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Artificially structured boundary plasma trap
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A computer simulation is presented of single-species non-neutral plasma confinement
using an artificially structured boundary. The artificially structured boundary pro-
duces a spatially periodic static electromagnetic field along the plasma periphery,
such that the spatial period of the applied field is much smaller than the dimensions
of the confined plasma. The simulated non-neutral plasma self-consistently produces
an electrostatic potential energy well for oppositely signed charged particles. The re-
sults support the prospect of developing plasma space-charge based confinement, with
an unmagnetized plasma of one species of charged particles confined by an electric
field produced by an edge-confined plasma of a second species of charged particles.

The Warp particle-in-cell code is used for the simulations.
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I. INTRODUCTION

In Ref. 1, the existence of plasma equilibria was predicted involving two relaxed plasma
species with one species confined by the space charge of the other species. A self-consistent
finite-difference numerical approach was used for the study, which developed an understand-
ing of how an edge-confined electron plasma produces a three-dimensional electrostatic po-
tential well and how an ion plasma can be confined within a neutral plasma region inside
of the well. Equilibria were found for which the magnitude of the difference in an ion’s
potential energy between the plasma’s geometric center and edge was much larger than the
ion temperature in energy units.® Along with ions confined by the space charge of electrons,
plasma space-charge based confinement is also envisioned for confining antiprotons by the
space charge of positrons.

Antihydrogen production for conducting gravity experiments and high precision spec-
troscopy experiments relies heavily on plasma confinement and manipulation techniques.?
Penning traps that are nested within neutral atom traps are used by the ALPHA and
ATRAP experiments to simultaneously synthesize and confine antihydrogen.?? However,
the strong magnetic field that is employed by Penning traps for radial plasma confinement
reduces the three-body recombination rate by roughly an order of magnitude as compared
to the rate when there is no magnetic field present.”® Furthermore, positron space charge
and collisions between antiprotons during the mixing process may significantly reduce the

number of cold antihydrogen atoms that are suitable for further experimentation.®!0

A concept referred to as an artificially structured boundary (ASB) may provide an alter-
native to the nested Penning trap for combining multi-species plasmas. In the context of
the present work, an ASB is an arrangement of electrodes and electromagnets that creates a
spatially periodic electromagnetic field, which can be used to confine non-neutral and par-
tially neutralized plasmas. If the dimensions of an ASB plasma trap are chosen such that
the spatial period of the electromagnetic field is much smaller than the dimensions of the
plasma confinement volume, then the bulk of the plasma will be effectively free of exter-
nally applied electromagnetic fields. As envisioned, an ASB trap could be used to confine a
positron plasma along its edge, and the space charge of the positron plasma could create an
electrostatic potential energy well for confining an antiproton plasma. Such a confinement

scheme was investigated in Ref. 1 for electron-ion systems, without considering the structure
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of an electron-reflecting boundary.

Several configurations of electrodes and electromagnets (or permanent magnets) can be
envisioned that can be considered as ASBs. For example, a planar geometry could be
constructed by arranging a large number of magnetic dipoles in a grid pattern with the
dipole moment of adjacent magnets directed in opposite directions. A conceptually simpler
alternative, referred to as a ‘picket-fence’, can be constructed using a sequence of equally
spaced long wires, with adjacent wires carrying current in opposite directions. Charged
particle reflection from the magnetic field of the picket-fence configuration was investigated
in Ref. 11, and single-particle trajectory simulations presented in Ref. 12 indicate that it may
be possible to reflect effectively all incident individual particles from the picket-fence ASB
with the addition of a suitable applied electrostatic field. Other work involving charged

13716 and various confinement

particle reflection from ASBs has been reported elsewhere,
schemes utilizing electrostatically plugged magnetic cusps have been discussed in the context
of fusion related applications in Ref. 17.

In Ref. 12, a classical trajectory Monte Carlo study of single particle trajectories was
used to find optimal relative sizes of plasma-facing electrodes. In the work reported here,
a particle-in-cell code is used for conducting a self-consistent study, regarding whether a
cylindrically symmetric ASB enclosure can confine a non-neutral plasma using the optimized
electrode relative sizes found in Ref. 12. The Warp particle-in-cell code is used for the
work reported here.'® An initial study with Warp regarding plasma confinement using a
cylindrically symmetric ASB was reported previously,'® but only radial confinement was
considered (not axial confinement) in Ref. 19. Section II describes the ASB trap model and
the externally controlled parameter values selected for a simulation of plasma confinement
within the trap. Section III describes the computer simulation of plasma confinement within
the ASB trap. Section IV presents the results obtained. A discussion and concluding remarks

are provided in Sec. V.

II. TRAP PHYSICAL MODEL AND EXTERNALLY CONTROLLED
PARAMETER VALUES

Plasma confinement within a trap that employs a cylindrically symmetric picket-fence

ASB is investigated via computer simulation. A cross sectional view of the ASB trap is shown
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FIG. 1. Illustration showing a cross sectional view of the ASB trap. Electrodes are depicted as gray
or white rectangles, while electromagnetic coils are depicted as circles. The direction of current
flow in each electromagnet is indicated by the ‘x’ or ‘dot’ inside of the circles. All components
of the trap are azimuthally symmetric about the z-axis. The figure is not to scale, and the figure

qualitatively represents case L1 defined in Table I.

in Fig. 1. The trap is cylindrically symmetric about the z-axis and consists of a series of
electrodes and electromagnetic coils that are arranged in such a way so as to produce a three-
dimensional confinement volume for either a positively, or negatively, charged plasma species.
In what follows, positive voltages are applied to ‘plugging’ electrodes (gray rectangles in
Fig. 1) in order to confine a positron plasma, and all electrodes that are white in Fig. 1 are

held at ground potential (0 V).

The trap may be thought of as having three sets of components, where each set of
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components contributes to plasma confinement in a specific way. The first set of components
produces two electrostatic potential barriers along the axis of symmetry. The axial-barrier
components consist of four cylindrical electrodes, each of inner radius Ry, = 0.5 cm and axial
length L, = 0.25 cm, that are coaxial with the z-axis, with two electrodes located on each
end of the trap. The outermost electrodes (dark gray) are biased to a positive potential
of V; = 50 V, while the inner two electrodes are held at 0 V. An axial magnetic field is
present along the axis of symmetry inside of the axial-barrier components. Loading the trap
is envisioned to occur experimentally through axial-barrier components joined to Penning
traps, but the presence of Penning traps is not considered in the present work.

The second set of components, hereafter referred to as end caps, provides off-axis con-
finement for the positron plasma in the z-direction. Each of the two end caps consists of
a sequence of concentric cylindrical electrodes and circular electromagnetic coils. Adjacent
electromagnetic coils carry current in opposite directions and are spaced equidistant from
one another in the radial direction. The inner-most electromagnetic coil of each end cap has
a radius of Ry = 0.5 cm and is radially flush with the surface of the grounded electrode of
the corresponding axial-barrier component. Each end cap creates a cylindrically symmetric
picket-fence magnetic field in the radial direction that is plugged electrostatically as was
done for the planar and cylindrical arrangements presented in Refs. 12 and 19, respectively.
The third set of components of the trap provides radial confinement of the positron plasma
and is hereafter referred to as the trap wall. The trap wall considered here is similar to that
which was investigated in Ref. 19 and produces of an electrostatically plugged, cylindrically
symmetric, picket-fence magnetic field. The electromagnets in the trap wall have a radius
of R,, and the distance in the z dimension between geometric centers of electromagnetic
coils in each of the end caps is denoted L,,. The parameters R,, and L,, have values that are
varied in the work presented here. The plugging electrodes for both the trap wall and the
end caps are all biased to a voltage of V,, = 24 V, and each of the circular electromagnetic
coils carries a single-turn current of 750 A.

Each electromagnetic coil is approximated as an infinitesimally thin current-carrying
circular loop. The separation distance of adjacent electromagnetic coils in the end caps and
the trap wall is chosen such that the spatial period of the magnetic field is S = 1.0 cm for
both components. The locations of the plugging electrodes for the end caps and trap wall

are chosen such that each is centered midway between adjacent electromagnetic coils. The
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plugging electrodes in the end caps have a radial thickness of d, while the plugging electrodes
located in the trap wall have an axial length of d, where the value, d = 0.4S = 0.4 cm, is
chosen in accordance with the optimization results reported in Ref. 12. The electromagnets
in the end caps and the trap wall are recessed from the available particle confinement volume
in the radial and axial directions, respectively, by being located a distance of 6 = 0.05 cm
from the surfaces of the electrodes. The available particle confinement volume, excluding
the volume inside of the axial-barrier components, is cylindrical with length L,, — 2§ and
radius R,, — 0. The z-coordinates of the electromagnetic coils in the left end cap and right
end cap are 2, = 2Ly — ¢ and z,. = 2.+ Ly, respectively. (Note that the coordinate origin is
located at one end of the trap.) The total axial length of the trap, including the axial-barrier

components, iS Zymax = 22ic + Ly-

ITII. SIMULATION DETAILS

The total magnetic field inside of the trap B(r, z) is the superposition of the magnetic
fields produced by the left and right end caps, Bi.(r, z) and B,.(r, z), respectively, and the
magnetic field produced by the trap wall B, (r, z),

B(r,z) = By.(r,2) + Byo(r,2) + By(r, 2). (1)
Here,
Bulrd) = 3 () B(rs = ) o)
and -
B..(r.2) - f“z?—l)i“Bs(r, o= o), )

where By(r, z,a) is the magnetic field produced by a single current loop of circular radius
a, and a; = R, +iS5/2 is the radius of the i*" electromagnetic coil. The magnetic fields of
N, — 1 electromagnetic coils are superposed for each end cap by Egs. (2) and (3). The
magnetic fields produced by two end-cap coils with radius R, = R, + (N, — 1) S/2 that
are also part of the trap wall are excluded in Egs. (2) and (3), and N, is the number of
electromagnetic coils in each end cap. The magnetic field produced by a current loop is
given, for example, by Ref. 20, and Bj(r, z,a) represents the magnetic field produced at

radial and axial coordinates (r, z) by a circular current loop that is centered at the origin of
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the cylindrical coordinate system and that has an axis of symmetry aligned with the z axis.

The magnetic field produced by the trap wall is

No-1
B,(r,z) = Z (=) Nt B (r, 2 — 2, Ry), (4)
=0

where the z-coordinate of the *®

electromagnetic coil is z; = 2. +145/2, N,, is the number of
electromagnetic coils making up the wall, including the two shared with the end caps that
are separated axially by the distance, L, = (N, —1)S/2. The values of R, and L, are
restricted such that N, and N, are even numbers.

Simulations are conducted using a two-dimensional electrostatic version of the Warp
code,'® where the electrostatic potential due to the trap and plasma is calculated self-
consistently at radial and axial cylindrical coordinates at each time step, and the mag-
netic field produced by the plasma is neglected. The assumption of azimuthal symmetry
allows three-dimensional potential profiles to be self-consistently determined with a two-
dimensional grid on the (r,z) plane. The same grid spacing is used in radial and axial

directions, Ar = Az = As. Here, As is chosen to be the smaller of two values according to

Ape S
As = mi < —) 5
s = min { — N (5)
where Ap. = \/€okpToe/(noce?) is the Debye length of a positron plasma with density ng.

and temperature 1o, €y is the permittivity of free space, kg is Boltzmann’s constant, and
e is the charge of a positron. Ty is the temperature of positrons while being loaded into
the trap, and ng. is the initial density of positrons as defined below. N; is a minimum
number of grid points per spatial period of the magnetic field used in each simulation. For
all simulations in the present work, a grid resolution of N, > 90 is used. For each simulation,
Dirichlet boundary conditions are imposed on the electrostatic potential ¢(r, z) to model an
electrode configuration similar to that shown in Fig. 1 with varying values of R,, and L,,

while Neumann boundary conditions are imposed on the electrostatic potential at z = 0 and

Z = Zmax Such that

0z 0z
The electrostatic potential and magnetic field are defined on the computational grid, and
the forces acting on the macroparticles off the grid are computed via interpolation.
Positron plasma macroparticles are loaded into a cylindrically symmetric uniform injec-

tion volume over the course of the first 0.5 us of each simulation. The plasma is allowed to
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evolve self-consistently while the positron macroparticles are being injected during 0.5 us,
and the simulation continues for another 19.5 us thereafter. Thus, each simulated evolution
of the system lasts 20 us. Each macroparticle in the system represents 50 plasma particles
(i.e., the assigned macroparticle weight is 50). The injection volume is chosen to be a cylin-
der of radius, Rij = Ry — V28 , and length, Lin; = Zinjmax — Zinjmin, Where Zinjmax = Zre—S
and Zinjmin = 2+ S are the maximum and minimum z-coordinates of the injection volume,
respectively. The initial velocity components vg,, voy, and vy, of each macroparticle are sam-
pled from a three-dimensional non-drifting Maxwellian velocity distribution associated with
a temperature of To, = 40 K. The total number of macroparticles N, in each simulation is
chosen such that the density of the plasma would be ng. = 10¢ cm™ had all plasma particles
been initialized within the injection volume instantaneously at time ¢ = 0 s.

Using the two-dimensional electrostatic version of the Warp code, plasma particles are
allowed to move in three-dimensions according to the ASB applied magnetic field and the
self-consistently calculated electric field. For all simulations in the work presented here, the
Boris algorithm is used to push particles with a time step of At = 5.6 ps. The value of At is
chosen according to At = 0.1/w,, where w, is the angular frequency of the cyclotron motion
of a positron moving in a By,x = 0.1014 T magnetic field. Here, By« is the magnitude of
the magnetic field at a point that is very close to the radius of one of the electromagnetic
coils in the trap wall. If the trajectory of a particle intersects the z = 0.0 cm or z = Zy4z
planes, or any of the trap electrodes, the particle is considered lost and is removed from the
simulation. After each simulation is complete, the position and momentum of each particle
that remains in the trap and the electrostatic potential ¢(r, z) are recorded.

It is illustrative to consider some length scales. A positron with mass m traveling in a
straight line during 20 us at the injection thermal speed, y/kgTo./m, would travel 49 cm.
The Debye length for the injection parameter values chosen is Ap. = 0.44 mm. A positron
traveling perpendicular to a uniform magnetic field of strength Bp,.x would have a thermal

gyroradius \/mkpToe/(e2B2,,) of 1.4 um.

IV. RESULTS

A parametric study is conducted in which the length and radius of the trap wall are varied.

Table 1 shows the parameter values used and gives some of the results. For case numbers
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beginning with L, the radius of the trap is held constant with R,, = 4.0 cm, while the length
of the trap wall is varied with 3.5 cm < L,, < 13.5 cm. For case numbers beginning with R,
the length of the trap wall is held constant with L,, = 8.5 cm, while the radius of the trap
is varied with 3.0 cm < R, < 9.0 cm. For each simulation, a non-neutral positron plasma is
injected as was described in Sec. III. In each of the simulations where the length of the trap
is varied, no positrons are lost. Likewise, no particles are lost for cases R1-R5. However, for
cases R6 and R7, 1.2 x 107% (2 macroparticles) and 0.11% (25,621 macroparticles) of the
initial positron population are lost, respectively. The losses are attributed to space charge

effects, as discussed below.

A. Electrostatic Potential

Figure 2 shows the electric potential ¢(r, z) in the trap at the end of a simulation, at
time t = 20 us, for case R7. The electric potential typically has an extremum close to
the geometric center of the trap located on the z axis. The electric potential also has
saddle points, each of which occurs within a magnetic cusp in front of and approximately
centered with a plugging electrode. A positron at a saddle point experiences an increase
in potential energy if it moves along the local magnetic field line toward or away from the
associated plugging electrode. The minimum height of the electrostatic potential hill formed
by the space charge of the positron plasma is defined as the difference A¢ = ¢¢ — Ps max
between the potential at the center of the trap ¢. and the maximum value of the electrostatic
potential @ max at any one of the saddle points. The value of A¢ is first evaluated separately
for saddle points along the trap wall (A¢,) and saddle points along the end caps (Ag,),
and the overall minimum hill height is then determined as the smaller of the two values,
A¢ = min(A¢,, Ag,). Figure 2 shows the locations of the saddle points associated with
evaluations of A¢, and A¢, and the values of A¢, and Ag, for the case shown.

In contrast to a positron, an oppositely charged particle at a saddle point experiences a
decrease in potential energy if it moves along the local magnetic field line toward or away from
the associated plugging electrode. For plasma space-charge based confinement, for example
with antiprotons confined by using the space charge of a positron plasma, the difference
in potential between each saddle point and the center of the trap can be determined. The

smallest difference in potential would provide the potential energy well depth eA¢ for a
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TABLE I. Parameter values used in the ASB trap simulations and some results. The total number

of injected macroparticles N, is chosen such that the positron density (with 50 positrons per

macroparticle) would have initially been ng, = 10 cm™3 inside of the injection volume had injection

occurred instantaneously at ¢ = 0 s.

Case No. L, [cm] R, [cm)] N. A¢ [V] Particles Lost [%)]
L1 3.5 4.0 565, 634 0.21 0.0
L2 4.5 4.0 969,690  0.52 0.0
L3 5.5 4.0 1,373,725 0.77 0.0
L4 6.5 4.0 1,777,741 0.91 0.0
L5 7.5 4.0 2,181,771 1.09 0.0
L6 8.5 4.0 2,585,792 1.16 0.0
L7 9.5 4.0 2,989,807 1.24 0.0
L8 10.5 4.0 3,393,912 1.34 0.0
L9 11.5 4.0 3,797,913 1.33 0.0
L10 12.5 4.0 4,201,863 1.36 0.0
L11 13.5 4.0 4,605,889 1.38 0.0
R1 8.5 3.0 948,470  0.56 0.0
R2 8.5 4.0 2,585,792 1.16 0.0
R3 8.5 5.0 5,027,279 1.74 0.0
R4 8.5 6.0 8,273,063 2.20 0.0
R5 8.5 7.0 12,323,097 2.62 0.0
R6 8.5 8.0 17,177,378 2.9 1.2 % 1075
R7 8.5 9.0 22,836,240 3.32 0.11

confined antiproton. However, each saddle point occurs within a magnetized region. If it

is desirable for antiprotons to be confined while being effectively unmagnetized, a potential

energy well depth smaller than eA¢ would have to be considered.

Figure 3 shows the height of the space-charge hill in the radial A¢, and axial A¢,

directions for all of the cases considered. For cases L1-L11, the radial hill height A¢, is

slightly smaller than the axial hill height A¢, in all simulations. In cases R1-R2, A¢, < A¢,,

while for cases R3-R7 A¢, > A¢,. Relatively close values occur for A¢, and Ag,, indicating
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that the radial and axial space-charge based confinement properties of the trap may be
similar. Also, as either the radius or length of the trap increases, the height of the space-

charge hill increases in both the radial and axial directions.
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FIG. 2. Electrostatic potential in the trap at time ¢ = 20 us for case R7. The black dots indicate

the locations of the saddle points where A¢, and A¢, are evaluated.

B. Plasma Density

Figure 4 shows the positron density n.(r, z) in the trap at the end of a simulation, at time
t = 20 us, for case R7. The black dots in Fig. 4 represent the locations of a sample of 5,000
randomly selected particles. The distribution of black dots in Fig. 4 serves to elucidate the
particle confinement region that is imposed by the magnetic field, with the distance into a
magnetic cusp that particles travel limited by the electric field produced by the electrodes.
The particle density variations are represented by the color variations in Fig. 4. For all of
the cases, the density near the center of the trap is much smaller than the density near the

plasma’s edge. Also, a peak in density occurs along the axis of symmetry near the axial
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FIG. 3. Radial A¢, (gray) and axial A¢, (black) space-charge hill height at time ¢t = 20 us as a

function of (a) L,, when R,, = 4.0 cm and (b) R,, when L,, = 8.5 cm.

barriers.

Figure 5 shows the average central density n. of the positron plasma for all of the cases
considered. The average central density is obtained within a cylindrical volume of radius
0.5 cm and length 1.0 cm that is coaxial with and centered within the trap. The average
central density is relatively unaffected by changes made to the trap length and radius, except

that larger values of n. occur for smaller values of L,,. The latter increase is attributed to
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an axial confinement volume that approaches 1.0 cm in length, such that the higher density

near the plasma edges contribute more to the evaluation of n..

ne [105cm™3]

15
5 10
—
5
0

z [cm]

FIG. 4. Density of the positron plasma at time ¢t = 20 us for case R7. The black dots represent

the locations of a small sample of trapped particles.

C. Plasma Temperature

Figure 6 shows the positron temperature T,(r, z) in the trap at the end of a simulation, at
time t = 20 us, for case R7. Temperature in energy units is evaluated as the average of three
variances associated with three Cartesian velocity components, respectively, multiplied by
the positron mass. For all of the cases, the temperature near the plasma’s edge tends to
be larger than near the center of the trap. The temperature increase away from the trap’s
center is attributed to fueling the plasma about the trap’s center in a region of relatively
high potential energy. The effects of binary collisions are not included in the simulation,
and such collisions may be expected to gradually reduce the spatial temperature variation.

The average central temperature 7. is shown in Fig. 7. The average central temperature

T, is obtained within a cylindrical volume of radius 0.5 cm and length 1.0 cm that is coaxial

13
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FIG. 5. Average density near the trap’s center for (a) cases L1-L11 with R,, = 4.0 cm and (b)

cases R1-R7 with L,, = 8.5 cm.
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with and centered within the trap. While the temperature near the edges of the trap is
greater than 100 K for cases L1-L11, the temperature near the trap’s center is relatively
constant as the length of the trap is varied, being between 49.1 K and 57.0 K for all cases
except L1. In contrast, as the radius of the trap increases, with R, = 3.0 cm in case R1
and R, = 9.0 cm in case R7, the average central temperature increases from 7, = 44.8 K in
case R1 to T, = 120.1 K in case R7. The relatively small decrease in T, for case R7 relative

to case R6 is attributed to a 0.11% loss of particles in case R7.

T [K]
1000
800

600

1 [cm]

400

200

z [cm]

FIG. 6. Temperature of the positron plasma at time ¢ = 20 us for case R7.

V. DISCUSSION AND CONCLUDING REMARKS

As indicated in Table I, for all but cases R6 and R7, the number of particles lost from
confinement is zero. The effects of space charge can be expected to be strongest for cases
R6 and R7 as a result of having the highest values of A¢, with R7 having the largest value
overall. In case R7, the electrostatic potential at the trap’s center has a value, ¢, = 23.84 V,

which approaches the electric potential applied to the plugging electrodes, V,, = 24 V. Since
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FIG. 7. Temperature near the trap’s center for (a) cases L1-L11 when R,, = 4.0 cm and (b) cases

R1-R7 when L,, = 8.5 cm.
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FIG. 8. Rate N at which particles are lost for case R7.

¢e = Vp, some positrons born with high potential energy are able to escape confinement.
Figure 8 shows the rate at which particles are lost N between the time particle injection
stops at ¢t = 0.5 us and the end of the simulation at ¢ = 20 us. (Note that adjacent small
tick marks along the horizontal axis represents a time interval of 1 us, and the plotted line
begins at ¢t = 0.5 us.) Just after the particle injection period ends at ¢ = 0.5 us, the loss
rate is N = 3.73 x 10% us~!. Between t = 0.5 ps and ¢ = 1.0 us the loss rate decreases
rapidly to N = 1.35 x 103 pus~!. Particles continue to be lost throughout the duration of
the simulation, and the loss rate decreases to N = 1.18 x 10 ps~! by t = 20.0 ps. It is
hypothesized that, for times ¢ > 20 us, as particles are lost from the trap, a number of
effects will occur. The electrostatic potential near the trap’s center will decrease, and N
will approach zero. Also, the plasma will cool evaporatively, because particles that escape
confinement by reaching the plugging electrodes must have a high enough energy to overcome
the electrostatic potential barrier created by the plugging electrodes. However, evolving the

system to check the hypothesis was not computationally manageable.

The results of Fig. 3 indicate that as the size of the trap increases, the height of the

17



AlP

Publishing

space-charge hill increases (provided that particles are injected into the trap as described
with ng, = 10 cm™2). Such results are in qualitative agreement with the results of Ref. 1,
which considered non-neutral and partially neutralized plasma confinement assuming that a
smooth particle-reflecting boundary was present. Additionally, the height of the electrostatic
potential hill in case R3 is in quantitative agreement with the result found in case I of Ref. 19.
In Ref. 19, particle-in-cell simulations were used to study radial confinement (but not axial
confinement) of non-neutral and partially neutralized plasmas in a cylindrically symmetric
ASB trap. The work presented here indicates that the radial and axial space-charge based
confinement properties of the trap may be similar. Thus, a more comprehensive parametric
study, including the presence of an oppositely signed plasma species, may be computationally
manageable by using smaller scale simulations, such as those presented in Ref. 19. Such
smaller scale simulations may serve to study, for example, density limits in larger-sized
(relative to the magnetic field’s spatial period) ASB traps that provide plasma space-charge
based confinement of a second species.

A recent discussion of numerical heating in particle-in-cell simulations (e.g., with the
Boris algorithm) in magnetized plasmas is found in Ref. 21. According to Ref. 21: (1)
“To conserve the energy in the PIC simulation, it is typically advised to use wAt < 0.1”

“where w is the largest characteristic frequency in the system ...” (2) “It is generally
accepted that not resolving the electron gyroradius on the spatial grid (when r;, < Az) does
not have consequences on the numerical stability due to the homogenous distribution of the
particles and that the accurate resolving the gyration by temporal spacing is sufficient.” (3)
“... for unresolved Larmor radius the electrons are being heated in the direction perpendic-
ular to the magnetic field. These effects can be only partially diminished, but cannot be
avoided by using higher-order weighting functions.” In the simulations presented here, the
positron cyclotron period and gyroradius associated with By, are expected to be the small-
est characteristic timescale and spatial scale, respectively. Although, particles that reach a
location where the magnetic field strength approaches By, are likely to be lost, the effects
of the transitions between being effectively unmagnetized and being strongly magnetized
is not known. For example, it cannot be ruled out that numerical heating and trajectory
errors have not had an effect, such as to increase the plasma temperature at the edge, or to
cause particle losses in cases R6 and R7. However, it would not be expected that numerical

heating or trajectory errors would improve particle confinement, and the particle loss results
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in cases L1 - L11 and R1 - R5 are expected to remain unchanged even if numerical heating
and trajectory errors are reduced.

In summary, particle-in-cell simulations have been presented of radial and axial confine-
ment of a non-neutral plasma within a cylindrically symmetric ASB trap. A parametric
study was done by varying the trap’s radius and length. No losses of plasma particles oc-
curred for some of the conditions simulated. Losses that did occur were attributed to the
effect of space charge, because the electric potential at the top of the electrostatic poten-
tial hill produced by the positron plasma’s space charge was close in value to the electric
potential of the plugging electrodes. Plots for the electrostatic potential, plasma density,
and plasma temperature were presented for various cases. In the collisionless limit, and for
the particle injection method used, the simulations indicate that when non-neutral plasma
is confined within the ASB trap, the electric potential has an extremum near the trap’s
center, and the density and temperature tend to be lower near the trap’s center than at the
plasma’s edge. The results of the simulations indicate that a three-dimensional electrostatic
potential hill is formed by the space charge of a positron plasma confined by an ASB trap,
and confinement of a second oppositely signed species, such as antiprotons, may be possible

within the space charge of the positron plasma.

ACKNOWLEDGMENTS

The authors would like to thank Erin Thornton (UNT), Dr. Ryan Phillips (AFRL) and
Dr. David Grote (LLNL) for helpful discussions regarding the Warp simulations. Compu-
tational resources were provided by UNT’s High Performance Computing Services. This
material is based upon work supported by the National Science Foundation under Grant
Nos. PHY-1803047 and PHY-1500427 and by the Department of Energy under Grant
No. DE-FG02-06ER54883. This endeavor was undertaken at the University of North Texas

and does not include any contribution or review by Ball Aerospace.

REFERENCES

1J. L. Pacheco, C. A. Ordonez, and D. L. Weathers, Physics of Plasmas 19, 102510 (2012).

19



AlP

Publishing

M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, A. Capra, C. Carruth, C. L.
Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts, J. Fajans,
T. Friesen, M. C. Fujiwara, D. R. Gill, J. S. Hangst, W. N. Hardy, M. E. Hayden, M. E.
Hayden, C. A. Tsaac, M. A. Johnson, S. A. Jones, S. Jonsell, L. Kurchaninov, N. Madsen,
D. Maxwell, J. T. K. McKenna, S. Menary, J. M. Michan, T. Momose, J. J. Munich,
K. Olchanski, A. Olin, P. Pusa, C. @. Rasmussen, F. Robicheaux, R. L. Sacramento,
M. Sameed, E. Sarid, D. M. Silveira, D. M. Starko, G. Stutter, C. So, T. D. Tharp, R. L.
Thompson, D. P. van der Werf, and J. S. Wurtele, Nature 561, 211 (2018).

3G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka,
W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H.
Storry, M. Weel, A. Miillers, and J. Walz, Physical Review Letters 108, 113002 (2012).

4N. Kuroda, S. Ulmer, D. J. Murtagh, S. Van Gorp, Y. Nagata, M. Diermaier, S. Federmann,
M. Leali, C. Malbrunot, V. Mascagna, O. Massiczek, K. Michishio, T. Mizutani, A. Mohri,
H. Nagahama, M. Ohtsuka, B. Radics, S. Sakurai, C. Sauerzopf, K. Suzuki, M. Tajima,
H. A. Torii, L. Venturelli, B. Wiinschek, J. Zmeskal, N. Zurlo, H. Higaki, Y. Kanai,
E. Lodi Rizzini, Y. Nagashima, Y. Matsuda, E. Widmann, and Y. Yamazaki, Nature
Communications 5, 3089 (2014).

S5A. Kellerbauer, M. Amoretti, A. S. Belov, G. Bonomi, I. Boscolo, R. S. Brusa, M. Buchner,
V. M. Byakov, L. Cabaret, C. Canali, C. Carraro, F. Castelli, S. Cialdi, M. de Combarieu,
D. Comparat, G. Consolati, N. Djourelov, M. Doser, G. Drobychev, A. Dupasquier, G. Fer-
rari, P. Forget, L. Formaro, A. Gervasini, M. G. Giammarchi, S. N. Gninenko, G. Grib-
akin, S. D. Hogan, M. Jacquey, V. Lagomarsino, G. Manuzio, S. Mariazzi, V. A. Matveev,
J. O. Meier, F. Merkt, P. Nedelec, M. K. Oberthaler, P. Pari, M. Prevedelli, F. Quasso,
A. Rotondi, D. Sillou, S. V. Stepanov, H. H. Stroke, G. Testera, G. M. Tino, G. Trenec,
A. Vairo, J. Vigue, H. Walters, U. Warring, S. Zavatarelli, and D. S. Zvezhinskij, Nuclear
Instruments and Methods in Physics Research Section B 266, 351 (2008).

6P. Indelicato, G. Chardin, P. Grandemange, D. Lunney, V. Manea, A. Badertscher, P. Criv-
elli, A. Curioni, A. Marchionni, B. Rossi, A. Rubbia, V. Nesvizhevsky, D. Brook-Roberge,
P. Comini, P. Debu, P. Dupre, L. Liszkay, B. Mansoulie, P. Perez, J. M. Rey, B. Reymond,
N. Ruiz, Y. Sacquin, B. Vallage, F. Biraben, P. Clade, A. Douillet, G. Dufour, S. Guellati,
L. Hilico, A. Lambrecht, R. Guerout, J. P. Karr, F. Nez, S. Reynaud, C. I. Szabo, V. Q.
Tran, J. Trapateau, A. Mohri, Y. Yamazaki, M. Charlton, S. Eriksson, N. Madsen, D.P.

20



Publishing

AlP

van der Werf, N. Kuroda, H. Torii, Y. Nagashima, F. Schmidt-Kaler, J. Walz, S. Wolf, P. A.
Hervieux, G. Manfredi, A. Voronin, P. Froelich, S. Wronka, and M. Staszczak, Hyperfine
Interactions 228, 141 (2014).

"M. E. Glinsky and T. M. O'Neil, Physics of Fluids B 3, 1279 (1991).

8F. Robicheaux, Physical Review A 73, 033401 (2006).

9C. A. Ordonez, Physical Review E 76, 017402 (2007).

19C. A. Ordonez and D. L. Weathers, Physics of Plasmas 15, 083504 (2008).

1@, A. Ordonez, Journal of Applied Physics 106, 024905 (2009).

2R. M. Hedlof and C. A. Ordonez, AIP Advances, 7 115123 (2017).

13C. A. Ordonez, Journal of Applied Physics 104, 054903 (2008).

14C. A. Ordonez, Physics of Plasmas 15, 114507 (2008).

15J. L. Pacheco, C. A. Ordonez, and D. L. Weathers, Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms 332, 312 (2014).

6R. M. Hedlof and C. A. Ordonez, Physics Procedia 66, 95 (2015).

17T, J. Dolan, Plasma Physics and Controlled Fusion 36, 1539 (1994).

18A. Friedman, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, J. L. Vay, I. Haber,
and R. A. Kishek, IEFE Transactions on Plasma Science 42, 1321 (2014).

9R. M. Hedlof and C. A. Ordonez, AIP Conference Proceedings 1928, 020003 (2018).

2C. A. Ordonez, D. D. Dolliver, Y. Chang, and J. R. Correa, Physics of Plasmas 9, 3289
(2002).

M. Horky, W. J. Miloch, and V. A. Delong, Physical Review E 95, 043302 (2017).

21



