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ABSTRACT. In this article we study the class of right-invariant, fractional order Sobolev-type
metrics on groups of diffeomorphisms of a compact manifold M. Our main result concerns
well-posedness properties for the corresponding Euler-Arnold equations, also called the EPDiff
equations, which are of importance in mathematical physics and in the field of shape analysis
and template registration. Depending on the order of the metric, we will prove both local and
global well-posedness results for these equations. As a result of our analysis we will also obtain
new commutator estimates for elliptic pseudo-differential operators.

1. INTRODUCTION

Our goal in this article is to study the well-posedness of the EPDiff equation on the group
of diffeomorphisms of a compact manifold M for the H®-metric when s is no longer an integer.
Our main result is the following.

Theorem (Local and Global Well-posedness). Let M be a closed manifold of dimension d. The
EPDiff equation and the geodesic equation for the fractional, right invariant H®-metric on the
diffeomorphism group Diff (M) are locally well-posed, provided s > 1/2. For s > %l + 1 all
solutions exist for all time t, i.e., the equations are globally well-posed.

Our result is proven under more general assumptions, namely for right invariant metrics that
are defined using abstract pseudo differential operators as inertia operator. This will allow
us to apply the result to a wide class of situations, including in particular the fractional H*-
metric, but also other examples such as the so-called information metric as studied in [48]. Our
result requires us to carefully investigate smoothness properties of conjugating pseudo-differential
operators by diffeomorphisms. As a byproduct of our analysis, we obtain the following result
which is of independent interest for the study of pseudo-differential operators and can be viewed
as generalized, higher order Kato—Ponce type inequalities.

Theorem (Smooth Conjugation of Pseudo Differential Operators). Let A be a pseudo-differential
operator in V" (M) with r > 1. Then the map

DY(M) — L(H* (M), HT"™"(M)), ¢~ Ap
is smooth for ¢ > r and ¢ > d/2 + 1.

The operator A, is also called the twisted map, i.e., the inertia operator A twisted by the
right translation R,:
Api=RpoAo R,
with R,v := v o ¢ for ¢ € DI(M) being an element in the group of diffecomorphisms of Sobolev
order ¢ and v € X9(M), see Section 2.1. For the exact definition of the operator class ¥" (M),
we refer to Section 3 and to the survey of Agranovich in [26].
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Context of the result. In 1765, Euler published a seminal paper [30] in which he recast the
equations of motion of a free rigid body as the geodesic flow on the rotation group. For the bi-
century of this achievement, Arnold has extended this geometric framework to hydrodynamics
and recast the equations of motion of a perfect fluid (with fixed boundary) as the geodesic flow
on the volume-preserving diffeomorphisms group of the domain. Since, then a similar geometric
formulation has been found for several important PDEs in mathematical physics, including
in particular the Camassa—Holm equation [17, 46, 42], the modified Constantin—Lax—Majda
equation [21, 60, 29, 10] or the SQG-equation [22, 59, 9], see [56, 40| for further examples and
references.

From a geometrical view-point, this theory can be reduced to the study of right-invariant
Riemannian metrics on the diffeomorphism group of a manifold M (or one of its subgroup like
SDiff (M), the group of diffeomorphism which preserve a volume form p). To define a right
invariant Riemannian metric on the diffeomorphism group Diff (M) of a compact Riemannian
manifold M, it suffices to prescribe an inner product on its Lie algebra I'(7T'M). We will moreover
assume that this inner product can be written as

(ug,ug) == /M (Auq - ug) du,

where uy,us € I'(TM), - means the Riemannian metric on T'M, du, the Riemannian density
and the inertia operator

A:T(TM) - T(TM)
is a L?-symmetric, positive definite, continuous linear operator. By translating this inner prod-
uct, we get an inner product on each tangent space T, Diff (M), which is given by

(1.1) Gy (v1,v2) =/ (Apvr - v2) p¥dp,
M

where v, vy € T,Diff(M).
A geodesic for the metric G on Diff>(M) is an extremal curve o(t) of the energy functional

/ G @t;%ﬁt

where subscript ¢ in ¢; means time derivative. Let u(t) := R,-1(;)%:(t) be the Eulerian velocity
of the geodesic curve o(t). Then u(t) is a solution of the Euler-Poincaré equation (EPDIff) [35]
on Diff (M):

(1.2) mi + Vaem + (Vu) ' m 4+ (dive)m =0, m := Au,

where (Vu)' is the Riemannian adjoint (for the metric on M) of Vu. When A is invertible, the
EPDiff equation (1.2) can be rewritten as

(1.3) = —A~1 {ViAu + (V)" Au + (div u)Au},

which is the Euler—Arnold equation for Diff(M). Important examples for the inertia operator A
include (fractional) powers of the Laplacian, which give then rise to the afore mentioned PDEs
as corresponding geodesic equations.

As acknowledged by Arnold himself, his seminal paper concentrated on the geometrical ideas
and not on the analytical difficulties that are inherent when infinite dimensional manifolds are
involved. In 1970, Ebin & Marsden [24] reconsidered this geometric approach from the analytical
point of view, see also [25, 55, 12, 54, 13, 18]. They proposed to look at the Fréchet Lie group
of smooth diffeomorphisms as an inverse limit of Hilbert manifolds, following some ideas of
Omori [49, 50]. The remarkable observation is that, in this framework, the Euler equation (a
PDE) can be recast as an ODE (the geodesic equation) on these Hilbert manifolds. Furthermore,
following their approach, if we can prove local existence and uniqueness of the geodesics (ODE),
then the EPDIff equation (1.2) is well-posed.

The local well-posedness of the geodesic equation when the inertia operator A is a differential
operator has been implicitly solved in the seminal article of Ebin and Marsden [24], see also [52,
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53, 20, 58, 32, 47, 44, 38, 39], and hence for H k_metrics on diffeomorphism groups, where k
is an integer. This result has been extended to invariant metrics on several related spaces of
mappings, such as spaces of immersions, Riemannian metrics and the Virasoro—Bott group,
see [39, 6, 7, 3, 11, 4]. In a series of papers [29, 28, 5, 41], the local and global well-posedness
problem for the general EPDiff equation on Diff>(T%) or Diff ;7 (R?) when the inertia operator
is a non-local Fourier multiplier was solved. This applies, in particular, to every H®-metrics on
Diff>(T?) or Diff g (R%) when s is no longer an integer. In this article we extend this analysis
to the EPDiff equation on compact manifolds, which requires us to deal with inertia operators
which are general Pseudo Differential operators. Simultaneously to this article, the first author
and collaborators proved in [8] local well-posedness of geodesic equations for fractional order
metrics on the space of immersions of a manifold M with values in another manifold N. The
class of operators studied in [8] is defined via holomorphic functional calculus of the Laplace
operator. In the special case of M being N their results agree with the first part of the main
theorem of the present article (the local well-posedness of the geodesic equations), albeit for a
different class of inertia operators and using a different method of proof (our strategy is heavily
based on the group structure of DI(M) and is valid for general abstract pseudo differential
operators, see the comments below).

Strategy of the Proof. Our main theorem will follow as a direct consequence from the more
general results in Section 6.2, where the equivalent result is shown for metrics with inertia
operator a general elliptic Pseudo-differential operator. Our strategy to obtain this result is,
following the seminal approach of Ebin—-Marsden, based on extending the metric and spray to
a Sobolev completion of the group of smooth diffeomorphisms, which will allow us to view
the geodesic equation as an ODE. The main obstacle to obtain this result is to prove the
smoothness of the conjugation of elliptic Pseudo-differential operators with diffeomorphisms of
Sobolev order. From this result our main theorem, local and global well-posedness of the EPDiff
equation, follows essentially using the same techniques as for integer order metrics. We will
first prove our results for Pseudo-Differential operators on M = R%, which will involve explicit
estimates for the n-th derivative and will consist the main technical part of the article. We will
then extend the result to Pseudo-differential operators acting on manifolds by carefully using
Whitney’s embedding theorem and thus reducing it to the Euclidean case.

Outline. In Section 2, we will introduce the basic notations and recall several standard results
on multiplication and composition in Sobolev spaces. The exact class of Pseudo-differential
operators, that we are studying in this article, is presented in Section 3. In Section 4, we will
study the smoothness of the conjugation of Pseudo-differential operators and in Section 5, we
will use this result to show that both the metric and the geodesic spray extend smoothly to
groups of Sobolev diffeomorphisms. Finally, in Section 6, the previously developed theory will
allow us to obtain our main results on local and global well-posedness of the EPDiff equations.
Appendix A contains technical estimates, that were necessary for the derivation of the results
in Section 4.

Acknowledgements. We would like to thank Philipp Harms, Peter W. Michor, Gerard Misi-
olek, Klas Modin and Stephen C. Preston for fruitful discussions during the preparation of this
manuscript.

2. NOTATIONS AND BACKGROUND MATERIAL

In this paper, we consider the group Diff** (M) of smooth diffeomorphisms of a closed manifold
M of dimension d which are isotopic to the identity. We equip this manifold with a Riemannian
metric g and let us denote by exp the Riemannian exponential map on M. Diff>*(M) can be
endowed with a Fréchet-Lie group structure modeled on the Fréchet vector space I'(T'M), the
space of smooth vector fields on M. A parametrization in a neighborhood of the identity is
given by the mapping:

(2.1) ¢: Uy C T(TM) — Vig C Diff® (M),



4 M. BAUER, M. BRUVERIS, E. CISMAS, J. ESCHER, AND B. KOLEV
defined as:

(2.2) X el(TM) = ((X),  ¢(X)(p) := exp,(X(p))-

The tangent space T,Diff> (M) can be identified with the space I'(¢*T'M) of smooth sections
above ¢:

T,Diff* (M) = {X, € C®°(M,TM); o X,(p) = ¢(p)},

where 7w : T'M — M is the canonical projection.
The Fréchet-Lie group Diff* (M) has the Lie algebra I'(T'M), the space of smooth vector
fields on M, with the Lie algebra bracket:

ady, v := —[u,v], u,v € T(TM),

the negative of the standard Lie bracket of vector fields. Since moreover M is compact, Diff® (M)
is a regular Fréchet Lie group in the sense of Milnor [45]. In particular, each element u of the
Lie algebra I'(T'M), corresponds to a one-parameter subgroup of Diff **(M).

The regular dual of I'(T'M) is identified with I'(T'M) via the pairing:

(m,u):/M(m‘u)du, m,u € I'(TM).

We will also be interested in the diffeomorphism group of R%. But, since difficulties arise due
to the non-compactness of R?, we cannot use the full group of smooth diffeomorphisms but need
to restrict our study to some subgroup with nice behaviour at infinity. We will set:

Diff groe (RY) := {id +u; ue HO(RLRY) and det(id + du) > o} ,
where H>(R? R?) denotes the space of R%-valued H*-functions on R i.e.,

H*RY,RY) := () HY(R,RY),
q>0

and where H?(R?% R%) denotes the (R%-valued) Sobolev space on RY, defined below.
Let § be the Fourier transform on R?, defined with the following normalization

F&) = G1(©) = [ e p(a) da

where £ is the independent variable in the frequency domain. With this convention, its inverse
& !is given by:

—1 ) = e2i7r<m,§> )
F o)) = [ (e de

For ¢ € R* the Sobolev H9-norm of a function f on R? is defined by

103 = (€12

2
2’

where
€] = (&8 + -+ €DV,
and
(€)== (L+ )2

The Sobolev spaces H9(R%,R) is defined as the closure of the space of compactly supported
functions, C2°(R?, R), relatively to this norm and the space H?(R%, R?) is the space of R%-valued
functions of which each component belongs to H9(R%, R).

Following [57, Sect. 7.2.1] we will now introduce the space H?(M,R), of functions of Sobolev

class H? on a closed d-dimensional Riemannian manifold (M, ¢g). Denote by B¢(x) the ball of
radius € with center z. We can choose a finite cover of M by balls B(z,) with e sufficiently
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small, such that normal coordinates are defined in the ball B.(x), and a partition of unity g4,
subordinated to this cover. Using this cover, we define the H%-norm of a function f on M via

£ Fraqarg) = Z [(af) o exp,, HZq(Rd)

—ZH OTF((0af) © exDy, |72 g0

Changing the cover or the partition of unity leads to equivalent norms, see [57, Theorem 7.2.3].
When ¢ is an integer, we get norms which are equivalent to the Sobolev norms treated in [27,
Chapter 2]. The norms depend on the choice of the Riemann metric g, but different choices of
metrics lead to again to equivalent norms. The dependence on the metric is worked out in detail
n [27]. For functions with values in a vector bundle we use a (local) trivialization and define
the norm in each coordinate as above. This leads (up to equivalence) to a well-defined H%-norm
for functions with values in a vector bundle.

2.1. Groups of diffeomorphisms of finite regularity. Diff 7 (R?) has a stronger structure
than just a Fréchet Lie group, it is the inverse limit of Hilbert manifolds which are themselves
topological groups (ILH-Lie groups following Omori [50]). In other words,

Diff g (RY) = () DIURY),
q>1+d/2

where the set DI(RY) is defined, for ¢ > 4 + 1, as follows:
DI(RY) = {1d tu; ue HI(RYRY) and det(id + du) > 0}

Note, that the condition det(id + du) > 0 is well-defined as for ¢ > 4 + 1 we have HY(R? R?) C
CHR?, R?), c.f. Lemma 2.2. The set D(R?) is a Hilbert manifold, modelled on H%(R%, R?).
Similarly, we can introduce the Hilbert space T'Y(T'M) of vector fields on M of class H?. For
q > 14 d/2, we define the set DI(M) of C! diffeomorphisms ¢ of M, isotopic to the identity,
and which are of class H?. DI(M) is a smooth Hilbert manifold, modelled on I'Y(T'M) and

Diff*(M) = (| DUM
q>1+d/2
The Hilbert manifolds D4(R%) and D9(M) are topological groups (see [37]). They are how-

ever not Hilbert Lie groups, because composition and inversion are continuous but not smooth
(see [37, Proposition 2.6]). For a more detailed treatment of these manifolds, we refer to [37].

Remark 2.1. Note, that the tangent bundle TD4(R?) is a trivial bundle
TDY(R?) = DI(R?Y) x HI(RY, RY),

because DI(R?) is an open subset of the Hilbert space H?(R%, R?). Beware, however, that unless
the manifold M is parallelizable, the tangent bundle of the Hilbert manifold D?(M ) is not trivial.

2.2. Sobolev embeddings, composition and multiplication theorems. In this section,
we will collect several results on composition and multiplication in Sobolev spaces that will be
used throughout this paper. We start by recalling the following Sobolev embedding lemma which
proof can be found in [37, Proposition 2.2] for R? and in [2] for a compact manifold.

Lemma 2.2. Let M be a closed manifold of dimension d, ¢ > d/2 a real number and k an
integer. Then,
(1) HIE(M,R?) is continuously embedded into C*(M,RY);
(2) HTF(RE RY) is continuously embedded into CE(R? RY), the space of all C*-functions
vanishing at infinity.

Next, we will recall the following result concerning the extension of pointwise multiplication
to a bounded bilinear mapping between Sobolev spaces.
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Lemma 2.3. Let X be either R? or a closed manifold M of dimension d. Let q¢ > d/2 and
0 < p < q then pointwise multiplication extends to a bounded bilinear mapping

HY(X,R) x H?(X,R) — HP(X,R).
More precisely, there exists C' > 0 such that

1 9llge < ClIf M ga 9l e
for all f € HY(X,R) and g € HP(X,R). In particular H1(X,R) is a multiplicative algebra, if
q>dj2.
Remark 2.4. For the proof of Lemma 2.3 in the case of R?, see [37, Lemma 2.3]. In the case of
a closed manifold M, it results from [37, Lemma 2.16] using a partition of unity.

Let J, denotes the Jacobian determinant of a diffeomorphism ¢ in D?(X), where X is either

R? or a closed manifold M of dimension d. From lemma 2.3, we deduce that the mapping
o Jy  DUX)— HTYX,R)
is smooth and we have moreover the following result, which is a reformulation of [37, Lemma
2.5].
Lemma 2.5. Let X be either R? or a closed manifold M of dimension d. Let ¢ > 1+ d/2 and
0<p<gq. GivenypecDIX) and f € HP(X,R), the function f/J, belongs to HP(X,R) and
the mapping
f

(gp,f)r—)J—, DI(X) x HP(X,R) - HY(X,R)
®

s smooth.

Finally, we recall the following result concerning the right action of D4(X) on HP(X,N),
where N is a manifold of dimension d’ (see [37, Lemma 2.7] and [37, Proposition 3.10]).

Lemma 2.6. Let X be either R? or a closed manifold M of dimension d and let N be a manifold
of dimension d'. Given any two real numbers p,q with ¢ > 1+ d/2 and ¢ > p > 0, the mapping

HP(X,N) xD!X) - HP(X,N), (u, ) = uop
s continuous. Moreover, the mapping
R, :ur—wuop
is locally bounded. More precisely, there exists a neighbourhood U of id in D1(X) and a constant
C > 0 such that
”Rtpuﬁ([{p,[{p) § C7
forall p e U.

3. PSEUDO-DIFFERENTIAL OPERATORS

3.1. Pseudo-differential operators on R?. Roughly speaking, a pseudo-differential operator
A, acting on scalar-valued functions on R? is a linear operator which can be written as

Aula) = [ eira(a, )i(6) de

where the function a(z,£) € C is called the symbol of the pseudo-differential operator A and
such operators will be denoted by Op(a) or a(x, D).

Remark 3.1. Note that a pseudo-differential operator A preserves real functions iff its symbol a
satisfies:

a(z,—¢&) = a(x,§), e R,

Of course, some regularity conditions are required on the symbol a to insure that the operator
is well-defined on some kind of function space. In this paper, we will restrict to the following
class of symbols.
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Definition 3.2. Given r € R, we will say that a € S"(R? x Ry) if a = a(z,£) is smooth on
R? x Ry, with values in My(C) and if

058?a(x, 5)) < Ca,6<§>r_la|,

for each a, 8 € N, where |a| := a1 + - -- + a4 and the constants Cq,5 do not depend on (z,§).
The class of pseudo-differential operators with symbol in 8" (R x R4) will be denoted by ¥"(R?).

Each operator A from this class is well-defined on the Schwartz space S(R?), of rapidly decreas-
ing functions and sends this space on itself. Moreover, by the L? boundedness theorem (see [51,
Chapter 2] for instance), A extends to a bounded operator from H9(R¢, R) to H?"(R% R), for
all ¢ > r. In particular, such an operator defines a linear and continuous operator

A: H®(RY R) — H®(R R).

The theory of pseudo-differential operators can be easily extended to R¥-valued functions. In
that case, the symbol a(x,§) is matrix-valued and belong to My (C). In that case, we define
similarly the class of symbols S"(R? x Ry, My (C)) and the class of operators ¥"(R? R¥). We
have, moreover, the following nice properties, concerning composition and commutators see [26,
Theorem 1.2.4].

Lemma 3.3. Let A € U™ (R? R¥) and B € U"2(RY, RF), then:

(1) Ao B e Uit (Rd RE),
(2) [A, B] € Ortrz—L(RI RF) | if their principal symbols a(x, &) and b(z,£) commute.

Remark 3.4. In particular taking for B the differential operator D; = B%i’ we get that
(A, D;] € U™ (R RF),

and taking for B the multiplication operator with some function f € C2°(R? R), we get that
(A, f] € ¥~ HRY, RF).

In order to prove the existence and smoothness of the spray on the extended Hilbert manifolds
D4(M), we will need an ellipticity condition on the inertia operator A. For our purpose, we will
adopt the following definition

Definition 3.5. A pseudo-differential operator
A =a(z,D) € U"(R% RY)
is called elliptic if its symbol a(z,¢) € GL(CY) and

—r/2
llatz. &)1 s (1+16P)
for all z,¢ € R,

Remark 3.6. An elliptic pseudo-differential operator in \IIT(]Rd,]Rd) induces a bounded isomor-
phism between H9(R?, RY) and HI~"(R?, R?) for all ¢ € R.

We summarize our considerations by introducing the following class of inertia operators which
will be denoted by £"(R?).

Definition 3.7. An operator A € L(H®(R? R%)) is in the class £"(R?) iff the following condi-
tions are satisfied:

(1) A= a(z, D) € U (R%, RY);

(2) A=a(x,D) is elliptic;

(3) Its symbol, a(z, ) is Hermitian and positive definite for all & € R
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3.2. Pseudo-differential operators on a vector bundle. We shall first recall the definition
of a pseudo-differential operator acting on functions defined on a closed orientable manifold M of
dimension d. We follow closely [36] (see also [26]) and start with the way we pullback operators.

Definition 3.8. Consider a chart (i, k) on M, with x : U — U (where U is an open set in R?),
then the pullback *P : C(U) — C*°(U) of a linear operator P : C2°(U) — C*(U) is defined
by:
(k*P)f:=P(forx YHor, feCWU).

Definition 3.9. A bounded linear operator A : C*°(M) — C*°(M) is a pseudo-differential
operator in the class W" (M) if for every local chart (U, ), with s : U — U C R?, there exists a
pseudo-differential operator Ay € W"(R?) such that if &, ¥ € C°(U) then:

PAVf = k™ (Au) f,
where p ;= ®or™!, 1 :=Voxr™! and f € C°(M).
Remark 3.10. This means that the local representative of the function ® AWV f is obtained ap-
plying the operator @Ay to the local representative of f:

(PAVf) o k™! (z) = pAup(for™")(z), z€U.
Consider now Ej;, Fy two complex vector bundles on M, of ranks d; and do. We denote by:
Oy By —UxCh, Wy Fy—UxC?,

the corresponding local trivialization over the same open set U4 C M. We can pullback vector-
valued functions, using (x¥)* : C®(U,C%) — C>®(U, Ey), defined as:

(3.1) () "u = (prao®y)'(uo k), weC®(U,CH),
and push-forward local sections, by:
(3.2) (xT)sv = pry oy (v o k1), ve C™®U, Ey).

In a similar manner, with the aforementioned scalar case, we will pullback linear operators
P : CX®(U,CM) — C>®(U,C*%) to obtain linear operators x*P : C®(U, Ey) — C®(U, Fy),
using;:

(Plo= () P(F)w),  veCEU, Ey).

Definition 3.11 (Pseudo-differential operators on complex vector bundles). We say that a
linear operator A : I'(Eys) — I'(Fyy) is a pseudo-differential operator of class W™ (M, Eny, Far) if
it satisfies the conditions from the scalar case for Ay with symbol in S™(R? x Ry, Mg, x4, (C)),
and the pullback operator defined above.

The tangent bundle T'M can be considered as a real subbundle of its complexification TM¢ :=
TM ® C. For the complex vector bundle TM¢ we pullback functions v € C*(U,C%) using
(xTM)*y := (pry oTk) "' (u o k) and push-forward with (x7™°),v := pry oTk®(v o k™), where
Tk¢ is the complexification of the tangent mapping Tx. By the way T M embeds in TM¢ one
has TK/C‘TM =Tk.

Thus one can pullback linear operators to obtain operators on C2°(U,TU). In order to define
a pseudo-differential operator on a real vector bundle we have to assure that it sends real vector-
valued functions to real vector-valued functions.

Definition 3.12 (Elliptic Pseudo-differential operators on T'M). We say that a linear operator
A:T(TM) — I'(T M) is a pseudo-differential operator of class W" (M, T M) if for every local chart
U, K), with k : U — U C R, there exists a pseudo-differential operator Ay with a Hermitian
symbol in S"(R? x R?, My(C)) and such that for every pair of real functions ®, ¥ € C>°(U) one
has:

PAVY = X" (pAyY)v, vel'(M).
If all Ay are elliptic, then we call the operator A elliptic and we write A € E"(M,TM).



EPDIFF EQUATION WITH PSEUDO-DIFFERENTIAL INERTIA OPERATOR 9

Remark 3.13. The properties of the local representatives Ay having Hermitian symbols and
being elliptic are preserved under a change of coordinates and thus this notion of elliptic
pseudo-differential operators on T'M is well-defined. Furthermore, an elliptic pseudo-differential
operator of class in E"(M,TM) induces a bounded isomorphism between H?(M,TM) and
HT™" (M, TM) for all g € R.

4. CONJUGATES OF PSEUDO-DIFFERENTIAL OPERATORS

In this part we will study the smoothness of conjugation for pseudo-differential operators. To
prove the local well-posedness of the EPDiff equation we will need this result in the context
of operators on vector bundles. We will however start by considering the problem in the more
simpler situation of operators acting on functions on R,

4.1. Conjugates of a pseudo-differential operator on R%. Let A be a continuous linear
operator from H>(R? R?) to itself and let

(4.1) Ay =Ry,0A0R,,
where R,v = vop and ¢ € Diff g (R?). Since Diff g (R?) is a Fréchet Lie group with Lie
algebra H>°(R%,R?), the mapping

(p,v) = Ayv,  Diff o (RY) x H®(RY,RY) — H> (R RY)
is smooth. It could be interesting to note here that related observations have been made in [1,
Proposition 1.3] and [43, Proposition 2.3]. Nevertheless, these considerations are useless for

our purpose, since we need a smoothness argument on Hilbert approximation manifolds. More
precisely, the aim of this section is to prove the following theorem.

Theorem 4.1. Let r > 1 and A = a(x, D) € ¥" (R4, RY) with a Hermitian symbol compactly
supported in x. Then the mapping

¢ — Ay = R, AR, D*(RY) — L(HY R, R?), H""(R?,RY))
is smooth for ¢ > 1+ d/2 and q > r.

To solve this problem, it was observed in [28] that the n-th partial (Gateaux) derivative
of (4.1), in the smooth category, was given by:

AL (v,601,...,00n) = RyAn R, (0,001, ..., 6pn),
where
A, = 0N A, € LT (H®(RY RY), H®(RY, RY))
is the (n + 1)-linear operator defined inductively by Ay = A and

(42) An+1(u0, ULy ,un+1) = vUn+1 (An(uo, Ulye ooy un))

n

- ZAn(uo,ul, s Vi Uk -+ Uy,
k=0

where V is the canonical derivative on R?. When d = 1, a nice formula for A,, was obtained
in [19]. The strategy of the proof is then the same as the one explained in [28, 5, 41], which
reduces the problem to show that each A, extends to a bounded (n + 1)-linear operator from
HI(R4 RY) to HT"(R? R?). More precisely, we have the following result, which will be stated
without proof as it has already been proven in [28, 5, 41].

Remark 4.2. In particular, for n = 1, we get

0pAy(v,00) = RS@AlR;l(U,&p), where  Aj(up,u1) := [V, 4] up.
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Such a formula is still true if (M, g) is a compact Riemannian manifold. In that case, the notation
dyv should be replaced by Vg,v, where the connection V defined on TDiff (M) is induced by the
connection V9 on M, see [31, 15, 8], and defined by

(Vo) (t,z) := vit(t,x)”('7m)’

where v(t) is a vector field on TDiff(M) defined along the curve ¢(t) on Diff(M). Fur-
thermore, in that case, one can naturally construct a connection V on the vector bundle
L(TDiff (M), TDiff (M)) such that:

(%Aso(t)) v = [Va,, Ay v-

Note, that in the notation of [8] there is no distinction between the two covariant derivatives V
and V.

Lemma 4.3 (Smoothness Lemma). Let
A H®(RY, RY) — H>®(RY,RY)
be a continuous linear operator. Given q > 1+ d/2 with ¢ > r, suppose that A extends to a
bounded linear operator from HI(R% R?) to HT"(R? R?). Then
¢ Ay =R,0Ao0R,1, DR — LHIRYRY), HT"(RY,RY))
is smooth, if and only if, each operator A, defined by (4.2), extends to a bounded (n + 1)-linear
operator in LT (H*(RY,RY), HI" (R, RY)).
Therefore, the proof of Theorem 4.1 reduces to prove the following result.

Proposition 4.4. Letr > 1, A = a(X, D) € U"(R?,R?) and A,, be the n-linear operator defined
inductively by (4.2). Then, each A, extends to a bounded multi-linear operator
A, € L (HI(RE, RY, HI (RY, RY))
forq>1+4+d/2 and g > r.
Before entering the details of the proof, it may be useful to rather think of A, as a n-linear
mapping
H>®(RYRY) x --- x H®(RY,RY) — L(H®(RY,RY), H*(RY, RY))
and write
Ap(ug,uty ... up) = Ap(ug, ... up)up.
The recurrence relation (4.2) rewrites then accordingly as:

(4.3)  Rec(An)(u1,. - tuns1) := [V, Anur, ..o up)]

n

- E Ap(uts .o s Vi Uk, - -, Up).
k=1

Remark 4.5. When d = 1 and A commutes with D := d/dz, the following nice formula for A,
was obtained in [19]:

Ap(uy, ... up) = [u, [ug, [- - - [un, D" L A]---]]] D, n>1.

It may also be worth to recall the following general rules for commutators

(4.4) [AB,C] = A[B,C|+[A,C|B (Leibniz identity),
and
(4.5) [A,[B,C]] + [B,[C,A]| +[C,[A,B]] =0 (Jacobi identity).

Finally, we will introduce the following notations.
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(1) Given fi,..., f, € H®(R% R), the multiplication operator by fi--- f,, will be denoted

by
My (f1s- -y fu)-
(2) Given a linear operator P on H>(R? R?) and a multi-index
a:=(ag,...,aq),
we define
adp P := ad}y) adfy, ---adp! P
where

ady P:=[D;,[D;j---[D;,P|--], j=1.4d.

~
a; times

(3) Given a linear operator P on H>®(R% R%) and f1,..., fun € H®(R? R), we define
Sp,p(f1, [y [n) = [f1s Sy [, Pl ]
for n > 1 and Sop.p := P.

Remark 4.6. It should be observed that M, and S, p are n-linear and totally symmetric in
(fi,--., fn). For S, p, this is due to the Jacobi identity (4.5). Besides, any expression like
adp, adp,, ---adp, P can be rewritten as adf P for some multi-index «, by virtue of the
Jacobi identity.

Since the canonical connection on R? writes as
d -
Vu = Z UJ Dj,
=1
where D; := 0/ 027, we shall also introduce the following recurrence relation for linear operators
P, (f1, f2y..., fn) on H“(Rd,Rd), depending linearly on f1,..., f, in H“(Rd,R):
(4.6) Rec!(Po)(f1,- -, fas1) = [far1Djs Pa(frs- -, f)]

- an(fla"'>fn+18jfk7'"afn)'
k=1

Lemma 4.7. For any n >0 and P € L(H®(RY,RY), H>®(R?,R?)), we have

Rec/ (Sn,p)(f1- - s fat1) = Mi(fuy1) © Sup, ) (f15 -5 fn)
+ Sni1,pD; (f15 -5 for1) + S p(f1, - fn) 0 M1(0) frt1)-

Proof. The proof is based on the following two relations

(4.7)  Spy1,pp;(f15- -5 fur1) = Snr1,p(f15- -+, foy1) 0 D
n+1

- ZSn,P(fl)"'ufka'”7fn+1) OMl(a]fk)
k=1
and

(48) [-Djasn,P(fla v 7fn)] = Sn,[Dj,P](fh' . afn)

n

+ZSn,P(f17---aajfk7""f”)’

k=1
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which proofs are direct by induction, using the Leibniz identity for the first one and the Jacobi
identity for the second one. We have therefore

Recj(sn,P)(flv .. 'afnJrl) = [fn+1Dj7Sn,P(f17 .. 7fn)]
- ZSn,P(flv .. ')fn—i-lajfk) .. 'afn)a
k=1

which can be rewritten, using the Leibniz identity, as

My(fnt1) 0 [Dj, Sn.p(fi,- -5 fr)l + [fas1, S p(f1s -5 fu)] 0 Dj

_ ZMI(fTH_l) o mp(fl,. . .,8jfk,. . ,fn)

k=1
- ZSn,P(flv . '7fk7' . 'afnJrl) © Ml(ajfk)
k=1

Now, using (4.7) and (4.8), we obtain

Mi(frt1) © Sup,,p)(frs- s fn) + Snt1,pD; (f1s- -5 fas1)
+ Sn,P(fl; s 7fn) © Ml(ajfn+1)7
which achieves the proof. (I

Corollary 4.8. Let n > 1. Then, Ay(uq,...,uy) is a sum of terms of the following two types,

where f; stands for some component u];’(z) of Us(iy and o is a permutation of {1,...,n}. The

first type (Type 1) writes

(4.9) Pr(fiy o fn) == Mp(f1,. .., fn) 0ad® P,
where P € U (R% RY). The second type (Type II) writes

(4.10)  P3(fis-- - fn) = Moy (f1s s fin) © Sina P (frra 15+ s frna+ma)
o Mm;; (8p1 fm1+m2+l7 e 7apm3 fm1+m2+m3) o D’L'a
where P € W+m2—L (R RY) | and my + mg + ms3 = n.

Proof. We will prove the Lemma by induction on n > 1. For n = 1, we get

d d
Ay(w) = Y [0y, A = Y (D5, 4] + ], A)D;)
j=1 j=1
so we are done. Suppose now that the result holds for some n > 1, so that A, is a sum of
terms of type I and II. Then A, ;1 = Rec(A,) is a sum of terms Rec/(P}) and Rec’(P2) for
j=1,...,d. Observe, moreover, that if n = p + ¢ and

Po(f1,- o5 fn) = Qp(f1,- -5 fo) o Ry(fps1s- -5 fn),
then, due to the Leibniz rule (4.4), we have
(4.11) Rec/(Qp 0 Ry) = Rec’ (Qp) © Ry + Qp o Rec! (Ry).
Now, a direct computation shows that Rec/ (M,,) = 0 for all n > 1. We get thus

Rec (P (f1,- -+ fax1) = Myu(f1,- .., fn) o Rec? (ad$y P)(fri1)-
But
Rec’ (ady P)(fu+1) = fot1[Dj, add Pl + [fat1,add P)D;,
and hence
Recj(Pﬁ)(fh coisfn1) = M1 (fi, ooy fas1) © ad(Df11,...,Oéj+1,...,ad) P
+ Mn(f1, - fn) © S1,aa p(fat1) 0 Dy
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is a sum of operators of type I (4.9) and II (4.10) but of order n + 1, because
P e U"(RYLRY) — ad P € U"(RY,RY),
by Lemma 3.3. Next, Rec’ (P2)(f1,..., fat1) is the sum of two terms. The first one
Mm1(f17 oo 7fm1) ° Recj(sz,P)(fml-f—la s 7fm1+m27 fn-‘rl)

0 My (Opy frmy+ma+1s - - pm3 fmitmatms) © D;

can be rewritten, due to Lemma 4.7, as

Mmﬁ-l(flv .- wfmufn-i-l) ° sz,[D P] (fmﬁ-la s afm1+M2)

o My, (8131 Jmitmatt, .- pm3 Jmi+matms) © Dj
+ My (f15- -5 fmg) © Smo1,PD; (fmy+15 - -+ frn+mas frt1)
° Mm3 (8p1fm1+m2+17 - pm5 fm1+m2+m3) o D
+MM1(f1a--~afm1)OSm2, (frr 15+ fmatma)
0 Ming+1(Opy frr+ma+1, - - - pmsfm1+m2+msva fn+1) 0 Ds.

The second one

Mml(fla <o :fml) © m27P(fm1+17 B '7fm1+m2)

© Mms (apl fm1+m2+1v e pm3 fm1+m2+m3) o Rec’ (Di)(fnJrl)a
recasts as
- Mml(fh SR fml) © mz,P(me—l, cee 7fm1+m2)
© Mm3+1(6p1fm1+m2+17 .- pm3 fm1+mz+m3a 0; fn+1) Dja
since

Rec! (D;)(fr+1) = —M1(0i fas1) © D;.
In both cases, these expressions are sums of operators of type I and II but of order n+ 1, because
Pcyrtm- R RY) — [D;, P] € U727 (RY RY),
and
P c yrtm-l(Rd Ry — pPD; € Urm2(RY RY),
by Lemma 3.3. This achieves the proof. O
Proof of Proposition 4.4. We have to show that each operator A,, extends to a bounded operator
in
LM(HY(RY,RY), L(H (R, RT), HI™"(RT, RY))).
By corollary 4.8, this reduces to show that each operator of type I (4.9) or II (4.10) extends to
a bounded operator in

L"(HYRY R), L(HY(RY,RY), HI"(RY, RY))).

Let fi,...,fn € CX(RYER) and w € H®(R?,RY). For an operator of type I, we get by
Lemma 2.3

n

I #
k=1 Ha
S WAl a1l o - 1wl ga s

since ad® P € ¥"(R?, R?) and H9(R% R) is a multiplicative algebra (¢ > 1 4 d/2). Consider
now an operator of type II (4.10) and set

[Pa(fise s fa)wl| goms S Nlad® Pwl| gra-r

W= MmB (azn fm1+m2+1’ " Pm3 fm1+m2+m3)D w,
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so that
m3
Wl gra—1 < (I]:Hfm1+ﬂm+k‘HQ>'|hUHHq7
k=1

because ¢ > 1+ d/2 and H9~!'(R? R) is a multiplicative algebra. We get thus, by Lemma 2.3
and Theorem A.1

m1
HPT%(fl’ s 7f")wHHq77 5 (H ||fk:HH11> ’ ”SmQ,P(anJrla .- -7fm1+m2)W||Hq—r

m1 +ma
WMW>MWMN

(1
(ﬁﬂMw)WMm,
(R?

which achieves the proof, since C2° ) is dense in H(R? R). O
4.2. Conjugates of a pseudo-differential operator acting on functions. In this part, we
alm to use the previously developed theory to prove the following theorem concerning the con-

jugation of a pseudo-differential operator A acting on functions defined on a compact manifold
M, by a diffeomorphism of M.

Theorem 4.9. Let A be a pseudo-differential operator of class W" (M) with r > 1. Then the
map

DYM) — L(HY(M),HT""(M)), ¢— Ay
is smooth for ¢ >r and ¢ > d/2 + 1.

To prove this result we pursue the following strategy. We will use Whitney’s embedding theo-
rem to construct an embedding ¢ : M — R% for dy large enough. We will use this embedding
to extend the pseudo-differential operator and the involved functions to the embedding space
R% and thus reduce the result to the situation of the previous section. Our construction will
be based on extending all local representatives to pseudo-differential operators on R%. In the
second step, we will then glue these operators together to obtain a pseudo-differential operator
on R% which is an extension of our operator on M. Here, by extension, we mean an operator
that satisfies an equation similar to (4.12) below. Therefore, we will consider first the case where
RY c R% | with d < dyp and R? is embedded in R% as the subspace R? x {0}.

Lemma 4.10. Let A be a pseudo-differential operator of class W"(RY) with symbol a. Then,
there exists a pseudo-differential operator B of class W™ (R%) such that:

(4.12) igaB = Alga,
where tga : R — RY s the canonical embedding.

Proof. Denote the coordinates in R% by x = (z2/,2"”) € R x R0~ Let a(z’,£') be the symbol
of A and define the symbol

b(z, &) =b(a, 2", ¢, ") == ala',{).

It is clear that b € S"(R% x Ry,). Let B = Op(b).
To verify that 1, B = Ay, we start with the identity:

o —

fCa7)() = /IR L CTEE e ag
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and calculate:

B = [ o, € 7€) de
:/ e27rim’-£/a<x/7£/)/ 6271-1'1”-5”]?(5/76//) df” dfl
Rd

Rdo—d
- /R 25 (! &) (-, a7 (€) de’

= A(f(~a") ().
We see thus that

(tgaBf) (') = (Bf) (2',0) = A(f(-,0)) (') = (Agaf) ('),
which achieves the proof. O

In the following theorem, we prove the analogue of the above lemma for the case of a compact
manifold M.

Theorem 4.11. Let M be a compact submanifold of R® and A a pseudo-differential operator
on M of class W"(M). There exists a pseudo-differential operator B of class W™ (R%), with
compactly supported symbol, in the x-variable, such that

LB = Auy,
where vy : M — R% s the canonical embedding.

Proof. By the 2-cluster property [34], we can find a partition of unity {@; } =17, associated with
a cover of M, and a system of coordinate mappings {; : U; — U/},_y; such that every two
functions @), @, have their support in some U], which will be denoted here by Uj, . The sets
Uj,, may be identical for some different pairs. Now decompose the operator A as:
Jo
A=) AP, |
I,m=1

which is equivalent with:

Jo
A= Z Hgm*(SOEAlm(p;n) )
ij=1
where Aj,, € U"(R?) exist according to Definition 3.9. Because M is an embedded submanifold
there exist {s; : Uy — U;},_77 on R% such that &} = x;|pr and U = U; N M. Without loss of
generality, we can assume that the partition of unity {<I>; } =TTy is constructed by restricting a
portion of unity of the ambient space R% to the embedded manifold M. Thus we can extend
every <I>;~ trivially outside M to ®; and define the operator:
Jo
B = Z Hlm*(@lBlmQOm) ,

I,m=1
where By, is obtained according to Lemma 4.10, and therefore
L[EdBlm = AlmL[Ecb

Moreover, this construction defines a pseudo-differential operator in the right class and B is a
sum of pseudo-differential operators with x-compactly supported symbols. Further we make use
of the identities tpq(0f) = @’Rd%df, and 4, f o k7! = Lhd [f o m_l], when supp f C U and
k: U — V is a diffeomorphism, in order to obtain:

Ui (Bf) = A(tisf), [ € CERY),

since:
alp-for = yfor
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when f € C°(R%). O

Remark 4.12. Here ¢}, denotes the trace operator, which is defined for continuous functions by
restriction of the function to the submanifolds. Due to the Sobolev embedding theorem and
our assumptions on ¢p, we always work with continuous functions and thus this operator is
well-defined and extends as a bounded operator to

vy HO(R%) — HI(M),
where go = ¢+ (do — d)/2.

It remains to extend the involved functions and diffeomorphisms. Therefore we will make use
of the following extension operator, whose construction can be found in [33, Theorem 4.10].

Lemma 4.13. Let M C R% be a compact submanifold of dimension d. There exists a continuous
linear map

E:C®(M) = C®(R%),
satisfying 1y, o E = idgeo(ar), such that for all ¢ > 0 and qo = q + (do — d)/2, E extends as a
bounded operator to

E: HY(M) — H®(R%Y).

Corollary 4.14. Given ¢ > d/2+1 and qo = q+ (do — d)/2, there exists U C DI(M), an open
neighborhood of the identity such that the map
E:U = DP(RY)  E() = E(tpr 0@ — tar) + idgay ,
is well-defined, smooth and satisfies €(idpr) = idga, as well as
tyo&(p)=E(p)owy =tapop.

Proof. We consider DY(M) as a subset of H?(M,R%) and apply the extension operator E
component-wise. The map &£ is well-defined and continuous into H%(R% R%) and satisfies
£(idps) = idgay. Because D% (R%) is open in H%(R% R%), we can find a small neighborhood
U of idy; such that € maps U into D% (R%). The required identity for £ follows from properties
of E as follows,

E(p)ounr = E(tpr o —tar) o tar + idgag © tar
=ilpoY—Lyt iy =LMoo, O

Lemma 4.15. Let A be a pseudo-differential operator of class ¥" (M) and B a pseudo-differential
operator of Hérmander’s class W' (R%), such that 1}, B = A t},;. Let & : U — D®(RYD) be as
above. Then for each ¢ € U,

A@ = Lth(@)E.

Proof. We will use the following identities
iy Re o) = Rotars i Repy-1 = Rp-1t)y -
To check the first identity, take f € H%(R%). Then
Re)f = fol(p)ow = fowmop =Ryt f.

The second identity follows from the first one by applying R,-1 from the left and Rg(,)-1 from
the right. The lemma now follows from

teBe) B =t Re(p) BRe(p) 1 B
— Rty BRe(p) 1 E
= R,Atp Ry E
= R,AR, 1 B = Ay,
since 13, o B = idga(ar)- O

Proof of Theorem 4.9. Now the proof of Theorem 4.9 follows directly from Theorem 4.1 and
Lemma 4.15 ]
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4.3. Conjugates of a pseudo-differential operator on a vector bundle. In the previous
section, we have shown that for pseudo-differential operators acting on functions conjugation is
smooth. By allowing matrix valued symbols this result generalizes directly to pseudo-differential
operators acting on trivial bundles, i.e., the map

DI(M) — LHY(M,R?), HT™"(M,R?))
@ Ag.
is smooth. For a pseudo-differential operator acting on mappings with values in a general vector

bundle F over a compact manifold it is not straightforward to define the analogous statement.
Therefore, we first introduce spaces of H® sections over D?(M), see also [53]:

Hpe (M, TM) = {v e H*(M,TM); such that rov =¢ € DI(M)}.

This allows us to consider the conjugation of an operator A acting on functions with values
in the vector bundle T'M:

s {Dq Ny (H%q (M, TM), HS," (M, TM))
o= Ay

We have the following result concerning the smoothness of A.

Theorem 4.16. Let A be a pseudo-differential operator of class V" (M, TM) with r > 1. Then

A is a smooth section of the vector bundle L <H%Q(M, TM),H}L," (M, TM)) , for any q > g +1
with ¢ —r > 0.

Proof. Note first the following general observation: given two vector bundles F and F' over a
manifold M, we have an isomorphism between sections of L(F, F') and bundle mappings between
E and F. To prove this Lemma we will embed the manifold M into R% which will allow us to
use the result from Section 4.2 for pseudo-differential operators acting on vector valued functions.
We can then choose a vector bundle NM over M such that TM @& NM = TR%|,,;. Extend the
operator A to an operator B acting on smooth sections of the trivial vector bundle TR |y;:
T(TR™|5s) — D(TR™|5)
. (v Bv) = (ADO)(v) Buy) := Av; DO

where © associates to every vy € I'(N M) the zero section 6 € T'(NM).

It is easy to see that B is also a pseudo-differential operator of class U"(TR%|). Consider
an open set U on M to which both vector bundles TM, NM locally trivialize. Let ®y :
NU — U x R%~? be a trivialization of NM, and x : U — U, a coordinate mapping, then
Uy : TRP |y — U x R% is a trivialization of TR |y;:

Uy (v1(z) @ ve(z)) := (x, Tpr(vi(z)) & Py(x)(v2(x))), = €U.
Similar to (3.1) and (3.2) the push-forward and the pullback can be defined:

X (w1 ®ug) = (XTM)* (u1) @ (XNM)* (u2)

Xe(v1 @ v2) = (X)), (v1) ® (), (v2)
We will use them to pullback operators like in Definition 3.11. For two arbitrary functions &,
U in C°(U), we get the identity

PBY = x* (‘P (Ay @ Oy) 7/1> )
and thus B € U"(TR%|y). Associated with B we have the induced mapping:

5. D=L (H%q (M, TRdOIM) ,Hp," (M, TRdo!M))
p = By

(4.13)
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Now, let us introduce the mappings I and II, defined by
1: HL, (M, TM) — Hb, (M, TR®|y), I(v):=Tiow.
where T is the tangent map of the embedding ¢ : M — R% and
IT: HE," (M, TR |5) — HL," (M, TM), I(v):=pouv,

where p : TR% s — T'M is the projection onto the first factor of the Whitney sum TM & N M.
The smoothness of the mapping B follows from Theorem 4.9. The smoothness of I and II is
a consequence of Lemma A.5 in [8]. Since the identities

Ilvop ) =Mw)op ! and M(woyp)= (Mw)oyp
hold for all v € H, (M, TM), w € H¥"(M,TR%|,), and ¢ € DI(M) we have
1,BI, = A.

Thus, altogether we have proven the smoothness of the section A. [l

5. SMOOTHNESS OF THE METRIC AND THE SPRAY ON D?(M)

In this Section we will study the smoothness of the extended metric and spray on the Hilbert
manifold DI(M).

5.1. Smoothness of the extended metric. Let us first recall that a Riemannian metric G
on DY(M) is a smooth, symmetric, positive definite, covariant 2-tensor field on D4(M), i.e., for
each ¢ we have a symmetric, positive definite, bounded, bilinear form G, on T,,;D4(M) and, in
any local chart U, the mapping

(5.1) @+ Gy, U — L3, (E,R)

is smooth. Here E is a local trivialization of the tangent bundle of D?(M) over U. We can then
also consider the bounded linear operator

(5.2) Gy : T,DY(M) — T;DI(M),

called the flat map, which is defined by Gy, (v) := Gy(v,-). The metric is called a strong Rie-
mannian metric if G, is a topological linear isomorphism for every ¢ € DI(M), whereas it is
called a weak Riemannian metric if it is only injective for some ¢ € DI(M).

Theorem 5.1. Let A be a L?-symmetric, positive definite pseudo-differential operator of class
U2(M,TM) where s > 3 and let ¢ > 3 + 1.

(1) If g > 2s, then, the right-invariant, weak Riemannian metric
Gop(v1,v2) = / (Apvr - v2) ™ dp, Yoy, ve € T, Diff (M)
M

defined on Diff™® (M), extends to a smooth, weak Riemannian metric on the Banach
manifold DI(M).

(2) If g = s and A = B?, where B is a L?-symmetric, positive definite pseudo-differential
operator of class V*(M,TM), then, the right-invariant, weak Riemannian metric defined
on Diff > (M) extends to a smooth, strong Riemannian metric on the Banach manifold

DI(M).

Remark 5.2. The inertia operator of the fractional order Sobolev metric A = (1 + A)® satisfies
the assumptions of the above theorem for s > 1/2.

We will now give the proof of Theorem 5.1.
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Proof of Theorem 5.1. Let r = 2s > 1. To prove that G extends to a smooth Riemannian
metric on DY(M) it remains to show that G depends smoothly on the foot point ¢. Using the

assumptions of item (1) and Theorem 4.16 it follows that the mapping
53 TDU(M) Xpagar) TDUM) — H"(M,R)
3) (v,w) = Ay(v) - w.

is smooth. Here we used that
(5.4) (v,w) = v-w, HT™"(M, TM) x HI(M,TM) — H""(M,R)

is smooth for ¢ > d/2+1 and g > r. Using that the Radon—Nikodym derivative % € HT (M)

— since ¢ € DY(M) the result follows by the Sobolev multiplication Lemma 2.3.
To prove item (2) we rewrite the metric as

Gop(v1,v2) = / (Agvr - v2) *dp
M

:/ ((By)?v1 - v2) @*duz/ (Byu1 - Byva) ¢*dp.
M M

Using that
(5.5) (v,w) —v-w,  L*(M,TM)x L*(M,TM) — L*(M,R)
is smooth, the smoothness of the metric follows similar as for item (1). O

5.2. Smoothness of the extended spray. We will now prove smoothness of the extended
spray on TDY(M), when the inertia operator A is in the class £25(M,TM), as defined in 3.7.

Theorem 5.3. Let s > % and g > 1+d/2, with ¢ > 2s. Let A be a pseudo-differential operator
of class £2(M,TM). Then the geodesic spray of the estended metric (1.1) on DI(M) is a
smooth vector field on TDI(M).

Proof. Let r = 2s > 1. The proof below is a modified version of the arguments used in [5].
The derivation of the spray in the case of a compact manifold was detailed in [41, Section 3.1],
see also [47]. When D?(M) is not parallelizable, a few explanations are required first. In that
case, we need to introduce first an auxiliary connection on TDiff (M), which is induced by the
Levi-Civita connection V9 on M and was first considered in [31] and then in [15] (see also [48,
Section 3]). We shall denote this covariant derivative by V. The remarkable observation is that
if ©(t) is a path on Diff (M) and v(t) is a vector field on Diff(M) defined along the path ¢(t),

we have

(56) (ﬁﬂtv)(ta ZL‘) = Vit(t,az)v(.’ l‘)
Moreover, one can recast the Euler-Arnold equation (1.3) in the form
(57) ﬁaﬁb = Skp((p) = RQD oSo ch_l (90)7
where

S(u)= A1 {[A, Vi]u — (Vu) Au — (divu)Au}, u € Vect(M).
Note, that this formula requires the invertibility of the operator A, which is guaranteed due
to the ellipticity and positivity assumptions on the class of operators. Let us now identify the
subbundle of 2-velocities
T*DU(M) = {¢ € TTDUM) : 7rum(€) = Trn(€)}

with the Whitney sum TDY(M) & TDI(M) via (¢, ¢, ) = (¢, Vi), as in [48]. Equation (5.7)
corresponds under this identification to the spray equation and the geodesic spray can be now
interpreted as a bundle map

v— (v,S,(v)),  TDUM) — TDUM) & TDI(M).
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In this way we can argue, in an elegant manner, the smoothness of the extended spray by
investigating the three summands in S separately. The smoothness of the bundle map
Aiv— Ay(v),  Hb (M, TM) — HL"(M,TM).
for g > % + 1 and s > r follows from Theorem 4.16. The smoothness of
A Vo AN ), HE(M,TM) — TDY(M)

follows from the same arguments as in [5]. The smoothness of the mappings

v QE(v) = (Rga o Q%o Rw_l) (v), k=23
where
Q*(u) := (Vu)'Au, and Q3*(u) := (divu)Au
when u € Vect?(M), follows from the same line of reasoning as in [5, 41] or [23]. It remains
to show the smoothness of v — Q}O(U), where Q'(u) := [V, AJu. Therefore, we note that the

covariant derivative V extends to a smooth covariant derivative V on the vector bundle

‘C(H’gq(M)’ H%;(M)%
see [8]. This allows us to identify the term Q; as the first derivative of A since we have
(5.8) (Vod)v =V, (Av) — A(Vv) = QL(v).

Thus the smoothness of Q}p (v) follows from the smoothness of A, which concludes the proof. O

Remark 5.4. Note, that for strong Riemannian metrics the smoothness of the spray follows
automatically, i.e., for metrics that satisfy the assumptions of item (2) in Theorem 5.1, we
obtain the smoothness of the spray on D?(M) for ¢ = s. We will later use this to obtain a global
existence result.

6. LOCAL AND GLOBAL WELL-POSEDNESS OF THE EPDIFF EQUATION

In this section we will prove our main theorem concerning local and global well-posedness
properties of the geodesic equation.

6.1. Local and global well-posedness in the Sobolev category. We will first formulate
the result in the Sobolev category and will later see, that many of the properties continue to
hold in the smooth category.

Theorem 6.1. Let s > % and ¢ > 14 d/2 with ¢ > 2s. Let A be a pseudo-differential operator
in the class £25(M,TM), defined on the tangent bundle TM of a compact manifold M and let
G be the right invariant metric induced by A. We have:

(1) The geodesic equations of the metric G on DI(M) are locally well-posed, i.e., given any
vo € TDY(M), there exists a unique non-extendable geodesic
veC®(J, TDI(M))

defined on some open interval J, which contains 0 and such that v(0) = vy.
(2) The corresponding Euler-Arnold equation has, for any initial data ug € Vect?(M), a
unique non-extendable smooth solution

u € C°(J, Vectd(M)) N CY(J, Vect?™ L (M)
defined on J.

Proof. (1) follows directly from the Picard Lindeldf theorem (or Cauchy-Lipschitz theorem) on
Banach manifolds, using that the geodesic spray is a smooth vector field on TDY(M) as shown
in Theorem 5.3.

To prove (2), let ug € Vect?(M). Then by (1), there exists a curve

v € C®(J, TDY(M))
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defined on some maximal time interval J which contains 0 and such that v(0) = ug. Consider
now the Eulerian velocity

u(t) = v(t) o p(t)™"
where 7 : TDY(M) — D?(M) is the canonical projection and ¢(t) = w(v(t)). Note that

u € CO(J, Vectd(M)),
because the mapping

(p,0) s vop,  DIM) x TDUM) — TDI(M)
and the inversion
pr ™, DUM)— DUM)
are continuous, see [37, Theorem 1.2]. Moreover, the mappings
(p,v) »vop,  DITYM)x TDUM) — TDI (M)
and
el DUM) - DTHM)

are O, see [37, Theorem 1.2]. O

The right invariance of the metric even allows us to obtain global well-posedness of the geodesic
equation and completeness of the corresponding metric space.

Theorem 6.2. Let A= B?, where B is of class E5(M,TM) with s > 1+d/2. Then:

(1) The geodesic equations on D*(M) and the corresponding Fuler-Arnold equation are glob-
ally well-posed.

(2) The space D*(M) equipped with the geodesic distance of the metric G is a complete metric
space.

(3) Any two elements in the connected component of the identity in D*(M) can be connected
by a minimizing geodesic.

Proof. This result follows directly from [16, Corollary 7.6], using that the metric extends to a
smooth, strong, right-invariant metric by Theorem 5.1. ]

In the following we will show that some of the well-posedness and completeness statements
continue to hold in the smooth category.

6.2. Local and global well-posedness in the smooth category. In their seminal article [24]
Ebin and Marsden made the remarkable observation that, due to the right-invariance of the
metric, the maximal interval of existence is independent of the parameter ¢q. This enables us
to avoid Nash—Moser type schemes to prove local existence of smooth geodesics in the smooth
category.

Corollary 6.3. Let s > % and A be a pseudo-differential operator in the class E*(M,TM),
defined on the tangent bundle TM of a compact manifold M and let G be the right invariant
metric induced by A. Then:

(1) The geodesic equations of the metric G on Diff>* (M) are locally well-posed, i.e., given
any vg € TDIff> (M), there exists a unique non-extendable geodesic

v € C™(J, TDiff**(M))

defined on some maximal open time interval J, which contains 0;
(2) The corresponding Euler-Arnold equation has, for any initial data ug € Vect(M), a
unique non-extendable smooth solution

u € C*(J,Vect(M))
defined on J.
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Proof. (1) follows from point (1) of Theorem 6.1, and the invariance of the spray; this is known
as the no-loss-no-gain lemma [24, Theorem 12.1].
In the smooth category, the mappings

(p,v) = vop, Diff>* (M) x TDiff (M) — TDiff (M)
and
o @t Diff*(M) — Diff (M)
are smooth, see [37], which proves (2). O
It is clear, that one can never hope for metric completeness of a Sobolev type metric on the

space of smooth diffeomorphisms. However, the geodesic completeness results of the previous
section still hold in the smooth category.

Corollary 6.4. Let A = B?, where B is of class £5(M,TM) with s > %—i— 1. Then, the geodesic
equations on Diff> (M) and the corresponding Euler-Arnold equation are globally well-posed.

Proof. To prove this result we need a slightly improved version of the no-loss-no-gain result.
The reason is that using our results from Theorem 6.1, we only know the smoothness of the
geodesic spray on TD?(M) for ¢ = s and for g > 2s, i.e., not for g € (s,2s). To conclude the
global existence using [24, Theorem 12.1] in the smooth category one needs the smoothness of
the spray for all ¢ > s (or at least for all s + k with k£ € N). However, it has been shown in [14,
Corollary 4.5.], that the smoothness and D" (M )-equivariance of the spray on D*(M) already
imply the smoothness of the spray on TD*(M) for all « = s+ k with k£ € N and thus the result
follows. O

Remark 6.5. Note that the results of this Section apply in particular to the H*-metric for s > 1/2
(and s > 1+ d/2 for global well-posedness, respectively).

APPENDIX A. A SOBOLEV BOUNDEDNESS THEOREM
The goal of this appendix is to prove the following theorem.

Theorem A.l. Let P € Wt~ 1 with a Hermitian symbol compactly supported in x. Given
w € CX(RLRY) and f1,. .., fn € C(RLR), we have:

1Sn,p(f1, - fr) Wl gra—r S 1l o - I fnll o 1wl a1
forq>14d/2 and r < q, where:
Sn,P(flanv"'vfn) = [fla[fQ"' [fnaP] H

The proof we present here is inspired from [28, 5] which was given for a Fourier multiplier
but requires a trick for a pseudo-differential operator which is used to prove the L? boundedness
theorem for an operator in WO (see [51, Part II, Section 2.4]). Because p(z,&) is compactly
supported in z, we can use the Fourier transform of p(x, &) with respect to x :

PONE) = / 2N (g, €) da,
Rd
which allows to rewrite P as
(A1) (Pu)@) = [ N GO, Dyw) (@)

where p(\, D) is a Fourier multiplier with symbol p(\, ). Before entering the details of the
proof of Theorem A.1, we will establish the following lemma.

Lemma A.2. Let P € V" with a Hermitian symbol p(x,§) compactly supported in x and let
fiy ooy fn € CF(RLR), then for each n > 1 we have

(A.2) (Snp(frs s F)w) () = /R TN (P, () ()
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where

SEO© = [ A ) B0 G dn

dy is the Lebesque measure on the subspace &+ - -+ &, = € of (R and

PnXCos€nre &)= Y (DY | NG+ g

JCA{1,...,n} jed

Proof. The proof is achieved by induction on n. For n = 1, using (A.1), we get

1. Pluta) = [ e (PO)w) (@) ax

where
Pi(A) = [f1,p(A, D)].
Therefore, (A.2) is true for n = 1 with

ﬁl()V 501 §1) = ﬁ(>¥ 60) - ﬁ()V 60 + 61)
Suppose now that (A.2) is true for some n > 1. Using the fact that
Spt1,p(f1s- s fut1) = [fut1, Snp(f1s- -5 )l

we get
(Snt1,p(f15- -5 fas)w) (@) = /R , TN ([, Pa(W]w) () dX.

But, by the coarea formula and the recurrence hypothesis, we have

S PO = [ flE) sl

X Eor- - 6n) = BulX o + G, €1, ) [10(60) dp
Thus, it remains to show that
ﬁn(A7 507 <o aén) - ﬁn(A, §0 + fn—i-la 517 cee 75”) = ﬁn-i-l()‘v 507 s a€n+1)'

To do this, take the formula for p,+1 and split the sum as follows

PN Cosen&n) = D (1>Jﬁ(x,£o+zgj>
}

JC{1,..n jeJ

= > OV [N+ En D) 4,

JC{1,...n} jeJ

which is equal to
ﬁn()\vg()a ERE 75”) _ﬁn()\vgo + gn-‘rla{lv v 7571)7
and achieves the proof. O

Next, we will provide an estimate on p,.

Lemma A.3. Suppose that p € S™T" (R x RY, My(C)) is compactly supported in = and that
r > 1, then the following estimate holds:

(A3)  [Pn(A 0s €15 &n)

n r—1
<Cn+RM T Do <§o+2§j> :
}

j=1 JC{1,..n jeJ

for all N > 0, where Cp y > 0 depends only on p and N.
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Proof. Fix &,...,& € R Let Ky = {&} and we define for k = 1,...,n the set K} to be
the convex hull of the sets Ky and K1 + &,41-%. Then K is the convex hull of the points
&+ Zjejfﬁ where J is any subset of {n+1—k,...,n}. Let Fy be the sequence of mappings
defined inductively by

F0<)\7§) = ﬁ()‘7§>7 Fk()‘ag) = Fk*l()Vé.) - Fk*l(Aag + gk)?
for k =1,...,n. In particular, we have

Fr(X &) = Pn(A &0, &1, - - &n)-

Then we can apply the mean value theorem to the recurrence relation to obtain

[F(N )| = [Fio1(N€) — Fma (N E+ &) < &kl - sup [ VEE1 (A, )

neanlvl»l

)

for all € € K,,_;, and 1 < k < n and where V¢ is the differential relative to the second variable
£. Since the recurrence relation for Fj is linear, it remains valid for all derivatives of Fg, i.e.,

sup
éEank

(nyFk()\af)‘ <[l sup

NEKy k41

Jj+1
(v£> Fk*l()‘v 77)‘ )
for all 7 € N. Starting with £ = n and applying the estimate iteratively we obtain

|Fn()‘7£0)| < |£n| © Sup
£eEKy

VR (06| < -

< (1T s | (V) 0]

j=1

Now, given a, 8 € N¢, we have

(2miN) 7B, §) = /

[ e olp(e, &) da

from which we deduce that for every N > 0, there exists a constant Cp xy > 0 such that
(V) 5000 < G+ ) Nig!

and it remains to estimate (£)"~! on the set K,. For r > 1 the function £ + (£)"~! is convex
and so it attains its maximum at one of the points & + ) jes & Hence

r—1
wp €< 3 <go+zsj> |

LEKn JCL, ) jed

which achieves the proof, because |¢;| < (&;). O

Proof of Theorem A.1: By Lemma A.2, we get
§(Surlfiee fu) € = [ EONF (P, 0u) €A,
and thus

5 Snr(fis s ) ©)
<[/ [F€0) - Faln) - BN 0,61, E0)ib(E0)| A
Rd ot +En=¢
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where dy is the Lebesgue measure on the subspace & 4 &1 + ... + &, = & of (R)"1. Now, by
Lemma A.3, we get

B Surli ) @1 < Gy ([ 40 ar) 5

But

/ o+ 6)  (TIE) ) [fe - fue
o+ +E€n=¢ j=1

JC{1,...,n}
r—1 n
/ S+ & 11 ‘fl(&)”'fn(ﬁn) W (&) dp.
ot t+En= jedJ 7j=1

@ (&o)| dp

jed

=5 T35 ([enh])a Is~ (Jenss]) s qan| | @

jeJe

where A® is the Fourier multiplier with symbol (£)*. We have thus, using the Plancherel identity
and taking N > d

[1]
2]

3]

”Sn,P<f17 SRR fn)w”quf - H<€>q—r$<sn7p(f17 cee 7fn)w)HL2

s > T ([end]) o [ TIs " ([ ) 37 ()

JC{1,...,n} ||g€JC jeJ Ha—r

s > (s (s o [T ([enh)) 57 e
JC{1,...,n} ||g€C Ha-1 JjeJ Ha—r
Sl g - L fnll e 1wl a1 -
[l
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