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Abstract—Logistic regression has become a fundamental tool to
facilitate data analysis and prediction in a variety of applications,
including health care and social sciences. Depending on different
sparsity assumptions, logistic regression models often incorporate
various regularizations, including /;-norm, /2-norm and some
non-convex regularizations. In this paper, we propose a non-
convex ¢;_o-regularized logistic regression model assuming that
the coefficients to be recovered are highly sparse. We derive
two numerical algorithms with guaranteed convergence based
on the alternating direction method of multipliers and the
proximal operator of /;_>. Numerical experiments on real data
demonstrate the great potential of the proposed approach.

I. INTRODUCTION

Logistic regression is one of the most fundamental statistical
approaches for analyzing data and making practical predictions
in physics, economy, medical science, social science, and other
related fields. In principle, it estimates the probability of a
response (an independent variable) based on the available
features (dependent variables). In case of binomial logistic
regression, the number of responses is restricted to two, e.g.,
hospitalized versus non-hospitalized in health prediction for
patients.

Due to the limited number of training data, certain regu-
larization technique is always necessary to avoid over-fitting
in machine learning. More specifically, a generic regularized
logistic regression seeks a hyperplane w”x + v = 0 in R™
that separates the training data x; € R™ for i = 1,...,m into
two classes by solving the following minimization problem

weﬁ&igeklavg (w,v) + AJ(w), (D
where J(w) is a regularization term, and lq,q(W,v) is the
average loss function defined by [1]

m

lavg(W,v) = % Z [%(XZTW +v) —In(1+ eWTxHrv)} )

i=1

@
Here y; € {1, —1} is the class label associated with the i-th
data instance x;. Based on the assumption of the data, e.g.,
sparsity and geometric characteristics, various regularizations
as J(w) have been applied to the model (1). By assuming
that the underlying data follows the Gaussian distribution,
the ¢y regularization (a.k.a. ridge regularization) as a special
case of Tikhonov regularization has been widely used in
regression [2]. To utilize the sparse structure of data, least
absolute shrinkage and selection operator (LASSO) used the
¢ regularization in the least squares regression [3] which was
later extended to many other related models, e.g., [4]. It has
shown that the instance complexity grows in the number of
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irrelevant features logarithmically in the ¢;-regularized logistic
regression but linearly in the /5-regularized one in [5]. Al-
though it has many attractive properties, the ¢1 regularization
results in a proximal operator (a.k.a. shrinkage) which causes
significant bias toward zero for large regression coefficients.
In order to reduce this bias, some works have been proposed,
including the elastic net that takes a convex combination of /1
and /5 [6], the smoothly clipped absolute deviation (SCAD)
penalty [7] and the minimax concave penalty (MCP) [8]. The
non-convexity of penalty functions in SCAD and MCP brings
computational difficulties to implement these regressions. By
contrast, the convex elastic net regularized models can be
efficiently solved by coordinate descent [1].

Recently, the ¢;_5 regularization has been applied in image
processing and compressive sensing, which yields favorable
results [9]-[11]. The non-convex nature of the ¢;_o regular-
ization results in numerical challenges and hence it is always
desirable to design some efficient convergent algorithms to
solve the related problems. For example, a fast implementation
of minimizing ¢ _s-regularized model is proposed in [12]. All
the aforementioned ¢;_s-regularized models [9]-[11] involve
a quadratic data fitting term. In this paper, we incorporate the
{1 _o-regularization into a nonlinear logistic regression model

wein _ lavg(w,0) + AWy = BlIwll), ©)
where 8 € [0, 1]. Note that J(w) = ||w]||; — B ||w|y > 0 for
any w € R", but J(w) is not a norm in R". Furthermore,
we propose two efficient algorithms based on the alternating
direction method of multipliers (ADMM) [13], [14]. Refer to
[15] for a more thorough discussion of ADMM. Each proposed
algorithm consists of two subproblems: one subproblem is
solved by Newton’s method with line search and the other
subproblem is solved by the proximal operator of ¢1_5 in
closed form. The difference of them lies in solving the (w, v)-
subproblem. In particular, we apply the alternating minimiza-
tion so that w and v are solved separately by Newton’s method
with line search. To further subproblem errors and improve
performance, we reformulate the model such that (w,v) can
be treated as one unknown variable. Numerical experiments
demonstrate that both algorithms can achieve high prediction
accuracy and the second one performs better than the first one
in terms of accuracy and efficiency.

The organization of the paper is as follows. Section II
presents an efficient algorithm for solving ¢; _o-regularized lo-
gistic regression. Section III demonstrates the performance of
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the proposed method in data classification. Brief conclusions
and future work are provided in Section IV.

II. PROPOSED ALGORITHMS
A. Proximal Operator of {1_o

To make the paper self-contained, we derive the closed-form
expression for the proximal operator of ¢;_o, based on that of
the ¢;-norm. Note that this proof is different from that in [11].

Lemma 1. The proximal operator of the {1-norm, i.e., the

solution to

, 1 TR 1 5
i Ml + g bl = 3 (el + g 00
“
with A > 0 is given by
proxy.|, (b) = sign(b). x max{|b| — A, 0}. )

Proof. Since the objective function in (4) is componentwise
separable, we can get the optimality condition for a specific
component z;, that is,

Asign(z;) +x; — b; = 0.
Due to the fact that x; = sign(z;)|x;|, we have
sign(x;) (A + |z;]) = b;.

Since A > 0 and |z;| > 0, we have sign(z;) = sign(b;) and
A+ |z = |bg|- I |bs| > A, then we get
x; = sign(z;)|z;| = sign(b;)(|bs| — N).
Otherwise if A > |b;|, we have z; = 0. In summary, we have
x = sign(b). * max{|b| — \, 0},
where .x is the componentwise multiplication. O

Theorem 1. The proximal operator for the {1_o semi-norm,
i.e., the solution to the problem

= Blxlly) +
with X\ > 0 and 3 € (0, 1] has the form
z+ \3

. 1 2
nin (x|, 5 I =Dl

PIOX (|1, p]l-I,) (P) = ©

|z H2

where z = proxy ) (b).

Proof. Consider the i-th optimality condition when x # 0
“liel) = @
[BS[

Next we construct x; based on the proximal operator of /;.

Let z = prox, . (b) which implies
b; =0,

sign(x;) ()\ AB

Asign(z;) + 2z — i=1,...,n.

Based on the proof of Lemma 1, we get sign(z;) = sign(b;)
and A + |z;| = |b;| for i = 1,..., n. Therefore, we have

|zi]

A—\3
2]

a0 ) = Ak [ =

H z|l5

Now we define
zi = zi + ABzif ||zlly = z:(1+ A/ [|zly),
which satisfies that sign(x;) = sign(z;) and
|| = |z: (1 4+ AB/ ||zl,)-

. 2
Since ||x||; = Y1, |zi|% we get ||x[|y, = ||z|, + AB. Then
the division of |2;| by ||x||, results in the relation

lzi| _ Jzl
Il ~ Tall,
Thus
x 2 A
PV . Y I VP | I A 8
Il T2l Tl

Combination of the above equation and sign(x;) = sign(z;) =
sign(b;) yields (7), which completes the proof.
O

B. First Proposed Algorithm
We first introduce a new variable z € R™ and rewrite (3)

as follows

we%l”lgeR lavg(W,v) + (|2l

—Bllzll,) st z=w. (8)

Then we define the augmented Lagrangian function

L(w,v,1,2) =lavg(w, v) + A([|z[|, = B]z],)

+ 22— w+ul.
2
After applying ADMM, we get the following algorithm

(w1 1) = argmin f(w,v),

weR” v
. P 2
e argmin (|2l — B ally) + F [l2 — w' Tt
ZGR"
uk+1 _ uk + ,y(zk+1 _ ch-&-l).
where

F(w,v) = lgpg(W,v) + g sz —w+ ukHz

In the first (w, v)-subproblem, the objective function is con-
tinuously differentiable and convex, which guarantees that
Newton’s method can provide a convergent result. Since the
translation coefficient v € R only appears in the function
lavg, the (w,v)-subproblem can be further separated into
the w-subproblem and the v-subproblem by alternating mini-
mization. By direct computation, we get the first and second
derivatives of /4,4 with respect to components of w as follows

Mavg 1 Xij
= — X 7J
8wj mz{yl K 1+e —xTw—v |’

i=1

9
a2lm)g ( )

Ow; 0wy,

1 - Xij Xk
- m Z 2 + ex Tw+v + efx?wfv7
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for j,k = 1,...,n. Here X € R™*" with X;; as the j-th
component of x;. Given v, z,u, the Newton’s method with
line search updates w at the ¢-th inner iteration is given by

6w = _(vgvlavg (Wt7 ’U) + p[m)il (vwlm;g(wta U)
T p(w' — 2~ w)

=Wt s,

W

where the step size s; is the smallest value of the form
9¢ with & € (0,1) and C € N such that the objective
function value at wit! is smaller than that at w?. Likewise,
we apply the Newton’s method with line search to solve the
one-dimensional v-subproblem. Based on Theorem 1, the z-
subproblem can be explicitly solved by

k+

1 _ k+1 k
27 = ProxXa (. — g, (W —u). 10

We detail the corresponding algorithm in Algorithm 1.

Algorithm 1 L;_,-regularized Logistic Regression

Require: data X € R™*"™ and y € R™, parameters \, p > 0,
g € (0,1], v € (0, @}, a > 0and 6 € (0,1), set the
maximal number of inner and outer iterations N;,, Ny,
and the tolerance ¢ > 0 for the stopping criteria.

Initialize: set w¥ = 0, v° =
for k=0,1,...,Nyyt — 1 do
wl=0,9=0
fort=1,..., N;, do (Solve the w-subproblem)
g = Vwlawg (W, 0F) + p(W! — zF — u¥)
H = V2, lawg (W 0F) + pl,y,
bw=—-H'g 6 =g"6w, and 5, = 1
while f(W! + s;0w,0%) > f(W!,0*) + as0; do
St < 05,5
end while
Wit = Wt + 5.0
end for
whtl — Nin
fort=1,...,N;;, do (Solve the v-subproblem)
g= vvla1)g(wk+1a Ut)
h = V2, Loy (W1, 0")
dy = —h7tg, 8; = gb,, and s; = 1
while Lo (WL 04818,) > Lapg (WFTL 0)+asidy

do
St < Gst

end while

f)t+1 = ’IA]t + st&,
end for
Uk+1 — ,{}Nm
zF*+1 is given by (10).
k= ub 4 A (zF L — wht)
g (v R ey

[[wh |5+ (v*)?
end for

)1/2 < &, then exit.

C. Second Proposed Algorithm

We can see that Algorithm 1 involves two inner loops based
on Newton’s method. To further improve the computational

efficiency and reduce errors in subproblems, we intend to
combine the w-subproblem and the wv-subproblem. We first
let r = (wT,v)T € R**! and add a column of zeros to the
end of the original data matrix X € R™*". The resultant
matrix is denoted by X € R™*("+1)_ Then the calculations
in (9) are still valid for 7,7 = 1,...,n + 1. Now we rewrite
(3) as

min_layg(r) + A(||z1:m ]l — B |21mlly), st z=r, (11)

reRn+1
where z1.,, is a sub-vector of z that consists of the first n com-
ponents of z. In this new formulation, w and v can be updated
simultaneously with higher accuracy in the subproblems. We
then apply ADMM to get the following algorithm

k+1

r :argminlaug(l‘)+g||zk—r+uk||§’

reRn+1

AARNC argmin )‘(Hzli’ﬂHl -pB ||Zl;"||2)
zeRn+1

gl

uk+1 _ uk + ’y(Zk+1 _ I‘k+1).

Note that the z-subproblem can be further split into the zi.,,-
subproblem and z,, 1-subproblem where z,11 is the (n+1)-
st component of z. Here l,,4(r) = lqvg(W,v) and the r-
subproblem can be solved by Newton’s method similar to
Algorithm 1. We denote

The corresponding algorithm is detailed in Algorithm 2. Con-
vergence analysis of both algorithms can be derived based on
[12] for the proximal operator of ¢;_5 and [15] for the general
ADMM framework.

III. NUMERICAL RESULTS

In this section, we compare our proposed algorithms with
other related methods in terms of regularization paths and
accuracy. The three sets of test data are downloaded from the
UCI machine learning repository': Hepatitis, ionosphere, and
spambase. We also test the microarray data’> by Alon et al.
[16]. The number of features and the number of instances
for all data sets are listed in Table 1. Following the standard
data pre-processing, we remove the instances which contain
missing features, and normalize each data set column-wise to
have unit norm. To compare the prediction accuracy for each
method, we use the area under the receiver operating charac-
teristic (ROC) curve, denoted as AUC, which is estimated by
perfcurve in Matlab. The AUC values vary in [0, 1] and
larger AUC value corresponds to higher prediction accuracy.
All experiments were run in MATLAB 2016b on a desktop

Uhttp://archive.ics.uci.edu/ml/datasets.html
Zhttps://github.com/ramhiser/datamicroarray/tree/master/data
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Algorithm 2 Improved L;_s-regularized Logistic Regression

Require: data X € R™*" and y € R™, parameters A, p > 0,
B e (0,1], 7€ (0,%52], @ > 0 and 0 € (0,1), set the
maximal number of inner and outer iterations N;,, Ny,
and the tolerance € > 0 for the stopping criteria.
Initialize: set r¥ =
for k =0,1,...,Nyyt — 1 do
=0
fort=1,..., N;, do (Solve the r-subproblem)
g = V. F({@) + p(wt — 2" — ub)
H=V2ZF{T)+pln
bp=—H 'g, 6p =g70y, and 5, = 1
while F(T! + 5:6,) > F(t') + as:dr do

S¢ < 6‘5,5
end while
i:t«l»l = /ft + St(sr
end for
rk+1l — pNin
zy} = Pro}“%(nwh—ﬁ||~||2>(1”11€:fz1 —uf,)
k+1 _ _k+1 k

Zpt1 = Tnt1 = Unta
uFtl = u* 4 ,Y(Zk+1 _ rk+1)
k+17rk||

If Hr72 < g, then exit.
(e

computer with 64GB RAM and a 2.2GHz Intel Xeon CPU
E5-2650 v4.

Data Name  No. of Features ~ No. of instances

Hepatitis 19 80

Ionosphere 32 351

Microarray 2000 62

Spambase 57 4601
TABLE I

DATASETS USED IN OUR EXPERIMENTS.

We compare our results with those given by the Matlab
built-in function 1assoglm and one widely used Matlab tool-
box glmnet [17]. In particular, the former solves the LASSO
{1-regularized logistic regression model using the iteratively
reweighted least squares (IRLS) method [18], [19]. The latter
solves the general elastic net regularized logistic regression
model by coordinate descent [1]. Notice that glmnet has been
highly optimized with major computation subroutine written
in FORTRAN and compiled as a MEX file in Matlab. In
our proposed algorithms, we set the maximum outer iteration
number as 100, the maximum inner iteration number as 50,
p=10"% ~v=1and e = 1074

In our first experiment, we test glmnet and Algorithm 2
on the ionosphere data, where the original first two features
are removed as suggested by Matlab 1lassoglm. We choose
19 values for the regularization parameter A in (1) evenly
distributed between 10742 to 10796 in the logarithmic scale.
In Figure 1, we display the regularization paths for different
regularizations, where each figure contains 32 coefficient tra-
jectories (excluding the translation coefficient v) with respect

to A. In the extreme case when 8 = 0, the ¢;_o-regularization
reduces to the ¢;-regularization, i.e., LASSO. One can see that
all trajectories become flat as the value of A decreases but
may oscillate for relatively large values of \. The elastic net
regularization, essentially the convex combination of ¢;-norm
and />-norm squared, enforces smoothness for all coefficient
trajectories. In the meanwhile, the ¢;_s-regularization allows
more non-smooth coefficient trajectories or fluctuations on
some interval of A when /3 approaches one. This implies that
the /1 _o-regularization can handle more inhomogeneous cases.
Moreover, the elastic net profile shows the grouping effect, i.e.,
strongly correlated coefficients tend to be in or out together
[6], which is not obvious in the ¢;_o profile.

In our second experiment, we choose 25 values logarith-
mically spaced in the interval (107%,1) as the regularization
parameter A\. For each algorithm, we run the k-fold cross-
validation with £ = 10 to find the optimal A\. Table II
compares the AUC values for all competing methods on
various data sets. From the results, we can see that our
proposed Algorithm 2 has the highest accuracy. Algorithm 2
performs better than Algorithm 1 in terms of prediction
accuracy and computational efficiency. In addition, if the
number of features is significantly larger than that of instances,
e.g., the microarray data, most methods can get results with
high accuracy. If the number of instances is insufficient, e.g.,
the hepatitis data, it becomes more difficult to get accurate
prediction. Not only does Algorithm 2 performs better than
Algorithm 1 in terms of prediction accuracy, it is also faster.
However, both proposed algorithms are slower than glmnet,
due to high computational cost in calculating the gradient, the
Hessian matrix and its pseudo-inverse. It is our future work to
design a more efficient algorithm for solving ¢; _5-regularized
problems.

Method  Hepatitis  Ionosphere Microarray —Spambase
LASSO  0.8530 0.9398 0.9830 0.9761
glmnet 0.8859 0.9661 1.0000 0.9765
Alg.1 0.8852 0.9661 1.0000 0.9764
Alg2 0.8859 0.9661 1.0000 0.9774
TABLE II

COMPARISON OF AUC VALUES FOR VARIOUS METHODS AND DATASETS.

IV. CONCLUSIONS

In this work, we propose a f;_o-regularized logistic re-
gression model where the regularization term is a difference
of ¢1-norm and /5-norm. Although this model is non-convex
which causes computation and implementation challenges, we
propose two numerical algorithms based on the framework of
ADMM and the proximal operator of ¢;_5. Specifically, we
first derive a numerical algorithm that involves alternating min-
imization, Newton’s method and the ¢;_o proximal operator.
To further improve the computational efficiency, we combine
all coefficients as one variable, and derive another algorithm
by reformulating the minimization problem. Numerical exper-
iments have shown that the proposed algorithms can achieve
the state-of-the-art accuracy in terms of AUC. In the future
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aly + (1 — a)f% with « = 0.5

work, we will further enhance the computational efficiency of

the

proposed algorithms in coordinate updating manner and

extend them to solve other related regression problems.
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Fig. 1. Regularization path for the ionosphere data. From top to bottom: £1_2
regularization with 8 = 1,0.5, 0 and elastic net regularization with o = 0.5

by glmnet.
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