern for some m ≥ 1. Then for any finite P-pair (P,Q), the
problem of computing ZP,Q(·) is either in polynomial time or #P-
hard.

It gives us a dichotomy for the special case of ZC(·) when P =
{1} and Q = {C}. Moreover, we show that for the special case
when P = {1}, we can decide in a finite number of steps whether
ZP,Q is in polynomial time or #P-hard. In particular, it implies
that the dichotomy for ZC(·) is decidable.

Theorem 3.3 (Decidability). Given any positive integer m ≥ 1,
an m × m pattern P, and a finite P-pair (P,Q) with P = {1},
the problem of whether ZP,Q(·) is in polynomial time or #P-hard
is decidable.
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Remark 3.4. Compared to the dichotomy theorem for #CSP
with non-negative weights by Cai et al. (2011), the classification of
Theorem 3.2 and Theorem 3.3 is limited since they only apply to
#CSP with constraint functions that have arity at most two and
satisfy certain conditions.

We prove Theorem 3.2 and Theorem 3.3 in the rest of the sec-
tion. The lemmas (Lemma 3.6, Lemma 3.7, and Lemma 3.8) used
in the proof will be proved in the rest of the paper.

3.1. Defining new pairs: gen-pair (X,Y). We first state a
key lemma which will be proved in Section 4 and Section 7. We
need the following definition.

Definition 3.5. A set S of non-negative m-dimensional vectors,
for some m ≥ 1, is closed if w1 ◦w2 ∈ S for all vectors w1,w2 ∈ S,
where we use ◦ to denote the Hadamard product of two vectors:
w1 ◦ w2 is the m-dimensional vector whose ith entry is w1,i · w2,i

for all i ∈ [m].

Let (X,Y) be a (possibly infinite) T -pair for some non-trivial
m × m block pattern T . We also assume that every matrix in Y

is block-rank-1. Let P ′ = gen(T ). Then in Section 4, we intro-
duce an operation gen-pair over (X,Y), which defines a new (and
possibly infinite) P ′-pair (X′,Y′) = gen-pair(X,Y) in which X′ is
closed. In Section 7, we further show that (X′,Y′) is polynomial-

time reducible to (X,Y).
We summarize properties of gen-pair in the following lemma:

Lemma 3.6. Let (X,Y) be a T -pair for some non-trivial block
pattern T . Suppose that every matrix in Y is block-rank-1, then
(X′,Y′) = gen-pair(X,Y) (as defined in Section 4) is a P ′-pair,
where P ′ = gen(T ). Moreover, the new vector set X′ is closed and
(X′,Y′) is polynomial-time reducible to (X,Y).

3.2. Proof of Theorem 3.2. Assuming Lemma 3.6, we are now
ready to prove Theorem 3.2.

Let (P,Q) be a finite P-pair for some m × m pattern P. We
may assume that there is a block pattern T that is consistent with
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P and all matrices in Q are block-rank-1; otherwise, it follows from
Theorem 2.3 that ZP,Q(·) is #P-hard and we are done with it. We
summarize this as the following property:

R0: (P,Q) is a finite T -pair for some m × m block pattern T ;
Every matrix in Q is block-rank-1.

For convenience, we rename (P,Q) to be (X0,Y0) and rename m
and T to be m0 and T0, respectively. Next we define a finite se-
quence of pairs using gen-pair, starting with (X0,Y0).

First, if |Ai| = |Bi| = 1 for all i, i.e., every set Ai and Bi in T0

is a singleton, then the sequence has only one pair (X0,Y0), and
the definition of this sequence is complete. Note that this includes
the special case when T0 = ∅ and Y0 = {0}, where 0 denotes the
all-0 matrix of dimension m0.

Otherwise, in Step 1, we define a P1-pair (X1,Y1) as follows:

(X1,Y1) = gen-pair(X0,Y0), where P1 = gen(T0).

By Lemma 3.6, (X1,Y1) is polynomial-time reducible to (X0,Y0)
(recall Definition 2.4). This leads to one of the following two cases:
(1) either we have that P1 is consistent with a block pattern, de-
noted by T1 (hence (X1,Y1) is also a T1-pair), and every matrix in
Y1 is block-rank-1, or (2) it follows from Theorem 2.3 and the
polynomial-time reduction that ZP,Q(·) is #P-hard and we are
done with this case. (To see the latter, assuming that D ∈ Y1

is not block-rank-1, it follows from Theorem 2.3 that ZP1,Q1(·) is
#P-hard where we let P1 = {1} and Q1 = {D}. It follows from
Lemma 3.6 (and the fact that 1 ∈ X1) that there exists a finite7

pair (P0,Q0) with P0 ⊆ X0 and Q0 ⊆ Y0 such that ZP1,Q1(·) is
polynomial-time reducible to ZP0,Q0(·) which is trivially reducible
to ZP,Q(·) since P0 ⊆ X0 = P and Q0 ⊆ Y0 = Q.)

As a result, we assume below that T1 and (X1,Y1) satisfy the
following property:

R∗: T1 is an m1 × m1 block pattern that is consistent with
P1 = gen(T0), where m1 is the number of pairs in T0;

7 Here this is trivial since (X0,Y0) is itself a finite pair.
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(X1,Y1) = gen-pair(X0,Y0) is a T1-pair, and every matrix
in Y1 is block-rank-1.

We also have m0 > m1 since at least one of the sets in T0 is not a
singleton.

We remark that both sets X1 and Y1 are infinite in general, so
one cannot check the matrices in Y1 for the block-rank-1 property
one by one. It does not matter right now because we are only
proving the dichotomy theorem. However, it will become a serious
problem later when we show that the dichotomy is decidable. We
have to show that the block-rank-1 property can be verified in a
finite number of steps.

We repeat the process above. After � ≥ 1 steps, either we are
already done with (P,Q) by showing that ZP,Q(·) is #P-hard, or
we have defined a sequence of � + 1 pairs:

(X0,Y0), (X1,Y1), . . . , (X�,Y�),

and � + 1 block patterns T0, T1, . . . , T� that satisfy the following
property:

R�: For every i ∈ [0 : �], Ti is a block pattern;
For every i ∈ [�], Ti is consistent with Pi = gen(Ti−1);
For every i ∈ [�], (Xi,Yi) = gen-pair(Xi−1,Yi−1) is a
Ti-pair; and
For every i ∈ [0 : �], all the matrices in Yi are block-rank-1.

We have two cases. If every set in T� is a singleton (including the
case when T� = ∅ and Y� = {0}), then the sequence has only
� + 1 pairs and the definition of the sequence is complete. Oth-
erwise in Step � + 1, we apply gen and gen-pair again to define
P�+1 and (X�+1,Y�+1) from T� and (X�,Y�). It follows from Theo-
rem 2.3, Lemma 3.6, and a similar argument (note that the defini-
tion of reductions in Definition 2.4 is transitive so (X�+1,Y�+1) is
polynomial-time reducible to (X0,Y0)) that either P�+1 is consis-
tent with a block pattern, denoted by T�+1, and

(X0,Y0), (X1,Y1), . . . , (X�+1,Y�+1),
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together with T0, T1, . . . , T�+1 satisfy (R�+1), or we have that ZP,Q

(·) is #P-hard.
We conclude that either we are already done with (P,Q) by

showing that ZP,Q(·) is #P-hard, or this process must end with a
sequence of h + 1 pairs

(X0,Y0), (X1,Y1), . . . , (Xh,Yh), for some h ≥ 0,

together with h + 1 positive integers m0 > · · · > mh ≥ 1 and h + 1
block patterns T0, . . . , Th such that

R: For every i ∈ [0 : h], Ti is an mi × mi block pattern;
For every i ∈ [h], Ti is consistent with Pi = gen(Ti−1);
Either Th = ∅ is trivial or every set in Th is a singleton;
For every i ∈ [h], (Xi,Yi) = gen-pair(Xi−1,Yi−1) is a
Ti-pair; and
For every i ∈ [0 : h], all the matrices in Yi are block-rank-1.

Because m0 > · · · > mh ≥ 1, we also have h < m0 = m.
To complete the proof of the dichotomy theorem, we show in

Section 5 that

Lemma 3.7 (Tractability). Given any block pattern T and a finite
T -pair (P,Q), let (X0,Y0), . . . , (Xh,Yh) be a sequence of pairs
that satisfies condition (R) for some h < m, with (X0,Y0) =
(P,Q). Then ZP,Q(·) is computable in polynomial time.

This finishes the proof of Theorem 3.2.

3.3. Proof of Theorem 3.3. Let (P,Q) be a finite P-pair,
where P is an m × m pattern. We now show that for the special
case when X0 = P = {1} the dichotomy (Theorem 3.2) is indeed
decidable. For convenience, we rename m and (P,Q) to be m0

and (X0,Y0), and without loss of generality write T0 as the block
pattern that is consistent with P (if no such T0 exists we know
that ZP,Q(·) is #P-hard). We describe our decidability algorithm
below.

The algorithm first checks (R) on Y0, i.e., every matrix in Y0

is block-rank-1. This is easy since Y0 is finite. It then computes
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from T0 a sequence of no more than m block patterns T0, . . . , Th

using gen repeatedly and checks if they satisfy (R). If (R) is vio-
lated (i.e., there is an i such that Pi = gen(Ti−1) is not consistent
with any block pattern), we know from the proof of Theorem 3.2
that ZP,Q(·) is #P-hard and the algorithm terminates. If h = 0,
i.e., either T0 = ∅ is trivial or every set in Th is a singleton, ZP,Q(·)
is in polynomial time by Lemma 3.7 so the algorithm also ter-
minates. Without loss of generality, we assume below that both
(X0,Y0) and T0, . . . , Th satisfy condition (R), and h ≥ 1. The rest
of the algorithm consists of h < m steps.

At the beginning of the �th step, � ∈ [h], we have defined from
(X0,Y0) a sequence of � pairs:

(X0,Y0), (X1,Y1), . . . , (X�−1,Y�−1),

where

(Xi+1,Yi+1) = gen-pair(Xi,Yi) is a Ti+1-pair,

and the algorithm has verified that they all satisfy condition (R),
i.e., every matrix in Yi with i < � is block-rank-1; otherwise, we
know from the proof of Theorem 3.2 that ZP,Q(·) is #P-hard and
the algorithm terminates. As a result, (X�,Y�) = gen-pair(X�−1,
Y�−1) is a new and well-defined T�-pair, and the goal of the �th
step of the algorithm is to check whether every matrix in Y� is
block-rank-1. We refer to this property as the rank property for
Y�. We prove the following lemma in Section 8, showing that the
rank property for Y� can be checked in a finite number of steps.

Lemma 3.8. Let (X0,Y0) be a finite T0-pair with X0 = {1}. As-
suming that T0, . . . , T�−1, T� and (X0,Y0), . . . (X�−1,Y�−1) all sat-
isfy their conditions in (R) for some � ∈ [h], the rank property for
Y� can be checked in a finite number of steps.

This finishes the description of our decidability algorithm, and
Theorem 3.3 follows.

4. Definition of the gen-pair operation

In this section, we define the operation gen-pair.
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Let T = {(A1, B1), . . . , (Ar, Br)} be a non-trivial m × m block
pattern with r ≥ 1. We use diag(T ) to denote the set of all i ∈ [m]
such that i ∈ Ak and i ∈ Bk for some k ∈ [r]. In this section, we
always assume that (X,Y) is a T -pair such that every matrix in
Y is block-rank-1. This means that

1. All matrices in Y are block-rank-1 and are of the same
block pattern T ;

2. 1 ∈ X and every vector w ∈ X is either

positive: wi > 0 for all i ∈ [m]; or

T -weakly positive: wi > 0 if and only if i ∈ diag(T ).

Given such a pair (X,Y), gen-pair defines a new P-pair

(X′,Y′) = gen-pair(X,Y), where P = gen(T ).

To this end, we first define a pair (X∗,Y∗) from (X,Y), which is a
generalized P-pair defined as follows.

Definition 4.1. Let P be an r × r pattern with r ≥ 1. An r × r
non-negative matrix is called a P-diagonal matrix if it is a diagonal
matrix and for all i ∈ [r], its (i, i)th entry is positive if and only if
(i, i) ∈ P.

We call (X∗,Y∗) a generalized P-pair if

(i) X∗ is a nonempty (and possibly infinite) set of vectors, each
of which is either positive or P-weakly positive; moreover,
we always have 1 ∈ X∗.

(ii) Y∗ is a nonempty (and possibly infinite) set of matrices,
each of which is either a P-matrix or a P-diagonal matrix.

For any block pattern T , one can define T -diagonal matrices and
generalized T -pairs similarly, by replacing the pattern P above
with the one defined by T .

We then use (X∗,Y∗) to define (X′,Y′). In this section, we only
show that (X′,Y′) is a P-pair and X′ is closed. We will give the
polynomial-time reduction from (X′,Y′) to (X,Y) in Section 7.
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4.1. Definition of Y∗. We define Y∗ which contains both P-
matrices and P-diagonal matrices, where P = gen(T ). As it be-
comes clear later in Section 4.3, P-diagonal matrices are really just
P-weakly positive vectors in disguise and will be absorbed into X′

when we define the final P-pair (X′,Y′) in which Y′ contains P-
matrices only.

There are two types of matrices in Y∗. First, an r × r matrix
D is in Y∗ if there exist

1. a finite subset of matrices {C[1], . . . ,C[g]} ⊆ Y with g ≥ 1,
and positive integers s1, . . . , sg;

2. a finite subset of matrices {D[1], . . . ,D[h]} ⊆ Y with h ≥ 1,
and positive integers t1, . . . , th;

3. a positive vector w ∈ X,

such that: Let (α[i],β[i]) and (γ [i], δ[i]) be the representations of
C[i] and D[i], respectively, then

Di,j =
∑

x∈Bi∩Aj

(

β[1]
x

)s1

· · ·
(

β[g]
x

)sg

·
(

γ[1]
x

)t1

· · ·
(

γ[h]
x

)th

· wx,

for all i, j ∈ [r]. The following lemma is easy to prove.

Lemma 4.2. If w ∈ X is positive, then the matrix D defined above
is a P-matrix, where P = gen(T ).

Proof. Because (X,Y) is a T -pair, all the matrices C[i] and
D[j], i ∈ [g] and j ∈ [h], are T -matrices, and thus, β[i] is positive
over B1 ∪ · · · ∪ Br and γ [j] is positive over A1 ∪ · · · ∪ Ar. Since w
is positive, we have that Di,j > 0 if and only if Bi ∩ Aj �= ∅. �

Second, an r × r matrix D is in Y∗ if there exist

1. a finite subset of matrices {C[1], . . . ,C[g]} ⊆ Y with g ≥ 1,
and positive integers s1, . . . , sg;

2. a finite subset of matrices {D[1], . . . ,D[h]} ⊆ Y with h ≥ 1,
and positive integers t1, . . . , th;

3. a T -weakly positive vector w ∈ X,
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such that: Let (α[i],β[i]) and (γ [i], δ[i]) be the representations of
C[i] and D[i], respectively, then

Di,j =
∑

x∈Bi∩Aj

(

β[1]
x

)s1

· · ·
(

β[g]
x

)sg

·
(

γ[1]
x

)t1

· · ·
(

γ[h]
x

)th

· wx,

for all i, j ∈ [r]. Similarly one can show that

Lemma 4.3. If w is T -weakly positive, then the matrix D defined
above is P-diagonal where P = gen(T ).

Proof. First, we show that D is diagonal. Let i �= j be two
distinct indices in [r]. If Bi ∩ Aj = ∅, then Di,j is trivially 0.
Otherwise, for every k ∈ Bi ∩ Aj, we know that (k, k) is not in
the pattern defined by T because k ∈ Bi, k ∈ Aj but i �= j. As a
result, we have wk = 0 which implies Di,j = 0 for all i �= j ∈ [r].

Second, if Ai ∩ Bi �= ∅ then (k, k) is in the pattern defined by
T for every k ∈ Ai ∩ Bi. This implies that wk > 0. As a result, we
have Di,i > 0 if and only if Ai ∩ Bi �= ∅. �

It follows that Y∗ contains P-matrices and P-diagonal matrices
only, where P = gen(T ).

4.2. Definition of X∗. Now we define X∗. To this end, we first
define X# which is a set of r-dimensional positive and P-weakly
positive vectors. We have w# ∈ X# if and only if one of the
following four cases is true:

1. w# = 1;

2. There exist a finite subset {C[1], . . . ,C[g]} ⊆ Y with g ≥ 1,
positive integers s1, . . . , sg and a vector w ∈ X (positive or

T -weakly positive) such that: Let (α[i],β[i]) be the
representation of C[i], then

w#
i =

∑

x∈Ai

(

α[1]
x

)s1

· · ·
(

α[g]
x

)sg

· wx, for all i ∈ [r].

We have that w# is positive if w is positive and w# is
P-weakly positive if w is T -weakly positive.
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3. There exist a finite subset {D[1], . . . ,D[h]} ⊆ Y with h ≥ 1,
positive integers t1, . . . , tg and a vector w ∈ X (positive or

T -weakly positive) such that: Let (γ [i], δ[i]) be the
representation of D[i], then

w#
i =

∑

x∈Bi

(

δ[1]
x

)t1

· · ·
(

δ[h]
x

)th

· wx, for all i ∈ [r].

Similarly, it can be checked that w# is positive if w is
positive and w# is P-weakly positive if w is T -weakly
positive.

4. There exist two finite subsets {C[1], . . . ,C[g]} ⊆ Y and
{D[1], . . . ,D[h]} ⊆ Y with g ≥ 1 and h ≥ 1, positive
integers s1, . . . , sg, t1, . . . , th and a vector w ∈ X

(positive or T -weakly positive) such that: Let (α[i],β[i])
and (γ [i], δ[i]) be the representations of C[i] and
D[i], respectively, then

w#
i =

∑

x∈Bi∩Ai

(

β[1]
x

)s1

· · ·
(

β[g]
x

)sg

·
(

γ[1]
x

)t1

· · ·
(

γ[h]
x

)th

· wx,

for all i ∈ [r]. It can be checked that w# is always a
P-weakly positive vector.

This finishes the definition of X#.

Set X∗ is the closure of X#: w ∈ X∗ if and only if there exist
a finite subset {w1, . . . ,wg} ⊆ X# and positive integers s1, . . . , sg

such that

w =
(

w1

)s1 ◦ · · · ◦
(

wg

)sg
,

where ◦ denotes the Hadamard product and (wi)
si denote the vec-

tor in which the jth entry is the si-th power of the jth entry of wi.
It follows that X∗ is closed and any vector in it is either positive
or P-weakly positive. It is also easy to check that (X∗,Y∗) is a
generalized P-pair.
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4.3. Definition of (X′,Y′). We use (X∗,Y∗) to define (X′,Y′)
as follows. First Y′ contains exactly all the P-matrices in Y∗. The
definition of X′ is more complicated: w′ ∈ X′ if and only if

1. w′ ∈ X∗; or

2. There exist

(a) a finite subset of P-matrices {C[1], . . . ,C[g]} ⊆ Y∗

with g ≥ 0 (so this set could be empty) and g positive
integers s1, . . . , sg;

(b) a finite subset of P-diagonal matrices {D[1], . . . ,D[h]}
⊆ Y∗ with h ≥ 1, and h positive integers t1, . . . , th;

(c) and a vector w ∈ X∗ (which is either positive or
P-weakly positive),

such that w′ satisfies

w′
i = wi ·

(

C
[1]
i,i

)s1

· · ·
(

C
[g]
i,i

)sg

·
(

D
[1]
i,i

)t1

· · ·
(

D
[h]
i,i

)th

,

for any i ∈ [r].

It can be checked that every w′ ∈ X′ is either positive or P-weakly
positive.

This finishes the definition of (X′,Y′) and the gen-pair oper-
ation. It is easy to verify that the new pair (X′,Y′) is a P-pair.
Moreover, since X∗ is closed, one can show that X′ is also closed.
This proves the first part of Lemma 3.6:

Lemma 4.4. Let (X,Y) be a T -pair for some non-trivial block pat-
tern T . Suppose every matrix in Y is block-rank-1, then (X′,Y′) =
gen-pair(X,Y) is a P-pair, where P = gen(T ), and X′ is closed.
Moreover, the pair (X∗,Y∗) defined from (X,Y) is a generalized
P-pair and X∗ is also closed.

5. Dichotomy: tractability

In this section, we prove Lemma 3.7 (restated below), the tractabil-
ity part of the dichotomy theorem.
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Lemma (Tractability). Given any block pattern T and a finite T -
pair (P,Q), let (X0,Y0), . . . , (Xh,Yh) be a sequence of pairs that
satisfies condition (R) for some h < m, with (X0,Y0) = (P,Q).
Then ZP,Q(·) is computable in polynomial time.

Let (X0,Y0) = (P,Q) be a finite T0-pair, for some block pattern
T0. Let (X0,Y0), . . . , (Xh,Yh) be a sequence of h+1 pairs for some
h ≥ 0, m0 > m1 > · · · > mh ≥ 1 be h + 1 positive integers, and
T0, T1, . . . , Th be h + 1 block patterns such that

R: For every i ∈ [0 : h], Ti is an mi × mi block pattern;
For every i ∈ [h], Ti is consistent with Pi = gen(Ti−1);
Either Th = ∅ is trivial or every set in Th is a singleton;
For every i ∈ [h], (Xi,Yi) = gen-pair(Xi−1,Yi−1) is a
Ti-pair; and
For every i ∈ [0 : h], all the matrices in Yi are block-rank-1.

We need to show that ZP,Q(·) = ZX0,Y0(·) can be computed in
polynomial time.

Let G0 = (G0,V0, E0) be an input labeled directed graph of
ZX0,Y0(·). By definition, we have V0(v) ∈ X0 for all vertices v ∈
V (G0), and E0(uv) ∈ Y0 for all edges uv ∈ E(G0). We further
assume that the underlying undirected graph of G0 is connected.
(If G0 is not connected, then we only need to compute ZX0,Y0(·) for
each undirected connected component of G0 and multiply them to
obtain ZX0,Y0(G0).)

To compute ZX0,Y0(G0), we will construct in polynomial-time a
sequence of h+1 labeled directed graphs G0, . . . ,Gh. We will show
that these graphs have the following two properties:

P1: For every � ∈ [0 : h], G� = (G�,V�, E�) is a labeled directed
graph such that V�(v) ∈ X� for all v ∈ V (G�); E�(uv) ∈ Y�

for all uv ∈ E(G�), and the underlying undirected graph of
G� is connected.

P2: Z(G0) = Z(G1) = · · · = Z(Gh).

As a result, to compute Z(G0), one only needs to compute Z(Gh).
On the other hand, we do know how to compute Z(Gh) in polyno-
mial time. If Th is trivial, then computing Z(Gh) is trivial. Oth-
erwise, if every set in Th is a singleton, then one can efficiently
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enumerate all assignments of Gh with a positive weight. (To see
this, we note that for any edge uv in Gh and any assignment of
u, there is at most one assignment of v such that the edge weight
of uv is positive. As Gh is connected, each assignment of u can
be extended to at most one assignment of vertices of Gh with a
positive weight, and this extension can be computed efficiently.)
This allows us to compute Z(G0) = Z(Gh) in polynomial time.

5.1. Construction of G ′ from G. Let (X,Y) be a T -pair for
some m×m non-trivial block pattern T such that all matrices in Y

are block-rank-1. Then by Lemma 4.4, (X′,Y′) = gen-pair(X,Y)
is a P-pair where P = gen(T ).

Let G = (G, V , E) be a labeled directed graph such that V(v) ∈
X for all v ∈ V (G); E(uv) ∈ Y for all uv ∈ E(G); and the under-
lying undirected graph of G is connected. We further assume that
G is not trivial: V is not a singleton. (Since for this special case,
Z(G) can be computed trivially.) In this section, we show how to
construct a new graph G ′ = (G′,V ′, E ′) in polynomial time such
that V ′(v) ∈ X′ for all v ∈ V (G′); E ′(uv) ∈ Y′ for all uv ∈ E(G′);
the underlying undirected graph of G′ is connected; and

(5.1) Z(G) = Z(G ′).

Then we can repeatedly apply this construction, starting from G0,
to obtain a sequence of h + 1 labeled directed graphs G0, . . . ,Gh

that satisfy both P1 and P2. Lemma 3.7 then follows.
Now we describe the construction of G ′. Let G = (V,E) and

T = {(A1, B1), . . . , (An, Bn)} for some n ≥ 1, then P = gen(T ) is
an n × n pattern. The construction of G ′ is divided into two steps,
just like the definition of (X′,Y′) = gen-pair(X,Y) in Section 4.
In the first step, we construct a labeled graph G∗ = (G∗,V∗, E∗)
from G such that

1. V∗(v) ∈ X∗ for all v ∈ V (G∗); E∗(uv) ∈ Y∗ for all
uv ∈ E(G∗), and the underlying undirected graph of G∗ is
connected, where (X∗,Y∗) denotes the generalized P-pair
defined in Section 4.

2. Z(G∗) = Z(G).
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In the second step, we construct G ′ from G∗ and show that Z(G ′) =
Z(G∗).

5.1.1. Construction of G∗ from G. Let G = (G, V , E) and G =
(V,E). We decompose the edge set using the following equivalence
relation:

Definition 5.2. Let e, e′ be two directed edges in E. We say
e ∼ e′ if e = e′ or there is a sequence of edges

e = e0, e1, . . . , ek = e′

in E such that for all i ∈ [0 : k − 1], ei and ei+1 share either the
same head or the same tail.

We divide E into equivalence classes R1, . . . , Rf using ∼:

E = R1 ∪ · · · ∪ Rf , for some f ≥ 1.

Because the underlying undirected graph of G is connected, there
is no isolated vertex v in G, and thus, every vertex v ∈ V appears
as an incident vertex of some edge in at least one of the equivalence
classes. This equivalence relation is useful because of the following
observation.

Observation 5.3. For any i ∈ [f ], the subgraph spanned by Ri

is connected if we view it as an undirected graph. There are three
types of vertices in it:

(i) Type-L: vertices which only have outgoing edges in Ri;

(ii) Type-R: vertices which only have incoming edges in Ri; and

(iii) Type-M: vertices which have both incoming and outgoing
edges in Ri.

Let ξ : V → [m] be any assignment with wt(G, ξ) �= 0, then for
any i ∈ [f ] there exists a unique ki ∈ [n] such that the value of
every edge uv ∈ Ri is derived from the ki-th block of T : ξ(u) ∈ Aki

and ξ(v) ∈ Bki
. Therefore, for every i ∈ [f ], there exists a unique

ki ∈ [n] such that
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(i) For every Type-L vertex v in the graph spanned by Ri,
ξ(v) ∈ Aki

;

(ii) For every Type-R vertex v in the graph spanned by Ri,
ξ(v) ∈ Bki

; and

(iii) For every Type-M vertex v in the graph spanned by Ri,
ξ(v) ∈ Aki

∩ Bki
.

Now we build G∗ = (G∗,V∗, E∗), where G∗ = (V ∗, E∗). The
next observation is important.

Observation 5.4. Each vertex v ∈ V can appear in no more
than two subgraphs spanned by Ri’s. To see this, assume for a
contradiction that v appears in three subgraphs spanned by three
distinct subsets of edges Ri, Rj, and Rk. Then there exist three
distinct edges e ∈ Ri, e′ ∈ Rj, and e′′ ∈ Rk such that v is incident
to all of them, either as head or as tail. So v must be the head of at
least two of them, or the tail of at least two of them. Then at least
two of e, e′ and e′′ are equivalent under ∼, and Ri, Rj, and Rk are
not three distinct equivalence classes. This is a contradiction.

We start with the construction of G∗. V ∗ is exactly [f ] in
which the vertex i ∈ [f ] corresponds to Ri of G. For each vertex
v ∈ V , if it appears in two subgraph spanned by Ri and Rj for
some i �= j ∈ [f ] and if the incoming edges of v are from Ri and
the outgoing edges of v are from Rj, then we add a directed edge
ij in E∗. Note that E∗ may have parallel edges. This finishes
the construction of G∗. It is easy to verify that the underlying
undirected graph of G∗ is also connected.

The only thing left is to label the graph G∗ with vertex and
edge weights. For every edge in E∗, we assign it the following
n × n matrix. Assume that an edge ij is created because of a
vertex v ∈ V which appears in both Ri and Rj. Let the incoming
edges of v be u1v, . . . , usv in Ri and the outgoing edges of v be
vw1, . . . , vwt in Rj, where s, t ≥ 1. We use C[k] ∈ Y to denote
the edge weight of ukv, D[k] ∈ Y to denote the edge weight of
vwk, and w ∈ X to denote the vertex weight of v in G. We use
(α[k],β[k]) and (γ [k], δ[k]) to denote the representations of C[k] and
D[k], respectively. Then the (k, �)th entry of D is
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Dk,� =
∑

x∈Bk∩A�

β[1]
x · · · β[s]

x · γ[1]
x · · · γ[t]

x · wx, for all k, � ∈ [n].

By the definition of gen-pair, it is easy to check that D ∈ Y∗.
Finally, we define the vertex weight of i ∈ [f ]. To this end, we

first define an n-dimensional vector w[v] for each vertex v ∈ V that
only appears in Ri. We then multiply (using Hadamard product)
all such vectors to get the vertex weight vector of i ∈ [f ].

Let v ∈ V be a vertex which only appears in Ri, and then, we
have the following three cases:

1. If v is Type-L, then we use vw1, . . . , vws to denote its
outgoing edges. We let w denote the vertex weight of v in G
and C[j] denote the edge weight of vwj with representation

(α[j],β[j]). Then

w
[v]
k =

∑

x∈Ak

α[1]
x · · ·α[s]

x · wx, for all k ∈ [n].

2. If v is Type-R, then we use u1v, . . . , usv to denote its
incoming edges. Let w denote the vertex weight of v in G
and C[j] denote the edge weight of ujv with representation

(α[j],β[j]). Then

w
[v]
k =

∑

x∈Bk

β[1]
x · · · β[s]

x · wx, for all k ∈ [n].

3. If v is Type-M, then we use u1v, . . . , usv, vw1, . . . , vwt to
denote its edges where s, t ≥ 1. We let w be the vertex
weight of v in G, C[j] be the edge weight of ujv with

representation (α[j],β[j]), and D[j] be the edge weight of
vwj with representation (γ [j], δ[j]). Then

w
[v]
k =

∑

x∈Bk∩Ak

β[1]
x · · · β[s]

x · γ[1]
x · · · γ[t]

x · wx, for all k ∈ [n].

We then multiply (using Hadamard product) all the vectors w[v]

over all vertices v that only appear in Ri to get the vertex weight
vector w of i ∈ [f ] in G∗. By definition, we have that w ∈ X∗, and
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this finishes the construction of G∗. Note that both G∗ and edge
and vertex weights of G∗ can be computed in polynomial time (in
the input size of G). Next, we show that Z(G∗) = Z(G).

Let φ : V ∗ = [f ] → [n] be any assignment. We use Ξφ to denote

{

ξ : V → [m]
∣

∣

∣ ∀i∈ [f ], ∀uv∈Ri, ξ(u)∈Aφ(i) and ξ(v) ∈ Bφ(i)

}

.

Equivalently, φ defines for each vertex v ∈ V a set Uv ⊆ [m], where

1. If v appears in both the subgraph spanned by Ri and the
subgraph spanned by Rj, for some i �= j ∈ [f ], and v is
Type-R in Ri and Type-L in Rj, then Uv = Bφ(i) ∩ Aφ(j);

2. Otherwise, assume v only appears in the subgraph spanned
by Ri. Then

(a) If v is Type-L, then Uv = Aφ(i);

(b) If v is Type-R, then Uv = Bφ(i); and

(c) If v is Type-M, then Uv = Bφ(i) ∩ Aφ(i),

such that ξ ∈ Ξφ if and only if ξ(v) ∈ Uv for all v ∈ V . In particu-
lar, Ξφ = ∅ if Uv = ∅ for some v ∈ V .

By Observation 5.3, if wt(G, ξ) �= 0 then ξ ∈ Ξφ for some
unique φ. For any v ∈ V , we let w[v] denote its vertex weight in
G; for any uv ∈ E, we let D[uv] denote its edge weight in G, with
representation (α[uv],β[uv]). Then by the definition of Ξφ, we have
for all ξ ∈ Ξφ,

D
[uv]
ξ(u),ξ(v) = α

[uv]
ξ(u) · β

[uv]
ξ(v), for all uv ∈ E.

Therefore, we have the following equation:

∑

ξ∈Ξφ

wt(G, ξ) =
∑

ξ∈Ξφ

(

∏

v∈V

w
[v]
ξ(v)

∏

uv∈E

α
[uv]
ξ(u) · β

[uv]
ξ(v)

)

.

This sum can be written as a product:

∑

ξ∈Ξφ

wt(G, ξ) =
∏

v∈V

Hv,
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in which for every v ∈ V , the factor Hv is a sum over ξ(v) ∈ Uv.
By the construction of G∗, we can show that

(5.5) wt(G∗, φ) =
∑

ξ∈Ξφ

wt(G, ξ) =
∏

v∈V

Hv.

This follows from the following observations:

1. If v appears in both the subgraph spanned by Ri and the
subgraph spanned by Rj, for some i �= j ∈ [n], and this v
defines an edge ij ∈ E∗, then the edge weight of this edge ij
in G∗ with respect to φ is exactly Hv;

2. For every i ∈ [n], we let Vi ⊆ V denote the set of vertices
that only appear in the subgraph spanned by Ri. We also
let w denote the vertex weight of i ∈ [n] in G∗. Then

wξ(i) =
∏

v∈Vi

Hv.

As a result, it follows from (5.5) that

Z(G∗) =
∑

φ

wt(G∗, φ) =
∑

φ

∑

ξ∈Ξφ

wt(G, ξ) = Z(G).

5.1.2. Construction of G ′ from G∗. Let G∗ = (G∗,V∗, E∗)
be the labeled directed graph constructed above, where G∗ =
(V ∗, E∗). We know that V∗(v) ∈ X∗ for all v ∈ V ∗; E∗(uv) ∈ Y∗

for all uv ∈ E∗; the underlying undirected graph of G∗ is con-
nected. As (X∗,Y∗) is a generalized P-pair, each D ∈ Y∗ is either
a P-matrix or a P-diagonal matrix.

We will build a new labeled directed graph G ′ = (G′,V ′, E ′)
with G′ = (V ′, E ′) such that V ′(v) ∈ X′ for all v ∈ V ′; E ′(uv) ∈ Y′

for all uv ∈ E ′; the underlying undirected graph of G′ is connected;
and Z(G ′) = Z(G∗).

Let E∗ = E0 ∪ E1, where E0 consists of the edges in E∗ whose
weight is a P-matrix and E1 consists of the edges in E∗ whose
weight is a P-diagonal matrix. We write V1, . . . , Vg, for some g ≥ 1,
to denote the connected components of (V ∗, E1), where we view E1

as a set of undirected edges and (V ∗, E1) as an undirected graph.
Then, we have the following observation:
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Observation 5.6. Let φ : V ∗ → [n] be an assignment with non-
zero weight: wt(G∗, φ) �= 0. Then for any i ∈ [g], there exists a
unique ki ∈ [n] such that φ(v) = ki for all v ∈ Vi.

Now we construct G ′ = (G′,V ′, E ′). First we construct G′ =
(V ′, E ′). V ′ is exactly [g] in which vertex i ∈ [g] corresponds to Vi.
For every edge uv ∈ E0 such that u ∈ Vi, v ∈ Vj, and i �= j ∈ [g],
we add an edge from i to j in G′. This finishes the construction of
G′. It is easy to verify that the underlying undirected graph of G′

is also connected.
Finally, we assign vertex and edge weights. For each edge ij in

G′, suppose it is created because of uv ∈ E0. Then the edge weight
of ij is the same as that of uv. As a result, all the edge weight
matrices of G ′ come from Y′. (Since by definition of gen-pair, Y′

contains all the P-matrices in Y∗.)

We define the vertex weights of G ′ as follows. If Vi = {v} is
a singleton, then the vertex weight of i in G ′ is the same as the
weight of v in G∗. Otherwise, we let v1, . . . , vr be the vertices in
Vi with r > 1, let e1, . . . , es be the edges in E1 with both vertices
in Vi for some s ≥ 1, and let e′

1, . . . , e
′
t be the edges in E0 with

both vertices in Vi for some t ≥ 0. We use w[j] ∈ X∗ to denote
the vertex weight of vj in G ′ C[j] ∈ Y∗ to denote the P-diagonal
matrix of ej and D[j] ∈ Y∗ to denote the P-matrix of e′

j. Then we
assign the following vertex weight vector w to i ∈ V ′:

wk = w
[1]
k · · ·w

[r]
k · C

[1]
k,k · · ·C

[s]
k,k · D

[1]
k,k · · · D

[t]
k,k, for every k ∈ [n].

By definition, w ∈ Y′. We also have that G ′ can be computed in
polynomial time (in the input size of G∗). Using Observation 5.6,
it is easy to verify that Z(G ′) = Z(G∗).

This completes the proof of Lemma 3.7.

6. Reduction: normalized matrices are free

To give a polynomial-time reduction from (X′,Y′) = gen-pair(X,
Y) to (X,Y), we need to first prove a technical lemma on normal-

ized block-rank-1 matrices as defined below.
Let C be an m × m block-rank-1 matrix of block pattern T

and representation (α,β), where T = {(A1, B1), . . . , (Ar, Br)} for
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some r ≥ 1. By definition, α satisfies

∑

j∈Ai

αj = 1, for all i ∈ [r].

We say C′ is the normalized version of C if it is an m × m block-
rank-1 matrix of block pattern T and representation (α, δ), where

δj =
βj

∑

k∈Bi
βk

, for all j ∈ Bi and i ∈ [r],

so that δ also satisfies
∑

j∈Bi

δj = 1, for all i ∈ [r].

Let (P,Q) be a finite T -pair for some non-trivial m × m block
pattern T , and

Q =
{

C[1], . . . ,C[s]
}

,

in which every C[i] is block-rank-1 and has representation (α[i],β[i]).
For each i ∈ [s], we let D[i] denote the normalized version of C[i]

with representation (α[i], δ[i]), and

Q′ =
{

C[1], . . . ,C[s],D[1], . . . ,D[s]
}

.

In the rest of this section, we show in Lemma 6.1 that ZP,Q(·) and
ZP,Q′(·) are computationally equivalent. It will be crucially used in
Section 7, where we give a polynomial-time reduction from (X′,Y′)
to (X,Y). To obtain such a reduction, it follows from Lemma 6.1
that it suffices to give a polynomial-time reduction from (X′,Y′)
to (X,Y†) where Y† contains all matrices in Y as well as their
normalized versions.

Lemma 6.1. ZP,Q(·) and ZP,Q′(·) are computationally equivalent.

Proof. In the proof, we use two levels of interpolations and
Vandermonde systems.

We start with some notation. Let G = (G, V , E) be the input
labeled directed graph of ZP,Q′(·) with G = (V,E). For v ∈ V , we
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use w[v] ∈ P to denote its vertex weight. We use Ei ⊆ E, i ∈ [s],
to denote the set of edges labeled with C[i], and Fi ⊆ E, i ∈ [s],
to denote the set of edges labeled with D[i]. For every assignment
ξ : V → [m], we define

vw(ξ) =
∏

v∈V

w
[v]
ξ(v), cw(ξ) =

∏

i∈[s]

∏

uv∈Ei

C
[i]
ξ(u),ξ(v),

dw(ξ) =
∏

i∈[s]

∏

uv∈Fi

D
[i]
ξ(u),ξ(v).

Note that a product over an empty set is equal to 1. Then we need
to compute the following sum

ZP,Q′(G) =
∑

ξ

vw(ξ) · cw(ξ) · dw(ξ).

For all a ∈ [s] and b ∈ [r], we use K
[a]
b > 0 to denote the number

such that

C
[a]
i,j = K

[a]
b · D

[a]
i,j , for all i ∈ Ab and j ∈ Bb.

Actually, this gives us the following equation

C
[a]
i,j = K

[a]
b · D

[a]
i,j , for all i ∈ Ab and j ∈ [m],

since C[a] and D[a] have the same block pattern T . Then we use
kw(ξ), where ξ : V → [m], to denote

kw(ξ) =
∏

a∈[s]

⎛

⎝

∏

uv∈Fa with ξ(u)∈Ab

K
[a]
b

⎞

⎠ .

We use X to denote the following set:
⎧

⎨

⎩

∏

a∈[s]

∏

b∈[r]

(

K
[a]
b

)ma,b

:ma,b are non-negative integers that sum to |E|

⎫

⎬

⎭

.

It is clear that |X| is polynomial in |E|, since both s and r are
constants, and that X can be computed in polynomial time. We
also have that kw(ξ) ∈ X for all ξ. Below we use L to denote |X|.

For all k ∈ [0 : L−1], we build a new graph G [k] = (G[k],V [k], E [k])
below, where G[k] = (V [k], E[k]):
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1. V [k] contains V as a subset, and every v ∈ V is labeled with
the same vertex weight as in G;

2. For all i ∈ [s] and uv ∈ Ei, we add one edge uv ∈ E[k] and
label it with the same matrix C[i];

3. For all i ∈ [s] and all e = uv ∈ Fi, we add L − k parallel
edges from u to v with C[i] as their edge weights; we also
add 2k new vertices ue,j and ve,j, j ∈ [k], to V [k]; we add
one edge from u to ue,j and one edge from ve,j to v for all
j ∈ [k], all of which are labeled with C[i]. For each new
vertex, we assign 1 as its vertex weight.

It is clear that G [k] can be constructed in polynomial time and is a
valid input of ZP,Q(·).

Fix k ∈ [0 : L − 1]. For every assignment φ : V → [m], we let
Ξφ denote the set of all ξ : V [k] → [m] such that ξ(v) = φ(v) for all
v ∈ V . We also define

wt[k](φ) =
∑

ξ∈Ξφ

wt(G [k], ξ).

Then we have the following equation

ZP,Q(G [k]) =
∑

ξ:V [k]→[m]

wt(G [k], ξ) =
∑

φ:V →[m]

wt[k](φ).

By the construction, we show that

(6.2) wt[k](φ) = vw(φ) · cw(φ) ·
(

dw(φ)
)L

·
(

kw(φ)
)L+k

,

for all k ∈ [0 : L − 1]. First, we have

wt[k](φ) = vw(φ) · cw(φ)·

∑

ξ∈Ξφ

⎛

⎝

∏

i∈[s]

⎛

⎝

∏

e=uv∈Fi

(

C
[i]
ξ(u),ξ(v)

)L−k

⎛

⎝

∏

j∈[k]

C
[i]
ξ(u),ξ(ue,j)

C
[i]
ξ(ve,j),ξ(v)

⎞

⎠

⎞

⎠

⎞

⎠ .

(6.3)
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For each e = uv ∈ Fi for some i ∈ [s], there must exist an index be

∈ [r] such that φ(u) ∈ Abe
and φ(v) ∈ Bbe

; otherwise, both sides of
(6.2) are 0 and we are done. In this case, the sum in (6.3) becomes

(6.4)

∏

i∈[s]

⎛

⎜

⎝

∏

e=uv∈Fi

(

K
[i]
be

· D
[i]
ξ(u),ξ(v)

)L−k

⎛

⎝

∑

x∈Bbe

C
[i]
ξ(u),x

⎞

⎠

k ⎛

⎝

∑

x∈Abe

C
[i]
x,ξ(v)

⎞

⎠

k
⎞

⎟

⎠
.

By the definition of (α[i],β[i]) and (α[i], δ[i]), we have
∑

x∈Bbe

C
[i]
ξ(u),x =α

[i]
ξ(u)

∑

x∈Bbe

β[i]
x =α

[i]
ξ(u) ·K

[i]
be

and
∑

x∈Abe

C
[i]
x,ξ(v) =β

[i]
ξ(v).

As a result, (6.4) becomes

∏

i∈[s]

(

∏

e=uv∈Fi

(

K
[i]
be

· D
[i]
ξ(u),ξ(v)

)L−k (

α
[i]
ξ(u) · K

[i]
be

)k (

β
[i]
ξ(v)

)k

)

=
∏

i∈[s]

(

∏

e=uv∈Fi

(

K
[i]
be

)L+k (

D
[i]
ξ(u),ξ(v)

)L

)

.

This finishes the proof of equation (6.2).
Since L is polynomial in the input size, we can use ZP,Q(·) as

an oracle to compute

∑

φ:V →[m]

vw(φ) · cw(φ) ·
(

dw(φ)
)L

·
(

kw(φ)
)L+k

for all k ∈ [0 : L − 1] in a polynomial number of steps.
For every x ∈ X, we use Φx to denote the set of φ : V → [m]

with kw(φ) = x, and then, we computed

∑

x∈X

(

∑

φ∈Φx

vw(φ) · cw(φ) ·
(

dw(φ)
)L

)

· xL+k

for all k ∈ [0 : L − 1]. Since x > 0 for all x ∈ X, we can solve this
Vandermonde system and obtain

∑

φ∈Φx

vw(φ) · cw(φ) ·
(

dw(φ)
)L
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for each x ∈ X in a polynomial number of steps.
It is also clear that the whole process can be repeated for any

L′ ≥ L with L′ ≤ L + poly(input size), and we can use ZP,Q(·) as
an oracle to compute

∑

φ∈Φx

vw(φ) · cw(φ) ·
(

dw(φ)
)L′

,

for all x ∈ X and L ≤ L′ ≤ L + poly(input size), in a polynomial
number of steps.

Similar to the definition of X for kw earlier, we can define a set
Y such that |Y | is polynomial, Y can be computed in polynomial
time and contains all possible values of dw(φ) for φ : V → [m]
(note that it is possible that 0 ∈ Y ). Let M = |Y |. For every
x ∈ X, we can compute

∑

φ∈Φx

vw(φ) · cw(φ) ·
(

dw(φ)
)L+k

for all k ∈ [0 : M −1]. Let Φx,y denote the set of φ with kw(φ) = x
and dw(φ) = y. Solving this Vandermonde system, we get

∑

φ∈Φx,y

vw(φ) · cw(φ)

for all x ∈ X and 0 < y ∈ Y . Finally, using all these items, we can
compute ZP,Q′(G) in a polynomial number of steps:

ZP,Q′(G) =
∑

x∈X, 0<y∈Y

⎛

⎝

∑

φ∈Φx,y

vw(φ) · cw(φ)

⎞

⎠ · y.

This proves the lemma since the other direction from ZP,Q(·) to
ZP,Q′(·) is trivial. �

7. Reduction from (X′, Y′) to (X, Y)

Let (X,Y) be a T -pair, where T is a non-trivial m × m block
pattern T = {(A1, B1), . . . , (Ar, Br)} with r ≥ 1 and every matrix
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in Y is block-rank-1. Let P be the r × r pattern where P =
gen(T ) and (X′,Y′) be the P-pair generated from (X,Y) using
the gen-pair operation: (X′,Y′) = gen-pair(X,Y). We also use
(X∗,Y∗) to denote the generalized P-pair defined in Section 4.

In this section, we prove that (X′,Y′) is polynomial-time re-
ducible to (X,Y). To this end, we first reduce (X′,Y′) to (X∗,Y∗)
and then (X∗,Y∗) to (X,Y). The first step is trivial, so we will only
give a polynomial-time reduction from (X∗,Y∗) to (X,Y) below.

Let P∗ = {p[i] : i ∈ [s]} be a finite subset of vectors in X∗ with
1 ∈ P∗ and Q∗ = {F[i] : i ∈ [t]} be a finite subset of matrices
in Y∗. By the definition of gen-pair, they can be generated by
a finite subset P = {w[i] : i ∈ [h]} ⊆ X with 1 ∈ P and a finite
subset Q = {C[i] : i ∈ [g]} ⊆ Y in the following sense. (We let
(α[i],β[i]) denote the representation of C[i] for every i ∈ [g].)

For every matrix F ∈ Q∗, there exists a (2g + 1)-tuple
(

k ∈ [h];k = (k1, . . . , kg); � = (�1, . . . , �g)
)

,

where ki, �i ≥ 0, k �= 0 and � �= 0, such that

(7.1) Fi,j =
∑

x∈Bi∩Aj

(

β[1]
x

)k1

· · ·
(

β[g]
x

)kg

·
(

α[1]
x

)�1

· · ·
(

α[g]
x

)�g

·w[k]
x .

This (2g + 1)-tuple is also call the (not necessarily unique) repre-
sentation of F with respect to (P,Q).

For every p ∈ P∗, there exist three finite (and possibly empty)
sets S1, S2, and S3 of tuples, where every tuple in S1 and S2 is of
the form

(

k ∈ [h];k = (k1, . . . , kg)
)

with ki ≥ 0 and k �= 0, and every tuple in S3 is of the form
(

k ∈ [h];k = (k1, . . . , kg); � = (�1, . . . , �g)
)

with ki, �i ≥ 0, k �= 0 and � �= 0. Every tuple in S1 gives us a
vector whose ith entry, i ∈ [r], is equal to

∑

x∈Ai

(

α[1]
x

)k1

· · ·
(

α[g]
x

)kg

· w[k]
x ;
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every tuple in S2 gives a vector whose ith entry, i ∈ [r], is equal to

∑

x∈Bi

(

β[1]
x

)k1

· · ·
(

β[g]
x

)kg

· w[k]
x ;

and every (2g + 1)-tuple in S3 gives us a vector whose ith entry,
i ∈ [r], is equal to

∑

x∈Bi∩Ai

(

β[1]
x

)k1

· · ·
(

β[g]
x

)kg

·
(

α[1]
x

)�1

· · ·
(

α[g]
x

)�g

· w[k]
x .

Vector p is then the Hadamard product of all these vectors.

We remark that all exponents ki, �i in the equations above are
considered as constants because both (P,Q) and (P∗,Q∗) are fixed
(when we are concerned with ZP,Q(·) and ZP∗,Q∗(·) as two compu-
tational problems). We now prove the following lemma.

Lemma 7.2. ZP∗,Q∗(·) is polynomial-time reducible to ZP,Q(·).

7.1. Proof sketch. We first give a proof sketch. Again, we will
use interpolations and Vandermonde systems.

First, by Lemma 6.1, we only need to give a reduction from
ZP∗,Q∗(·) to ZP,R(·), where

R =
{

C[i],D[i] : i ∈ [g]
}

contains both C[i] and its normalized version D[i], i ∈ [g].

Let G = (G, V , E) be an input labeled graph of ZP∗,Q∗(·), where
G = (V,E). For every assignment ξ : V → [r], we will define
nvw(ξ) > 0. Moreover, let X be the set of all possible values of
nvw(ξ), and L = |X|, then L is polynomially bounded. For every
k ∈ [L], we will build a new labeled directed graph G [k] from G. G [k]

is a valid input graph of ZP,R(·) (with domain [m]) and satisfies

(7.3) ZP,R(G [k]) =
∑

ξ:V →[r]

wt(G, ξ) ·
(

nvw(ξ)
)k

.
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For each x ∈ X, we use Ξx to denote the set of all ξ : V → [r]
with nvw(ξ) = x. Then by solving the Vandermonde system which
consists of equations (7.3) for k = 1, 2, . . . , L, we can compute

∑

ξ∈Ξx

wt(G, ξ), for every x ∈ X,

which allow us to compute in polynomial time

ZP∗,Q∗(G) =
∑

ξ:V →[r]

wt(G, ξ) =
∑

x∈X

(

∑

ξ∈Ξx

wt(G, ξ)

)

.

7.2. Construction of G [k]. We start with the construction of
G [1] = (G[1],V [1], E [1]). It will become clear that the construction
can be generalized to get G [k] for every k ∈ [L].

Let V = [n], then the vertex set V [1] of G[1] = (V [1], E[1]) will be
defined as a union: V [1] = R1∪R2∪· · ·∪Rn, where Rk corresponds
to vertex k ∈ V and any edge uv ∈ E[1] will be between two vertices
u, v ∈ V [1] such that u, v ∈ Rk for some unique k ∈ [n]. Ri and Rj,
i �= j ∈ [n], are not necessarily disjoint, and there could be vertices
shared by (at most) two different sets Ri and Rj. We further divide
the vertices of Ri, i ∈ [n], into three types: In the subgraph of G[1]

spanned by Ri,

1. The Type-L vertices only have outgoing edges;

2. The Type-R vertices only have incoming edges; and

3. The Type-M vertices have both incoming and outgoing edges.

When adding a new vertex, we will also specify which type it is.
The construction also guarantees that the underlying undirected
graph spanned by every Ri is connected.

7.2.1. Construction of G[1] = (V [1], E[1]). We start with the
vertex set V [1].

1. First, for every i ∈ [n] and a ∈ [g], we add a new Type-L
vertex ui,a in Ri and add a new Type-R vertex wi,a in Ri.
All these vertices appear in Ri only.
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2. Second, for every e = ij ∈ E, where i, j ∈ [n], we add a
vertex ve ∈ Ri ∩ Rj, which is a Type-R vertex in Ri and a
Type-L vertex in Rj.

3. Finally, for every i ∈ V let p ∈ P∗ be its vertex weight in G.
Then by the discussion earlier, it can be generated from
(P,Q) using three finite sets of tuples S1,S2, and S3. For
each tuple s in S1 we add a new Type-L vertex vi,s in Ri;
for each tuple s in S2, we add a new Type-R vertex in Ri;
and for each tuple s in S3 we add a new Type-M vertex in
Ri. All these vertices appear in Ri only.

We will add some more vertices later. Now we start to create edges
and assign edge/vertex weights.

First, for every i ∈ [n], we add 2g edges to connect ui,a and
wi,a, a ∈ [g]:

1. For every a ∈ [g], add one edge from ui,a to wi,a and label
the edge with C[1];

2. For every a ∈ [g], add one edge from ui,a to wi,a+1 (with
wi,g+1 = wi,1) and label it with C[1];

3. For every a ∈ [g], the vertex weight vector of both ui,a and
wi,a is the all-one vector 1.

Second, for each edge e = ij ∈ E, we add the incident edges of
ve ∈ Ri ∩ Rj as follows. Assume the edge weight matrix of ij in G
is generated by (P,Q) using the following (2g + 1)-tuple:

(

k ∈ [h];k = (k1, . . . , kg); � = (�1, . . . , �g)
)

,

where ki, �i ≥ 0, k �= 0 and � �= 0. Then we add the following
incident edges of ve:

1. For each b ∈ [g], we add kb parallel edges from ui,b to ve in
Ri, all of which are labeled with C[b];

2. For each b ∈ [g], we add �b parallel edges from ve to wj,b in
Rj, all of which are labeled with C[b];
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3. Assign the vertex weight vector w[k] ∈ P to ve.

Finally, for every vertex i ∈ V we use p to denote its vertex
weight in G. Assume p is generated by (P,Q) using three finite sets
S1,S2, and S3 of tuples. For each s = (k ∈ [h];k = (k1, . . . , kg)) in
S1 with ki ≥ 0 and k �= 0, we already added a Type-L vertex vi,s

in Ri (which appears in Ri only). We add the following incident
edges of vi,s:

1. For each b ∈ [g], add kb parallel edges from vi,s to wi,b in Ri,
all of which are labeled with C[b];

2. Assign the vertex weight vector w[k] ∈ P to vi,s.

For every s = (k ∈ [h];k = (k1, . . . , kg)) in S2, we already added
a Type-R vertex vi,s ∈ Ri. We add the following incident edges of
vi,s in Ri:

1. For each b ∈ [g], add kb parallel edges from ui,b to vi,s in Ri,
all of which are labeled with C[b];

2. Assign the vertex weight vector w[k] ∈ P to vi,s.

For every tuple s = (k ∈ [h];k = (k1, . . . , kg); � = (�1, . . . , �g))
in S3, we already added a Type-M vertex vi,s in Ri. We add the
following incident edges of vi,s in Ri:

1. For every b ∈ [g], add kb parallel edges from ui,b to vi,s, all
of which are labeled with C[b];

2. For every b ∈ [g], add �b parallel edges from vi,s to wi,b, all
of which are labeled with C[b]; and

3. Assign the vertex weight vector w[k] ∈ P to vi,s.

It can be checked that the (undirected) subgraph spanned by Ri,
for all i ∈ [n], is connected.

This almost finishes the construction. The only thing left is to
add some more vertices and edges so that the out-degree of ui,a

and the in-degree of wi,a are the same for all i ∈ [n] and a ∈ [g].
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To this end, we notice that for all i ∈ [n] and a ∈ [g], both
the out-degree of ui,a and the in-degree of wi,a constructed so far
are linear in the maximum degree of G, because all the parameters
ki, �i and the sets Si are considered as constants. As a result, we
can pick a large enough positive integer M ≥ 2 which is linear in
the maximum degree of G such that M is at least the out-degree
of ui,a and the in-degree of wi,a constructed so far, for all i and a.
We now add vertices and edges so that the out-degree of ui,a and
the in-degree of wi,a all become M .

Let i ∈ [n] and a ∈ [g]. Assume the current out-degree of ui,a

is k ≤ M . Then we add M −k new Type-R vertices in Ri and add
one edge from ui,a to each of these vertices. The vertex weights of
all the new vertices are 1, and the edge weights of all the new edges
are D[a] (recall that we are allowed to use the normalized version
D[a] of C[a], and this is actually the only place we use it).

Similarly, assume the current in-degree of wi,a is k ≤ M . Then
we add M − k new Type-L vertices in Ri and add one edge from
each of these vertices to wi,a. The vertex weights of all the new
vertices are 1, while the edge weights of all the new edges are C[a].

This finishes the construction of the new labeled directed graph
G [1] = (G[1],V [1], E [1]).

7.3. Proof of Equation (7.3). We start with the definition of
nvw(ξ), for any assignment ξ : V = [n] → [r].

First, for each a ∈ [g], we let μ[a] denote the following positive
r-dimensional vector:

μ
[a]
i =

∑

x∈Ai

(

α[1]
x

)2

·
(

α[a]
x

)M−2

for every i ∈ [r]. For every a ∈ [g], we let ν [a] denote the following
positive r-dimensional vector:

ν
[a]
i =

∑

x∈Bi

(

β[1]
x

)2

·
(

β[a]
x

)M−2

for every i ∈ [r]. Finally, we define nvw(ξ) as follows:

nvw(ξ) =
∏

i∈[n]

∏

a∈[g]

μ
[a]
ξ(i) · ν

[a]
ξ(i), for any ξ : V = [n] → [r].
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It is easy to check that nvw(ξ) > 0 and the number of possible
values of nvw(ξ) is polynomial in n.

Now we prove equation (7.3) for k = 1:

(7.4) ZP,R(G [1]) =
∑

ξ:V →[r]

wt(G, ξ) · nvw(ξ).

Let ξ be an assignment from V to [r]. We use Φξ to denote the
set of all assignments φ : V [1] → [m] such that for every edge uv in
the subgraph spanned by Ri, i ∈ [n], we have

φ(u) ∈ Aξ(i) and φ(v) ∈ Bξ(i).

In other words, for all i ∈ [n] and v ∈ Ri, if v is a Type-L vertex,
then φ(v) ∈ Aξ(i); if v is a Type-R vertex, then φ(v) ∈ Bξ(i); and
if v is a Type-M of Ri, then φ(v) ∈ Aξ(i) ∩ Bξ(i). Equivalently, we
can associate every vertex v ∈ V [1] with a subset Uv ⊆ [m], where

1. If v appears in Ri and Rj for some i �= j ∈ V = [n], and v is
Type-R in Ri and Type-L in Rj, then Uv = Bξ(i) ∩ Aξ(j);

2. Otherwise, assume v only appears in Ri for some
i ∈ V = [n]. Then

(a) If v is Type-L, then Uv = Aξ(i);

(b) If v is Type-R, then Uv = Bξ(i); and

(c) If v is Type-M, then Uv = Bξ(i) ∩ Aξ(i),

such that φ ∈ Φξ if and only if φ(v) ∈ Uv for all v ∈ V [1]. In
particular, Φξ = ∅ iff Uv = ∅ for some v.

By the construction, we know the subgraph spanned by Ri is
connected, for any i ∈ [n]. It implies that wt(G [1], φ) �= 0 only if
φ ∈ Φξ for a unique ξ : V → [r]. As a result, we have

ZP,R(G [1]) =
∑

φ

wt(G [1], φ) =
∑

ξ

∑

φ∈Φξ

wt(G [1], φ),

and to prove (7.4) we only need to show that

(7.5)
∑

φ∈Φξ

wt(G [1], φ) = wt(G, ξ) · nvw(ξ)
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for any assignment ξ : V = [n] → [r].
We use w[v] to denote the weight vector of v ∈ V [1], Ei to denote

the set of edges in E[1] labeled with C[i], and Fi to denote the set of
edges in E[1] labeled with D[i], and then, the LHS of (7.5) is equal
to

∑

φ∈Φξ

⎛

⎝

∏

v∈V [1]

w
[v]
φ(v)

∏

i∈[g]

(

∏

uv∈Ei

C
[i]
φ(u),φ(v)

)(

∏

uv∈Fi

D
[i]
φ(u),φ(v)

)

⎞

⎠ .

By the definition of Φξ, if Φξ �= ∅, then every φ ∈ Φξ satisfies

C
[i]
φ(u),φ(v) = α

[i]
φ(u) · β

[i]
φ(v) and D

[i]
φ(u),φ(v) = α

[i]
φ(u) · δ

[i]
φ(v),

where (α[i], δ[i]) is the representation of D[i]. As a result, the LHS
of (7.5) becomes

∑

φ∈Φξ

⎛

⎝

∏

v∈V [1]

w
[v]
φ(v)

∏

i∈[g]

(

∏

uv∈Ei

α
[i]
φ(u) · β

[i]
φ(v)

)(

∏

uv∈Fi

α
[i]
φ(u) · δ

[i]
φ(v)

)

⎞

⎠ .

Because φ ∈ Φξ iff φ(v) ∈ Uv for all v, we can express this sum
of products as a product of sums:

∏

v∈V [1] Hv, in which every Hv,
v ∈ V [1], is a sum over φ(v) ∈ Uv.

Finally, we show the following equation:

(7.6)
∏

v∈V [1]

Hv = wt(G, ξ) · nvw(ξ).

This follows from the construction of G [1] and the following obser-
vations:

1. For each ve ∈ Ri ∩ Rj, which is added because of ij ∈ E, it
can be checked that the sum Hve

over Uve
= Bξ(i) ∩ Aξ(j) is

Fξ(i),ξ(j), where F is the weight of ij in G (as in (7.1)).

2. Let p denote the vertex weight of i ∈ V , which is generated
using S1,S2, and S3. Then we have

pξ(i) =
∏

s∈S1

Hvi,s

∏

s∈S2

Hvi,s

∏

s∈S3

Hvi,s
.
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3. For all i ∈ [n] and a ∈ [g], we have

μ
[a]
ξ(i) = Hui,a

and ν
[a]
ξ(i) = Hwi,a

.

4. Finally, it can be checked that Hv = 1 for all other vertices
in V [1], which is the reason we need to use the normalized
matrices D[a] in the construction.

7.3.1. Construction of G [k]. We can similarly construct G [k] for
every k ∈ [L].

The only difference is that, instead of ui,a and wi,a, we add the
following 2kg vertices in Ri: ui,j,a and wi,j,a, for all j ∈ [k] and
a ∈ [g]. We also connect these vertices by adding 4kg edges, whose
underlying undirected graph is a cycle. All these edges are labeled
with C[1]. We also add extra vertices and edges so that the out-
degree of ui,j,a and the in-degree of vi,j,a are M for all i ∈ [n],
j ∈ [k] and a ∈ [g]. It then can be proved similarly that

ZP,R(G [k]) =
∑

ξ:V →[r]

wt(G, ξ) ·
(

nvw(ξ)
)k

.

This completes the proof of Lemma 3.6.

8. Decidability

In this section, we prove Lemma 3.8 (restated below) and show
that the rank condition is decidable.

Lemma. Let (X0,Y0) be a finite T0-pair with X0 = {1}. Assuming
that T0, . . . , T�−1, T� and (X0,Y0), . . . (X�−1,Y�−1) all satisfy their
conditions in (R) for some � ∈ [h], the rank property for Y� can
be checked in a finite number of steps.

Let T� = {(A1, B1), . . . , (Ar, Br)}. To check the rank property
for Y� (i.e., matrices D ∈ Y� are block-rank-1), it suffices to check
whether every D ∈ Y� satisfies that

Di,j · Di′,j′ − Di,j′ · Di′,j = 0,
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for all k ∈ [r], i, i′ ∈ Ak and j, j′ ∈ Bk. In Section 8.2, we introduce
the notion of matrix polynomials and say that Y� satisfies f if f
is a polynomial over variables

{

xi,j : i ∈ Ak and j ∈ Bk for some k ∈ [r]
}

and evaluates to 0 when xi,j is assigned Di,j, for all D ∈ Y�.
Thus, Y� satisfies the rank property if and only if it satisfies all
polynomials fi,i′,j,j′ of the following form:

xi,j · xi′,j′ − xi,j′ · xi′,j,

where i, i′ ∈ Ak and j, j′ ∈ Bk for some k ∈ [r]. The main com-
ponent of the proof (Section 8.3) shows that to check whether Y�

satisfies a polynomial f or not, it suffices to check a finite number
of polynomials over Y�−1 and a finite number of polynomials over
X�−1 (see Section 8.2 for a similar definition of vector polynomials
applied over vectors in X�−1); a similar reduction also holds for
vector polynomials. This is used in Section 8.4 to show that, to
check the rank property for Y�, it suffices to check a finite number
of polynomials on X0 and Y0, which can be done in a finite number
of steps since both of them are finite.

We start the proof with a technical lemma.

8.1. A technical lemma.

Lemma 8.1. Let L, n and m be three positive integers. For each
i ∈ [L], let a

[i]
1 , . . . , a

[i]
n be a sequence of n positive numbers and

b
[i]
1 , . . . , b

[i]
m be a sequence of m positive numbers. If

∑

i∈[n]

∏

j∈[L]

(

a
[j]
i

)kj

=
∑

i∈[m]

∏

j∈[L]

(

b
[j]
i

)kj

, for all k1, k2, . . . , kL ≥ 1,

then we must have m = n and there exists a permutation π of [n]
such that

a
[j]
i = b

[j]
π(i), for all i ∈ [n] and j ∈ [L].
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Proof. We prove it by induction on L. The base case when L =
1 is trivial. Now assume the lemma is true for L− 1 ≥ 1. Without
loss of generality, we assume that {a

[L]
1 , . . . , a

[L]
n } and {b

[L]
1 , . . . , b

[L]
m }

are already sorted:

a
[L]
1 ≥ · · · ≥ a[L]

n > 0 and b
[L]
1 ≥ · · · ≥ b[L]

m > 0.

We let s ≥ 1 and t ≥ 1 be the two maximum integers such that

a
[L]
1 = a

[L]
2 = · · · = a[L]

s = a > 0 and

b
[L]
1 = b

[L]
2 = · · · = b

[L]
t = b > 0.

First it is easy to show that a = b. Otherwise assume a > b,
then we set k1 = · · · = kL−1 = 1, divide both sides by (a)kL , and
let kL go to infinity. It is easy to check that the LHS converges to

∑

i∈[s]

∏

j∈[L−1]

a
[j]
i > 0,

while the RHS converges to 0, contradicting the assumption.
Second, we fix k1, . . . , kL−1 to be any positive integers, divide

both sides by (a)kL = (b)kL and let kL go to infinity. It is easy to
check that the LHS converges to

∑

i∈[s]

∏

j∈[L−1]

(

a
[j]
i

)kj

,

while the RHS converges to
∑

i∈[t]

∏

j∈[L−1]

(

b
[j]
i

)kj

.

So these two sums are equal for all k1, . . . , kL−1 ≥ 1. Then we
apply the inductive hypothesis to claim that s = t and there exists
a permutation π from [s] to itself such that

(8.2) a
[j]
i = b

[j]
π(i), for all j ∈ [L − 1] and i ∈ [s].

It is also easy to see that for any i ∈ [s], (8.2) also holds for j = L.
We then repeat the whole process after removing the first s

elements from the 2L sequences. �

Additionally, we need the following simple lemma in the proof.
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Lemma 8.3. Let (P1, P2, . . . , ) be a sequence of subsets of some
finite set S. If we have

Pi1 ∩ Pi2 ∩ · · · ∩ Pik �= ∅

for every finite subset {i1, . . . , ik} ⊂ N, then there exists an element
j ∈ S such that j ∈ Pi for all i.

Proof. If for each element j ∈ S, there exists some ij ≥ 1 such
that j �∈ Pij , then the finite intersection

|S|
⋂

j=1

Pij = ∅,

which contradicts the assumption of the lemma. �

8.2. Matrix and vector polynomials. Let (X,Y) be a gener-
alized P-pair, for some m × m pattern P . So every vector w ∈ X

is either positive or P-weakly positive and every D ∈ Y is either
a P-matrix or a P-diagonal matrix. Note that if Y only has P-
matrices, then (X,Y) is a P-pair. The definitions below also apply
to P-pairs.

We say f is a P-matrix polynomial if f is a polynomial over
variables

{

xi,j : (i, j) ∈ P
}

with integer coefficients and zero constant term. We say Y satisfies
f if for every P-matrix D ∈ Y, we have f(D) = 0, in which we
substitute xi,j by Di,j > 0 for all (i, j) ∈ P. We also say (X,Y)
satisfies f if Y satisfies f .

We say f is a P-diagonal matrix polynomial if f is a polynomial
over variables

{

xi : (i, i) ∈ P
}

with integer coefficients and zero constant term. We say Y satisfies
f if every P-diagonal matrix D ∈ Y satisfies f(D) = 0. We also
say (X,Y) satisfies f if Y satisfies f .

We say g is an m-vector polynomial if g is a polynomial over
variables

{

yi : i ∈ [m]
}



398 Cai & Chen cc 28 (2019)

with integer coefficients and zero constant term. Similarly, we say
X satisfies g if every positive vector w ∈ X satisfies g(w) = 0. We
also say (X,Y) satisfies g if X satisfies g.

Finally, we say g is a P-weakly positive vector polynomial if g
is a polynomial over variables

{

yi : (i, i) ∈ P
}

with integer coefficients and zero constant term. We say X satisfies
g if every P-weakly positive vector w ∈ X satisfies g(w) = 0. We
also say (X,Y) satisfies g if X satisfies g.

Let F be a finite set of P-matrix, P-diagonal matrix, m-vector,
and P-weakly positive vector polynomials. Then we say (X,Y)
satisfies F if (X,Y) satisfies every polynomial f ∈ F .

Similarly, given any block pattern T , we can define T -matrix
polynomials, T -diagonal matrix polynomials, and T -weakly posi-
tive vector polynomials for T -pairs and generalized T -pairs.

As discussed at the beginning of the section, when (X,Y) is a
T -pair, to check whether Y satisfies the rank condition (i.e., every
matrix D ∈ Y is block-rank-1), one only needs to check whether Y

satisfies all the T -matrix polynomials fi,i′,j,j′ of the following form

fi,i′,j,j′(x) = xi,j · xi′,j′ − xi,j′ · xi′,j,

where i, i′ ∈ Ak and j, j′ ∈ Bk for some k ∈ [r].

8.3. Checking matrix and vector polynomials. Now let
(X,Y) be a T -pair for some non-trivial m × m block pattern T =
{(A1, B1), . . . , (Ar, Br)} with r ≥ 1. We also assume that every
matrix in Y is block-rank-1, and X is closed.

We can apply the gen-pair operation to get a new P-pair

(X′,Y′) = gen-pair(X,Y), where P = gen(T ).

We also let (X∗,Y∗) denote the generalized P-pair defined in Sec-
tion 4. By definition, X∗ is also closed.

In this section, we first show that to check whether (X∗,Y∗)
satisfies a matrix or vector polynomial, one only needs to check
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finitely many polynomials for (X,Y). One can prove a similar re-
lation between (X′,Y′) and (X∗,Y∗). As a result, to check whether
(X′,Y′) satisfies a polynomial or not, we only need to check finitely
many polynomials for (X,Y).

We start with the following lemma.

Lemma 8.4. Let f be a P-matrix or P-diagonal matrix polyno-
mial. Then one can construct a finite set {F1, . . . , FL} in a finite
number of steps, in which every Fi is a finite set of T -matrix,
m-vector, and T -weakly positive vector polynomials, such that

(X∗,Y∗) satisfies f ⇐⇒ ∃ i ∈ [L] such that (X,Y) satisfies Fi.

Proof. We start with the case when f is a P-matrix polynomial.
If f is the zero polynomial, then the lemma follows by setting

L = 1 and F1 to be the set consists of the zero polynomial only.
From now on, we assume that f is not the zero polynomial.

Let {C[1], . . . ,C[s]} and {D[1], . . . ,D[t]} be two finite subsets of
T -matrices in Y and {w[1], . . . ,w[h]} be a finite subset of positive

vectors in X, where s, t, h ≥ 1. We also let (α[i],β[i]) and (γ [i], δ[i])
denote the representations of C[i] and D[i], respectively. By the
definition of Y∗ and the assumption that Y is closed, we can con-
struct from every (s + t + h)-tuple

p =
(

k1, . . . , ks, �1, . . . , �t, e1, . . . , eh

)

, where ki, �i, ei ≥ 1,

the following P-matrix C[p] in Y∗: the (i, j)th entry of C[p] is

(8.5)
∑

y∈Bi∩Aj

(

β[1]
y

)k1

· · ·
(

β[s]
y

)ks

·
(

γ[1]
y

)�1

· · ·
(

γ[t]
y

)�t

·
(

w[1]
y

)e1

· · ·
(

w[h]
y

)eh

for all i, j ∈ [r]. This follows from the fact that the Hadamard
product of (w[1])e1 , . . . , (w[h])eh is actually a vector in X, because
X is known to be closed.

Assuming that (X∗,Y∗) satisfies f , by definition we must have

(8.6) f(C[p]) = 0, for all p,

since C[p] is a P-matrix in Y∗. Now, for any p, we substitute (8.6)
into (8.5). By pushing products through sum and collecting the
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terms with positive and negative coefficients, we find that there are
non-negative constants n1 and n2 and monomials f1, . . . , fn1 , g1, . . . ,
gn2 (which are not necessarily distinct) such that

∑

i∈[n1]

⎛

⎝

∏

j∈[s]

(

fi

(

β
[j]
1 , . . . , β[j]

m

)

)kj

⎞

⎠

⎛

⎝

∏

j∈[t]

(

fi

(

γ
[j]
1 , . . . , γ[j]

m

)

)�j

⎞

⎠

⎛

⎝

∏

j∈[h]

(

fi

(

w
[j]
1 , . . . , w[j]

m

)

)ej

⎞

⎠

=
∑

i∈[n2]

⎛

⎝

∏

j∈[s]

(

gi

(

β
[j]
1 , . . . , β[j]

m

)

)kj

⎞

⎠

⎛

⎝

∏

j∈[t]

(

gi

(

γ
[j]
1 , . . . , γ[j]

m

)

)�j

⎞

⎠

⎛

⎝

∏

j∈[h]

(

gi

(

w
[j]
1 , . . . , w[j]

m

)

)ej

⎞

⎠ .

Note that n1 and n2 as well as all the monomials fi and gi only
depend on the P-matrix polynomial f but do not depend on the
choices of p and the subsets {C[1], . . . ,C[s]}, {D[1], . . . ,D[t]}, and
{w[1], . . . ,w[h]}. Moreover, because we assumed that f is not the
zero polynomial, at least one of n1 and n2 is positive.

It follows directly from Lemma 8.1 that if (X∗,Y∗) satisfies f ,
then we must have n1 = n2 which we denote by n in the rest of
the proof. (If n1 �= n2, then we already know that f(C[p]) = 0
cannot hold for all p. The lemma then follows by setting L = 1
and F1 to be the set that consists of the following m-vector poly-
nomial: g(x) = x1 so that (X,Y) does not satisfy F1.) Moreover,
by Lemma 8.1, if (X∗,Y∗) satisfies f then there also exists a per-
mutation π over [n] such that

fi

(

β
[j]
1 , . . . , β[j]

m

)

= gπ(i)

(

β
[j]
1 , . . . , β[j]

m

)

, for j ∈ [s] and i ∈ [n];

fi

(

γ
[j]
1 , . . . , γ[j]

m

)

= gπ(i)

(

γ
[j]
1 , . . . , γ[j]

m

)

, for j ∈ [t] and i ∈ [n];

fi

(

w
[j]
1 , . . . , w[j]

m

)

= gπ(i)

(

w
[j]
1 , . . . , w[j]

m

)

, for j ∈ [h] and i ∈ [n],
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for any s, t, h ≥ 1, any two finite subsets {C[1], . . . ,C[s]} and
{D[1], . . . ,D[t]} of T -matrices in Y, and any finite subset {w[1], . . . ,
w[h]} of positive vectors in X.

Since all the discussion above and all the monomials fi and gi

do not depend on the choice of the three subsets, we can apply
Lemma 8.3 to claim that if (X∗,Y∗) satisfies f , then there must
exist a universal permutation π over [n] such that for every D ∈ X

(since (X,Y) is a T -pair, D is a T -matrix),

fi(α1, . . . , αm) − gπ(i)(α1, . . . , αm) = 0, for all i ∈ [n] and(8.7)

fi(β1, . . . , βm) − gπ(i)(β1, . . . , βm) = 0, for all i ∈ [n],(8.8)

where (α,β) is the representation of D, and for every positive
vector w ∈ Y,

(8.9) fi(w1, . . . , wm) − gπ(i)(w1, . . . , wm) = 0, for all i ∈ [n].

(To see this, we take S in Lemma 8.3 to be the set of all permu-
tations over [n]; each matrix D ∈ X (with representation (α,β))
corresponds to two subsets in the sequence: one consists of all per-
mutations over [n] that satisfy (8.7) and the other consists of all
permutations over [n] that satisfy (8.8); each positive w ∈ Y corre-
sponds to a subset in the sequence that consists of all permutations
over [n] that satisfy (8.9). Our earlier discussion implies that any
finite collection of these subsets of permutations has nonempty
intersection.) It is also easy to check that these conditions are
sufficient.

Furthermore, α and β can be expressed by the positive entries
of D as follows. For every i ∈ Ak, where k ∈ [r], let d be the
smallest index in Bk, then we have

αi =
Di,d

∑

j∈Ak
Dj,d

.

For every i ∈ Bk, where k ∈ [r], let d be the smallest index in Ak,
then βi = Dd,i/αd. Now it is easy to see that for every permutation
π over [n], we can construct a finite set Fπ of T -matrix and m-
vector polynomials, such that, if (X∗,Y∗) satisfies f , then (X,Y)
satisfies Fπ for some π.
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The case when f is a P-diagonal matrix polynomial can be
proved similarly. The only difference is that every Fπ is now a
finite set of T -matrix and T -weakly positive vector polynomials. �

It also follows directly by definition that Y′ satisfies a P-matrix
polynomial if and only if Y∗ satisfies the same polynomial, because
Y′ contains precisely all the P-matrices in Y∗. Next, we deal with
vector polynomials.

Lemma 8.10. Let g be an r-vector or a P-weakly positive vector
polynomial. One can construct a finite set {G1, . . . , GL} in a finite
number of steps, in which every Gi is a finite set of T -matrix,
m-vector, and T -weakly positive vector polynomials, such that

(X∗,Y∗) satisfies g ⇐⇒ ∃ i ∈ [L] such that (X,Y) satisfies Gi.

Proof. We only prove the case when g is P-weakly positive.
The other case can be proved similarly. Again, we assume that g
is not the zero polynomial.

Recall that when defining X∗ in Section 4, we first define X#

and X∗ is then the closure of X#: w is a P-weakly positive vector
in X∗ if and only if there exist a finite and possibly empty subset of
positive vectors {w[1], . . . ,w[s]} ⊆ X# for some s ≥ 0, a finite and
nonempty subset of P-weakly positive vectors {u[1], . . . ,u[t]} ⊆ X#

for some t ≥ 1, and positive integers k1, . . . , ks, �1, . . . , �t, such that

w =
(

w[1]
)k1 ◦ · · · ◦

(

w[s]
)ks ◦

(

u[1]
)�1 ◦ . . . ◦

(

u[t]
)�t

.

To prove Lemma 8.10, we construct a finite set {F1, . . . , FM},
in which every Fi is a finite set of r-vector and P-weakly positive
vector polynomials, such that

(8.11) X∗ satisfies g ⇐⇒ ∃ i ∈ [M ] such that X# satisfies Fi.

To this end, we let {w[1], . . . ,w[s]} be a finite subset of positive
vectors in X# and {u[1], . . . ,u[t]} be a finite subset of P-weakly
positive vectors in X#, with s ≥ 0 and t ≥ 1. Then from any tuple

p =
(

k1, . . . , ks, �1, . . . , �t

)

, where ki, �i ≥ 1,
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we get a P-weakly positive vector w[p] ∈ X∗, where

w[p] =
(

w[1]
)k1 ◦ · · · ◦

(

w[s]
)ks ◦

(

u[1]
)�1 ◦ · · · ◦

(

u[t]
)�t

.

Assume X∗ satisfies g, then we have g(w[p]) = 0 for all p. Com-
bining these two equations, we have

∑

i∈[n1]

⎛

⎝

∏

j∈[s]

(

fi

(

w[j]
)

)kj

⎞

⎠

⎛

⎝

∏

j∈[t]

(

fi

(

u[j]
)

)�j

⎞

⎠

=
∑

i∈[n2]

⎛

⎝

∏

j∈[s]

(

gi

(

w[j]
)

)kj

⎞

⎠

⎛

⎝

∏

j∈[t]

(

gi

(

u[j]
)

)�j

⎞

⎠

for all p. In the equation, fi(x) and gi(x) are both monomials
over xi, (i, i) ∈ P. Again, fi and gi only depend on the polyno-
mial g but do not depend on the choices of p and the two subsets
{w[1], . . . ,w[s]} and {u[1], . . . ,u[t]}.

Because g is not the zero polynomial, one of n1 and n2 must be
positive, and we have the following two cases. If n1 �= n2, then by
Lemma 8.1, X∗ cannot satisfy g and (8.11) follows by setting L = 1
and F1 to be the set consists of the following r-vector polynomial:
f(x) = x1.

Otherwise, we have n1 = n2 > 0, which we denote by n. It
follows from Lemma 8.1 and Lemma 8.3 that if X∗ satisfies g, then
there exists a universal permutation π over [n] such that for every
positive and P-weakly positive vector w ∈ X#,

fi(w) = gπ(i)(w), for all i ∈ [n].

As a result, we can construct Fπ for each π, and X∗ satisfies g if
and only if X# satisfies Fπ for some π.

In the second step, we show that for any r-vector or P-weakly
positive vector polynomial f , one can construct {F1, . . . , FL} in a
finite number of steps, in which each Fi is a finite set of T -matrix,
m-vector and T -weakly positive vector polynomials, such that X#

satisfies f if and only if (X,Y) satisfies Fi for some i ∈ [L]. The
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idea of the proof is very similar to the proof of Lemma 8.4 so we
omit it here.

Lemma 8.10, for the case when g is P-weakly positive, then
follows by combining these two steps. �

We can also prove the following lemma similarly.

Lemma 8.12. Let g be an r-vector or a P-weakly positive vector
polynomial. Then one can construct a finite set {G1, . . . , GL} in
a finite number of steps, in which every Gi, i ∈ [L], is a finite set
of P-matrix, P-diagonal matrix, r-vector, and P-weakly positive
vector polynomials, such that

(X′,Y′) satisfies g ⇐⇒ ∃ i ∈ [L] such that (X∗,Y∗) satisfies Gi.

8.4. Decidability of the rank condition. Finally, we use these
lemmas to prove Lemma 3.8, the decidability of the rank condition.

We start with the following observation. Let F = {f1, . . . , fs}
be a finite set of matrix and vector polynomials. For each i ∈ [s],
there is a finite set {Fi,1, . . . , Fi,Li

} in which every Fi,j is some finite
set of polynomials, and we have the following statement:

(X′,Y′) satisfies fi ⇐⇒ ∃ j ∈ [Li] such that (X,Y) satisfies Fi,j.

Then, the conjunction of these statements over fi ∈ F , i ∈ [s], can
be expressed in the same form: One can construct from {Fi,j : i ∈
[s], j ∈ [Li]} a new finite set {G1, . . . , GL} in which every Gj is
some finite set of polynomials, such that

∀f ∈ F,
[

(X′,Y′) satisfies f
]

⇐⇒

∃ j ∈ [L] such that (X,Y) satisfies Gj.

Now we prove Lemma 3.8. After � − 1 ≥ 0 steps, we get a se-
quence of � pairs (X0,Y0), (X1,Y1), . . . , (X�−1,Y�−1), and � block
patterns T0, . . . , T�−1 which satisfy condition (R�−1). Since we as-
sumed that X0 = {1}, every Xi in the sequence is closed.

We show how to check whether every matrix D ∈ Y�, where

(X�,Y�) = gen-pair(X�−1,Y�−1),
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is block-rank-1 or not. To this end, we first check if P = gen(T�−1)
is consistent with a block pattern. If not we conclude that Y�+1

does not satisfy the rank condition.
Otherwise, we use T� to denote the block pattern consistent

with P . To check the rank condition, it is equivalent to check
whether Y� satisfies the following T�-matrix polynomials:

fi,i′,j,j′(x) = xi,j · xi′,j′ − xi,j′ · xi′,j,

where i, i′ ∈ Ak and j, j′ ∈ Bk for some k ∈ [r] and (A1, B1), . . . ,
(Ar, Br) are the pairs in T�.

By Lemma 8.4 and Lemma 8.12, we can construct a finite set
{F1, . . . , FL} in which every Fi is a finite set of T�−1-matrix, m�−1-
vector, and T�−1-weakly positive vector polynomials such that Y�

satisfies the rank condition if and only if (X�−1,Y�−1) satisfies Fi

for some i ∈ [L].
If � = 1, then we are done, since (X0,Y0) is finite and we can

check all the polynomials in Fi for all i ∈ [L] in a finite number of
steps. Otherwise, � ≥ 2 and we can use Lemma 8.4, Lemma 8.10
and Lemma 8.12 as well as the observation above to construct,
for each Fi, a finite set {Fi,1, . . . , Fi,Li

} in which every Fi,j is a fi-
nite set of T�−2-matrix, m�−2-vector, and T�−2-weakly positive vec-
tor polynomials such that (X�−1,Y�−1) satisfies Fi if and only if
(X�−2,Y�−2) satisfies Fi,j for some j ∈ [Li].

We repeat this process until we reach the finite pair (X0,Y0).
So the checking procedure looks like a huge tree of depth �. Every
leaf v of the tree is associated with a finite set Fv of T0-matrix, m0-
vector, and T0-weakly positive vector polynomials, and Y� satisfies
the rank condition if and only if (X0,Y0) satisfies Fv for some leaf
v of the tree.
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P. Hell & J. Nešetřil (2004). Graphs and Homomorphisms. Oxford
University Press.

H.W. Lenstra (1992). Algorithms in Algebraic Number Theory. Bul-

letin of the American Mathematical Society 26(2).

M. Thurley (2009). The complexity of partition functions. PhD

Thesis, Humboldt Universitat zu Berlin.

Manuscript received 29 May 2015

Jin-Yi Cai

Computer Science Department
University of Wisconsin-Madison
Madison
USA
jyc@cs.wisc.edu

and
Beijing University
Beijing
China

Xi Chen

Department of Computer Science
Columbia University
New York
USA
xichen@cs.columbia.edu


	A decidable dichotomy theorem on directed graph homomorphisms with non-negative weights
	Introduction
	Intuition of the dichotomy: domain reduction
	Proof sketch

	Preliminaries
	Main theorems
	Defining new pairs: gen-pair (X,Y)
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Definition of the gen-pair operation
	Definition of Y*
	Definition of X*
	Definition of (X',Y')

	Dichotomy: tractability
	Construction of G' from G
	Construction of G* from G
	Construction of G' from G*


	Reduction: normalized matrices are free
	Reduction from (X',Y') to (X,Y)
	Proof sketch
	Construction of G[k]
	Construction of  G[1]=(V[1],E[1])

	Proof of Equation (7.3)
	Construction of G[k]


	Decidability
	A technical lemma
	Matrix and vector polynomials
	Checking matrix and vector polynomials
	Decidability of the rank condition

	Acknowledgements


