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Publishiﬁgz -trostatic Equilibria of Non-Neutral Plasmas Confined in a Penning Trap with

Axially Varying Magnetic Field
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A procedure for computing the electrostatic equilibria of non-neutral plasmas in a
Penning trap with a non-uniform magnetic field by selving Poisson’s equation with
an iterative method is described. Plasma equilibria in“a model Penning trap with
high and low field regions are computed. The plasma is assumed to follow the Boltz-
mann density distribution along magnetic-field lines. Correspondence with prior
investigations examining similar configurations analytically and with particle-in-cell
simulations is found. The relationship between the plasma density in low and high
field regions is examined for various.plasma temperatures, densities, magnetic mirror
ratios, and plasma and electrode radii. An analytical description of the radial density
profile in the high field region‘is developed and compared to the computed equilibria.
A concept is described fer cooling a positron plasma with laser-cooled ions trapped
axially within a high.magnetic field region, while antiprotons are trapped axially sep-
arated from the laser-cooled ions within a low field region, and the positron plasma

extends to both regions.
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Publishihg INTRODUCTION

Equilibria of non-neutral plasmas are evaluated in a model Penning trap with an axially
varying magnetic field, in the work presented here. Simulated equilibria are considered to
follow the Boltzmann density distribution along magnetic field lines. Equilibria are calcu-
lated by solving Poisson’s equation self-consistently using a finite-difference computational
approach,! with the approach adapted for the axially varying magnetic field. Electrostatic
potential profiles of non-neutral plasmas containing oppositely chargedspecies have been pre-
viously computed using similar methods in multiple trap geometries with uniform magnetic
fields®>? and no magnetic field.* The effects of incorporating magnetic mirrors on non-neutral
plasma confinement in Penning traps have been/studied analytically,® with particle-in-cell
(PIC) simulations,%” and experimentally.>” The results from the current study show corre-

spondence with the prior analytical and PIC results.

The work presented here is an extension-and generalization of prior work, which pre-
dicted that electrostatic, space-charge based antiproton confinement is possible specifically
within an existing Penning-trap based antihydrogen experiment.® In the present work, the
relationship between the plasma deusity in low and high field regions is examined for various
plasma temperatures, densities, magnetic mirror ratios, and plasma and electrode radii. An
analytical description ofthe-axial density variation is developed following a procedure sim-
ilar to prior analytical studies.” The analytical description is compared to self-consistently
computed equilibria.

The possibility ofusing laser-cooled ions to sympathetically cool antimatter plasmas for
antihydrogen production has been investigated.® Here, a possible configuration is described
for a thrée-species plasma confined in a Penning trap with axially varying magnetic field.
In the configuration, the space charge of a positron plasma generates a potential difference
along the central axis. The potential difference is used to keep laser-cooled ions axially

separated from antiprotons, while both species interact with the positron plasma.

In Ref. 4, a theoretical understanding was developed of the conditions for unmagnetized
plasma ions (or positrons) to be confined by the space charge of an electron plasma. The
electron plasma would have a nearly full Maxwellian velocity distribution at the plasma edge.
Only electrons in the tail of the distribution have enough energy to travel from the plasma

edge to the geometric center of the unmagnetized bulk plasma, which consists of both ions



! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

Publishimrgc electrons. It may seem counterintuitive, but it was found that, in a self-consistently
relaxed equilibrium, the magnitude of the difference in electric potential energy of an elec-
tron or singly-charged ion between the geometric center of the bulk plasma and the plasma
edge can be large compared to the electron and ion temperatures in energy units, provided
that the electron density at the edge is much larger than that at the center.* Consequently,
near-perfect electrostatic confinement of plasma ions using the space charge of a non-drifting
electron plasma, while each species is sufficiently relaxed to follow. 4 Boltzmann density dis-
tribution, is predicted to be possible. In Ref. 4, the exact structure of the reflecting boundary
used to confine an electron plasma along its edge was not eonsidered. The possibility of us-
ing a sequence of magnetic cusps with the addition of electrostatic plugging is described in
Ref. 10, where a classical trajectory Monte Carlo study ef single particle trajectories was
reported. The present work contributes to an.improved theoretical understanding of how
a non-neutral electron plasma responds self<consistently to a spatially changing magnetic
field, such as within a magnetic cusp or Penning trap with axially varying magnetic field.

Details of the model trap with axially varying magnetic field are given in Sec. II. The
computational methods are described in Sec."lII. Equilibria are presented in Sec. IV, and an
analytical description of the equilibriais developed using normalized coordinates in Sec. V.

A possible application is described in“Sec. VI, and a discussion is provided in Sec. VII.

II. MODEL

Equilibria of a noun-neutral plasma in a model Penning trap with an axially varying
magnetic fieldiare computed. The model and its magnetic field are cylindrically symmetric
and are illustrated in Fig. 1. The model has a continuous magnetic field that transitions
between high and low field strength regions. The high and low field regions have magnetic
field strengths By and By, respectively.

The model magnetic field is generated by two solenoids that are coaxial with the z
axis. One solenoid is considered to be long enough to produce a uniform field, B, = By, z,
throughout the region of interest. A smaller, finite-length solenoid extends from z = —Lg
to z = 0 with radius rg. The combined magnetic field at a reference point inside the finite-
length solenoid (0, —zp), is By = Byz. Dimensions are chosen such that Lg > zg > rg.

The magnetic field of a finite-length solenoid is given in the Appendix. The magnitude By
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PUb|iShiﬂ:gl be expressed as a multiple of By, By = R By, where R is the mirror ratio.
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FIG. 1. The model eonsists.of two solenoids coaxial with a grounded cylindrical electrode and is
sketched in (a). The solenoids generate a magnetic field that varies axially from a high field By
at z = —zg to a low field By at z = zp. The magnetic field along the z axis is plotted in (b) and

magnetic field lines that progress from left to right are shown in (c).

The model is radially bounded by a grounded, cylindrical electrode that is coaxial with
the solenoids. The cylindrical electrode has inner radius ry,, where ry < rg. The cylin-
drical electrode introduces a Dirichlet boundary condition to the potential at » = ry, and
cylindrical symmetry gives a Neumann boundary condition at » = 0. The trap is assumed
to be much longer than the computational region, and Neumann boundary conditions are

applied at +zy to simulate a system that continues axially to |z| > zo. Symbolically, the
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Publishih(gt ndary conditions on the electrostatic potential ¢ are

o(rw,z) =0, (la)
0
E(b(ra Z) =0 = 07 (1b>
0
gé(r, z) e =0. (1c)

As indicated above, the system considered here is cylindrically §ymmetric. The coordinates
(r, z) represent a point in three-dimensional space specified by cylindrical coordinates, with

the azimuthal angle coordinate omitted for brevity.

III. COMPUTATIONS

Equilibria are computed by solving Poissoni’s equation, V2¢(r) = —en(r)/eo, through a
self-consistent finite-difference computational.approach,' with the approach adapted for the
axially varying magnetic field. The model non=neutral plasma is comprised of positrons with
density n(r), each positron has charge e, and the vacuum permittivity is €.

The positron radial density profile is specified at z = zy. The radial positron distribution
in the z = zo plane is uniform out te a'radius » = rp, where it possesses a sharp edge.
Symbolically, the density is n(r.zq) = n¢O(rp — r), where ng is the positron density at
z = 29, and © is the Heaviside step function defined as ©(x < 0) =0, O(z > 0) = 1. If the
positron plasma follows the Boltzmann density relation along curved magnetic field lines,

the density at any/poiut is

e

w(r, 2).=ne®(rp — ry) exp <_k'B—T [(r, z) — (1o, ZO)]> ) (2)

Here, T is the positron plasma temperature, kg is Boltzmann’s constant, and ry is the
radialpesition where a magnetic field line passing through (r, z) intersects the z = z, plane.

Magnetic field lines are solutions to dr/B,.(r, z) = dz/B,(r, z), which is solved in parametric

form,
dr_ B(().2(5) .
ds  [B(r(s),z(s))|’ o
dz  B.(r(s),z(s)) (3b)

ds  [B(r(s), 2(s))]
The electrostatic potential is computed in the region 0 < r < ry and —zp < z < z;.

A uniform computational grid with axial spacing Az and radial spacing Ar is used. Grid
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Publishisigcing is chosen to be less than Ap/(2 R), where A\p = [eokpT/(e*ng)]/? is the Debye
length. Generally, mesh spacing of less than Ap/2 is needed to ensure convergence.! Here, a
factor of the mirror ratio R, is included to accommodate increased density in the high field
region.

Radial grid points take values nAr, where n is an integer. The/position ry is calculated
for each grid point through Eq. (3) using a fourth-order Runge<Kutta selver. Values of 7
fall between grid points such that nAr < rq < (n + 1)Ar. The potential ¢(rg, z9) used in
Eq. (2) is given by the weighted average

ro — NAr
= (1 -2

ro — MAT

A o((n+1) Ar, zp). (4)

. ) d(n Ar, z) +
A finite-difference method is used with central-ifferencing to find self-consistent solutions
to Poisson’s equation.! Solutions are found by relaxation from an arbitrary initial solution

¢ (r,2). Subsequent iterations are obtained by finding the solution at each grid point

through
¢(l+1)(7“, )= —(w—1) QD(Z)(Ts 29+ 5 <p + E) (5)

) ot Ax, 2) — D (r — Ar, 2)
2r Ar

+ ¢(Z) (T + AT, Z) + d)(l)(r — Ar7 Z)
Ar?

0 Ofr, = —

N\ o(r z + Az) +2¢ (r,z — Az) n En(l)(r, 2)] ,

Ar €0

where w is a mixing constafit, and iterations are continued until the solution converges to

within a selected-tolerance.

IV. EQUILIBRIA

A ‘base case’ is chosen where the model dimensions and plasma parameters approxi-
mately correspond with a particle-in-cell study of Penning traps with magnetic mirrors.®
The positron plasma has parameters ng = 1.0 x 102 m™3, T = 1000 K, rp = 5 mm.
The electrode inner radius is ry = 20 mm, and the finite-length solenoid has inner radius
rs = 30 mm with length Lg = 3.0 m. The current /g and number of windings per unit

length Ng are chosen to produce a magnetic field of 1.0 T at (r = 0,z = —zp = —15 cm) for a

total field of By = 2.0 T or R = 2.0 when superimposed with the uniform field B, = 1.0 T.

6
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Publishing \n electrostatic potential difference along the z axis is found to form self-consistently.
The maximum potential, the axial potential difference, the ratio of the density at (0, —zg)
to ng, and the full width at half maximum density (FWHM) of the positron plasma are
computed for each equilibrium. The maximum potential is ¢pax = ¢(0, 20) and the axial
potential difference is given by A¢ = @pax — #(0, —zp). The ratio of the density at (0, —zg)
to the density ng is referred to as the density ratio, and the FWHM for the positron plasma

is given at z = —zy. The density ng is the density at (r < 7,2 =2).

The electrostatic potential of the base case is shown-in Fig. 2, and the positron density
is shown in Fig. 3. In the base case, the maximum-potential is ¢ = 4.2 V, and the
axial potential difference is A¢ = 57 mV. The density ratio is 1.94, and the FWHM of the
positron plasma at z = —zp = —15 c¢m is 6.9 mn1. In comparison, the width of the positron
plasma at z = zp = 15 cm is 2rp = 10 mm. The field line that crosses the z = zy plane at

r =rp =5 mm, crosses the z = —z, plane-at.r = 3.65 mm.

The relationships between the density, temperature, plasma radius, magnetic mirror ratio,
and electrode radius are investigated by equilibria computations under individual changes of
these parameters. The maximum potential, axial potential difference, the density ratio, the
FWHM at z = —zp, and the normalized parameter Ay = eA¢/(kgT') are reported for each
equilibrium in Tablel. The base case values are listed at the top of Table I. The parameter
that is varied from-the base case is listed in the first column and its value is listed in the

second.

For the parameter space considered, the maximum potential does not vary by more than
2 % under changes in temperature of up to two orders of magnitude (from 7" = 500 K to
T'= 5 x 10* K) or changes to the magnetic mirror ratio of up to a factor of 7.3 (from R = 1.5
to-2 = 11). Under the same range of temperature variations, the axial potential difference
changes by up to a factor of 37 (from 28.8 mV to 1070 mV). The range of changes to the
magnetic mirror ratio produce changes in the axial potential difference of up to a factor of
5.9 (from 33.4 mV to 198 mV). The density variations induce changes to axial potential

difference by a maximum of 25 % of the base case value.

7
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Publishi¥g ANALYTICAL DESCRIPTION

In Ref. 5, an expression for the potential difference along a magnetic field line in finite-
temperature flat-top plasmas with high and low magnetic field regions is derived for magnetic
mirror ratios with R = 14 § and § < 1. The axial potential difference A¢ is estimated
for the equilibria in Table I using the expression from Ref. 5. For the base case equilibrium
with R = 2.0, the analytical expression from Ref. 5 overestimates /A¢ by approximately a
factor of 1.5, while for the equilibrium with R = 1.5 the analytical expression is within 30%
of the computed value. The expression overestimates the eomputed value for equilibria with
R > 2.0 by a larger factor of up to approximately 4 when .= 11 and other parameter

values are those of the base case.

An expression for the radial density profiletin the high field region, n(r, —z), is derived
here, using a similar approach to Ref. 5. The derivation assumes that the density distribution
in the low field region, n(r, zp), is known. Awormalized expression for n(r, —zp) is derived
that gives the density variation’s dependence on the magnetic mirror ratio, by considering

a flattop density profile at z = 2.

A normalized coordinate systentis applied to reduce the number of parameters involved
in the description of the system. The normalized coordinate system allows the Poisson-

Boltzmann governing eduation applied here to be expressed in terms of the normalized

15 0 z(cm) 15

FIG. 2. The computed electrostatic potential of the base case is shown as a contour plot.



! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |
Publishingiential ¢ = e(kp T) "¢ as

V2(p,¢) = —O(pp — po) exp [¥(po, o) — ¥(p, )] .- (6)

The normalized coordinates are p = r/Ap and ( = z/\p, which dictate the form of nor-
malized dimensions, pw = rw/Ap, pp = 7p/Ap, po = T0/Ap, and (s = zo/Ap. Here, ry
is the electrode inner radius, rp is the plasma radius at z = zgs 1y is defined as the radial
coordinate at z = 2y such that the same magnetic field line passes through the two points
(1o, z0) and (r, z). The reduced set of parameters consists of the worntalized dimensions pp,
pw, and (p. In addition, the functional dependence, po(p, ¢), aceounts for the magnetic field
being nonuniform. With the boundary conditions specified by Eq. (1), only the boundary
value ¥(pw, ¢) needs to be specified. The electrig'potential is defined to within an arbitrary
additive constant, and ¥ (pw, () = 0 is used.

To develop an analytical description of the plasma at z = —zg, the value of z is considered
to be sufficiently large for the magnetic field to.be approximately uniform at both zy and —z;.

In such a limit, the analytical description doesn’t depend on the value of (. Nevertheless,

_X (mm)

4|-

-15 0 z (cm) 15

FIG. 3. The equilibrium positron density for the base case is shown with darker hues representing

regions of higher density. Magnetic field lines are shown as black lines.
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Publish URS 3LE I. Equilibria are found for parameter sets with one parameter varied from the base case, for
which ng = 1.0 x 102 m™3, T'=1000 K, rp = 5 mm, R = 2.0, and 7 = 20 mm. The parameter
varied is given in the first column, and the parameter value is given in the second. The maximum
potential ¢max, axial potential difference A¢, ratio of the density at (0, —zp) to ng, the full width at
half maximum density (FWHM) of the positron plasma at z = —zp, and the normalized parameter

Ay = eA¢/(kpT) are given. The base case equilibrium values are reported at the top of the table.

parameter Pmax A¢ n(0, —zp) /1o FWHM A
symbol value (V) (mV) (unitless) (mm) (unitless)
base 4.22 57.2 1.94 6.9 0.664
no 1.0 x 1012 m=3 0.422 42.9 1.65 7.3 0.498
no 5.0 x 102 m~3 2.11 55.6 1.91 7.3 0.645
Tp 2.5 mm 1.43 93.2 1.85 3.7 0.617
Tp 10 mm 10.67 574 1.95 12.0 0.670
T 500 K 4.22 28.8 1.95 6.7 0.668
T 5000 K 4:.22 249 1.78 7.3 0.578
T 10* K 4.23 429 1.65 7.3 0.498
T 5x 10* K 4.23 1070 1.28 7.3 0.248
R 1.5 4.22 33.4 1.47 8.4 0.388
R 4.0 4.20 115 3.79 4.4 1.33
R 5.0 4.19 134 4.69 3.8 1.56
R 11 4.14 198 9.85 2.4 2.30
W 10 mm 2.67 96.8 1.93 6.3 0.659
W 40 mm 0.47 97.1 1.94 9.1 0.663
the theory is developed referring to the axial locations z = zg and z = —z; for convenience.

The system is treated using the infinite-cylindrical-column approximation both in the
vicinity of zg, which is the low field region, and in the vicinity of —zy, which is the high
field region. The same magnetic field line is considered to pass through the two points
(ro,2z0) and (7, —zp). If the azimuthal angle coordinate (which isn’t written for brevity) is

given a continuous distribution of values between 0 and 27, (19, 29) and (r, —zy) represent

10
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Pub”ShinC circles. The same magnetic flux must pass through each circle (neglecting the plasma
diamagnetic effect). Consequently, Bymrd = Bgmr?, or, equivalently, py = V' Rp, where R is
the mirror ratio.

The radial electric potential profile at z = z is approximated as that of a long cylindrical
plasma with uniform density. The electric field inside the plasma ig found from Gauss’s law

and is used to write an expression for the scalar potential,

rp TP dy!
d(ro, 20) = < [ln <TW>/ drrn(r,z0)+/ A / dr™ " n(r’ Zo)], (7)
€o rp 0 0

where 7 is the radial cylindrical coordinate at the axial locationz = zy. Equation (7) applies
when ry < 7p and when the electric potential at the wallis defined to be zero, ¢(rw, zo) = 0.
A flattop density profile, n(rg, z0) = ng©O(rp —r0);is used and allows an analytical solution

to be found. Carrying out the integration and normalizing yields

2 2
Pp PwW 1 Po

= LPfqa [ | - =% 8

The radial electric potential profileiat z = —z, is also approximated as that of a long

cylindrical plasma, but with a density that is axially uniform and not radially uniform.
Equation (7) applies at z = —zg, provided that the replacements zy — —z, 79 — 7, and
rp — rpg are used, where the same magnetic field line passes through the two points (7, zo)
and (r, —zp), and the same magnetic field line passes through the two points (rp, zp) and

(rpu, —20). The résulting expression is

1 TPH TPH
¢(7“,—zo):é[1n (%) /0 dr (. —z) / dr / dr' ' —ZO>], (9)

where » is the radial cylindrical coordinate at the axial location z = —z,. Let f denote a
normalized function to be found that gives the radial dependence of the density at z = —z.
Defining, f such that n(r, —zo) = f(r/Ap)no©(rpy — r), the normalized radial potential
profile at' z = —z; in the high field region is given by

PPH PPH d / o’
¥(p,—Co) =1In (p—w>/0 dppf(p)+/ 7[,) do"p" f(p"). (10)
p

PPH 0

Here, the point indicated by the normalized coordinates (ppy, —(p) is linked by a magnetic

field line to the point (pp, o).

11
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Publishinglor r < rpy and ry < rp, n(r,—zo)/n(ro,20) = f(r/Ap), and the Boltzmann density
relation gives f(p) = exp [¢(po, (o) — ¥(p, —(o)]. Expanding the exponential and keeping

only the lowest order term yields

f(p) =1 =1(po, o) — ¥(p, —Co)- (11)
Equations 8, 10, and 11 are combined to write the integral equation,
2 2
Pp w 1 Po
— 1= |In | &= | -= 12
F-1=2 m(2) 45| -4 (12)

PPH PPH d / o
—In (pW ) / dpp f(p) — / Z dp"p" f(p").
pPrH 0 b P Jo

The functional dependence, po(p, —(o), was found aboyve to be py = VRp. Similarly, pp =
vV Rppy, and substitution gives

Fo-1=2n(20) 4 5] - (13)

\/ﬁ pr/VR pp/VR do [*
—1n< o / dppfip) — / < / dp”p" f(p").
ppr 0 o p 0

A differential equation for f(p) ig found by differentiating Eq. (13), multiplying through by

p, and differentiating a second time,

2

i AL f( )—pf(p)+ Rp=0. (14)

Requiring the solution to have a finite value at p = 0 (along the z axis), the solution is
f(p) = R+ Clo(p). (15)

Here, C' is aonstant and I is a modified Bessel function of the first kind. The value of C
is determined by evaluating Eq. (13) at p =0,

b+ CL0)-1= Pr {m (”—W> + l} —In (\/Epw> /Opp/@ dpp [R+ Clo(p)] (16)

2 PP 2 pp

pp/VR 4 o
— / 7 dp//p// [R—i_ C](](p”ﬂ .
0 0

Carrying out the integrals and algebraic manipulation give

2
C+R—1:—7Pln(\/§)+0 cl, <—
P
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PublishiwHich is linear with respect to C' and is solved to find
1 - R—2In(/R)
Stn () 1 (%) + 1o (%)

The expression obtained is a function f(p), that gives the density at position (r, —z)

C:

(17)

in the high field region when multiplied by the density at the positien (79, z9) in the low
field region, i.e. n(r, —z¢) = f(r/Ap)n(ro, 20). A comparison of the analytical radial density
profile in the high field region and the computed radial density. profile for the base case is
shown in Fig. 4. Furthermore, the Boltzmann density distribution yields that in normalized
coordinates In f(0) = ¢e[p(0, z0) — #(0, —20)]/(ksT) + eA¢/(kgT) = Ayp. The normalized

axial potential difference is

1 —R— "2 In(VR)
Shtn () 1 25) + 1o (%)

where I5(0) = 1 has been used. The values-for axial potential difference calculated using

AY=In |R+ (18)

Eq. (18) are within 5% of the axial potential.differences in Table I for the computed equi-
libria, except for the equilibriunt with &2 = 11 where it is within 15%. The density ratio
along the axis is
M — AV (19)
o
In Fig. 5, the predicted and eoimputed density variations along the z axis are compared for

equilibria with various Debye lengths.

VI. TWO AND THREE SPECIES PLASMAS

The electric-potential difference associated with a change in magnetic field strength may
be capable of axially confining additional charged species. The additional species may be
confined to either a high or low potential region depending on the sign of charge. The
potential difference may be used to effectively separate two of the components of a three-
species plasma.

The possible formation of a three-species equilibrium where two oppositely charged
species are kept in isolation from each other may have applications in antihydrogen research.

The ALPHA and ATRAP experiments confine antihydrogen with a magnetic minimum field.

13
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FIG. 4. A comparison of the radial density profile in the high field region calculated analytically

and the profile obtained through relaxation methods; for the base case.

Ap(mm)

FIG. 5. The density variation along the z axis from the computed equilibria are compared to
the density variation predicted analytically (solid line) for equilibria with different Debye lengths.
Equilibria in Table I with a parameter varied other than plasma density ng or plasma temperature

T are excluded.

The magnetic minimum is formed from the superposition of a transverse multipole field and
axial mirror fields on a Malmberg-Penning trap’s uniform field. Charged particles are con-

fined as in a Malmberg-Penning trap, while antihydrogen atoms are confined through the

14
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Publishi'mg( raction of their intrinsic magnetic moment with the magnetic minimum field. Only suf-
ficiently cold antihydrogen in the low-field seeking state is confined.'! Comparisons between
antihydrogen and hydrogen can provide fundamental tests of CPT (charge conjugation, par-
ity, time-reversal) and/or gravitational symmetries.!? Such tests are the goal of multiple
collaborations including ALPHA,*® ATRAP,** ASACUSA,'>!6 AEGIS,'"!® and GBAR.'?
The ALPHA and ATRAP collaborations conduct experiments on trapped antihydrogen and
have demonstrated production of antihydrogen and confinement for fimescales of about 1000

g 14,20

A previous study predicted that space-charge based antiproton confinement is possible
within the ALPHA experimental apparatus.®. A positron, plasma would extend axially
beyond two coaxial magnetic mirrors, one of which is considered hereafter to be centered
at cylindrical coordinates (r,z) = (0,—2). The antiprotons would be confined within a
three-dimensional electrostatic well, which will be considered hereafter to be centered at
(r,z) = (0, 2). The configuration is considered to be symmetric about the z = 2, plane,
and only the region —zg < z < zglis referted to hereafter. In Ref. 8, values for plasma
parameters at (r,z) = (0,2p) were found that may be associated with an antihydrogen-
producing three-body recombination rate that occurs faster than other relevant rates in
the two-species system. The positron density and temperature would be n(0, zg) = ng =
2 x 108 m=3 and T = 5K, respectively. The antiproton density and temperature would be
n_(0,z) = no_ = 2% 10" m7 and T_ = 0.5 K, respectively. Also, the positron plasma
density was considered to be radially uniform at z = z5 out to a plasma radius of rp = 0.9
mm. The inner wall'tadius of the trap was ry = 22.3 mm, the mirror ratio was R = 2.0,
and an axial potential well depth for confining antiprotons was found to be (in temperature
units) eA¢/k~ 3.6 K.

The possibility of confining a third species, consisting of laser-cooled beryllium ions,
is now eonsidered. The ions are singly charged and positive. Two one-dimensional axial
electrostatic wells are produced by the positron space charge, with each well centered under
amagnetic mirror. Here, beryllium ions are considered to be axially confined within the axial
well centered at z = —zy. In the present work, the beryllium-ion density and temperature
are considered to be ny (0, —29) = noy = 2 x 101 m™ and T, = 0.5 K, respectively. The
numerical values for the two parameters are the same as those for the antiprotons. For the

parameter values chosen, the antiprotons have a negligible effect on the positron equilibrium,
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FIG. 6. Illustration of the normalized densities of antiprotons (solid line) and beryllium ions

(dashed line) along the z axis. (See text fordetails.)

and it is assumed that the same 18 _true for the beryllium ions. However, the radial electric
field produced by the positron plasma tends to cause centrifugal separation to occur between
the beryllium ions and the positrons:Such an effect is considered in Ref. 9 and is not treated
here. The change in potential along the z axis between —zy and zy provides an electric field
that tends to keep“the beryllium ions axially separated from the antiprotons. Figure 6
provides an illustration of the concept by showing a plot of the normalized density of each

species alongthe z axis according to the Boltzmann density relation:

n2(0,2) (;I@LT [6(0, 2) — ¢(0, :on)]> (20)

The laser-cooled beryllium ions would serve to sympathetically cool the positron plasma
within the high magnetic field region, while antiprotons are trapped axially separated from
the laser-cooled ions within a low field region. For simplicity, a constant electric field is
used that produces a change in potential of eA¢/k = 3.6 K, and Fig. 6 does not represent a
self-consistently computed equilibrium. A future study using the methods in Refs. 6, 8 and

9 may be able to assess the feasibility of the proposed three-species equilibrium.
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The theoretical approach used in this investigation does not simulate time-dependent
plasma processes. The time-dependent approach to an equilibrium is not included in the
computations, and the effects associated with plasma rotation are néglected. For each equi-
librium, iterations are continued until the maximum change in potential between iterations
at any grid point is less than 10™® V. The value of 2, is chosen such that the magnitude of
the finite-length solenoid’s magnetic field is less than 0.05 By, at (0, 2 )+ Increasing z, beyond

this value was not found to impact the equilibrium potentials ebtained by more than 1%.

The techniques developed in this study allow calculation of the equilibrium of the positron
plasma. The plasma is seen to self-consistently produce-a potential difference along the z
axis. This potential difference may be be useful for antiproton confinement and mixing

antiprotons and positrons.

The current work shows correspondence with an analytical study of flat-top, finite-
temperature plasmas® and with a particle-in-cell study.® The analysis in Ref. 5 provided four
“surprising conclusions.” Of the conclusions; three that apply to current plasma equilibria
are: the density ratio will scale approximately with the mirror ratio, the electric potential
varies along magnetic field lines; and-the plasma is ‘thinner’ in the high field region than
would be expected by following field lines. These attributes are seen in the computed equi-
libria presented here and are in agreement with the analytical description developed in the

present work.

In the derivation of the expression for density variation, the plasma in the low field region
is assumed to-have a uniform charge density out to a plasma radius where it has a sharp
edge. The derived expression depends on the accuracy of the assumed density in the low
field region. 1If the density falls off over a distance of the order of the Debye length, the
accuracy of the derived expression and the computed equilibria may depend on the Debye
length being small compared to the plasma radius. The Debye length is on the order of the
plasma radius for some of the equilibria computed.

The methods outlined in Sec. III and Sec. V may be generalized to study a variety of
configurations with nonuniform magnetic fields. Computations of equilibria with plasmas
that do not extend beyond the computational region or that possess nonuniform radial

density profiles specified at locations away from the edge of the computational boundary

17
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Appendix A: Magnetic field of a finite-length solenoid

For a cylindrical finite-length soleneid that is centered at the origin of a cylindrical coor-
dinate system, with coordinates(r, #;2), and that has an axis of symmetry aligned with the

z axis, the magnetic field components are (see, for example, Ref. 21)

B.(1.0,2) = M();n 7‘TiLL+ (E (mg) — (1 - %) K (m+))
_uc;{n /mi_ (E (m_) — (1 — %) K(m_)) (A1)
By (r,0,z) =0, (A2)

Bu(r0,2) = " 7 (i )+ (S0 ) ) )

A ar a-+r
_ poInG- [m- K(m_)+ “TT\ (u,m_) (A3)
4m ar N atr o

Here, I is the current carried by an infinitesimally thin wire, I is positive or negative in
accordance with the right-hand rule, n is the number of wire turns per unit length of the
solenoid, a is the radius of the solenoid, pg is the permeability of free space (SI units are used),

u=dar/(a+7)% my =dar/ ((a+7)>+¢2), m_ =4dar/ ((a+7)°"+2), & = 2+ (L/2),

20
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Publishi@g = z — (L/2), L is the length of the solenoid, and the complete elliptic integrals of the

first, second, and third kinds are

/2 oo —1/2
K (m)= (1 —m sin® ) do, (A4)
0
/2 . 92\ 1/2
E(m)= (1 —m sin®0) '~ do, (A5)
0
and
w/2 iy
I (u,m) = / (1 —usin®0)~" (1 — msin® )"~ df. (A6)
0
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