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A computer simulation is presented of single-species non-neutral plasma confinement

using an artificially structured boundary. The artificially structured boundary pro-

duces a spatially periodic static electromagnetic field along the plasma periphery,

such that the spatial period of the applied field is much smaller than the dimensions

of the confined plasma. The simulated non-neutral plasma self-consistently produces

an electrostatic potential energy well for oppositely signed charged particles. The re-

sults support the prospect of developing plasma space-charge based confinement, with

an unmagnetized plasma of one species of charged particles confined by an electric

field produced by an edge-confined plasma of a second species of charged particles.

The Warp particle-in-cell code is used for the simulations.
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I. INTRODUCTION

In Ref. 1, the existence of plasma equilibria was predicted involving two relaxed plasma

species with one species confined by the space charge of the other species. A self-consistent

finite-difference numerical approach was used for the study, which developed an understand-

ing of how an edge-confined electron plasma produces a three-dimensional electrostatic po-

tential well and how an ion plasma can be confined within a neutral plasma region inside

of the well. Equilibria were found for which the magnitude of the difference in an ion’s

potential energy between the plasma’s geometric center and edge was much larger than the

ion temperature in energy units.1 Along with ions confined by the space charge of electrons,

plasma space-charge based confinement is also envisioned for confining antiprotons by the

space charge of positrons.

Antihydrogen production for conducting gravity experiments and high precision spec-

troscopy experiments relies heavily on plasma confinement and manipulation techniques.2–6

Penning traps that are nested within neutral atom traps are used by the ALPHA and

ATRAP experiments to simultaneously synthesize and confine antihydrogen.2,3 However,

the strong magnetic field that is employed by Penning traps for radial plasma confinement

reduces the three-body recombination rate by roughly an order of magnitude as compared

to the rate when there is no magnetic field present.7,8 Furthermore, positron space charge

and collisions between antiprotons during the mixing process may significantly reduce the

number of cold antihydrogen atoms that are suitable for further experimentation.9,10

A concept referred to as an artificially structured boundary (ASB) may provide an alter-

native to the nested Penning trap for combining multi-species plasmas. In the context of

the present work, an ASB is an arrangement of electrodes and electromagnets that creates a

spatially periodic electromagnetic field, which can be used to confine non-neutral and par-

tially neutralized plasmas. If the dimensions of an ASB plasma trap are chosen such that

the spatial period of the electromagnetic field is much smaller than the dimensions of the

plasma confinement volume, then the bulk of the plasma will be effectively free of exter-

nally applied electromagnetic fields. As envisioned, an ASB trap could be used to confine a

positron plasma along its edge, and the space charge of the positron plasma could create an

electrostatic potential energy well for confining an antiproton plasma. Such a confinement

scheme was investigated in Ref. 1 for electron-ion systems, without considering the structure
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of an electron-reflecting boundary.

Several configurations of electrodes and electromagnets (or permanent magnets) can be

envisioned that can be considered as ASBs. For example, a planar geometry could be

constructed by arranging a large number of magnetic dipoles in a grid pattern with the

dipole moment of adjacent magnets directed in opposite directions. A conceptually simpler

alternative, referred to as a ‘picket-fence’, can be constructed using a sequence of equally

spaced long wires, with adjacent wires carrying current in opposite directions. Charged

particle reflection from the magnetic field of the picket-fence configuration was investigated

in Ref. 11, and single-particle trajectory simulations presented in Ref. 12 indicate that it may

be possible to reflect effectively all incident individual particles from the picket-fence ASB

with the addition of a suitable applied electrostatic field. Other work involving charged

particle reflection from ASBs has been reported elsewhere,13–16 and various confinement

schemes utilizing electrostatically plugged magnetic cusps have been discussed in the context

of fusion related applications in Ref. 17.

In Ref. 12, a classical trajectory Monte Carlo study of single particle trajectories was

used to find optimal relative sizes of plasma-facing electrodes. In the work reported here,

a particle-in-cell code is used for conducting a self-consistent study, regarding whether a

cylindrically symmetric ASB enclosure can confine a non-neutral plasma using the optimized

electrode relative sizes found in Ref. 12. The Warp particle-in-cell code is used for the

work reported here.18 An initial study with Warp regarding plasma confinement using a

cylindrically symmetric ASB was reported previously,19 but only radial confinement was

considered (not axial confinement) in Ref. 19. Section II describes the ASB trap model and

the externally controlled parameter values selected for a simulation of plasma confinement

within the trap. Section III describes the computer simulation of plasma confinement within

the ASB trap. Section IV presents the results obtained. A discussion and concluding remarks

are provided in Sec. V.

II. TRAP PHYSICAL MODEL AND EXTERNALLY CONTROLLED

PARAMETER VALUES

Plasma confinement within a trap that employs a cylindrically symmetric picket-fence

ASB is investigated via computer simulation. A cross sectional view of the ASB trap is shown
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components contributes to plasma confinement in a specific way. The first set of components

produces two electrostatic potential barriers along the axis of symmetry. The axial-barrier

components consist of four cylindrical electrodes, each of inner radius Rg = 0.5 cm and axial

length Lg = 0.25 cm, that are coaxial with the z-axis, with two electrodes located on each

end of the trap. The outermost electrodes (dark gray) are biased to a positive potential

of Vg = 50 V, while the inner two electrodes are held at 0 V. An axial magnetic field is

present along the axis of symmetry inside of the axial-barrier components. Loading the trap

is envisioned to occur experimentally through axial-barrier components joined to Penning

traps, but the presence of Penning traps is not considered in the present work.

The second set of components, hereafter referred to as end caps, provides off-axis con-

finement for the positron plasma in the z-direction. Each of the two end caps consists of

a sequence of concentric cylindrical electrodes and circular electromagnetic coils. Adjacent

electromagnetic coils carry current in opposite directions and are spaced equidistant from

one another in the radial direction. The inner-most electromagnetic coil of each end cap has

a radius of Rg = 0.5 cm and is radially flush with the surface of the grounded electrode of

the corresponding axial-barrier component. Each end cap creates a cylindrically symmetric

picket-fence magnetic field in the radial direction that is plugged electrostatically as was

done for the planar and cylindrical arrangements presented in Refs. 12 and 19, respectively.

The third set of components of the trap provides radial confinement of the positron plasma

and is hereafter referred to as the trap wall. The trap wall considered here is similar to that

which was investigated in Ref. 19 and produces of an electrostatically plugged, cylindrically

symmetric, picket-fence magnetic field. The electromagnets in the trap wall have a radius

of Rw, and the distance in the z dimension between geometric centers of electromagnetic

coils in each of the end caps is denoted Lw. The parameters Rw and Lw have values that are

varied in the work presented here. The plugging electrodes for both the trap wall and the

end caps are all biased to a voltage of Vp = 24 V, and each of the circular electromagnetic

coils carries a single-turn current of 750 A.

Each electromagnetic coil is approximated as an infinitesimally thin current-carrying

circular loop. The separation distance of adjacent electromagnetic coils in the end caps and

the trap wall is chosen such that the spatial period of the magnetic field is S = 1.0 cm for

both components. The locations of the plugging electrodes for the end caps and trap wall

are chosen such that each is centered midway between adjacent electromagnetic coils. The

5

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
1
6
3
4
9



plugging electrodes in the end caps have a radial thickness of d, while the plugging electrodes

located in the trap wall have an axial length of d, where the value, d = 0.4S = 0.4 cm, is

chosen in accordance with the optimization results reported in Ref. 12. The electromagnets

in the end caps and the trap wall are recessed from the available particle confinement volume

in the radial and axial directions, respectively, by being located a distance of � = 0.05 cm

from the surfaces of the electrodes. The available particle confinement volume, excluding

the volume inside of the axial-barrier components, is cylindrical with length Lw − 2� and

radius Rw − �. The z-coordinates of the electromagnetic coils in the left end cap and right

end cap are zlc = 2Lg−� and zrc = zlc+Lw, respectively. (Note that the coordinate origin is

located at one end of the trap.) The total axial length of the trap, including the axial-barrier

components, is zmax = 2zlc + Lw.

III. SIMULATION DETAILS

The total magnetic field inside of the trap B(r, z) is the superposition of the magnetic

fields produced by the left and right end caps, Blc(r, z) and Brc(r, z), respectively, and the

magnetic field produced by the trap wall Bw(r, z),

B(r, z) = Blc(r, z) +Brc(r, z) +Bw(r, z). (1)

Here,

Blc(r, z) =
Nc−2
X

i=0

(−1)iBs(r, z − zlc, ai), (2)

and

Brc(r, z) =
Nc−2
X

i=0

(−1)i+1
Bs(r, z − zrc, ai), (3)

where Bs(r, z, a) is the magnetic field produced by a single current loop of circular radius

a, and ai = Rg + iS/2 is the radius of the ith electromagnetic coil. The magnetic fields of

Nc − 1 electromagnetic coils are superposed for each end cap by Eqs. (2) and (3). The

magnetic fields produced by two end-cap coils with radius Rw = Rg + (Nc − 1)S/2 that

are also part of the trap wall are excluded in Eqs. (2) and (3), and Nc is the number of

electromagnetic coils in each end cap. The magnetic field produced by a current loop is

given, for example, by Ref. 20, and Bs(r, z, a) represents the magnetic field produced at

radial and axial coordinates (r, z) by a circular current loop that is centered at the origin of
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the cylindrical coordinate system and that has an axis of symmetry aligned with the z axis.

The magnetic field produced by the trap wall is

Bw(r, z) =
Nw−1
X

i=0

(−1)i+Nc+1
Bs(r, z − zi, Rw), (4)

where the z-coordinate of the ith electromagnetic coil is zi = zlc+ iS/2, Nw is the number of

electromagnetic coils making up the wall, including the two shared with the end caps that

are separated axially by the distance, Lw = (Nw − 1)S/2. The values of Rw and Lw are

restricted such that Nw and Nc are even numbers.

Simulations are conducted using a two-dimensional electrostatic version of the Warp

code,18 where the electrostatic potential due to the trap and plasma is calculated self-

consistently at radial and axial cylindrical coordinates at each time step, and the mag-

netic field produced by the plasma is neglected. The assumption of azimuthal symmetry

allows three-dimensional potential profiles to be self-consistently determined with a two-

dimensional grid on the (r, z) plane. The same grid spacing is used in radial and axial

directions, ∆r = ∆z = ∆s. Here, ∆s is chosen to be the smaller of two values according to

∆s = min
✓

�De

4
,
S

Ns

◆

, (5)

where �De =
q

✏0kBT0e/(n0ee2) is the Debye length of a positron plasma with density n0e

and temperature T0e, ✏0 is the permittivity of free space, kB is Boltzmann’s constant, and

e is the charge of a positron. T0e is the temperature of positrons while being loaded into

the trap, and n0e is the initial density of positrons as defined below. Ns is a minimum

number of grid points per spatial period of the magnetic field used in each simulation. For

all simulations in the present work, a grid resolution of Ns ≥ 90 is used. For each simulation,

Dirichlet boundary conditions are imposed on the electrostatic potential �(r, z) to model an

electrode configuration similar to that shown in Fig. 1 with varying values of Rw and Lw,

while Neumann boundary conditions are imposed on the electrostatic potential at z = 0 and

z = zmax such that
"

@�(r, z)

@z

#

z=0

=

"

@�(r, z)

@z

#

z=zmax

= 0. (6)

The electrostatic potential and magnetic field are defined on the computational grid, and

the forces acting on the macroparticles off the grid are computed via interpolation.

Positron plasma macroparticles are loaded into a cylindrically symmetric uniform injec-

tion volume over the course of the first 0.5 µs of each simulation. The plasma is allowed to
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evolve self-consistently while the positron macroparticles are being injected during 0.5 µs,

and the simulation continues for another 19.5 µs thereafter. Thus, each simulated evolution

of the system lasts 20 µs. Each macroparticle in the system represents 50 plasma particles

(i.e., the assigned macroparticle weight is 50). The injection volume is chosen to be a cylin-

der of radius, Rinj = Rw−
√
2S, and length, Linj = zinj,max−zinj,min, where zinj,max = zrc−S

and zinj,min = zlc+S are the maximum and minimum z-coordinates of the injection volume,

respectively. The initial velocity components v0x, v0y, and v0z of each macroparticle are sam-

pled from a three-dimensional non-drifting Maxwellian velocity distribution associated with

a temperature of T0e = 40 K. The total number of macroparticles Ne in each simulation is

chosen such that the density of the plasma would be n0e = 106 cm−3 had all plasma particles

been initialized within the injection volume instantaneously at time t = 0 s.

Using the two-dimensional electrostatic version of the Warp code, plasma particles are

allowed to move in three-dimensions according to the ASB applied magnetic field and the

self-consistently calculated electric field. For all simulations in the work presented here, the

Boris algorithm is used to push particles with a time step of ∆t = 5.6 ps. The value of ∆t is

chosen according to ∆t = 0.1/!c, where !c is the angular frequency of the cyclotron motion

of a positron moving in a Bmax = 0.1014 T magnetic field. Here, Bmax is the magnitude of

the magnetic field at a point that is very close to the radius of one of the electromagnetic

coils in the trap wall. If the trajectory of a particle intersects the z = 0.0 cm or z = zmax

planes, or any of the trap electrodes, the particle is considered lost and is removed from the

simulation. After each simulation is complete, the position and momentum of each particle

that remains in the trap and the electrostatic potential �(r, z) are recorded.

It is illustrative to consider some length scales. A positron with mass m traveling in a

straight line during 20 µs at the injection thermal speed,
q

kBT0e/m, would travel 49 cm.

The Debye length for the injection parameter values chosen is �De = 0.44 mm. A positron

traveling perpendicular to a uniform magnetic field of strength Bmax would have a thermal

gyroradius
q

mkBT0e/(e2B2
max) of 1.4 µm.

IV. RESULTS

A parametric study is conducted in which the length and radius of the trap wall are varied.

Table I shows the parameter values used and gives some of the results. For case numbers
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beginning with L, the radius of the trap is held constant with Rw = 4.0 cm, while the length

of the trap wall is varied with 3.5 cm ≤ Lw ≤ 13.5 cm. For case numbers beginning with R,

the length of the trap wall is held constant with Lw = 8.5 cm, while the radius of the trap

is varied with 3.0 cm ≤ Rw ≤ 9.0 cm. For each simulation, a non-neutral positron plasma is

injected as was described in Sec. III. In each of the simulations where the length of the trap

is varied, no positrons are lost. Likewise, no particles are lost for cases R1-R5. However, for

cases R6 and R7, 1.2× 10−5% (2 macroparticles) and 0.11% (25, 621 macroparticles) of the

initial positron population are lost, respectively. The losses are attributed to space charge

effects, as discussed below.

A. Electrostatic Potential

Figure 2 shows the electric potential �(r, z) in the trap at the end of a simulation, at

time t = 20 µs, for case R7. The electric potential typically has an extremum close to

the geometric center of the trap located on the z axis. The electric potential also has

saddle points, each of which occurs within a magnetic cusp in front of and approximately

centered with a plugging electrode. A positron at a saddle point experiences an increase

in potential energy if it moves along the local magnetic field line toward or away from the

associated plugging electrode. The minimum height of the electrostatic potential hill formed

by the space charge of the positron plasma is defined as the difference ∆� = �c − �s,max

between the potential at the center of the trap �c and the maximum value of the electrostatic

potential �s,max at any one of the saddle points. The value of ∆� is first evaluated separately

for saddle points along the trap wall (∆�r) and saddle points along the end caps (∆�z),

and the overall minimum hill height is then determined as the smaller of the two values,

∆� = min(∆�r,∆�z). Figure 2 shows the locations of the saddle points associated with

evaluations of ∆�r and ∆�z and the values of ∆�r and ∆�z for the case shown.

In contrast to a positron, an oppositely charged particle at a saddle point experiences a

decrease in potential energy if it moves along the local magnetic field line toward or away from

the associated plugging electrode. For plasma space-charge based confinement, for example

with antiprotons confined by using the space charge of a positron plasma, the difference

in potential between each saddle point and the center of the trap can be determined. The

smallest difference in potential would provide the potential energy well depth e∆� for a
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TABLE I. Parameter values used in the ASB trap simulations and some results. The total number

of injected macroparticles Ne is chosen such that the positron density (with 50 positrons per

macroparticle) would have initially been n0e = 106 cm−3 inside of the injection volume had injection

occurred instantaneously at t = 0 s.

Case No. Lw [cm] Rw [cm] Ne ∆φ [V] Particles Lost [%]

L1 3.5 4.0 565, 634 0.21 0.0

L2 4.5 4.0 969, 690 0.52 0.0

L3 5.5 4.0 1, 373, 725 0.77 0.0

L4 6.5 4.0 1, 777, 741 0.91 0.0

L5 7.5 4.0 2, 181, 771 1.09 0.0

L6 8.5 4.0 2, 585, 792 1.16 0.0

L7 9.5 4.0 2, 989, 807 1.24 0.0

L8 10.5 4.0 3, 393, 912 1.34 0.0

L9 11.5 4.0 3, 797, 913 1.33 0.0

L10 12.5 4.0 4, 201, 863 1.36 0.0

L11 13.5 4.0 4, 605, 889 1.38 0.0

R1 8.5 3.0 948, 470 0.56 0.0

R2 8.5 4.0 2, 585, 792 1.16 0.0

R3 8.5 5.0 5, 027, 279 1.74 0.0

R4 8.5 6.0 8, 273, 063 2.20 0.0

R5 8.5 7.0 12, 323, 097 2.62 0.0

R6 8.5 8.0 17, 177, 378 2.99 1.2× 10−5

R7 8.5 9.0 22, 836, 240 3.32 0.11

confined antiproton. However, each saddle point occurs within a magnetized region. If it

is desirable for antiprotons to be confined while being effectively unmagnetized, a potential

energy well depth smaller than e∆� would have to be considered.

Figure 3 shows the height of the space-charge hill in the radial ∆�r and axial ∆�z

directions for all of the cases considered. For cases L1-L11, the radial hill height ∆�r is

slightly smaller than the axial hill height∆�z in all simulations. In cases R1-R2, ∆�r < ∆�z,

while for cases R3-R7 ∆�r > ∆�z. Relatively close values occur for ∆�r and ∆�z, indicating
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space-charge hill increases (provided that particles are injected into the trap as described

with n0e = 106 cm−3). Such results are in qualitative agreement with the results of Ref. 1,

which considered non-neutral and partially neutralized plasma confinement assuming that a

smooth particle-reflecting boundary was present. Additionally, the height of the electrostatic

potential hill in case R3 is in quantitative agreement with the result found in case I of Ref. 19.

In Ref. 19, particle-in-cell simulations were used to study radial confinement (but not axial

confinement) of non-neutral and partially neutralized plasmas in a cylindrically symmetric

ASB trap. The work presented here indicates that the radial and axial space-charge based

confinement properties of the trap may be similar. Thus, a more comprehensive parametric

study, including the presence of an oppositely signed plasma species, may be computationally

manageable by using smaller scale simulations, such as those presented in Ref. 19. Such

smaller scale simulations may serve to study, for example, density limits in larger-sized

(relative to the magnetic field’s spatial period) ASB traps that provide plasma space-charge

based confinement of a second species.

A recent discussion of numerical heating in particle-in-cell simulations (e.g., with the

Boris algorithm) in magnetized plasmas is found in Ref. 21. According to Ref. 21: (1)

“To conserve the energy in the PIC simulation, it is typically advised to use !∆t ≤ 0.1”

... “where ! is the largest characteristic frequency in the system ...” (2) “It is generally

accepted that not resolving the electron gyroradius on the spatial grid (when rL < ∆x) does

not have consequences on the numerical stability due to the homogenous distribution of the

particles and that the accurate resolving the gyration by temporal spacing is sufficient.” (3)

“... for unresolved Larmor radius the electrons are being heated in the direction perpendic-

ular to the magnetic field. These effects can be only partially diminished, but cannot be

avoided by using higher-order weighting functions.” In the simulations presented here, the

positron cyclotron period and gyroradius associated with Bmax are expected to be the small-

est characteristic timescale and spatial scale, respectively. Although, particles that reach a

location where the magnetic field strength approaches Bmax are likely to be lost, the effects

of the transitions between being effectively unmagnetized and being strongly magnetized

is not known. For example, it cannot be ruled out that numerical heating and trajectory

errors have not had an effect, such as to increase the plasma temperature at the edge, or to

cause particle losses in cases R6 and R7. However, it would not be expected that numerical

heating or trajectory errors would improve particle confinement, and the particle loss results
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in cases L1 - L11 and R1 - R5 are expected to remain unchanged even if numerical heating

and trajectory errors are reduced.

In summary, particle-in-cell simulations have been presented of radial and axial confine-

ment of a non-neutral plasma within a cylindrically symmetric ASB trap. A parametric

study was done by varying the trap’s radius and length. No losses of plasma particles oc-

curred for some of the conditions simulated. Losses that did occur were attributed to the

effect of space charge, because the electric potential at the top of the electrostatic poten-

tial hill produced by the positron plasma’s space charge was close in value to the electric

potential of the plugging electrodes. Plots for the electrostatic potential, plasma density,

and plasma temperature were presented for various cases. In the collisionless limit, and for

the particle injection method used, the simulations indicate that when non-neutral plasma

is confined within the ASB trap, the electric potential has an extremum near the trap’s

center, and the density and temperature tend to be lower near the trap’s center than at the

plasma’s edge. The results of the simulations indicate that a three-dimensional electrostatic

potential hill is formed by the space charge of a positron plasma confined by an ASB trap,

and confinement of a second oppositely signed species, such as antiprotons, may be possible

within the space charge of the positron plasma.
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