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DAVIES’ METHOD FOR HEAT-KERNEL ESTIMATES:
AN EXTENSION TO THE SEMI-ELLIPTIC SETTING

EVAN RANDLES AND LAURENT SALOFF-COSTE

ABSTRACT. We consider a class of constant-coefficient partial differential op-
erators on a finite-dimensional real vector space which exhibit a natural di-
lation invariance. Typically, these operators are anisotropic, allowing for dif-
ferent degrees in different directions. The “heat” kernels associated to these
so-called positive-homogeneous operators are seen to arise naturally as the
limits of convolution powers of complex-valued measures, just as the classical
heat kernel appears in the central limit theorem. Building on the functional-
analytic approach developed by E. B. Davies for higher-order uniformly el-
liptic operators with measurable coefficients, we formulate a general theory
for (anisotropic) self-adjoint variable-coeflicient operators, each comparable
to a positive-homogeneous operator, and study their associated heat kernels.
Specifically, under three abstract hypotheses, we show that the heat kernels
satisfy off-diagonal (Gaussian-type) estimates involving the Legendre-Fenchel
transform of the operator’s principle symbol. Our results extend those of E. B.
Davies and G. Barbatis and partially extend results of A. F. M. ter Elst and
D. Robinson.

1. INTRODUCTION

In [9], E. B. Davies develops an abstract method for establishing off-diagonal
estimates for the heat kernels of self-adjoint uniformly elliptic higher-order partial
differential operators on R?. In particular, Davies considers a general self-adjoint
operator of the form

Hf(x)= Y D"{aas(@)D’f(x)}
o), 18] <m

and studies the corresponding “heat” kernel, Ky, of H and its properties; here,
DY = (=04, )" (—10y,)2 - - - (—i0,,)7* for each multi-index 7. Of course, when it
exists, Ky = Kpg(t,z,y) is the integral kernel for the semigroup {e~*} on L2
generated by H and is also recognized as the fundamental solution to the parabolic
equation

When H is uniformly elliptic, i.e., H is comparable to the mth power of the Lapla-
cian (—A)™, and under certain conditions discussed below, the method yields the

estimate
2m/(2m—1)

—Y + Mt

1
< W exp —tCQ
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2526 EVAN RANDLES AND LAURENT SALOFF-COSTE

for t > 0, 2,y € R%, where C;,Cy and M are positive constants. For the canon-
ical case in which H = (—A)™, this estimate, with M = 0, is readily established
using an optimization argument and the Fourier transform. As discussed in [23],
the optimization therein naturally selects the function z + Cy|z|?™/*m=1) as the
Ledendre-Fenchel transform of the symbol (or Fourier multiplier) [£|?>™ of the op-
erator (—A)™. We encourage the reader to see the articles [23], [2], and [3] for
discussion of the appearance of the Legendre-Fenchel transform in heat kernel es-
timates. In the case that H is a second-order operator, i.e., m = 1, this is the
well-studied Gaussian estimate [24]. The applications of estimates of the form (1.1)
are legion. In particular, (1.1) guarantees that the semigroup {e *#} extends to
a strongly continuous semigroup {e=*»} on LP for all 1 < p < oo and, moreover,
their generators, Hy,, have spectra independent of p [9].

In the case that the coefficients {aqs g(z)} of H are bounded and Hélder continu-
ous, Levi’s parametrix method, adapted to parabolic equations by A. Friedman and
S. D. Eidel’man, guarantees that a continuous heat kernel Ky exists and satisfies
the estimate (1.1) [12,15]. When the coefficients {a, g} are merely bounded and
measurable, Davies’ method yields the estimate (1.1) subject to a dimension-order
restriction that d/2m < 1. The restriction can be weakened to d/2m < 1 by the
method of [1,26] but it cannot be weakened any further [8,10,20]. Specifically,
for each integer m such that d/2m > 1, Davies [8] constructs a uniformly elliptic
self-adjoint operator H of order m (which is a system when d is odd) with bounded
coefficients (in fact, smooth away from the origin) whose semigroup {e~*'} cannot
be extended to a strongly continuous semigroup on LP for all 1 < p < oo and
therefore the estimate (1.1) cannot hold. Further discussion of this example can be
found in [7].

Moving beyond the elliptic (isotropic) setting, in this article, we introduce a
class of constant-coefficient partial differential operators, which we call positive-
homogeneous operators. Introduced in [23], these are hypoelliptic operators that in-
teract well with certain dilations of the underlying space and they play the role that
(=A)™ plays in the elliptic theory. We then consider a class of variable-coefficient
operators, each comparable to a positive-homogeneous operator and study their
associated heat kernels. We show that Davies’ method, with suitable modification,
carries over into our naturally anisotropic setting.

To motivate our study, consider the constant-coefficient operator

A=-07 +0;,

on R2. Though this operator is not elliptic, it has many properties shared by elliptic
operators. It is, for example, hypoelliptic; this can be seen by studying its symbol,

R(§) = R(&1,6) = & + &.
As (—A)™ plays well with (isotropic) dilations of R¢, A has the property that
tAzél/tOAoét

for all t > 0 where &;(f)(z1,z2) = f(t'/221,t/%xy) is given by the anisotropic dila-
tion (1, x2) — (Y221, t/4xy) of R?; for this reason, A is said to be homogeneous.
As discussed in [22], the homogeneity of A is essential for the appearance of its heat
kernel
Kalt.o / —i(a—y)-£g—tR(E) g
(tey) == |, 3
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DAVIES’ METHOD FOR HEAT-KERNEL ESTIMATES 2527

defined for ¢t > 0 and z,y € R2, as an attractor for convolution powers of complex-
valued functions, i.e., its appearance in local limit theorems. An optimization
argument, similar to that for K(_a)m, gives the estimate

(1.2) |Ka(t,z,y)| < t% exp (—tC’QR# (x ; y>)
for t > 0 and z,y € R? where

R*(2) = R* (a1, 12) = (ﬂ)2 +3

X2 4/3
2 ( 4 )
is the Legendre-Fenchel transform of R and wy = 1/2+1/4 = 3/4 is known as the
homogeneous order associated to A. As we shall see, the homogeneous order wy
depends on the order of derivatives appearing in A and on the dimension of the
underlying space; it generalizes the exponent d/2m appearing in the prefactor in
(1.1) governing small-time on-diagonal decay.

By analogy to the theory of self-adjoint uniformly elliptic operators and their
heat kernel estimates, we then ask: For a self-adjoint variable-coefficient operator
H which is comparable to a homogeneous operator A with symbol R, under what
conditions will the heat kernel for H exist and satisfy an estimate of the form

C _
Ky(t,z,y §—1exp —tCoR? =y + Mt |?
twa t

It was shown in [23], using Levi’s parametrix method adapted to our naturally
anisotropic setting, that the above estimate is satisfied provided, in particular, that
H has Holder continuous coefficients (see also [13]). In this article, we extend these
results to the realm in which H has bounded measurable coefficients. To this end,
we employ the abstract method of E. B. Davies which we modify in two ways.
First, we adapt Davies’ single-variable optimization procedure, which produces the
term in the exponent of (1.1), to a multivariate optimization procedure suitably
adapted to our anisotropic setting. In this way, we see the natural appearance of
the Legendre-Fenchel transform. Our second modification to the theory allows for
the dimension-order restriction d/2m < 1 (wa < 1 in our case) to be lifted provided
that certain integer powers of H also behave well in perturbation estimates.

2. PRELIMINARIES

As discussed in [23], to introduce the class of model operators considered in this
article, it is useful to work in a framework which is coordinate-free. In view of the
anisotropic nature of the problem we want to study, it is important to be free to
choose coordinate systems adapted to each particular operator A at hand. To this
end, we consider a d-dimensional real vector space V equipped with the standard
smooth structure; we do not affix V with a norm or basis. The dual space of V is
denoted by V* and the dual pairing is denoted by £(x) for x € V and £ € V*. Let
dz and d¢ be Haar (Lebesgue) measures on V and V*, respectively, which we take
to be suitably normalized so that our conventions for the Fourier transform and
inverse Fourier transform, given below, make each unitary. Throughout this article,
all functions on V and V* are understood to be complex-valued. Given a non-empty
open set 2 C V, the usual Lebesgue spaces are denoted by LP(Q) = LP(Q, dx) and
equipped with their usual norms || - ||, for 1 < p < co. In the case that p = 2,
the corresponding inner product on L?(Q) is denoted by (-,-). Of course, we will
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2528 EVAN RANDLES AND LAURENT SALOFF-COSTE

also work with L2(V*) := L?(V*, d¢); here the L?-norm and inner product will be
denoted by || - ||2+ and (-, ), respectively. The Fourier transform F : L?*(V) —
L?(V*) and inverse Fourier transform F~! : L?(V*) — L?(V) are defined, initially,
for Schwartz functions f € S(V) and g € S(V*) by the formulas

FUNO = f©) = [ ¢ f@yde (€ V)

\4

and

Flo@) =) = [ s @e).

*

The symbols R, C,Z mean what they usually do; N denotes the set of non-negative
integers. The symbols R} and N, denote the set of strictly positive elements of
R and N, respectively, and C; denotes the set of complex numbers z for which
Re(z) > 0. Also, R‘j_ and N‘j_, respectively, denote the set of d-tuples of Ry and
N,. Adopting the summation notation for semi-elliptic operators presented in
L. Hormander’s treatise [17], for a fixed m = (my,ma,...,mq) € Ni, we write

8
Bim] =3
k=1

for all multi-indices 8 = (B4, B2, - - ., B4) € N°.

For the rest of this section, W will denote a d-dimensional real vector space
(meaning V or V*) and Q will denote an open subset of W. The space of smooth
functions on 2 is denoted by C*°(€2) and the space of smooth functions with com-
pact support in € is denoted by C§°(€2). Taking C§°(Q2) to be equipped with its
usual topology given by semi-norms, its dual space, the space of distributions, is
denoted by D’'(2). Given w € W, the derivation D,, : D'(Q) — D’'(f2) is originally
defined for f € C§°(Q) by the formula

t—0 t

t —
(Do f) (@) = iy f(2) =i (hm f(w+ tw) fw)
for x € Q. Further, given a basis w = {wy,wa,...,wq} of W, we introduce, for
each multi-index 8 € N%, the differential operator D2 : D'(Q) — D'(Q2) defined by
D\Ljv = (le)ﬁl (Dwz)ﬁQ T (Dwd)ﬁd-

We shall denote by End(WW) and GI(W) the set of endomorphisms and isomorphisms
of W, respectively. Given E € End(W), we consider the one-parameter group
{tF}i=0 € GL(W) defined by

E_ = (logt)*
t¥ = exp((logt)E) _kz o
=0

for ¢t > 0. These one-parameter subgroups of G1(W) allow us to define continuous
one-parameter groups of operators on the space of distributions as follows: Given
E € End(W) and t > 0, first define 67 (f) for f € C5°(W) by 6F(f)(z) = f(tFx)
for x € W. Extending this to the space of distributions on W in the usual way,
the collection {67}~ is a continuous one-parameter group of operators on D'(W).
In the next section, we shall use these one-parameter groups to define a notion of
homogeneity for partial differential operators. Given a = (a1, as,...,aq) € Ri

Licensed to Cornell Univ. Prepared on Sat May 2 09:02:18 EDT 2020 for download from IP 132.236.27.111.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DAVIES’ METHOD FOR HEAT-KERNEL ESTIMATES 2529

and a basis w = {wy,ws,...,wg} of W, we denote by E2 the isomorphism of W
defined by
(21) E‘%wk = iwk
g
for k=1,2,...,d.
Finally, given a basis w = {wy, wa, ..., wq} of W, we define the map ¢y : W —
R? by setting ¢w (w) = (71,22, ...,24) whenever w = sz=1 zywy. This map defines

a global coordinate system on W; any such coordinate system is said to be a linear
coordinate system on W. By definition, a polynomial on W is a function P : W — C
that is a polynomial function in some (and hence any) linear coordinate system on
W. Of course, in the linear coordinate system defined by w, each polynomial can
be expressed as a linear combination of monomials of the form

(2.2) wy, = (1) (22)% - - (24)7,

where 8 = (B1,82,...,84) € N? and ¢ (w) = (x1,29,...,24) as above. We say
that a polynomial P is positive-definite if its real part, R = Re P, is non-negative
and has R(w) = 0 only when w = 0.

3. HOMOGENEOUS OPERATORS

In this section we introduce a class of homogeneous constant-coeflicient partial
differential operators on V. These operators will serve as “model” operators in our
theory in the way that integer powers of the Laplacian serve as model operators
in the elliptic theory of partial differential equations. To this end, let A be a
constant-coefficient partial differential operator on V and let P : V* — C be its
symbol. Specifically, P is the polynomial on V* defined by P(¢) = e~ %@ A(e(®))
for £ € V* (this is independent of z € V precisely because A is a constant-coefficient
operator). We first introduce the following notion of homogeneity of operators; it
is mirrored by an analogous notion for symbols which we define shortly.

Definition 3.1. Given E € End(V), we say that a constant-coefficient partial
differential operator A is homogeneous with respect to the one-parameter group
{of} if

5{5/15 oAodf =tA
for all t > 0; in this case we say that F is a member of the exponent set of A and
write E € Exp(A).

A constant-coefficient partial differential operator A need not be homogeneous
with respect to a unique one-parameter group {6}, i.e., Exp(A) is not necessarily
a singleton. For instance, it is easily verified that, for the Laplacian —A on R,

Exp(—A) =27 + o4,
where [ is the identity and o4 is the Lie algebra of the orthogonal group, i.e., is
given by the set of skew-symmetric matrices.

Given a constant coefficient operator A with symbol P, one can quickly verify
that F € Exp(A) if and only if

(3.1) tP(€) = P(t7¢)

for all t > 0 and & € V* where F' = E* is the adjoint of E. More generally, if P is
any continuous function on W and (3.1) is satisfied for some F' € End(W), we say
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2530 EVAN RANDLES AND LAURENT SALOFF-COSTE

that P is homogeneous with respect to {tI'} and write F' € Exp(P). This admitted
slight abuse of notation should not cause confusion. In this language, we see that
E € Exp(A) if and only if E* € Exp(P).

We remark that the notion of homogeneity defined above is similar to that put
forth for homogeneous operators on homogeneous (Lie) groups, e.g., Rockland oper-
ators [14]. The difference is mostly a matter of perspective: A homogeneous group
G is equipped with a fixed dilation structure, i.e., it comes with a one-parameter
group {d;}, and homogeneity of operators is defined with respect to this fixed di-
lation structure. By contrast, we fix no dilation structure on V and formulate
homogeneity in terms of an operator A and the existence of a one-parameter group
{6E} that plays well with A in the sense defined above. As seen in the study of
convolution powers on the square lattice (see [22]), it is useful to have this freedom.

Definition 3.2. Let A be constant-coeflicient partial differential operator on V with
symbol P. We say that A is a positive-homogeneous operator if P is a positive-
definite polynomial and Exp(A) contains a diagonalizable endomorphism.

As discussed above, for a positive-homogeneous operator A, Exp(A) need not be
a singleton. However, Lemma 2.10 of [23] guarantees that, for any F1, F5 € Exp(A),

tI‘El = tI‘EQ.

Thus, to each positive-homogeneous operator A we define the homogeneous order
of A to be the number
ppr =trE

for any E' € Exp(A). We note that the term “homogeneous order” does not coincide
with the usual “order” for partial differential operators. For instance, the Laplacian
—A on R? is a second-order operator, however, because 2711 € Exp(—A), its
homogeneous order is p_ay = tr(2711) = d/2.

The proposition below shows, in particular, that every positive-homogeneous
operator on V is semi-elliptic [4,17] in some coordinate system. For a proof, see
Section 2 of [23].

Proposition 3.3. Let A be a positive-homogeneous operator on V. Then there

exist a basis v = {v1,va,...,v4} of V and m = (my,ma,...,mq) € Ni for which
(3.2) A= > agDy,
|Biml =2

where {ag} C C. The isomorphism EZ™ € GI(V), defined by (2.1), is a member of

Exp(A) and therefore
Lioml= 4 Lo !
= N m|=——— _— . e [
HA 2my1  2me 2mg’

where 1 := (1,1,...,1) € N%. Furthermore, if v* denotes the dual basis on V* for
the basis v,

PE) = > ap,

|B:m]=2
where €8 = ¢, as in (2.2) and the isomorphism E¥™ is a member of Exp(P).

We remark that, if a given positive-homogeneous operator A is symmetric in the
sense that (Af,g) = (f, Ag) for all f,g € C§°(V), then its symbol P is necessarily
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DAVIES’ METHOD FOR HEAT-KERNEL ESTIMATES 2531

real-valued, i.e., R = Re P = P, and the coefficients {ag} of Proposition 3.3 are
real numbers.

4. SOBOLEV SPACES, POSITIVE-HOMOGENEOUS OPERATORS AND THEIR
SESQUILINEAR FORMS

In the first part of this section, we define a family of Sobolev spaces on V. These
spaces, which include those of the classical elliptic theory, were also discussed in
the context of R? in [18] using coordinates. Then, given a symmetric positive-
homogeneous operator A on V with symbol R, we study the symmetric sesquilinear
form @, it defines. We then realize A as a self-adjoint operator on L? whose do-
main and form domain are characterized by the previously defined Sobolev spaces;
everything here relies on the semi-elliptic representation of positive-homogeneous
operators given in Proposition 3.3.

Let 1 <p<oo,me Ni and let v be a basis for V. For a non-empty open set
Q CV, define

WPP(Q)={f e LP(Q): DS f € LP(Q)Va with |o: m| < 1}.
For any f € WP(Q) let

1/p
flwery = | X [ 10850z
Ja:m|<1 Q
Clearly, || - [lywmrq) is a norm on WiP(Q) and the usual arguments show that

WP()) is a Banach space in this norm. Naturally, we will call these spaces
Sobolev spaces; in the context of R?, these spaces were previously studied in [11]
and [18]. Notice that when V =R v = e, and m = (m,m, ..., m), our definition
coincides with that of W™?(Q), the standard Sobolev spaces of R? where, in this
case, the basis is immaterial. Let us also denote by W'3" () the closure of C§°(Q2)
in the [| - [[yyz=.»(£2) norm.

Temporarily, we restrict our attention to the case where @ =V and p = 2. As
one can check by the use of smooth cut-off functions and mollification, C§°(V) is
dense in WP (V). The following result follows by the standard method, cf., [19];
its proof is omitted.

Lemma 4.1. Let m € N%, let v be a basis of V, and let v* be the corresponding
dual basis. Then

(4.1) Wm2(V) = {f € L3(V) : €2(€) € LA(V*)Va with |a : m| < 1}

and

2
2%

1By = 3 €°F(©)

|oem|<1
where £& = €% as in (2.2).

v*

Lemma 4.2. Let A be a symmetric positive-homogeneous operator with symbol R
and, in view of Proposition 3.3, let m € Ni and v be a basis of V as quaranteed by
the proposition. Then

Wme(v) = {f e (v [

*

R(E)IF(€)Pde < oo}
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2532 EVAN RANDLES AND LAURENT SALOFF-COSTE

and, moreover, the norms

A 1/2
1= (W7 + | meoliora)
-
and || - |lyym2 () are equivalent.

Proof. By an appeal to Proposition 3.3 and Lemma A.5, we obtain positive con-
stants C' and C" for which

CL+RE)< > &€*<C(1+R(©)

|oem|<1

for all £ € V*. With this estimate, the result follows directly from Lemma 4.1 using
the Fourier transform. ]

Returning to the general situation, let £ C V be a non-empty open set. For
f € L%(Q), define f, € L?(V) by

(4.2) ﬂ@ﬂ_{fu) ifo e,

0 otherwise.

Of course, | fllz2() = || f«|le2¢vy. The following lemma shows that W‘Tf(ﬂ) is
continuously embedded in W2 (V).

Lemma 4.3. For any f € W:BQ(Q), fe € WB2(V) and

Hf”W"}“’Q(Q) = ||f*Hva'2(V)'

Proof. Let f € W‘%’Q(Q) and let {fn} € CG°(2) for which || fr = fllyym2(q) — 0 as
n — oo. Then for any ¢ € C§°(V) and multi-index « for which o : m| <1,

| 1.zt = [ fozoys = tm | (D50
— tim (1)l o — (_1\lel o
Jim (—1) /Q(van)czﬁd:v (=1) /Q(va)cﬁdrc
= (1)l [ (D2 1).odz,
(0! [ (D¢ ).

where we used the fact that each f,, has compact support in 2 and thus partial
integration produces no boundary terms. Thus for each such o, DS f. = (D3 f). €
L*(V) and ||Dg f| 20y = || DS fellL2(v) from which the result follows. O

We now turn to positive-homogeneous operators, viewed in the L? setting and
their associated sesquilinear forms. Let Q C V be a non-empty open set and let A
be a positive-homogeneous operator on V with symbol R and let m € N‘i and v be
the basis of V guaranteed by Proposition 3.3. Define

Dom(Qa,) = We’(Q)
and for each f, g € Dom(Q4,), put

~

Qra(f,9) = (€)£+(£)g-(£)dE.

V*
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DAVIES’ METHOD FOR HEAT-KERNEL ESTIMATES 2533

Proposition 4.4. Then the restriction A\CSC(Q) extends to a mon-negative self-
adjoint operator on L*(SY), denoted by Aq. Its associated symmetric sesquilinear
form is Qa, and has Dom(Qp,,) = W‘Tf(Q) = Dom(Aslz/Q). Moreover, C§°(Q) is
a core for Qa,,-

Remark 4.5. The self-adjoint operator Aq is the Dirichlet operator on €, i.e., the
operator associated with Dirichlet boundary conditions.

Proof of Proposition 4.4. In view of Lemma 4.2, there are constants C,C’ > 0 for
which

R 1/2
Cllf g2y < <||f|%2(V) + /w R(f)f(§)|2d§> < O fllwamz

for all f € W™2(V). Thus by Lemma 4.3,

1/2
Clf w2y < (1 Baey + @aalh)) " < ooy

for all f € Wy7*(Q2). It follows that

1/2
11l = (1 1220) + @aa()

defines a norm on W‘sz (€2), equivalent to the norm | - [|ym.2 . From this we can
also conclude that @, is a bona fide sesquilinear form with domain Dom(Qy,,) =
Wes ().

In view of the positive-definiteness of R, it is easy to see that (s, is symmetric,
positive-definite (in the sense of forms), and densely defined. We claim that Q,, is
closed. Indeed, let {f,} C W‘TdQ(Q) be a Qa,-Cauchy sequence such that f,, — fin
L?(Q) for some f € L*(Q). Because the norms ||- ||, and ||- [y 2(q) are equivalent,
we know that {f,} is also a Cauchy sequence in W 42(€) and so it converges.
Moreover, as the topology on W\'fn dz(Q) is finer than the topology induced by the
L?(Q) norm, we can conclude that f € W":‘dz(Q) and f, — fin W‘TdZ(Q). By
again appealing to the equivalence of norms, it follows that Q. is closed and,
upon noting that C3°(2) is dense in W‘r,f‘dQ (Q), it is evident that C§° () is a core

for QAQ'
In view of the theory of symmetric sesquilinear forms, QA has a unique asso-

ciated non-negative self-adjoint operator Aq with Dom(Aé/Q) = Dom(Qa,, ). Also,
because

(Af,9)a = (Mfu,g4) = / R(€)£.(8)3-(€)dE = Quq(f,9) = ([, Ag)a

for all f,g € C§°(2), Aq must be a self-adjoint extension of Alcge(q). O

Remark 4.6. It should be pointed out that A|Cgo(g) is not generally essentially self-
adjoint; for instance one can consider the Dirichlet and Neumann operators when
Q is, say, a bounded open non-empty subset of V.

Our final proposition of this section addresses the essential self-adjointness of A
in the case that = V. The proof is included for the convenience of the reader.
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2534 EVAN RANDLES AND LAURENT SALOFF-COSTE

Proposition 4.7. The operator A\Cgc vy is essentially self-adjoint and its closure
A = Ay has
Dom(A) = W2™2(V).

Proof. We first show the essential self-adjointness of A|cé>o(V). To this end, let
f € Ran(A|gee(vy £ i)t and, in view of the unitarity of the Fourier transform,
observe that

0=(f, (A+i)g) = (f,(REi)g) = (RFi)f,9).

for all g € C§°(V). We know that F(C§°(V)) is dense in L?(V*) and so it follows
that (R(€) i) f(€)) = 0 almost everywhere. Using the fact that R is real-valued,
we conclude that f = 0 and so Ran(A|gge(v) & i)+ = {0}. This implies that
Ran(A|¢ge(vy +7) is dense in L*(V) and thus A|Cg° (vy is essentially self-adjoint in
view of von Neumann’s criteria. We denote this unique self-adjoint extension by A.

We now characterize the domain of A. Let f € Dom(A) take a sequence {f,} C
C§°(V) for which f,, — f and Af,, — Af in the sense of L?(V). For any multi-index
« for which |a : 2m| < 1, an appeal to Lemma A.5 gives a positive constant C, for
which

€% < Ca(R(§) +1)

for all £ € V* where £~ = £2. as in (2.2). Consequently, for each pair of natural

numbers n and m,
|1t = s @) i
1€ (fr = fin) (&) d€
V*

%/\@@+Mﬁ—hﬂmmﬁ
.

CallA +1)(fu = fm) 13,

where we have used the fact that {f,} C C§°(V). It now follows from the way the
sequence {f,} was chosen that {DZf,} is a Cauchy sequence in L?*(V) and so it
converges to some limit g,. Notice that, for each ¢ € C§°(V),

1DS fn = D3 fnll3

IN

IN

ﬁ%@M)M—Mn D& fo(2)(x) da

n— oo

= Jtim ()" [ f@D5o@) de = () [ f@)D5o(
ng)oo

and thus D2 f = g, € L*(V). Since this is true for each a such that |a : 2m| < 1,

we have f € W22(V).

Conversely, let f € W2™2(V) and, given the density of C§°(V) in W2™2(V), let
{f.} be a sequence of C§° functions for which f,, — f in W2™2(V). Consequently,
we have D2 f,, — D2 f in L?(V) for each multi-index « for which | : 2m| < 1. In
particular, f, — f and

lim Af, = lim Z aa DY frn = Z aa DY f

n—o00 n—o0
|a:m|=2 |a:m|=2

in L3(V). As A is self-adjoint, it is closed and so necessarily f € Dom(A). O
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5. ULTRACONTRACTIVITY AND SOBOLEV-TYPE INEQUALITIES

In this section we show that (self-adjoint) positive-homogeneous operators have
many desirable properties shared by elliptic operators. In particular, for a self-
adjoint positive-homogeneous operator A, we will prove corresponding Nash and
Gagliardo-Nirenberg inequalities.

Let A be a self-adjoint positive-homogeneous operator on V with symbol R and
homogeneous order py. In view of Proposition 4.4, A determines a self-adjoint
positive-homogeneous operator on L?(V), Ay. By an abuse of notation we shall
write A = Ay and Qa, = Q. Using the spectral calculus, define the semigroup
{e=*A}; this is a Cp-contraction semigroup of self-adjoint operators on L2(V). It
should be no surprise that the semigroup e~ **, defined here by the spectral calculus,
coincides with that given by the Fourier transform; this, in particular, is verified
by the following lemma.

Lemma 5.1. For f € L*(V) and t > 0,
(1) (1) (@) = [ Katio~ )W)y
v

almost everywhere, where K (t,z) = (e *F)V(x) € S(V). For each t > 0, this
formula extends {e~**} to a bounded operator from LP(V) to LY(V) for any 1 <
p,q < 00. Furthermore, for each 1 < p,q < oo, there exists Cp 4 > 0 such that

C
—tA (X
le™ llp—q < tra(l/p—=1/q)

for allt > 0. In particular, the semigroup is ultracontractive with

02,00

—tA
le™"l2moo < a2

for allt > 0.

Remark 5.2. A Cy-semigroup {T}} of self-adjoint operators on L? is said to be
ultracontractive if, for each ¢t > 0, T} is a bounded operator from L? to L>®. We
note that this condition immediately implies (by duality) that, for each ¢ > 0, T}
is a bounded operator from L! to L° and this is often (though not exclusively,
e.g., [16]) taken to be the definition of ultracontractivity; see [5]. Our terminology
is not meant to imply (as it does in the case of Markovian semigroups) that the
semigroup is contractive on L? for any p; it usually isn’t.

Proof of Lemma 5.1. We first verify the representation formula (5.1). Using the
Fourier transform, one sees easily that convolution by K, defines a Cy-contraction
semigroup on L?(V) of self-adjoint operators. Denote this semigroup and its cor-
responding generator by T; and A, respectively, and note that A is necessarily
self-adjoint. For each f € C§°(V), observe that

tim 171 (T2 = f) + A, = lim | (17 (7O — 1) + R(©) J(€)|

where we haAve appealed to the dominated convergence theorem and the fact that
F(Af) = Rf. Consequently, C5°(V) C Dom(A) and Af = —Af for all f € C§°(V).
In view of Proposition 4.7, A|cg° (v) is essentially self-adjoint and so it must be the

= 0,
2%

case that A = —A and hence T} = e, as claimed.
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Finally, we establish the LP — L? estimates for {¢7**}. In view of the represen-
tation (5.1) and Young’s inequality for convolution,

le™lp—q < 1K )5,

. For t > 0 and E € Exp(A), we have

where 1 —1=1_1
s T p g

Ka(t,z) = / RO @) ge — [ ~RETO) miE() ge
* v
_ tftrE*/ e~ RO —it™" (@) gy

= t M KN\(1,t Fr)
for z € V where we made a change of variables & — ¢t~ 7" ¢. By making the analogous
change of variables z — tFx, we obtain
1A, )l =t KA (L 7 ()lls
- t_”””A/SHKA(L s = t—uA(l/p—l/q)HKA(L s

for t > 0. The desired result follows by taking C,, = ||Ka(1,-)||s where s =
(1+1/g—1/p)". O

Proposition 5.3 (Nash’s inequality). Let Q be a non-empty open subset of V and
let A be a symmetric positive-homogeneous operator with homogeneous order pip .
We consider the self-adjoint operator Aq and its form Q. given by Proposition
4.4. There exists C > 0 such that

IS < CQaa IS,
for all f € Dom(Qa,) N LY(Q).

Proof. Tt suffices to prove the estimate when =V, for the general result follows

from the isometric embedding of W‘TdQ(Q) into WI2(V), cf., Lemma 4.3, and that

of LY(Q) into L*(V). Again, we will denote Ay and Q4. by A and Qx, respectively.

In view of Lemma 5.1, the self-adjointness of A and duality give C’ > 0 such that
/

—tA
lle 152 < Ve
for all t > 0. Thus for any f € Dom(Qa) N L' (V),
17l < Ne™™F = flla +lle™™ f112

s c’
< / ¢+
1/2 —sAA1/2
< [ IAe N s + W2||f\|1
t
1/2,—sA 12
(5:2) < [ I fanadsQu () 4
for all ¢ > 0. By virtue of the spectral theorem, we have
Cl/
||A1/2€_SAH2H2 < sup |)\1/26—s/\| < 7
A>0 S
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for all s > 0 and therefore

Cl
171l < 2678 2Qu (N2 + -1 £l

for all t > 0. The result follows by optimizing the above inequality and noting that
pua > 0. O

Suppose additionally that ps < 1. Using ultracontractivity directly, a calculation
analogous to (5.2) yields

i
—s —s c
[flle < /IIe A2 lamoo [AY 2622000 ()2 ds + ——5 (112
0 tHA
C
14 (1—pn)/2 1/2
< CHOTPQUNY + s

for f € C§°(Q2) and t > 0. Upon optimizing with respect to ¢ and using the density
of C§°(2) in W‘%’Q (), we obtain the following lemma.

Lemma 5.4. If upy < 1, then there is C' > 0 such that for all f € W:‘O’Q(Q),
feL>®) and
11l () < CQAG(H I flI e

Lemma 5.4 is the analog of the Gagliardo-Nirenberg inequality in our setting.

6. FUNDAMENTAL HYPOTHESES

Let © be a non-empty open subset of V. In this section, we will introduce
three hypotheses concerning a symmetric sesquilinear form @ (also called Hermitian
form) defined on C§°(£2) viewed as a subspace of the Hilbert space L?(€2). The first
hypothesis will guarantee that the form is closable and its closure is associated to
a self-adjoint operator H on L?(). It is under these hypotheses that we will be
able to establish the existence of the heat kernel for H and prove corresponding off-
diagonal estimates. Our construction is based on E. B. Davies’ article [9], wherein
a general class of higher-order self-adjoint uniformly elliptic operators on R? is
studied. In what follows (and for the next three sections) || - ||2 denotes the L?(£2)
norm, (-,-) denotes its inner product. All mentions of a positive-homogeneous
operator A refer to the self-adjoint operator Aq of Proposition 4.4. Correspondingly,
Qa, is denoted by Qa.

Hypothesis 6.1. Let Q be as above. There exists a self-adjoint positive-homoge-
neous operator A with corresponding symmetric sesquilinear form Qu such that

(6.1) 5@ < QU < CQALH + IIFIR)
for all f € C§°(Q) where C > 1.

As noticed above, Hypothesis 6.1 guarantees that () is bounded below and there-
fore closable. Its closure, which we still denote by @, defines uniquely a self-adjoint
operator H; we refer to H as the operator associated to (). Hypothesis 6.1 is a
comparability statement between H and the positive-homogeneous operator A; for
this reason, we say that A is a reference operator for H (and for Q). In this way,
(6.1) is analogous to Garding’s inequality in that the latter compares second-order
elliptic operators to the Laplacian.
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2538 EVAN RANDLES AND LAURENT SALOFF-COSTE

Remark 6.1. Necessarily, C§°(2) is a core for () and we have
Dom(H) U C§°(Q) € Dom(Q) C L*(9).
It may however be the case that Dom(H) N C§°(22) = {0}, cf., [7].

The inequality (6.1) further ensures that Dom(Q) = Dom(Q4) and that H > 0.
In view of Proposition 4.4, there exist m € N¢ and a basis v of V such that

Dom(Q) = Dom(Q4) = Wi's*(Q)

and, because C§°(Q2) is dense in W":‘dz(Q), (6.1) holds for all f in this common
domain. These remarks are summarized in the following lemma.

Lemma 6.2. Let Q satisfy Hypothesis 6.1 with reference operator A. The associ-
ated operator H is non-negative and

Dom(Q) = Wy (),

where m and v are those associated with A via Proposition 4.4. Moreover, (6.1)
holds for all f in this common domain.

In view of the preceding lemma, any future reference to a sesquilinear form
@ which satisfies Hypothesis 6.1 with reference operator A is a reference to the
closed form () whose domain is characterized by Lemma 6.2 and has associated self-
adjoint operator H. For the most part, as is done in [9], we will avoid identifying
Dom(H) as it generally won’t be necessary. By virtue of Lemma 6.2 and Theorem
1.53 of [21], —H generates a strongly continuous semigroup T; = e *# on L?(Q)
which is a bounded holomorphic semigroup on a non-trivial sector of C. The main
goal of this article is to show that the semigroup 7; has an integral kernel Kp
satisfying off-diagonal estimates in terms of the Legendre-Fenchel transform of R;
we refer the reader to Section 3 of [23] and Appendix A.1 of this article for the
definition and useful properties of the Legendre-Fenchel transform of R. Under the
hypotheses given in this section, we obtain these off-diagonal estimates by means of
Davies’ perturbation method, suitably adapted to our naturally anisotropic setting.
Specifically, we study perturbations of the semigroup 7; formed by conjugating T}
by “nice” operators. Denoting by C°°(2, ) the set of smooth functions mapping
Q into itself, we set

C2(Q,9Q) = {p € C=(Q,9Q) : F(\(¢)) € L=®(Q)Vv € V, A € V* and k > 0}.

Given ¢ € O (Q,9) and A € V*, we consider the smooth functions e(®) and e=*(#);
these will act as bounded and real-valued multiplication operators on L*(Q2). For

each such A and ¢, we define the twisted semigroup Tt)"qt7 on L?(Q) by
va‘i’ = MO P)

for t > 0. For any f € L?(Q) such that e*(#) f € Dom(H), observe that

=A@ £} — (e M)
MO (L) O f = A iy L) = (M)
t—0 t
Ao
= limiTt / f,
t—0 t

where we have used the fact that e*?) acts as a bounded multiplication operator
on L?(Q). Upon pushing this argument a little further one sees that Tt/\’¢ has
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infinitesimal generator —H) 4 = —e ) He™N¢) = M@ (—H)e= (%) and
Dom(Hy ) = { FeLQ): e e Dom(H)} .

We also note that, in view of the resolvent characterization of bounded holomorphic
semigroups, e.g., Theorem 1.45 of [21], it is straightforward to verify that {T7"*} is
a bounded holomorphic semigroup on L?(2).

Remark 6.3. This construction for T;"% is similar to that done in [9]; the dif-
ference being that A for us is a “multiparameter” whereas in [9] it is a scalar.
This construction is the basis behind the suitable adaptation of Davies’ method
for positive-homogeneous operators, discussed in the introductory section of this
article.

In the same spirit, define twisted form Q4 by

Qro(f,9) = Qe M f, X0 yg)

for all f,g € Dom(Qx,¢) := Dom(Q). This definition is meaningful because mul-
tiplication by e**?) is continuous on Dom(Q) = W‘%’Q(Q). As usual, we write

Qxe(f) = Qro(f, f) for f € Dom(Qx,¢) and we note that Q4 isn’t symmetric
or real-valued. As the next lemma shows, Hj 4 corresponds to @ ¢ in the usual
sense.

Lemma 6.4. For any A € V* and ¢ € CX(Q,0),
Dom(H),4) € Dom(Qx,¢) = Dom(Q)

and

Qno(f) = (Hxof. f)
for all f € Dom(H) 4).

Proof. For f € Dom(H) ),
e M) f € Dom(H) C Dom(Q) = W\Td2(9)'

Because ¢ € C2(2,9Q), 9F M9 € L>(Q) for all i = 1,2,...,d and k > 0 . Using
the Leibniz rule it follows that

f= (e ) € WiGH(Q) = Dom(Qxo)-
We see that,
(Haof, f) = (H (e ), e f) = Qe £,eX9) f) = Quo(f),
as desired. O
Our second fundamental hypothesis is as follows.

Hypothesis 6.2. Let Q satisfy Hypothesis 6.1 with reference operator A. There
exist E C CL(Q, Q) and M > 0 such that:

i For each pair x,y € Q, there is ¢ € € for which ¢p(z) — d(y) =z — y.
it Forallp €&, A€ V* and f € Dom(Q),

1
(6.2) 1Qx.6(F) = QUAI < (@) + M+ ROWV)IIF112),
where R is the symbol of A. We will call (6.2) the form comparison inequality.
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2540 EVAN RANDLES AND LAURENT SALOFF-COSTE

Our next lemma follows immediately from Lemma 6.4 and Hypothesis 6.2. Its
proof is omitted.

Lemma 6.5. Let ¢ € £ and X € V*. If Hypothesis 6.2 holds,

63)  2Rel@ry(/)] = 2Re[(Hxof, f)] =~ (1+ RO)ISIB
for all f € Dom(H) 4).

Our final hypothesis is more technical and involves a perturbation estimate for
sufficiently high powers of H, the self-adjoint operator associated to Q). Whereas
Hypotheses 6.1 and 6.2 are easily satisfied, the third hypothesis is much more subtle,
difficult to verify, and restrictive.

Hypothesis 6.3. Let Q satisfy Hypotheses 6.1 and 6.2 with reference operator A
and associated self-adjoint operator H. Further, let R be the symbol and py be the
homogeneous order of A, respectively. Set k = min{n € N : up/n < 1} and denote
by Qa~ the sesquilinear form corresponding to A®. There is C' > 0 such that, for
any ¢ € € and A € V¥,
Dom(HY ;) € Dom(Qx«)
and
Qax(f) < C({HS of Nl + X+ ROV £13)

for all f € Dom(HY ;).

In [9], the self-adjoint operators considered are required to satisfy Hypothesis
6.1 in the special case that A = (—A)™ on R? for some m € N. The theory in [9]
proceeds under only two hypotheses which are paralleled by Hypotheses 6.1 and
6.2 above, respectively. Incidentally, off-diagonal estimates are only shown in the
case that 2m < d which corresponds to pp < 1 in our setting. As the proposition
below shows, when pp < 1, Hypothesis 6.3 is superfluous.

Proposition 6.6. Let QQ satisfy Hypotheses 6.1 and 6.2 with reference operator A
and associated self-adjoint operator H. Let puy be the homogeneous order of A. If
pa <1, d.e., k=1, then Hypothesis 6.3 holds.

Proof. The assertion that Dom(Hy 4) € Dom(Qa) for all ¢ € £ and A € V¥ is a
consequence of Lemma 6.4. Using (6.1) and (6.2), we have

QA(f) £2Q(f) < C(Re(Qrp(f) + 1+ RM)ISI3)
< ClQxa(NI+ @+ RO))ILI3)

for all f € Dom(Q), ¢ € £ and A € V*. In view of Lemma 6.4, the proof is
complete. O

7. THE L? THEORY

We now return to the general theory. Throughout this section all hypotheses are
to include Hypotheses 6.1 and 6.2 without explicit mention. With the exception of
Lemma 7.3, all statements mirror those in [9] and their proofs follow with little or
no change. We will keep track of certain constants and to this end, any mention
of M > 0 refers to that which is specified in Hypothesis 6.2. Positive constants
denoted by C will change from line to line.
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Lemma 7.1. For any A € V* and ¢ € &,
1T llo2 < exp(M(1+ R(N))t/4)
for allt > 0.
Proof. For f € L?(Q), put f; = Tt’\’¢f By Lemma 6.5,
D113 = ~2Rel(Hn oo 0] < 3 (14 BODIAIE
The result now follows from Grénwall’s lemma. ]

Lemma 7.2. There exists C > 0 such that
C M
[ Hx s T |22 < — eXp (7(1 + R(A))t)

forallt >0, AeV* and ¢p € &.

Proof. Our argument uses the theory of bounded holomorphic semigroups, cf. [6].
For f € L*(Q), r > 0, and |0] < 7/3 put

fr = exp[—re Hy 4] f.
It follows that f, € Dom(H) 4) and
d , »
%HfTHE _ew(H)\,(bfmfr) —€ w(fryH)\,¢f7")

= —”Quo(fr) — e Qno(fr)
—(€” +e7)Q(fr) + Dr,

where

Dy = =e[Qx(fr) = QU] = € [Qus(fr) = QU]
By Hypothesis 6.2,
1D, < (Q(fy) + M1+ RMN)I/13)/2
and so with the observation that e?® + e~ > 1 for all |0| < 7/3,

d M
21113 < - (4 RODIIF13-

Hence,
[frllz < exp(M (14 R(X))r/4)[f]]2
in view of Gronwall’s lemma. From the above estimate we have
[l exp[=2Hx,p — M(1+ R(}))z][|2-2
< exp(M(1+ R(\))r/4)exp(—M (1 + R(\))Re(2)/2) <1
for all z = re? for r > 0 and || < 7/3 because 2 Re(z) > r. Theorem 8.4.6 of [6]
yields

/

C
I(Hxo + M(1+ R(N)/2) exp[~tHxp = M(1+ R(A))t/2]]l2—2 < —
for all t > 0. It now follows that
C
1o Tl < & exp(M(1+ RO))/2)

for all ¢ > 0 where we have put C = C’ + 2. O
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Lemma 7.3. For any k € N, there is C > 0 such that
C
|HX pe™ % e < & exp(M(1+ R(A))t/2)
forallt >0, p €&, and A € V*.

Proof. As —H) 4 is the generator of the semigroup e~ *#*¢ for any ¢t > 0 and
feL?(Q), e txe f € Dom(HY ;). We have

k

and so by the previous lemma

C k
||H§7¢67tH>"¢ 22 < (? exp(M(1+ R()\)t/2k))
from which the result follows. O

8. OFF-DIAGONAL ESTIMATES

In this section, we prove that the semigroup T, = e *# has an integral kernel Kz
and we deduce off-diagonal estimates for K. Here we shall assume the notation of
the last section and, like before, all statements are to include Hypotheses 6.1 and
6.2 without explicit mention.

Lemma 8.1. If the twisted semigroup Tt)"¢ satisfies the ultracontractive estimate

C

(8.1) HTt)\’d)H2ﬂoo < Vel exp[M(R(A) + 1)t/2]
for all A e V*, ¢ € €, and t > 0 where C,M > 0, then T; has integral kernel
Ky(t,z,y) = Kg(t,z,-) € LY(Q) satisfying the off-diagonal bound

C T—y

- _ # (27

|Kg(t,z,y)| < i exp< tMR < ; > +Mt>

for all x,y € V and t > 0 where R¥ is the Legendre-Fenchel transform of R and

M and C are positive constants.

Proof. 1t is clear that the adjoint of Tt)"qt7 is T;A"b and so by duality and (8.1),
C
A,
1Tl < 5o exp[M(R() +1)t/2]

for ¢t > 0 where we have replaced M R(—\) by M R()) in view of Proposition A.3.
Thus for all ¢t > 0, A € V* and ¢ € &,

||T{\’¢H1—>oo < HTt/\)¢|1—>2HTt)\7¢H2—>OO

< Vel exp[M(R(\) + 1)t/2]t#T/2 exp[M(R()\) + 1)t/2]
< t% exp[Mt(R(X\) + 1)].

The above estimate guarantees that Tt)"d’ has integral kernel K ;\f¢(t, x,y) satisfying
the same bound (see Theorem 2.27 of [6]). By construction, we also have

KI/\{v¢(t7 z,y) = e MO K (8, 2, )W)
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where Ky = Kgfs is the integral kernel of T} = Tto’(b. Therefore
~M6(@)) Mow)| « ©
le Ky (t,z,y)e | < g exp(MH(R(A) +1))
or equivalently

K (t,,y)| < t% exp (A(¢(y) — ¢(x)) + ME(R(A) + 1))

forallt >0, z,y € Q, A € V¥ and ¢ € £. In view of Hypothesis 6.2, for any x and
y € Q) there is ¢ € £ for which ¢(z) = z and ¢(y) = y. Consequently, we have that
forall z,y € 2, A € V* and t > 0,

| Ky (t,z,y| < t% exp (AMy —x) + Mt(R(A\) +1)).

The proof of the lemma will be complete upon minimizing the above bound with
respect to A € V*. In this process, we shall see how the Legendre-Fenchel transform
appears naturally. For any x,y € Q and ¢t > 0, we have

K (t,z,y)| < gHflf{eXI>{>\(y x) + Mt(R(A) +1)}}

< oo (ctsw {3 (S7) - aren ) essiony

C T—y
- #
< tMeXp( ( )—I—Mt)
C -y
il _ # (29
< tMexp( tMR ( . )—I—Mt),

where we replaced (M R)# by M R* in view of Corollary A.4 |

Theorem 8.2. Let Q satisfy Hypotheses 6.1, 6.2, and 6.3 with reference operator
A and associated self-adjoint operator H. Let R be the symbol of A and let pp be
its homogeneous order. Then the semigroup T, = e " has integral kernel Kp :
(0,00) x Q2 x Q — C satisfying

C
- #
(8.2) |Kg(t,z,y)| < T exp( —tMR ( ; ) —|—Mt>

for all z,y € Q and t > 0 where R¥ is the Legendre-Fenchel transform of R and C
and M are positive constants.

Proof. Take k as in Hypothesis 6.3. We note that for all f € Dom(A"),

[ flloo < CQA,.;(f)”A/zﬁan;_ﬂA/"f

in view of Lemma 5.4. The application of the lemma is justified because A" is
positive-homogeneous with £k~ ! Exp(A®) =Exp(A) and, as required, px~=pp/k<1.
For f € L3(), set f; = Tt)"d’f. In view of Hypothesis 6.3 and Lemmas 7.1 and 7.2,
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we have
Ifellse < Qan(f)" /2| full3 0/
K K /2K — K
< C((HS o fs )l + (L4 RODIAIB) " £l
K K /2K —HA/K
< C(IH pfill2llFello + 1+ ROFILZ) " (1 £illy~
M(1+ R(\)t/4 Ha/2n
§ C <exp( ( —t:R( )) / ) + (1 +R()\))k>
x exp(M (1 + R(X)t/4)| |2
S a2 exp(M (1 + R(A))t/2)|/f]]2
for all ¢ € € and A € V*. In view of Lemma 8.1, the theorem is proved. (]

9. HOMOGENEOUS OPERATORS

In this short section, we show that the term Mt in the heat kernel estimate
of Theorem 8.2 can be removed when H, a generally variable-coefficient operator,
is “homogeneous” in the sense given by Definition 9.1 below. Our setting is that
in which © = V and we shall assume throughout this section that py < 1. Our
arguments follow closely to the work of G. Barbatis and E. B. Davies [2].

Let @ be a sesquilinear form on L?(V) satisfying Hypotheses 6.1 and 6.2 with
reference operator A and associated self-adjoint operator H. For any E € Exp(A)
(which we keep fixed throughout this section), observe that

(Usf)(@) = s"2/2 f (sPx)

defines a unitary operator Uy on L2(V) for each s > 0 with U} = Uy/s- For each
s> 0, set

H, = s 'UrHU,

and note that Hj is a self-adjoint operator on L?(V). It is easily verified that the
sesquilinear form Q° associated to H, has

Q*(f.9) =s7'Q(U,f,Usg)

for all f,g in the common domain Dom(Q®) = Dom(Q) = Dom(A'/2?). As Q° is
produced by rescaling @, it is clear the Q° will satisfy Hypotheses 6.1 and 6.2. Let
us isolate the following special situation.

Definition 9.1. Assuming the notation above, we say that H is homogeneous
provided that Q° satisfies Hypotheses 6.1 and 6.2 with the same constants as @ for
all s > 0. In other words, @, satisfies the estimates (6.1) and (6.2) uniformly for
s> 0.

We note that a positive-homogeneous operator A is homogeneous in the above
sense, for our defining property of homogeneous constant-coefficient operators can
be written equivalently as Ay = A for all s > 0. In the example section below, we
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will see that when H is a variable-coefficient partial differential operator consisting
only of “principal terms”, the replacement of H; by H amounts to a rescaling of
the arguments of H’s coeflicients.

Theorem 9.2. Let Q be a sesquilinear form on L?(V) satisfying Hypotheses 6.1
and 6.2 with reference operator A and associated self-adjoint operator H. Let R
and pp be the symbol and homogeneous order of A, respectively. Assume further
that pa < 1 and so Hypothesis 6.3 is automatically satisfied (in view of Proposition
6.6) and hence the conclusion to Theorem 8.2 is valid. If H is homogeneous, then
its heat kernel Ky satisfies the estimate

C L (T —Y
|KH(t’x’y)|<—tuA exp (—tMR ( 7 ))

forall z,y € V and t > 0, where C and M are positive constants.

Proof. Using the fact that U is unitary for each s > 0, it follows that

— — -1 —
e tH —e ts Ul/SI‘IUS — []1/Se (t/S)HUS

for s,t > 0. Consequently, for f € L?(V),

(eftHsf) (z) = /VS*HAKH(t/S7 s Fx, y)suAf(gEy) dy

s—na /V Kp(t/s,s~Fx, s By) f(y) dy

for s,t > 0 and almost every € V. Thus, e " has an integral kernel Ky -
(0,00) x V x V — C satisfying

Ki(t,,y) = s " Ku(t/s,s ", s y)
for z,y € V. Equivalently,
KH(ta z, y) = SMAK?—I(St7 SE'Ia SEy)

for t,s > 0 and =,y € V. We now apply the same sequence of arguments to the
self-adjoint operators H and the semigroups e~ *#s. Under the hypothesis that
H is homogeneous, a careful study reveals that each estimate in the sequence of
lemmas preceding Theorem 8.2 and the estimates in the proof of Theorem 8.2 are
independent of s. From this, we obtain positive constants C and M for which

C z—y
— — #
|KE(t,z,y)| < Y exp( tMR ( ; >+Mt>

for all ¢ > 0 and z,y € V and this holds uniformly for s > 0. Consequently,

¢ — exp (—(st)MR# (ﬁ(xit_y)) + Mst>

K(t < KA
| H(7xay)| > S (St)” S

C r—Yy
- _ #(Z 7
i exp( tMR ( 7 ) + Mst)

for all s,t > 0 and x,y € V where we have used the fact that I — E € Exp(R%).
The desired estimate follows by letting s — 0. O
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2546 EVAN RANDLES AND LAURENT SALOFF-COSTE

10. REGULARITY OF Ky

In this section, we discuss the regularity of the heat kernel K. Given a non-
empty open subset  of V, we assume that Q is a sesquilinear form on L?(12)
which satisfies Hypotheses 6.1 and 6.2 with reference operator A and associated
self-adjoint operator H. Further, we shall assume that pup < 1 (and so Hypothesis
6.3 is satisfied automatically) and it is with this assumption we show Ky is Holder
continuous.

Lemma 10.1. Let A be a self-adjoint positive-homogeneous operator with real sym-
bol R and homogeneous order pp. If pp < 1, then

—d§ < o0,

1
/V* (1+R())!
where € = (1 — up)/2. In particular, (1 + R)~* € LY(V*).
Proof. For any Borel set B, write m(B) = |, g d§. Tt suffices to prove that

()
2l

g
s

< 00,
1=0

where Fj := {£ € V* : 28 < R(¢)17¢ < 2M+1}. To this end, fix E € Exp(R) and
observe that, for any [ > 1,

Fvl _ {é- . 2[—1 < (t_lR(f))l_e < 2[}
_ {g . 2l—1 < R(t—Eg)l—e < 21}
= {t"¢: 27 <R <2 =tPF .,

where we have set ¢t = 2'/(1=¢) Continuing inductively we see that Fj = t'FF} for
all [ € N and so it follows that

m(F) = / de = [ det(t®)de = (11 Fym(Fy) = (" m(Fy),
tLE Iy Fy
where we have used the fact that pp = tr E* = tr E because E* € Exp(A). Conse-
quently,
N o tm(E) = m(Fo) Y 27 () = m(Fo) Y (271 < oo
1=0 1=0 1=0
because 27 1ta = 9(ua/(A=e)=1) 1, O
Lemma 10.2. Let |- | be a norm on V and suppose that pn < 1. There exists
C > 0 such that o) )
‘61 x) _ i€y |2 1
g < Cla—y|t )
| “irre ooy

forallxz,y €V.

Proof. Let m € Ni and v be that guaranteed by Proposition 3.3 and set £ =
E2m ¢ Exp(A). We note that it suffices to prove the desired estimate where | - | is
the Euclidean norm associated to the coordinate system defined by v. In view of
the preceding lemma,

|ei€(@) _ i(v) |2

T EE) A0 REO) T e
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for all z,y € V. Consequently, it suffices to treat only the case in which 0< |z —y|<1.
In this case, set t = |z — y|~! and observe that

i€ — gietjz
L ey
i§(x) _ ,i€(y) |2 i§(x) _ oi€(y)|2
:/ le e |%+/ le e |dg
t<re) (L+R(E)) t>re) (1+R(E))

4 ) )
< d¢ +/ |615(w) _ e%f(y)ﬁdg
/th(s) R(¢) t>R(€)

4 e E o
< 4*]5#1&(15_’_/ |eZE(t T) _ St y)|2tﬂAd£
/1<R(§) R(tE7¢) 1>R(€)
4
< t““l/ ——d¢ + "M tE (o —y)\Q/ Al¢|3dg,
1<R(€) R(¢) 1>R(€)

where | - |« is the corresponding dual norm on V*. Using Lemma 10.1 and the fact
that |¢]2 is bounded on the bounded set {1 > R(€)}, it follows that

|ei£(m) _ eif(y)‘Q _1 E 2
= - Lge< O (ttal B (g —
| ey sol el

for some C' > 0. Given that max(Spec(E)) < 1/2 in view of Proposition 3.3, we
have [t¥(x —y)| < t'/?|z —y| because t > 1 and |-| is the Euclidean norm associated
to v. Consequently,

|ei£(x) _ 61‘5(@;)‘2 . L ) -
———de <O (T T —y :2Cx—y( Ha),
| e ( v — yf2) = 2C]z — g

The following lemma is analogous to Lemma 14 of [9].

Lemma 10.3. Let Q satisfy Hypotheses 6.1 and 6.2 on L*(Q) with associated self-
adjoint operator H and reference operator A and assume that up < 1. There ezists
a uniformly bounded function ¢ : Q — L?(Q) such that for every f € L*(),

(10.1) {(H+ 1721} (@) = (f, ¢())

for almost every x € Q. Moreover, ¢ is Holder continuous of order o = (1 —pp)/2.
In particular, (H +1)~Y2 is a bounded operator from L*(Q) into L>=(Q) and for
each f € L*(Q), there is a version of (H 4 1)~'/2f which is bounded and Hélder
continuous of order a.

Proof. In view of (6.1),
|0+ ROIg©)Pde <20+ )13

for all g € W‘in 0’2 (©2) where R is the symbol of A and g, denotes the extension of g
to V defined by (4.2). Also by the Cauchy-Schwarz inequality

1/2
s reyPa@ue <o ([ a+rona©ras)

where
)

L+ RE) © =
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2548 EVAN RANDLES AND LAURENT SALOFF-COSTE

in view of Lemma 10.1. Consequently, for all g € T/V‘r,’ilo’2 (Q), g» € L*(V*), and

(10.2)  lglloe = llg«llLoe(w) < /V*(l + R(€)*13:(€)]de < C|I(1 + H)?g] 2.

So (H + 1)1/ 2 is an injective self-adjoint operator and therefore has dense range
in L?(Q). We can therefore consider (H + 1)~/2, which by (10.2) is a bounded
operator from L?(Q) into L> ().

Let |- | be a norm on V and for f € L?(Q) set g = (H + 1)7'/2f. For almost
every x,y € {2 we have

o) -l < [ 1650 - d0lig o)lag
1/2 i€(z) _ gitw)2 \ M2
~ 2 le e | >
< ([asroere) ([ et
|ei6@) _ eicw) 2\ 12 .
(103) < il ([ ) = Cllele— )

in view of the previous lemma. It follows from (10.2) that for almost every x € 2,
there exists ¢(x) € L*(Q2) such that

(H+1)7 2 f(@) = (f, o).

By putting f = ¢(z), another application of (10.2) shows that ||¢(z)]2 < C.
Moreover, (10.3) guarantees that

(£ d(2) = ()] < Cl fllofz = y|*

from which it follows that ||¢(z) — ¢(y)|l2 < Clx — y|* almost everywhere. Finally,
redefine ¢, so that all of the above statements hold on all of Q. |

Our final result of this section shows that the heat kernel K can be analytically
continued in its time variable to the open half-plane C provided pp < 1.

Theorem 10.4. Let Q satisfy Hypotheses 6.1 and 6.2 on L?(Q) with associated
self-adjoint operator H and reference operator A. Let R be the symbol of A and let
A be its homogeneous order. If un < 1, there exists K : C4 x Q x Q — C such
that

(e1f) (2) = /QKH(M,y)f(y)dy

for all f € LY(Q) N L*(Q). For fized z € C4, Ky(z,+,-) : @ x Q — C is Holder
continuous of order a = (1 — pp)/2. Moreover, for each z,y € Q, Cy 3 z —
Ky (z,z,y) is analytic. Finally, there exists constants C > 0 and M > 0 such that

C T—y
- _ # (27
|Kp(t,z,y)| < i exp< tMR < ; >—|—Mt>

for all z,y € Q and t > 0 where R¥ is the Legendre-Fenchel transform of R and C
and M are positive constants.

Proof. The fact that e=*# is a bounded holomorphic semigroup ensures that B(z) =
(1+H)e *H is a bounded holomorphic function on L?(2) for z € C,.. For z,y € Q,
z € C4 define

K(z,2,y) == (B(2)¢(y), (),
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where ¢ is that given by the preceding lemma. It follows that Cy 3 z — K(z,z,y)
is analytic for any x,y € Q. Now for fixed z € C4, K(z,-,-) is Holder continuous
of order a. To see this, let | - | be a norm on V and, with the help of Lemma 10.3,
observe that for z € C,,

K (z,2,9) = K20/ y)| < K(2,0,9) = K20, y)| + K (2,2, y) - K(2,2,))|
< CUBG) a2 (16(2) = o) 2 + () = 6(y))]l2)
< CIBE)aos (|o = o207 4 |y — /272
< CIB()asn (o — 212+ ly — o/12)""?

for all (z,y), (z/,y") € Q x Q as claimed.

It remains to show that K (z, x,y) is the integral kernel of e =*#  for then Ky(t, -, -)
= K(t,-,-) for ¢ > 0 and so the final estimate follows from Theorem 8.2 in view of
Proposition 6.6. To this end, an appeal to Lemma 10.3 shows that (H +1)~/2 :
L?(Q) — L>(Q) is bounded and so (H 4 1)~'/2: L}(Q) — L*(Q) is also bounded
by duality. More is true: Using the self-adjointness of H one can check that

b2 (y) = dy(x)

for almost every x,y € ). Here, the variable of integration is that which appears
in the subscript. So, for f € L'(Q) N L?*(Q),

(e f) (@) = ((H+1)"V2BE)H+1)2f) ()
/Q (B()(H + 1) f)(w)gu(@)duw

/ (f, (w))(B(2) () (w)dw

//f )by (W) (B(=)6(@) (w)duwdy
/Q | 1)0u () BRI (w)dwdy
/Q [ (BG)ow) ()60 @) (v)dy,

as desired.

11. SUPER-SEMI-ELLIPTIC OPERATORS

In this section, we consider a class of partial differential operators to which we
apply the theory of the preceding sections. We call this class of operators super-
semi-elliptic operators, a term motivated by the super-elliptic operators of E. B.
Davies [9] (see also [2,26]). Naturally, the class of super-semi-elliptic operators
defined below includes the class of super-elliptic operators and our results recapture
those of [9].

Let m = (mq,ma,...,my) € N‘_f_, v = {v1,v2,...,v4} be a basis of V and take
E = EZ™ ¢ GI(V) in the notation of (2.1). Given a non-empty open subset 2 of

Licensed to Cornell Univ. Prepared on Sat May 2 09:02:18 EDT 2020 for download from IP 132.236.27.111.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2550 EVAN RANDLES AND LAURENT SALOFF-COSTE

V, consider the sesquilinear form on L?(Q) given by

Qo) = 3 [ tas@)Dsf@)Digla) da
Ja:m|<1 Q2
|B:m|<1
and defined initially for f,g € C§°(2). We shall (minimally) require the following
conditions for the functions aq, g:
(C.1) The collection
{aa,ﬂ(')}\a:m\gl - LOO(Q)
|:m|<1
and we shall put
= .8 oo
max oo
|:m|<1
(C.2) For each z € Q, the matrix
{aa,,@(x)}|a:m|§1
|8:m|<1

is Hermitian.
(C.3) There exists {Aqg:|a:m|=1,|5:m| =1} C R such that

A= Y A,pDgt?
|om|=1

|B:m|=1

has positive-definite symbol R (and so is a positive-homogeneous operator
with E € Exp(A) and pp = |1 : 2m|) and for some C' > 1,

% Z Aaﬁnaﬁﬁg Z aa,ﬁ(x)naﬁﬁgc Z Aa,ﬂnaﬁﬁ

|om|=1 |o:m|=1 |a:m|=1
|5:m|=1 |5iml=1 |5:m|=1

for all n € ®Ia:m|:1 C and almost every x € €.

Under the above conditions, we shall prove that the sesquilinear form @ is sym-
metric, bounded below, and therefore closable. Its closure is then associated to a
self-adjoint operator H on L?(Q)) formally given by

(11.1) H= > DJ{aaps(x)DS}.
Joem|<1
|:m|<1

When Conditions (C.1), (C.2), and (C.3) are satisfied, the sesquilinear form @ is
said to be {2m, v}-super-semi-elliptic or simply super-semi-elliptic. Correspond-
ingly, we say that the associated self-adjoint operator H is {2m,v}-super-semi-
elliptic or simply super-semi-elliptic. For such a sesquilinear form @, we call A its
associated semi-elliptic reference operator and

ppa =trE=|1:2m|

its homogeneous order. As the following proposition shows, there is a constant
C > 0 for which the sesquilinear form @ + C, defined by

@+ O)f,9) =Q(f,9)+C(f,9)

for f,g € Dom(Q), satisfies Hypothesis 6.1 with positive-homogeneous reference
operator A.
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Proposition 11.1. Let Q be a {2m,v}-super-semi-elliptic form on L*(). Then
Q extends to a closed and symmetric sesquilinear form on L?() (also denoted by
Q) with domain

Dom(Q) = Dom(Qx) = Wy ().
Further, Q is bounded below by some constant —C' for C' > 0 and the form Q + C
satisfies Hypothesis 6.1 with reference operator A. We denote by H the self-adjoint

operator associated to Q (and corresponding formally with (11.1)). If H (and Q)
consists only of principal terms, i.e.,

(11.2) H= Y DJ{aas(x)Dg},
|oem|=1
|B:m]|=1

then C can be taken to be 0 and so Q satisfies Hypotheses 6.1 with reference oper-
ator A.

Proof. For f € C§°(Q2), observe that

3 « DB
TN+ Y /Q aa,8D4 fDy fdx

|a+B:m|<2
3 _ PR
=3 > /Aa,ﬁDsté’mer > /aa,ﬁ(x)psfpéfdx
\‘g:ml\:l Q |a+B:m|<2 Q
m|=1

< ¥ /Qaa,ﬁpsffﬂfdw:Q(f)

|a:m|<1
|8:m|<1
<C Aa D fD fdx + G, D2f D fdx
ag—l/g |a+[;n|<2/ﬂ
|B:m|=1
<canp+ Y [ aupDefDifds
|a+B:m|<2 Q
Thus
(113 2@+ L) < QU < CQA + L(1),

where we have put
L= > / o3 D DS fdz.
|a+B:m|<2 Q

Using uniform bound on the coefficients a, g and Cauchy-Schwarz inequality we
see that

nlse Y [ipiine<e Y 031D
|a+B:m|<2 Q |a+B:m|<2

for some C' > 0. For each multi-index v such that |y : m| < 1, it follows from item
(1) of Lemma A.5 that

ID3AIE = /V T ©)Pde < / (R(E)+M0) | [ (€)dg = eQn (/) +M| 11,

*
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2552 EVAN RANDLES AND LAURENT SALOFF-COSTE

where € can be taken arbitrarily small. Taking into account all possible multi-indices
appearing in L, we can produce a positive constant M for which

(11.4) ()] < QU + MILFI3

By combining (11.3) and (11.4), we obtain

LONT RS NGOGy

2
< QU - L) - 3af)
< QU +CIfIE
< QAN + G113

from which the first assertion follows immediately. In the case that H consists only
of its principal terms, L is identically 0 and so the remaining assertion follows from
(11.3) at once. O

To address Hypothesis 6.2 we need to first introduce an appropriate class £. For

any integer ! > max2xkm = max{2xkm; : j = 1,2,...,d}, put
dI )
Fi=39 e C°(R) :sup|——(x)| <1lforall j=1,2,...,0p,
z€R dx’

where x is that which appears in Hypothesis 6.3. We will take £ to be the set of
¢ € CL(V,V) for which there are ¢1,a,...,1q € F; such that

(11.5) (00 po b ) (@1, 32, .., 2q) = (V1(21),¥2(22), . .., alzq))
for all (x1,2s,...,24) € R%

Remark 11.2. What is important for us is that the jth-coordinate function of 6, o
¢ o0, only depends on x; for each j =1,2,...,d.

Remark 11.3. The requirement that | > max2xm is enough to ensure that Hy-
pothesis 6.2 (and later Hypothesis 6.3) holds uniformly for ¢ € £. This, essentially,
relies on the uniform boundedness of the derivatives of ¢ to sufficiently high or-
der. In all statements to follow, we will assume without explicit mention that [ is
sufficiently large to handle all derivatives under consideration.

Lemma 11.4. For each multi-index o > 0, there exists C,, > 0 such that for all
f €Dom(Q), ¢ € €, and X € V*,

(11.6) e MDA f) (@) = DIf(@) < Ca D Y INIDSP f(w)]

0<B<a 0<y<pB
for almost every x € V.

Proof. In view of the coordinate charts (V,6y) and (V*,6,+), we have

Ao(x) = (A1, A2, Aa) - (V1 (1), ¥2(x2), . ., a(xa))
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for x € Vand A € V* where 0y (x) = (21,22, ..., 24) and Oy« (A) = (A1, A2, ..., Ag)-
So for any multi-index 5 > 0,

9 B1 9 B2 o Ba
B (oA P) — i S A I S (A1,A250,A0) (1,92, %a)
DV(e ) (Z 6351) (Z 8:62) (l 8xd) (6 )

51 " 1¢1 ﬁ2 9° >\21/12 . ﬁd 9 )\d'¢'d )
8x1 oz 8x§d

Using the properties we have required for each 1;, it follows that

Bj

e XOpi <y TT [N ] <00 30 V),

B;#0 \I=1 0<y<B

where Cg > 0 is independent of ¢ and A. In view of the Leibniz rule,
NN DG (XD f) (2) - Dy ()|
Y Cape XN DY (ew)) () D P f(z)

0<B<ax
<Co Y, Y NIDPf(x)|

0<B<a0<y<pB

for almost every z € V where C, is independent of A and ¢. The constants Cy s
appearing in the penultimate line are the standard multi-index combinations. [

Proposition 11.5. With respect to the class € above, @ (and so Q + C) satisfies
Hypothesis 6.2.

Proof. Let z,y € V and set (z1,22,...,24) = Oy(x) and (y1,y2,---,¥4) = 0+v(v).
For each pair z;,y; € R there is ¢; € F; for which ¥;(z;) = x; and ¥;(y:) = vs;
such functions can be found by smoothly cutting off the identity while keeping
derivatives bounded appropriately. Using this collection of v;’s, we define ¢ as in
(11.5) and note that

P(x) — o(y)
= 0. (W (@1), a(22), - Pal@a)) — 05 (1 (1), Ya(y2), - - -, Yal(ya))
= 0, (w1, 20, ) — 05 (1, Y2, - - -5 Ya)
=Y,

as required.
For any A € V*, ¢ € £ and f € Dom(Q),

ol = Y [ ans@Dye O 1) @DIO a)da

Ja:m|<1
|B:m|<1
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Using the uniform boundedness of the collection {an g}, we have

[Qx0(f) — QU

- X / G0, [ MO DG (7X@ )e=NO DY (X f) = DG FDUf | da
0<|a:m|<1 2
0<|B:m|<1

- X / G| (XD DG (e ) = Dy f) e DY) )
0<|arm|<1 7€
0<|B8:m|<1

+ D3 (@ Di(@) f) = DUF) | da|

<C > XD DG (e ) — D flle NI DN )|
0<|a:m|<1 Q
0<|B:m|<1

+ |Dg flle M DE (M) f) — DI f|da

<c Y 2P D2 (e f) — D& flle= M) DI (M) f) — DI f|

0<|a:m|<1 Q

0<|B:m|<1
+ DS flle D DG (N f) — D flda
With the help of Lemma 11.4,

Qo) — Q)]
<c ¥ Y ¥ /Q (e D3 £ (| DS flda

0<|a:m|<1 0<ya <a 0<na <Va
0<|B:m|<1 0<y3<B 0<ng<vys

DS DS /Q|D3f||A"B||D€-Wf|dx

0<|a:m|<1 0<ys<B 0<ns<vp
0<|B:m|<1

<c > > X /Q X7 Dg e fI|IA DY flda,

0<]a:m|<1 0<ya <a 0<na <va
0<|B:m|<1 0<y3<B 0<ng<vyp

where C' > 0 is independent of ¢, A, and f. Thus by the Cauchy-Schwarz inequality,
(11.7)

Qo) —QHI<C S ST ST NEDEe A DY .

0<[am|<10<va <a 0<na <va
0<|B8:m|<1 0<y8<B 0<ns<vs

It is important to note that for no such summand |5 — g : m| = 1. In view of
Lemma A.5 and Proposition 11.1 it follows that for all such 3, v, and 7g,
D = [ pene | F ) Pag
V*
< o | ROIF©Pd + M0+ RO
< eQa(f) + Mc(1+ RO)|IFII3
< Q)+ M1+ RW)IFI3,
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where € can be taken arbitrarily small. For all admissible «, 7., and 74, a similar
calculation (making use of Lemma A.5 and Proposition 11.1) shows that

X7 DG fI3 < M(Q(f) + (1 + RO))IFI3)

for some M > 0. Thus for any € > 0, each summand in (11.7) satisfies

X7 DI fl5|| A7 DS £
< (M(QUf) + (L+RA)ILIZNY2(€Q(f) + ML+ RN £113)"?

3/2
< (M)2QU) + Sy (1+ ROIFIR

The result now follows by choosing e appropriately and combining these estimates.
O

11.1. When pp = |1 : 2m| < 1. Let @ be a {2m, v}-super-semi-elliptic form on
L?(Q) with reference operator A (with symbol R and homogeneous order y5) and
associated super-semi-elliptic operator H. Throughout this subsection we investi-
gate the case in which

d

1
pa=[1:2m| =) — <1
j:12mj

In view of Propositions 6.6, 11.1, and 11.5, the sesquilinear form @ + C satisfies
Hypotheses 6.1, 6.2, and 6.3. Upon noting that the semigroup generated by —H
and that generated by —(H + C) are related by e *(H+C) = ¢=tCe=tH the results
of Section 10 immediately give us the following proposition.

Proposition 11.6. Let Q be a {2m,v}-super-semi-elliptic form on L*(Q) with
reference operator A and associated self-adjoint super-semi-elliptic operator H. Let
R be the symbol and let uy = |1 : 2m| be the homogeneous order of A, respectively.
If up < 1, then the semigroup T, = e~ *H has integral kernel K : C4 x Qx Q — C
for which

(1) @) = [ Knlea) i)y
for all f € LY(2) N L2(Y). For fived z, Ky (z,-,-) is jointly Holder continuous of

order o = (1 — pp)/2. For fized x,y € Q, z — Kg(z,z,y) is analytic on Cy.
Finally, there are constants C' > 0 and M > 0 for which

|Ku(t,z,y)| < t%exp <—tMR# <g> +Mt>

for all x,y € Q and t > 0 where R¥ is the Legendre-Fenchel transform of R.

Let us now focus on the special case in which 2 =V and the super-semi-elliptic
form @ (and H) counsist only of principle terms, i.e.,

Q(f,9) = aa,5(x) DS f(z) DYg(x) dz,
m|=1
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or, equivalently, H is the form (11.2). We will continue to assume that py = |1 :
2m| < 1. In the notation of Section 9, we observe that

Q*(f.9) = QU . Usg)
s /aa,ﬁ(x)Di’(S“A/zfs)(w)Dﬁ(S“A/QQS)(Jﬁ)dl‘
v

|o:m|=1
|Bim| =1

= s Y [ (@) D3 ) DY) @) de

Ja:m|=1

for f,g € Dom(Q) where by f, (and g) is defined by f,(x) = f(s¥x) for s > 0
and = € V. Noting the definition of E at the the beginning of the section, for each
multi-index « such that |y: m| =1,

D fo(x) = s#(DY f)(sPx) = s'/2(DY ) (7).

Therefore, by a change of variables, we obtain

Q°(f,9)

st /Vaaﬁ (z)Df,“f(sEx)D?;f(sEx) dx

|a:m|=1
|G| =1

(s™P2)Dg f(x) DS f(x) dx

|
(]
—
3

for all f,g € Dom(Q®). Under our assumption that @ is super-semi-elliptic, all
estimates concerning a,, g hold uniformly for z € V, and we may therefore con-
clude that the associated self-adjoint operator H is homogeneous in the sense of
Section 9. Consequently, an appeal to Theorem 9.2 guarantees that the heat kernel
Ky satisfies

C T—y
K - —tM R
| H(tazay”gtul\ exp( tMR < n >)
for all t > 0 and z,y € V where C' and M are positive constants.

11.2. When pa = |1,2m| > 1. In the last subsection, we deduced heat kernel
estimates for {2m, v }-super-semi-elliptic operators in the case that uy = |1 : 2m| <
1; in this setting Hypothesis 6.3 was met trivially by virtue of Proposition 6.6.
In general, we expect these results to also be valid in the case that uy = |1 :
2m| = 1 (by the methods of [1] and [26]); however we do not pursue this here. As
discussed in the introduction, without additional assumptions on the regularity of
the coefficients, these results cannot be pushed into the realm in which uy = |1 :
2m| > 1. For an account of the relevant counterexamples which pertain to elliptic
operators with measurable coefficients, we encourage the reader to see [8,10,20];
further discussion can be found in Section 4.1 of [7].

We here investigate the situation in which a {2m, v}-super-semi-elliptic form Q
has pup = |1 : 2m| unrestricted (allowing for pa > 1). In this situation, it is possible
that x > 1 and so Hypothesis 6.3 does not, in general, follow from Proposition 6.6.
We must therefore verify the hypothesis directly. In line with the remarks of the
previous paragraph, we shall make some additional (strong) assumptions concerning
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the regularity of the coefficients {a, g} under which the verification of Hypothesis
6.3 is relatively straightforward.

To this end, let @ be a {2m,v}-super-semi-elliptic form on L?(V) with coeffi-
cients {aq,g}. In addition to Conditions (C.1), (C.2), and (C.3), we ask that the
following two conditions be satisfied:

(C.4)

{aa,ﬂ(')}\a:m\él - COO(V)‘
|B:m|<1

(C.5) For each pair of multi-indices o and J for which |a: m| = |§ : m| =1, the
function aq g(+) is identically constant.

In view of Conditions (C.3) and (C.5), we may assume without loss of generality

that the principal part of @ is given by A. In other words, we assume that a, g =

Aq g € R for each o and S for which | : m| = |5 : m| = 1. This allows us to write

Q(f,9) = (Af.9) + L(f,9)
for all f,g € C§°(V) where

A= > AapDe*?
a:m|=1
|g:m|=1

and

L= Y [ anse)D5@)Dig(o) do
la+8:m|<2” "
Furthermore, it is easy to see that Condition (C.4) ensures that the formal expres-

sion (11.1) makes sense. More precisely, if we define the differential operator Hy
by

Hof(z)=Af(e)+ ) D{{aas(@)DSf(x)}
|a+B:m|<2
for f € Dom(Hy) := C§°(V), then Hyf = Hf whenever f € C§°(V). More is true.

Proposition 11.7. Assume Conditions (C.1)-(C.5) hold. For each integer k > 1,
define the linear differential operator Hf by

Hyf = (Ho)"f
with domain Dom(H{) = C§°(V). Then the following properties hold:
(1) There are smooth functions by = bga for o+ : m| < 2k and real

constants By 3 = Ba, for |a:m| = |8 : m| =k for which
Hif = Af+ > DJ{bapDif}
|a+B:m|<2k
(11.8) = Y DI{BapDSf}+ > DI{bapDSf}
|oem|=k la+B:m|<2k
|B:m|=k

for f e C§°(V).

(2) H§ with initial domain Dom(HE) = C3°(V) is essentially self-adjoint, its
closure is precisely the self-adjoint operator H* (defined as the kth power
of H) and

Dom(H") = W2sm2(y),
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Proof. The first statement follows by direct calculation (Leibniz’s rule) keeping in
mind that a, g(z) are bounded smooth functions forming a Hermitian matrix at
each z € V. Using integration by parts and the definition of Q, for ¢ € Dom(HY),
we find that

<Hﬁf,g> = Q(Hﬁilfag) = <HH71f7HOg> == <f7H(])€g>
for all f € Dom(H"). In view of the self-adjointness of H", this calculation guar-
antees that ¢ € Dom((H")*) = Dom(H") and H"g = H}g and therefore H" is a
self-adjoint extension of the symmetric operator Hf. It remains to show that this
operator is essentially self-adjoint and characterize the domain of H".
In view of the first statement, we write

Hf =A°+ 0,
where ¥ is the symmetric operator
v= 3 D{basDy}
Ja+B:km|<2

with domain Dom(¥) = Dom(H{). It is straightforward to see that A" is a positive-
homogeneous operator with symbol R(£)". Further, observe that E' := E2rf™ ¢
Exp(A”) and so the homogeneous order of A® is up~ = tr B = pa/k. An appeal
to Proposition 4.7 guarantees that A", with initial domain C§°(V), is essentially
self-adjoint and the domain of its closure is W25™2(V).

By analogous arguments to those given in the proof of Proposition 11.1 using
the fact that |o + 8 : km| < 2 for all multi-indices appearing in ¥, by virtue of
Lemma A.5 we find that for any € > 0, there is M, > 1 for which

[V fll2 < el A"Fll2 + M| F]l2

for all f € C§°(V). In view of this estimate, an appeal to Lemma 7.4 of [25] ensures
that Hf = A"+ U is essentially self-adjoint and its closure has domain W2*™2(V).
Upon noting that H" is a self-adjoint extension of H{, it is therefore the unique
self-adjoint extension and we may conclude at once that

Dom(H") = W22 (V).
O

The following lemma contains the essential estimate needed to verify Hypothesis
6.3 for a super-semi-elliptic operator whose coefficients satisfy Conditions (C.1)-

(C.5).
Lemma 11.8. Assume Conditions (C.1)-(C.5) hold and let k > 1 be an integer.
Then, for any € > 0, there is a constant M. > 1 for which

(H o f, f) = Qas (/)] < €Qax(f) + Mc(1+ RON)"[| 113
forallxeV*, ¢ € € and f € C§°(V).
Proof. Tt follows from the previous proposition that, for A € V¥ ¢ € £, and f €
Cge(V),

H o f = (Hi)xof = O HG (e f),

where Hf f is given by (11.8). With this in mind, integration by parts gives

<H§,¢f7f> - QA"(f) = U()‘7¢7f) +W(>‘7¢7f)7
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where
UG, f) = Bas / @ 1)) (e DF (201) )
|e: m| K
|B:m|=r
_DefDl f] d
and
WA, &, f) = Z /b 5 /\(¢)Da ( —>\(¢)f)) (e—’\(@D‘B, (e/\(¢)f)) d
|a+B:m|<2k
for A e V* ¢ € £, and f € C5°(V). Just as we did in the proof of Proposition 11.5,
we write
UA, ¢, f)\
= 76/ ¢)Da fA(¢)f) _ Di“f) e—>‘(¢)D€(e>‘(¢)f)
|a m| K
|8:m|=r

+ D5 f (e DY(eX0) ) = DIF) | da|
<0 X [1eODse O~ Dg e O DY )

|om|=k
|8:m[=r

+ |Dg flle M DL (M) f) — DY f|da

<c Y /|e>‘(¢)D"( ~X@) ) Do flle=M) DE(M®) £y — DEF|

|om|=k
|B:m|=k

+ |Dg flle N DY (M) f) — DI fda,

where C is independent of A, ¢, and f. With the help of Lemma 11.4 and the
Cauchy-Schwarz inequality, we have

ETTEIED SEED SN DI Nty (Pl P

lam|=k 0<pa<a 0<ya<pa
|8:m|=r 0<pp<B 0<y3<pg

LD SIID DI SR PN SR

Jam|=k 0<pa<a 0<ya <pa
|B:m|=r

<O X XX [ epg e s gl

lam|=k 0<pa<a0<ya<pa
|B:m|=k 0<pp<B 0<v5<pp

<o SN N XeDgee fllol|A DY £,

|a:m|=k 0<pa <a 0<va<pa
|8:m|=r 0<pg<B 0<v5<pg

where, again, C' is independent of X, ¢, and f. For each «, p,, and 7, such that
o :m| =k, 0 < pg < @, and 0 < v, < pq, properties of Fourier transform and
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Lemma A.5 guarantee that for any € > 0 there is M, > 1 for which

2 290 c200—2p4
2*=/ [AZ1a 2020
V*

< [ (e + MARO) + 1)) 1F(€) P de
< €Que () + M(RO) + DI 13

Similarly, for each 3, pg and 7 such that |8 :m| =k, 0 < pg < fand 0 < v3 < pg,
there is a constant M for which

N2 DSPe fl13 < M (Qans (f) + (L+RO)*(IS3) -
From these estimates it follows that, for any € > 0, there is M, > 1 for which

U6, £) < eQan(f) + Mc(1+ RO £13

forall A\ € V* ¢ € £ and f € C§°(V). By a similar argument, making use of Lemma
A5 and the fact that W(\, ¢, f) consists of “lower order” terms whose coefficients
b, are everywhere bounded, an analogous estimate can be made for W (A, ¢, f).
From these estimates the lemma follows at once.

X7 DG f3 = [\egere f©F e

Proposition 11.9. Assume that Conditions (C.1)-(C.5) hold. Then Q (and so
Q + C) satisfies Hypothesis 6.3.

Proof. By virtue of Proposition 11.7 and Leibniz’s rule, we see that

Dom(Hj ) ={f € L*: e NP f € Dom(H")}
—={f e L?: e M) f e WI™2(V)} = W)™™2(V)
for all A € V* and ¢ € € where we fix kK = min{n : yp/n < 1}. Consequently,
Dom(H5 ) = W2™2(V) C WE™2(V) = Dom(Qax)

for all A € V* and ¢ € £. An appeal to the preceding lemma guarantees that, for
any € > 0, there is M, > 1 for which

Qa~(f) = (HSgf. [)+Qas(f) = (HX oS, f)
(HR ofs P+ 1Qax (f) — (HE o f, f)]
M [(HS o f, )| + €Qar () + Mc(1 4+ R(V) || f13
for A e V¥, ¢ € £, and f € C5°(V). Equivalently,
M. M.
Qe () < T [(H o P + T2 (1 4+ ROV
forall A e V¥, ¢ € £, and f € C§°(V). In view of Propositions 4.4 and 11.7, C§°(V)

is a core for both QA+ and H" and so it follows that the above estimate holds for
all X e V¥, ¢ € £, and f € Dom(H") = Dom(HY ;) = W™ ?(V), as desired.  [J

IN A

In view of Propositions 11.1, 11.5, and 11.9, an appeal to Theorem 8.2 gives our
final result for super-semi-elliptic operators.

Proposition 11.10. Let Q be a {2m, v}-super-semi-elliptic form on L*(V) whose
coefficients satisfy Conditions (C.1)-(C.5) with reference operator A and associ-
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ated self-adjoint super-semi-elliptic operator H. Let R be the symbol and let pup =
|1 : 2m| be the homogeneous order of A, respectively. Then the semigroup Ty = et
has integral kernel K : (0,00) x VXV — C satisfying

C T—y
- _ # (27
|Kg(t,z,y)| < i exp< tMR < ; >—|—Mt>
for all z,y € V and t > 0 where R¥ is the Legendre-Fenchel transform of R and C
and M are positive constants.

Remark 11.11. The above result is weaker than Theorem 5.1 of [23] in that the
latter treats semi-elliptic operators with Holder continuous coefficients and allows
for the operator’s principal part to have variable coefficients. We have included this
result because its proof is drastically different from that of Theorem 5.1 of [23] and
relies on the functional-analytic method of E. B. Davies [9], as we have adapted and
presented in this article. It also illustrates that Davies’ method can be extended
into the realm in which pua > 1 (or d > 2m for elliptic operators). As discussed
in the following two remarks, we believe this result can still be sharpened while
making use of our general theory presented in Theorem 8.2.

Remark 11.12. Condition (C.4), a strong assumption, was used to establish that the
powers of H were sufficiently well behaved under perturbations thus establishing
Proposition 11.9. It remains an open question as to what is the weakest smoothness
assumption that can be made on the coefficients of H to verify Hypothesis 6.3.

Remark 11.13. In checking the perturbative estimates in the proof of Proposition
11.9, it was useful to have C§°(V) as a core for Dom(H"). Under our assumptions,
this fact relied on the formal expression for the xth power of H, Hf, to be essentially
self-adjoint with closure H". We ask: To what degree is this necessary?

APPENDIX A

A.1. The Legendre-Fenchel transform of a positive-homogeneous polyno-
mial. In this section, we state some results involving the Legendre-Fenchel trans-
form of a positive-homogeneous polynomial relevant to our study. The results herein
can be found in Section 3 of [23] including their proofs. To this end, let V be a real
d-dimensional vector space and let V* be its dual. Consider a positive-homogeneous
polynomial P : V¥ — C and set R = Re P. The Legendre-Fenchel tranform of R is
the function R* : V — R defined by

R¥(x) = fél&jﬂﬂ - RV}

for = € V. The following proposition captures some useful facts about R¥.

Proposition A.1. Let P be a positive-homogeneous polynomial with R = Re P.
Then R¥ is continuous, positive-definite, and for any E € Exp(P), F = (I— E)* €
Exp(R¥). Further, given any polynomial Q on V and € > 0, we have

Q()e R*0) e L= (V) n LY(V)

and so, in particular, lim, ., R¥(x) = co.
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A.2. One-parameter contracting groups. In what follows, W is a d-dimensional
real vector space with a norm | - |; the corresponding operator norm on Gl(W) is
denoted by || - ||. Of course, since everything is finite-dimensional, the usual topolo-
gies on W and GI(W) are insensitive to the specific choice of norms. Also, we say
that two real-valued functions f and g on W are comparable if, for some positive
constant C, C~! f(w) < g(w) < Cf(w) for all w € W; in this case we write f < g.

Definition A.2. Let {T;}:~0 C GI(W) be a continuous one-parameter group. {7}
is said to be contracting if

lim |7, = 0.

We easily observe that, for any diagonalizable E € End(W') with strictly positive
spectrum, the corresponding one-parameter group {t¥};- is contracting. Indeed, if
there exists a basis w = {wy,ws, ..., wq} of W and a collection of positive numbers
A1, Ao, ..., A\g for which Fw, = Agwy for k = 1,2,...,d, then the one-parameter
group {tP};>o has tPwy = t*wy, for k = 1,2,...,d and t > 0. It then follows
immediately that {¢¥} is contracting.

Proposition A.3. Let Q and R be continuous real-valued functions on W. If
R(w) > 0 for all w # 0 and there exists E € Exp(Q) N Exp(R) for which {t¥} is
contracting, then, for some positive constant C, Q(w) < CR(w) for allw € W. If
additionally Q(w) > 0 for all w # 0, then Q < R.

Proof. Let S denote the unit sphere in W and observe that
Q(w)

2}1&)9 Rw) — C < o0
because @ and R are continuous and R is non-zero on S. Now, for any non-zero
w € W, the fact that t¥ is contracting implies that t¥w € S for some ¢ > 0 by virtue
of the intermediate value theorem. Therefore, Q(w) = Q(t*w)/t < CR(tPw)/t =
CR(w). In view of the continuity of @ and R, this inequality must hold for all
w € W. When additionally Q(w) > 0 for all non-zero w, the conclusion that @ =< R
is obtained by reversing the roles of () and R in the preceding argument. ]

Corollary A.4. Let A be a positive-homogeneous operator on V with symbol P
and let R¥ be the Legendre-Fenchel transform of R = Re P. Then, for any positive
constant M, R#* =< (MR)*.

Proof. By virtue of Proposition 3.3, let m € Ni and let v be a basis for V for which
E?™ ¢ Exp(A). In view of Proposition A.1, R¥ and (M R)#* are both continuous,
positive-definite and have I — EZ™ € Exp(R#) N Exp((MR)#). In view of (2.1), it
is easily verified that I — E2™ = E¥ where

2ma 2mo 2my d
Al = R
(A1) v (2m1—1’2m2—1’ dmg—1) St

and so it follows that {t®v} is contracting. The corollary now follows directly from
Proposition A.3. U

Lemma A.5. Let P be a positive-homogeneous polynomial on W and let n = 2m €
Ni and let w be a basis for W for which the conclusion of Proposition 3.3 holds.
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Let k > 1 be an integer, set R = Re P, and assume the notation of (2.2) in which
E> = £ for each multi-index o
(1) Let o be a multi-index for which |a : 2m| < 1.
(a) There is a constant M > 1 for which

1§ < MR(§) + M

forallE e W.
(b) If additionally | : 2m| < 1, then, for any € > 0, there is a constant
M. > 1 for which

€% < €R(§) + M.

forallE e W.
(2) Let o and B be multi-indices for which |+ 5 : 2m| < k.
(a) There are constants M, M’ > 1 for which

[€°N°] < MR(&)" + M'(R(N) + 1)"

forallE, N e W.
(b) If additionally | : 2m| < &, then, for any € > 0, there is a constant
M, > 1 for which

9N < €R(£)" + Mc(R(X) +1)"
forallE, e W.

Proof. We first note that item (1) can be seen as a consequence of item (2) by
considering A = ¢,'(1,1,...,1) and k = 1. For the first assertion of item (2), we
assume that | : 2m| + |§ : 2m| = | + S : 2m| < k and consider the contracting
group {tFPE} = {tF @ t¥} on W @ W where E = E2™ € End(W). Because R is a
positive-definite polynomial, R(£)" + R(\)" is continuous and positive-definite on
W @ W. Let |-| be anorm on W & W and, respectively, denote by B and S the
corresponding unit ball and unit sphere in this norm. Observe that
€22

M:= sup ——F— < 0.
enes B(E)" + RN~

Given any (&,\) € W @ W \ B, because {t¥®F} is contracting, it follows from the
intermediate value theorem that, for some ¢t > 1, t=(FOE) (¢ \) = (t=F¢ t7FP)\) € S
and therefore

|£a/\6| t(|a:2m\+\[3:2m|)|(t7E£)a(t7E/\)B|

t|a+ﬁ:2m|M (R(thg)n + R(th/\)n)

t"M((t R(€))" + (T R(N)")

M(R(£)" + R(A)").

Upon noting that [£€¥A?] is bounded as (&, \) varies over the compact set B, there
exists M’ > M for which |¢€¥\P| < M’ for all (£,\) € B. Putting these estimates
together, we obtain

€N < M(R(&)" + R(A)") + M’ < MR(&) + M'(R(§) +1)"
for all ((,\) e W W.

IN N CIA
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To verify our final assertion, we appeal to the preceding estimate to see that
€N = el PN’

t-lo2ml (M R(tP€)" + M'(R(N) + 1))

< Mt(m—\a:QmDR(g)n + M/t—|a:2m\(R(/\) + 1)n

IN

for all &,A € W and ¢ > 0. Upon noting that |a : 2m| < &, the desired result
follows by choosing ¢ sufficiently small. O
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