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Abstract. In this article we study the class of right-invariant, fractional order Sobolev-type
metrics on groups of diffeomorphisms of a compact manifold 𝑀 . Our main result concerns
well-posedness properties for the corresponding Euler-Arnold equations, also called the EPDiff
equations, which are of importance in mathematical physics and in the field of shape analysis
and template registration. Depending on the order of the metric, we will prove both local and
global well-posedness results for these equations. As a result of our analysis we will also obtain
new commutator estimates for elliptic pseudo-differential operators.

1. Introduction

Our goal in this article is to study the well-posedness of the EPDiff equation on the group
of diffeomorphisms of a compact manifold 𝑀 for the 𝐻𝑠-metric when 𝑠 is no longer an integer.
Our main result is the following.

Theorem (Local and Global Well-posedness). Let 𝑀 be a closed manifold of dimension 𝑑. The
EPDiff equation and the geodesic equation for the fractional, right invariant 𝐻𝑠-metric on the
diffeomorphism group Diff∞(𝑀) are locally well-posed, provided 𝑠 ≥ 1/2. For 𝑠 > 𝑑

2 + 1 all
solutions exist for all time 𝑡, i.e., the equations are globally well-posed.

Our result is proven under more general assumptions, namely for right invariant metrics that
are defined using abstract pseudo differential operators as inertia operator. This will allow
us to apply the result to a wide class of situations, including in particular the fractional 𝐻𝑠-
metric, but also other examples such as the so-called information metric as studied in [48]. Our
result requires us to carefully investigate smoothness properties of conjugating pseudo-differential
operators by diffeomorphisms. As a byproduct of our analysis, we obtain the following result
which is of independent interest for the study of pseudo-differential operators and can be viewed
as generalized, higher order Kato–Ponce type inequalities.

Theorem (Smooth Conjugation of Pseudo Differential Operators). Let 𝐴 be a pseudo-differential
operator in Ψ𝑟(𝑀) with 𝑟 ≥ 1. Then the map

𝒟𝑞(𝑀) → 𝐿(𝐻𝑞(𝑀), 𝐻𝑞−𝑟(𝑀)) , 𝜙 ↦→ 𝐴𝜙

is smooth for 𝑞 ≥ 𝑟 and 𝑞 > 𝑑/2 + 1.

The operator 𝐴𝜙 is also called the twisted map, i.e., the inertia operator 𝐴 twisted by the
right translation 𝑅𝜙:

𝐴𝜙 := 𝑅𝜙 ∘𝐴 ∘𝑅𝜙−1 ,

with 𝑅𝜙𝑣 := 𝑣 ∘ 𝜙 for 𝜙 ∈ 𝒟𝑞(𝑀) being an element in the group of diffeomorphisms of Sobolev
order 𝑞 and 𝑣 ∈ X𝑞(𝑀), see Section 2.1. For the exact definition of the operator class Ψ𝑟(𝑀),
we refer to Section 3 and to the survey of Agranovich in [26].
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Context of the result. In 1765, Euler published a seminal paper [30] in which he recast the
equations of motion of a free rigid body as the geodesic flow on the rotation group. For the bi-
century of this achievement, Arnold has extended this geometric framework to hydrodynamics
and recast the equations of motion of a perfect fluid (with fixed boundary) as the geodesic flow
on the volume-preserving diffeomorphisms group of the domain. Since, then a similar geometric
formulation has been found for several important PDEs in mathematical physics, including
in particular the Camassa–Holm equation [17, 46, 42], the modified Constantin–Lax–Majda
equation [21, 60, 29, 10] or the SQG-equation [22, 59, 9], see [56, 40] for further examples and
references.

From a geometrical view-point, this theory can be reduced to the study of right-invariant
Riemannian metrics on the diffeomorphism group of a manifold 𝑀 (or one of its subgroup like
SDiff∞

𝜇 (𝑀), the group of diffeomorphism which preserve a volume form 𝜇). To define a right
invariant Riemannian metric on the diffeomorphism group Diff(𝑀) of a compact Riemannian
manifold 𝑀 , it suffices to prescribe an inner product on its Lie algebra Γ(𝑇𝑀). We will moreover
assume that this inner product can be written as

⟨𝑢1, 𝑢2⟩ :=

∫︁
𝑀

(𝐴𝑢1 · 𝑢2) 𝑑𝜇 ,

where 𝑢1, 𝑢2 ∈ Γ(𝑇𝑀), · means the Riemannian metric on 𝑇𝑀 , 𝑑𝜇, the Riemannian density
and the inertia operator

𝐴 : Γ(𝑇𝑀) → Γ(𝑇𝑀)

is a 𝐿2-symmetric, positive definite, continuous linear operator. By translating this inner prod-
uct, we get an inner product on each tangent space 𝑇𝜙Diff(𝑀), which is given by

(1.1) 𝐺𝜙(𝑣1, 𝑣2) =

∫︁
𝑀

(𝐴𝜙𝑣1 · 𝑣2)𝜙*𝑑𝜇 ,

where 𝑣1, 𝑣2 ∈ 𝑇𝜙Diff(𝑀).
A geodesic for the metric 𝐺 on Diff∞(𝑀) is an extremal curve 𝜙(𝑡) of the energy functional

𝐸(𝜙) :=
1

2

∫︁ 1

0
𝐺𝜙(𝜙𝑡, 𝜙𝑡) 𝑑𝑡,

where subscript 𝑡 in 𝜙𝑡 means time derivative. Let 𝑢(𝑡) := 𝑅𝜙−1(𝑡)𝜙𝑡(𝑡) be the Eulerian velocity
of the geodesic curve 𝜙(𝑡). Then 𝑢(𝑡) is a solution of the Euler-Poincaré equation (EPDiff) [35]
on Diff(𝑀):

(1.2) 𝑚𝑡 + ∇𝑢𝑚+ (∇𝑢)𝑡𝑚+ (div 𝑢)𝑚 = 0, 𝑚 := 𝐴𝑢 ,

where (∇𝑢)𝑡 is the Riemannian adjoint (for the metric on 𝑀) of ∇𝑢. When 𝐴 is invertible, the
EPDiff equation (1.2) can be rewritten as

(1.3) 𝑢𝑡 = −𝐴−1
{︀
∇𝑢𝐴𝑢+ (∇𝑢)𝑡𝐴𝑢+ (div 𝑢)𝐴𝑢

}︀
,

which is the Euler–Arnold equation for Diff(𝑀). Important examples for the inertia operator 𝐴
include (fractional) powers of the Laplacian, which give then rise to the afore mentioned PDEs
as corresponding geodesic equations.

As acknowledged by Arnold himself, his seminal paper concentrated on the geometrical ideas
and not on the analytical difficulties that are inherent when infinite dimensional manifolds are
involved. In 1970, Ebin & Marsden [24] reconsidered this geometric approach from the analytical
point of view, see also [25, 55, 12, 54, 13, 18]. They proposed to look at the Fréchet Lie group
of smooth diffeomorphisms as an inverse limit of Hilbert manifolds, following some ideas of
Omori [49, 50]. The remarkable observation is that, in this framework, the Euler equation (a
PDE) can be recast as an ODE (the geodesic equation) on these Hilbert manifolds. Furthermore,
following their approach, if we can prove local existence and uniqueness of the geodesics (ODE),
then the EPDiff equation (1.2) is well-posed.

The local well-posedness of the geodesic equation when the inertia operator 𝐴 is a differential
operator has been implicitly solved in the seminal article of Ebin and Marsden [24], see also [52,
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53, 20, 58, 32, 47, 44, 38, 39], and hence for 𝐻𝑘-metrics on diffeomorphism groups, where 𝑘
is an integer. This result has been extended to invariant metrics on several related spaces of
mappings, such as spaces of immersions, Riemannian metrics and the Virasoro–Bott group,
see [39, 6, 7, 3, 11, 4]. In a series of papers [29, 28, 5, 41], the local and global well-posedness
problem for the general EPDiff equation on Diff∞(T𝑑) or Diff𝐻∞(R𝑑) when the inertia operator
is a non-local Fourier multiplier was solved. This applies, in particular, to every 𝐻𝑠-metrics on
Diff∞(T𝑑) or Diff𝐻∞(R𝑑) when 𝑠 is no longer an integer. In this article we extend this analysis
to the EPDiff equation on compact manifolds, which requires us to deal with inertia operators
which are general Pseudo Differential operators. Simultaneously to this article, the first author
and collaborators proved in [8] local well-posedness of geodesic equations for fractional order
metrics on the space of immersions of a manifold 𝑀 with values in another manifold 𝑁 . The
class of operators studied in [8] is defined via holomorphic functional calculus of the Laplace
operator. In the special case of 𝑀 being 𝑁 their results agree with the first part of the main
theorem of the present article (the local well-posedness of the geodesic equations), albeit for a
different class of inertia operators and using a different method of proof (our strategy is heavily
based on the group structure of 𝒟𝑞(𝑀) and is valid for general abstract pseudo differential
operators, see the comments below).

Strategy of the Proof. Our main theorem will follow as a direct consequence from the more
general results in Section 6.2, where the equivalent result is shown for metrics with inertia
operator a general elliptic Pseudo-differential operator. Our strategy to obtain this result is,
following the seminal approach of Ebin–Marsden, based on extending the metric and spray to
a Sobolev completion of the group of smooth diffeomorphisms, which will allow us to view
the geodesic equation as an ODE. The main obstacle to obtain this result is to prove the
smoothness of the conjugation of elliptic Pseudo-differential operators with diffeomorphisms of
Sobolev order. From this result our main theorem, local and global well-posedness of the EPDiff
equation, follows essentially using the same techniques as for integer order metrics. We will
first prove our results for Pseudo-Differential operators on 𝑀 = R𝑑, which will involve explicit
estimates for the 𝑛-th derivative and will consist the main technical part of the article. We will
then extend the result to Pseudo-differential operators acting on manifolds by carefully using
Whitney’s embedding theorem and thus reducing it to the Euclidean case.

Outline. In Section 2, we will introduce the basic notations and recall several standard results
on multiplication and composition in Sobolev spaces. The exact class of Pseudo-differential
operators, that we are studying in this article, is presented in Section 3. In Section 4, we will
study the smoothness of the conjugation of Pseudo-differential operators and in Section 5, we
will use this result to show that both the metric and the geodesic spray extend smoothly to
groups of Sobolev diffeomorphisms. Finally, in Section 6, the previously developed theory will
allow us to obtain our main results on local and global well-posedness of the EPDiff equations.
Appendix A contains technical estimates, that were necessary for the derivation of the results
in Section 4.

Acknowledgements. We would like to thank Philipp Harms, Peter W. Michor, Gerard Misi-
olek, Klas Modin and Stephen C. Preston for fruitful discussions during the preparation of this
manuscript.

2. Notations and background material

In this paper, we consider the group Diff∞(𝑀) of smooth diffeomorphisms of a closed manifold
𝑀 of dimension 𝑑 which are isotopic to the identity. We equip this manifold with a Riemannian
metric 𝑔 and let us denote by exp the Riemannian exponential map on 𝑀 . Diff∞(𝑀) can be
endowed with a Fréchet-Lie group structure modeled on the Fréchet vector space Γ(𝑇𝑀), the
space of smooth vector fields on 𝑀 . A parametrization in a neighborhood of the identity is
given by the mapping:

(2.1) 𝜁 : 𝑈0 ⊂ Γ(𝑇𝑀) → 𝑉id ⊂ Diff∞(𝑀),
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defined as:

(2.2) 𝑋 ∈ Γ(𝑇𝑀) ↦→ 𝜁(𝑋), 𝜁(𝑋)(𝑝) := exp𝑝(𝑋(𝑝)).

The tangent space 𝑇𝜙Diff∞(𝑀) can be identified with the space Γ(𝜙*𝑇𝑀) of smooth sections
above 𝜙:

𝑇𝜙Diff∞(𝑀) = {𝑋𝜙 ∈ C∞(𝑀,𝑇𝑀); 𝜋 ∘𝑋𝜙(𝑝) = 𝜙(𝑝)} ,
where 𝜋 : 𝑇𝑀 →𝑀 is the canonical projection.

The Fréchet-Lie group Diff∞(𝑀) has the Lie algebra Γ(𝑇𝑀), the space of smooth vector
fields on 𝑀 , with the Lie algebra bracket:

ad𝑢 𝑣 := −[𝑢, 𝑣], 𝑢, 𝑣 ∈ Γ(𝑇𝑀),

the negative of the standard Lie bracket of vector fields. Since moreover 𝑀 is compact, Diff∞(𝑀)
is a regular Fréchet Lie group in the sense of Milnor [45]. In particular, each element 𝑢 of the
Lie algebra Γ(𝑇𝑀), corresponds to a one-parameter subgroup of Diff∞(𝑀).

The regular dual of Γ(𝑇𝑀) is identified with Γ(𝑇𝑀) via the pairing:

(𝑚,𝑢) =

∫︁
𝑀

(𝑚 · 𝑢) 𝑑𝜇, 𝑚, 𝑢 ∈ Γ(𝑇𝑀).

We will also be interested in the diffeomorphism group of R𝑑. But, since difficulties arise due
to the non-compactness of R𝑑, we cannot use the full group of smooth diffeomorphisms but need
to restrict our study to some subgroup with nice behaviour at infinity. We will set:

Diff𝐻∞(R𝑑) :=
{︁

id + 𝑢; 𝑢 ∈ 𝐻∞(R𝑑,R𝑑) and det(id + 𝑑𝑢) > 0
}︁
,

where 𝐻∞(R𝑑,R𝑑) denotes the space of R𝑑-valued 𝐻∞-functions on R𝑑, i.e.,

𝐻∞(R𝑑,R𝑑) :=
⋂︁
𝑞≥0

𝐻𝑞(R𝑑,R𝑑) ,

and where 𝐻𝑞(R𝑑,R𝑑) denotes the (R𝑑-valued) Sobolev space on R𝑑, defined below.
Let F be the Fourier transform on R𝑑, defined with the following normalization

𝑓(𝜉) = (F𝑓)(𝜉) =

∫︁
R𝑑

𝑒−2𝑖𝜋⟨𝑥,𝜉⟩𝑓(𝑥) 𝑑𝑥

where 𝜉 is the independent variable in the frequency domain. With this convention, its inverse
F−1 is given by:

(F−1𝑔)(𝑥) =

∫︁
R𝑑

𝑒2𝑖𝜋⟨𝑥,𝜉⟩𝑔(𝜉) 𝑑𝜉 .

For 𝑞 ∈ R+ the Sobolev 𝐻𝑞-norm of a function 𝑓 on R𝑑 is defined by

‖𝑓‖2𝐻𝑞 :=
⃦⃦⃦
⟨𝜉⟩𝑞𝑓

⃦⃦⃦2
𝐿2
,

where

|𝜉| := (𝜉21 + · · · + 𝜉2𝑑)1/2,

and

⟨𝜉⟩ := (1 + |𝜉|2)1/2.
The Sobolev spaces 𝐻𝑞(R𝑑,R) is defined as the closure of the space of compactly supported

functions, 𝐶∞
𝑐 (R𝑑,R), relatively to this norm and the space 𝐻𝑞(R𝑑,R𝑑) is the space of R𝑑-valued

functions of which each component belongs to 𝐻𝑞(R𝑑,R).
Following [57, Sect. 7.2.1] we will now introduce the space 𝐻𝑞(𝑀,R), of functions of Sobolev

class 𝐻𝑞 on a closed 𝑑-dimensional Riemannian manifold (𝑀, 𝑔). Denote by 𝐵𝜖(𝑥) the ball of
radius 𝜖 with center 𝑥. We can choose a finite cover of 𝑀 by balls 𝐵𝜖(𝑥𝛼) with 𝜖 sufficiently
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small, such that normal coordinates are defined in the ball 𝐵𝜖(𝑥), and a partition of unity 𝜚𝛼,
subordinated to this cover. Using this cover, we define the 𝐻𝑞-norm of a function 𝑓 on 𝑀 via

‖𝑓‖2𝐻𝑞(𝑀,𝑔) =
∑︁
𝛼

⃦⃦
(𝜚𝛼𝑓) ∘ exp𝑥𝛼

⃦⃦2
𝐻𝑞(R𝑑)

=
∑︁
𝛼

⃦⃦
⟨𝜉⟩𝑞ℱ((𝜚𝛼𝑓) ∘ exp𝑥𝛼

)
⃦⃦2
𝐿2(R𝑑)

.

Changing the cover or the partition of unity leads to equivalent norms, see [57, Theorem 7.2.3].
When 𝑞 is an integer, we get norms which are equivalent to the Sobolev norms treated in [27,
Chapter 2]. The norms depend on the choice of the Riemann metric 𝑔, but different choices of
metrics lead to again to equivalent norms. The dependence on the metric is worked out in detail
in [27]. For functions with values in a vector bundle we use a (local) trivialization and define
the norm in each coordinate as above. This leads (up to equivalence) to a well-defined 𝐻𝑞-norm
for functions with values in a vector bundle.

2.1. Groups of diffeomorphisms of finite regularity. Diff𝐻∞(R𝑑) has a stronger structure
than just a Fréchet Lie group, it is the inverse limit of Hilbert manifolds which are themselves
topological groups (ILH-Lie groups following Omori [50]). In other words,

Diff𝐻∞(R𝑑) =
⋂︁

𝑞>1+𝑑/2

𝒟𝑞(R𝑑),

where the set 𝒟𝑞(R𝑑) is defined, for 𝑞 > 𝑑
2 + 1, as follows:

𝒟𝑞(R𝑑) :=
{︁

id + 𝑢; 𝑢 ∈ 𝐻𝑞(R𝑑,R𝑑) and det(id + 𝑑𝑢) > 0
}︁
.

Note, that the condition det(id + 𝑑𝑢) > 0 is well-defined as for 𝑞 > 𝑑
2 + 1 we have 𝐻𝑞(R𝑑,R𝑑) ⊂

𝐶1(R𝑑,R𝑑), c.f. Lemma 2.2. The set 𝒟𝑞(R𝑑) is a Hilbert manifold, modelled on 𝐻𝑞(R𝑑,R𝑑).
Similarly, we can introduce the Hilbert space Γ𝑞(𝑇𝑀) of vector fields on 𝑀 of class 𝐻𝑞. For

𝑞 > 1 + 𝑑/2, we define the set 𝒟𝑞(𝑀) of 𝐶1 diffeomorphisms 𝜙 of 𝑀 , isotopic to the identity,
and which are of class 𝐻𝑞. 𝒟𝑞(𝑀) is a smooth Hilbert manifold, modelled on Γ𝑞(𝑇𝑀) and

Diff∞(𝑀) =
⋂︁

𝑞>1+𝑑/2

𝒟𝑞(𝑀).

The Hilbert manifolds 𝒟𝑞(R𝑑) and 𝒟𝑞(𝑀) are topological groups (see [37]). They are how-
ever not Hilbert Lie groups, because composition and inversion are continuous but not smooth
(see [37, Proposition 2.6]). For a more detailed treatment of these manifolds, we refer to [37].

Remark 2.1. Note, that the tangent bundle 𝑇𝒟𝑞(R𝑑) is a trivial bundle

𝑇𝒟𝑞(R𝑑) ∼= 𝒟𝑞(R𝑑) ×𝐻𝑞(R𝑑,R𝑑) ,

because 𝒟𝑞(R𝑑) is an open subset of the Hilbert space 𝐻𝑞(R𝑑,R𝑑). Beware, however, that unless
the manifold 𝑀 is parallelizable, the tangent bundle of the Hilbert manifold 𝒟𝑞(𝑀) is not trivial.

2.2. Sobolev embeddings, composition and multiplication theorems. In this section,
we will collect several results on composition and multiplication in Sobolev spaces that will be
used throughout this paper. We start by recalling the following Sobolev embedding lemma which
proof can be found in [37, Proposition 2.2] for R𝑑 and in [2] for a compact manifold.

Lemma 2.2. Let 𝑀 be a closed manifold of dimension 𝑑, 𝑞 > 𝑑/2 a real number and 𝑘 an
integer. Then,

(1) 𝐻𝑞+𝑘(𝑀,R𝑑) is continuously embedded into 𝐶𝑘(𝑀,R𝑑);
(2) 𝐻𝑞+𝑘(R𝑑,R𝑑) is continuously embedded into 𝐶𝑘

0 (R𝑑,R𝑑), the space of all 𝐶𝑘-functions
vanishing at infinity.

Next, we will recall the following result concerning the extension of pointwise multiplication
to a bounded bilinear mapping between Sobolev spaces.
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Lemma 2.3. Let 𝑋 be either R𝑑 or a closed manifold 𝑀 of dimension 𝑑. Let 𝑞 > 𝑑/2 and
0 ≤ 𝑝 ≤ 𝑞 then pointwise multiplication extends to a bounded bilinear mapping

𝐻𝑞(𝑋,R) ×𝐻𝑝(𝑋,R) → 𝐻𝑝(𝑋,R).

More precisely, there exists 𝐶 > 0 such that

‖𝑓𝑔‖𝐻𝑝 ≤ 𝐶 ‖𝑓‖𝐻𝑞 ‖𝑔‖𝐻𝑝 ,

for all 𝑓 ∈ 𝐻𝑞(𝑋,R) and 𝑔 ∈ 𝐻𝑝(𝑋,R). In particular 𝐻𝑞(𝑋,R) is a multiplicative algebra, if
𝑞 > 𝑑/2.

Remark 2.4. For the proof of Lemma 2.3 in the case of R𝑑, see [37, Lemma 2.3]. In the case of
a closed manifold 𝑀 , it results from [37, Lemma 2.16] using a partition of unity.

Let 𝐽𝜙 denotes the Jacobian determinant of a diffeomorphism 𝜙 in 𝒟𝑞(𝑋), where 𝑋 is either

R𝑑 or a closed manifold 𝑀 of dimension 𝑑. From lemma 2.3, we deduce that the mapping

𝜙 ↦→ 𝐽𝜙, 𝒟𝑞(𝑋) → 𝐻𝑞−1(𝑋,R)

is smooth and we have moreover the following result, which is a reformulation of [37, Lemma
2.5].

Lemma 2.5. Let 𝑋 be either R𝑑 or a closed manifold 𝑀 of dimension 𝑑. Let 𝑞 > 1 + 𝑑/2 and
0 ≤ 𝑝 ≤ 𝑞. Given 𝜙 ∈ 𝒟𝑞(𝑋) and 𝑓 ∈ 𝐻𝑝(𝑋,R), the function 𝑓/𝐽𝜙 belongs to 𝐻𝑝(𝑋,R) and
the mapping

(𝜙, 𝑓) ↦→ 𝑓

𝐽𝜙
, 𝒟𝑞(𝑋) ×𝐻𝑝(𝑋,R) → 𝐻𝑞(𝑋,R)

is smooth.

Finally, we recall the following result concerning the right action of 𝒟𝑞(𝑋) on 𝐻𝑝(𝑋,𝑁),
where 𝑁 is a manifold of dimension 𝑑′ (see [37, Lemma 2.7] and [37, Proposition 3.10]).

Lemma 2.6. Let 𝑋 be either R𝑑 or a closed manifold 𝑀 of dimension 𝑑 and let 𝑁 be a manifold
of dimension 𝑑′. Given any two real numbers 𝑝, 𝑞 with 𝑞 > 1 + 𝑑/2 and 𝑞 ≥ 𝑝 ≥ 0, the mapping

𝐻𝑝(𝑋,𝑁) ×𝒟𝑞(𝑋) → 𝐻𝑝(𝑋,𝑁), (𝑢, 𝜙) ↦→ 𝑢 ∘ 𝜙
is continuous. Moreover, the mapping

𝑅𝜙 : 𝑢 ↦→ 𝑢 ∘ 𝜙
is locally bounded. More precisely, there exists a neighbourhood 𝑈 of id in 𝒟𝑞(𝑋) and a constant
𝐶 > 0 such that

‖𝑅𝜙‖ℒ(𝐻𝑝,𝐻𝑝) ≤ 𝐶,

for all 𝜙 ∈ 𝑈 .

3. Pseudo-differential operators

3.1. Pseudo-differential operators on R𝑑. Roughly speaking, a pseudo-differential operator
𝐴, acting on scalar-valued functions on R𝑑 is a linear operator which can be written as

𝐴𝑢(𝑥) =

∫︁
R𝑑

𝑒2𝜋𝑖𝑥·𝜉𝑎(𝑥, 𝜉)𝑢̂(𝜉) 𝑑𝜉

where the function 𝑎(𝑥, 𝜉) ∈ C is called the symbol of the pseudo-differential operator 𝐴 and
such operators will be denoted by Op(𝑎) or 𝑎(𝑥,𝐷).

Remark 3.1. Note that a pseudo-differential operator 𝐴 preserves real functions iff its symbol 𝑎
satisfies:

𝑎(𝑥,−𝜉) = 𝑎(𝑥, 𝜉), 𝜉 ∈ R𝑑.

Of course, some regularity conditions are required on the symbol 𝑎 to insure that the operator
is well-defined on some kind of function space. In this paper, we will restrict to the following
class of symbols.
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Definition 3.2. Given 𝑟 ∈ R, we will say that 𝑎 ∈ S𝑟(R𝑑 × R𝑑) if 𝑎 = 𝑎(𝑥, 𝜉) is smooth on
R𝑑 × R𝑑, with values in M𝑑(C) and if⃒⃒⃒

∂𝛽𝑥∂
𝛼
𝜉 𝑎(𝑥, 𝜉)

⃒⃒⃒
≤ 𝐶𝛼,𝛽⟨𝜉⟩𝑟−|𝛼|,

for each 𝛼, 𝛽 ∈ N𝑑, where |𝛼| := 𝛼1 + · · · + 𝛼𝑑 and the constants 𝐶𝛼,𝛽 do not depend on (𝑥, 𝜉).

The class of pseudo-differential operators with symbol in S𝑟(R𝑑×R𝑑) will be denoted by Ψ𝑟(R𝑑).

Each operator 𝐴 from this class is well-defined on the Schwartz space 𝒮(R𝑑), of rapidly decreas-
ing functions and sends this space on itself. Moreover, by the 𝐿2 boundedness theorem (see [51,
Chapter 2] for instance), 𝐴 extends to a bounded operator from 𝐻𝑞(R𝑑,R) to 𝐻𝑞−𝑟(R𝑑,R), for
all 𝑞 ≥ 𝑟. In particular, such an operator defines a linear and continuous operator

𝐴 : 𝐻∞(R𝑑,R) → 𝐻∞(R𝑑,R).

The theory of pseudo-differential operators can be easily extended to R𝑘-valued functions. In
that case, the symbol 𝑎(𝑥, 𝜉) is matrix-valued and belong to 𝑀𝑘(C). In that case, we define
similarly the class of symbols S𝑟(R𝑑 × R𝑑,𝑀𝑘(C)) and the class of operators Ψ𝑟(R𝑑,R𝑘). We
have, moreover, the following nice properties, concerning composition and commutators see [26,
Theorem 1.2.4].

Lemma 3.3. Let 𝐴 ∈ Ψ𝑟1(R𝑑,R𝑘) and 𝐵 ∈ Ψ𝑟2(R𝑑,R𝑘), then:

(1) 𝐴 ∘𝐵 ∈ Ψ𝑟1+𝑟2(R𝑑,R𝑘),
(2) [𝐴,𝐵] ∈ Ψ𝑟1+𝑟2−1(R𝑑,R𝑘), if their principal symbols 𝑎(𝑥, 𝜉) and 𝑏(𝑥, 𝜉) commute.

Remark 3.4. In particular taking for 𝐵 the differential operator 𝐷𝑖 = ∂
∂𝑥𝑖

, we get that

[𝐴,𝐷𝑖] ∈ Ψ𝑟1(R𝑑,R𝑘),

and taking for 𝐵 the multiplication operator with some function 𝑓 ∈ 𝐶∞
𝑐 (R𝑑,R), we get that

[𝐴, 𝑓 ] ∈ Ψ𝑟1−1(R𝑑,R𝑘).

In order to prove the existence and smoothness of the spray on the extended Hilbert manifolds
𝒟𝑞(𝑀), we will need an ellipticity condition on the inertia operator 𝐴. For our purpose, we will
adopt the following definition

Definition 3.5. A pseudo-differential operator

𝐴 = 𝑎(𝑥,𝐷) ∈ Ψ𝑟(R𝑑,R𝑑)

is called elliptic if its symbol 𝑎(𝑥, 𝜉) ∈ GL(C𝑑) and⃦⃦
[𝑎(𝑥, 𝜉)]−1

⃦⃦
.

(︁
1 + |𝜉|2

)︁−𝑟/2
,

for all 𝑥, 𝜉 ∈ R𝑑.

Remark 3.6. An elliptic pseudo-differential operator in Ψ𝑟(R𝑑,R𝑑) induces a bounded isomor-
phism between 𝐻𝑞(R𝑑,R𝑑) and 𝐻𝑞−𝑟(R𝑑,R𝑑) for all 𝑞 ∈ R.

We summarize our considerations by introducing the following class of inertia operators which
will be denoted by ℰ𝑟(R𝑑).

Definition 3.7. An operator 𝐴 ∈ ℒ(𝐻∞(R𝑑,R𝑑)) is in the class ℰ𝑟(R𝑑) iff the following condi-
tions are satisfied:

(1) 𝐴 = 𝑎(𝑥,𝐷) ∈ Ψ𝑟(R𝑑,R𝑑);
(2) 𝐴 = 𝑎(𝑥,𝐷) is elliptic;
(3) Its symbol, 𝑎(𝑥, 𝜉) is Hermitian and positive definite for all 𝜉 ∈ R𝑑.
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3.2. Pseudo-differential operators on a vector bundle. We shall first recall the definition
of a pseudo-differential operator acting on functions defined on a closed orientable manifold 𝑀 of
dimension 𝑑. We follow closely [36] (see also [26]) and start with the way we pullback operators.

Definition 3.8. Consider a chart (𝒰 , 𝜅) on 𝑀 , with 𝜅 : 𝒰 → 𝑈 (where 𝑈 is an open set in R𝑑),
then the pullback 𝜅*𝑃 : C∞

𝑐 (𝒰) → C∞(𝒰) of a linear operator 𝑃 : C∞
𝑐 (𝑈) → C∞(𝑈) is defined

by:

(𝜅*𝑃 )𝑓 := 𝑃 (𝑓 ∘ 𝜅−1) ∘ 𝜅, 𝑓 ∈ C∞
𝑐 (𝒰).

Definition 3.9. A bounded linear operator 𝐴 : 𝐶∞(𝑀) → 𝐶∞(𝑀) is a pseudo-differential
operator in the class Ψ𝑟(𝑀) if for every local chart (𝒰 , 𝜅), with 𝜅 : 𝒰 → 𝑈 ⊂ R𝑑, there exists a
pseudo-differential operator 𝐴𝑈 ∈ Ψ𝑟(R𝑑) such that if Φ,Ψ ∈ 𝐶∞

𝑐 (𝒰) then:

Φ𝐴Ψ𝑓 = 𝜅*(𝜙𝐴𝑈𝜓)𝑓,

where 𝜙 := Φ ∘ 𝜅−1, 𝜓 := Ψ ∘ 𝜅−1, and 𝑓 ∈ 𝐶∞(𝑀).

Remark 3.10. This means that the local representative of the function Φ𝐴Ψ𝑓 is obtained ap-
plying the operator 𝜙𝐴𝑈𝜓 to the local representative of 𝑓 :

(Φ𝐴Ψ𝑓) ∘ 𝜅−1(𝑥) = 𝜙𝐴𝑈𝜓(𝑓 ∘ 𝜅−1)(𝑥), 𝑥 ∈ 𝑈.

Consider now 𝐸𝑀 , 𝐹𝑀 two complex vector bundles on 𝑀 , of ranks 𝑑1 and 𝑑2. We denote by:

Φ𝒰 : 𝐸𝒰 → 𝒰 × C𝑑1 , Ψ𝒰 : 𝐹𝒰 → 𝒰 × C𝑑2 ,

the corresponding local trivialization over the same open set 𝒰 ⊂ 𝑀 . We can pullback vector-
valued functions, using (𝜒𝐸)* : 𝐶∞(𝑈,C𝑑1) → 𝐶∞(𝒰 , 𝐸𝒰 ), defined as:

(3.1) (𝜒𝐸)*𝑢 := (pr2 ∘Φ𝒰 )−1(𝑢 ∘ 𝜅), 𝑢 ∈ 𝐶∞(𝑈,C𝑑1),

and push-forward local sections, by:

(3.2) (𝜒𝐸)*𝑣 := pr2 ∘Φ𝒰 (𝑣 ∘ 𝜅−1), 𝑣 ∈ 𝐶∞(𝒰 , 𝐸𝒰 ).

In a similar manner, with the aforementioned scalar case, we will pullback linear operators
𝑃 : 𝐶∞

𝑐 (𝑈,C𝑑1) → 𝐶∞(𝑈,C𝑑2) to obtain linear operators 𝜒*𝑃 : 𝐶∞
𝑐 (𝒰 , 𝐸𝒰 ) → 𝐶∞(𝒰 , 𝐹𝒰 ),

using:

(𝜒*𝑃 )𝑣 = (𝜒𝐹 )*𝑃 ((𝜒𝐸)*𝑣), 𝑣 ∈ 𝐶∞
𝑐 (𝒰 , 𝐸𝒰 ) .

Definition 3.11 (Pseudo-differential operators on complex vector bundles). We say that a
linear operator 𝐴 : Γ(𝐸𝑀 ) → Γ(𝐹𝑀 ) is a pseudo-differential operator of class Ψ𝑟(𝑀,𝐸𝑀 , 𝐹𝑀 ) if
it satisfies the conditions from the scalar case for 𝐴𝑈 with symbol in S𝑟(R𝑑 × R𝑑,M𝑑2×𝑑1(C)),
and the pullback operator defined above.

The tangent bundle 𝑇𝑀 can be considered as a real subbundle of its complexification 𝑇𝑀 𝑐 :=
𝑇𝑀 ⊗ C. For the complex vector bundle 𝑇𝑀 𝑐 we pullback functions 𝑢 ∈ 𝐶∞(𝑈,C𝑑) using
(𝜒𝑇𝑀𝑐

)*𝑢 := (pr2 ∘𝑇𝜅𝑐)−1(𝑢 ∘ 𝜅) and push-forward with (𝜒𝑇𝑀𝑐
)*𝑣 := pr2 ∘𝑇𝜅𝑐(𝑣 ∘ 𝜅−1), where

𝑇𝜅𝑐 is the complexification of the tangent mapping 𝑇𝜅. By the way 𝑇𝑀 embeds in 𝑇𝑀 𝑐 one
has 𝑇𝜅𝑐

⃒⃒
𝑇𝑀

= 𝑇𝜅.
Thus one can pullback linear operators to obtain operators on 𝐶∞

𝑐 (𝒰 , 𝑇𝒰). In order to define
a pseudo-differential operator on a real vector bundle we have to assure that it sends real vector-
valued functions to real vector-valued functions.

Definition 3.12 (Elliptic Pseudo-differential operators on 𝑇𝑀). We say that a linear operator
𝐴 : Γ(𝑇𝑀) → Γ(𝑇𝑀) is a pseudo-differential operator of class Ψ𝑟(𝑀,𝑇𝑀) if for every local chart
(𝒰 , 𝜅), with 𝜅 : 𝒰 → 𝑈 ⊂ R𝑑, there exists a pseudo-differential operator 𝐴𝑈 with a Hermitian
symbol in S𝑟(R𝑑 ×R𝑑,M𝑑(C)) and such that for every pair of real functions Φ,Ψ ∈ 𝐶∞

𝑐 (𝒰) one
has:

Φ𝐴Ψ𝑣 = 𝜒*(𝜙𝐴𝑈𝜓)𝑣, 𝑣 ∈ Γ(𝑀).

If all 𝐴𝑈 are elliptic, then we call the operator 𝐴 elliptic and we write 𝐴 ∈ ℰ𝑟(𝑀,𝑇𝑀).
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Remark 3.13. The properties of the local representatives 𝐴𝑈 having Hermitian symbols and
being elliptic are preserved under a change of coordinates and thus this notion of elliptic
pseudo-differential operators on 𝑇𝑀 is well-defined. Furthermore, an elliptic pseudo-differential
operator of class in ℰ𝑟(𝑀,𝑇𝑀) induces a bounded isomorphism between 𝐻𝑞(𝑀,𝑇𝑀) and
𝐻𝑞−𝑟(𝑀,𝑇𝑀) for all 𝑞 ∈ R.

4. Conjugates of pseudo-differential operators

In this part we will study the smoothness of conjugation for pseudo-differential operators. To
prove the local well-posedness of the EPDiff equation we will need this result in the context
of operators on vector bundles. We will however start by considering the problem in the more
simpler situation of operators acting on functions on R𝑑.

4.1. Conjugates of a pseudo-differential operator on R𝑑. Let 𝐴 be a continuous linear
operator from 𝐻∞(R𝑑,R𝑑) to itself and let

(4.1) 𝐴𝜙 := 𝑅𝜙 ∘𝐴 ∘𝑅𝜙−1 ,

where 𝑅𝜙𝑣 = 𝑣 ∘ 𝜙 and 𝜙 ∈ Diff𝐻∞(R𝑑). Since Diff𝐻∞(R𝑑) is a Fréchet Lie group with Lie

algebra 𝐻∞(R𝑑,R𝑑), the mapping

(𝜙, 𝑣) ↦→ 𝐴𝜙𝑣, Diff𝐻∞(R𝑑) ×𝐻∞(R𝑑,R𝑑) → 𝐻∞(R𝑑,R𝑑)

is smooth. It could be interesting to note here that related observations have been made in [1,
Proposition 1.3] and [43, Proposition 2.3]. Nevertheless, these considerations are useless for
our purpose, since we need a smoothness argument on Hilbert approximation manifolds. More
precisely, the aim of this section is to prove the following theorem.

Theorem 4.1. Let 𝑟 ≥ 1 and 𝐴 = 𝑎(𝑥,𝐷) ∈ Ψ𝑟(R𝑑,R𝑑) with a Hermitian symbol compactly
supported in 𝑥. Then the mapping

𝜙 ↦→ 𝐴𝜙 := 𝑅𝜙𝐴𝑅𝜙−1 , 𝒟𝑠(R𝑑) → ℒ(𝐻𝑞(R𝑑,R𝑑), 𝐻𝑞−𝑟(R𝑑,R𝑑))

is smooth for 𝑞 > 1 + 𝑑/2 and 𝑞 ≥ 𝑟.

To solve this problem, it was observed in [28] that the 𝑛-th partial (Gâteaux) derivative
of (4.1), in the smooth category, was given by:

∂𝑛𝜙𝐴𝜙(𝑣, 𝛿𝜙1, . . . , 𝛿𝜙𝑛) = 𝑅𝜙𝐴𝑛𝑅
−1
𝜙 (𝑣, 𝛿𝜙1, . . . , 𝛿𝜙𝑛),

where

𝐴𝑛 := ∂𝑛id𝐴𝜙 ∈ ℒ𝑛+1(𝐻∞(R𝑑,R𝑑), 𝐻∞(R𝑑,R𝑑))

is the (𝑛+ 1)-linear operator defined inductively by 𝐴0 = 𝐴 and

(4.2) 𝐴𝑛+1(𝑢0, 𝑢1, . . . , 𝑢𝑛+1) = ∇𝑢𝑛+1 (𝐴𝑛(𝑢0, 𝑢1, . . . , 𝑢𝑛))

−
𝑛∑︁

𝑘=0

𝐴𝑛(𝑢0, 𝑢1, . . . ,∇𝑢𝑛+1𝑢𝑘, . . . , 𝑢𝑛),

where ∇ is the canonical derivative on R𝑑. When 𝑑 = 1, a nice formula for 𝐴𝑛 was obtained
in [19]. The strategy of the proof is then the same as the one explained in [28, 5, 41], which
reduces the problem to show that each 𝐴𝑛 extends to a bounded (𝑛 + 1)-linear operator from
𝐻𝑞(R𝑑,R𝑑) to 𝐻𝑞−𝑟(R𝑑,R𝑑). More precisely, we have the following result, which will be stated
without proof as it has already been proven in [28, 5, 41].

Remark 4.2. In particular, for 𝑛 = 1, we get

∂𝜙𝐴𝜙(𝑣, 𝛿𝜙) = 𝑅𝜙𝐴1𝑅
−1
𝜙 (𝑣, 𝛿𝜙), where 𝐴1(𝑢0, 𝑢1) := [∇𝑢1 , 𝐴]𝑢0.
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Such a formula is still true if (𝑀, 𝑔) is a compact Riemannian manifold. In that case, the notation
∂𝑡𝑣 should be replaced by ∇∂𝑡𝑣, where the connection ∇ defined on 𝑇Diff(𝑀) is induced by the
connection ∇𝑔 on 𝑀 , see [31, 15, 8], and defined by(︀

∇∂𝑡𝑣
)︀

(𝑡, 𝑥) := ∇𝑔
𝜙𝑡(𝑡,𝑥)

𝑣(·, 𝑥),

where 𝑣(𝑡) is a vector field on 𝑇Diff(𝑀) defined along the curve 𝜙(𝑡) on Diff(𝑀). Fur-

thermore, in that case, one can naturally construct a connection ̃︀∇ on the vector bundle
𝐿(𝑇Diff(𝑀), 𝑇Diff(𝑀)) such that:(︁̃︀∇∂𝑡𝐴𝜙(𝑡)

)︁
𝑣 =

[︀
∇∂𝑡 , 𝐴𝜙(𝑡)

]︀
𝑣.

Note, that in the notation of [8] there is no distinction between the two covariant derivatives ∇
and ̃︀∇.

Lemma 4.3 (Smoothness Lemma). Let

𝐴 : 𝐻∞(R𝑑,R𝑑) → 𝐻∞(R𝑑,R𝑑)

be a continuous linear operator. Given 𝑞 > 1 + 𝑑/2 with 𝑞 ≥ 𝑟, suppose that 𝐴 extends to a
bounded linear operator from 𝐻𝑞(R𝑑,R𝑑) to 𝐻𝑞−𝑟(R𝑑,R𝑑). Then

𝜙 ↦→ 𝐴𝜙 := 𝑅𝜙 ∘𝐴 ∘𝑅𝜙−1 , 𝒟𝑠(R𝑑) → ℒ(𝐻𝑞(R𝑑,R𝑑), 𝐻𝑞−𝑟(R𝑑,R𝑑))

is smooth, if and only if, each operator 𝐴𝑛 defined by (4.2), extends to a bounded (𝑛+ 1)-linear
operator in ℒ𝑛+1(𝐻𝑠(R𝑑,R𝑑), 𝐻𝑞−𝑟(R𝑑,R𝑑)).

Therefore, the proof of Theorem 4.1 reduces to prove the following result.

Proposition 4.4. Let 𝑟 ≥ 1, 𝐴 = 𝑎(𝑋,𝐷) ∈ Ψ𝑟(R𝑑,R𝑑) and 𝐴𝑛 be the 𝑛-linear operator defined
inductively by (4.2). Then, each 𝐴𝑛 extends to a bounded multi-linear operator

𝐴𝑛 ∈ ℒ𝑛+1(𝐻𝑞(R𝑑,R𝑑), 𝐻𝑞−𝑟(R𝑑,R𝑑))

for 𝑞 > 1 + 𝑑/2 and 𝑞 ≥ 𝑟.

Before entering the details of the proof, it may be useful to rather think of 𝐴𝑛 as a 𝑛-linear
mapping

𝐻∞(R𝑑,R𝑑) × · · · ×𝐻∞(R𝑑,R𝑑) → ℒ(𝐻∞(R𝑑,R𝑑), 𝐻∞(R𝑑,R𝑑))

and write

𝐴𝑛(𝑢0, 𝑢1, . . . , 𝑢𝑛) = 𝐴𝑛(𝑢1, . . . , 𝑢𝑛)𝑢0.

The recurrence relation (4.2) rewrites then accordingly as:

(4.3) Rec(𝐴𝑛)(𝑢1, . . . , 𝑢𝑛+1) := [∇𝑢𝑛+1 , 𝐴𝑛(𝑢1, . . . , 𝑢𝑛)]

−
𝑛∑︁

𝑘=1

𝐴𝑛(𝑢1, . . . ,∇𝑢𝑛+1𝑢𝑘, . . . , 𝑢𝑛).

Remark 4.5. When 𝑑 = 1 and 𝐴 commutes with 𝐷 := 𝑑/𝑑𝑥, the following nice formula for 𝐴𝑛

was obtained in [19]:

𝐴𝑛(𝑢1, . . . , 𝑢𝑛) = [𝑢1, [𝑢2, [· · · [𝑢𝑛, 𝐷𝑛−1𝐴] · · · ]]]𝐷, 𝑛 ≥ 1 .

It may also be worth to recall the following general rules for commutators

(4.4) [𝐴𝐵,𝐶] = 𝐴[𝐵,𝐶] + [𝐴,𝐶]𝐵 (Leibniz identity),

and

(4.5) [𝐴, [𝐵,𝐶]] + [𝐵, [𝐶,𝐴]] + [𝐶, [𝐴,𝐵]] = 0 (Jacobi identity).

Finally, we will introduce the following notations.
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(1) Given 𝑓1, . . . , 𝑓𝑛 ∈ 𝐻∞(R𝑑,R), the multiplication operator by 𝑓1 · · · 𝑓𝑛 will be denoted
by

𝑀𝑛(𝑓1, . . . , 𝑓𝑛).

(2) Given a linear operator 𝑃 on 𝐻∞(R𝑑,R𝑑) and a multi-index

𝛼 := (𝛼1, . . . , 𝛼𝑑),

we define

ad𝛼
𝐷 𝑃 := ad𝛼1

𝐷1
ad𝛼2

𝐷2
· · · ad𝛼𝑑

𝐷𝑑
𝑃

where

ad
𝛼𝑗

𝐷𝑗
𝑃 := [𝐷𝑗 , [𝐷𝑗 · · · [𝐷𝑗 , 𝑃 ] · · · ]⏟  ⏞  

𝛼𝑗 times

, 𝑗 = 1, 𝑑.

(3) Given a linear operator 𝑃 on 𝐻∞(R𝑑,R𝑑) and 𝑓1, . . . , 𝑓𝑛 ∈ 𝐻∞(R𝑑,R), we define

𝑆𝑛,𝑃 (𝑓1, 𝑓2, . . . , 𝑓𝑛) := [𝑓1, [𝑓2, · · · [𝑓𝑛, 𝑃 ] · · · ]]

for 𝑛 ≥ 1 and 𝑆0,𝑃 := 𝑃 .

Remark 4.6. It should be observed that 𝑀𝑛 and 𝑆𝑛,𝑃 are 𝑛-linear and totally symmetric in
(𝑓1, . . . , 𝑓𝑛). For 𝑆𝑛,𝑃 , this is due to the Jacobi identity (4.5). Besides, any expression like
ad𝐷𝑖1

ad𝐷𝑖2
· · · ad𝐷𝑖𝑛

𝑃 can be rewritten as ad𝛼
𝐷 𝑃 for some multi-index 𝛼, by virtue of the

Jacobi identity.

Since the canonical connection on R𝑑 writes as

∇𝑢 =
𝑑∑︁

𝑗=1

𝑢𝑗𝐷𝑗 ,

where 𝐷𝑗 := ∂/∂𝑥𝑗 , we shall also introduce the following recurrence relation for linear operators

𝑃𝑛(𝑓1, 𝑓2, . . . , 𝑓𝑛) on 𝐻∞(R𝑑,R𝑑), depending linearly on 𝑓1, . . . , 𝑓𝑛 in 𝐻∞(R𝑑,R):

(4.6) Rec𝑗(𝑃𝑛)(𝑓1, . . . , 𝑓𝑛+1) := [𝑓𝑛+1𝐷𝑗 , 𝑃𝑛(𝑓1, . . . , 𝑓𝑛)]

−
𝑛∑︁

𝑘=1

𝑃𝑛(𝑓1, . . . , 𝑓𝑛+1∂𝑗𝑓𝑘, . . . , 𝑓𝑛).

Lemma 4.7. For any 𝑛 ≥ 0 and 𝑃 ∈ ℒ(𝐻∞(R𝑑,R𝑑), 𝐻∞(R𝑑,R𝑑)), we have

Rec𝑗(𝑆𝑛,𝑃 )(𝑓1, . . . , 𝑓𝑛+1) = 𝑀1(𝑓𝑛+1) ∘ 𝑆𝑛,[𝐷𝑗 ,𝑃 ](𝑓1, . . . , 𝑓𝑛)

+ 𝑆𝑛+1,𝑃𝐷𝑗 (𝑓1, . . . , 𝑓𝑛+1) + 𝑆𝑛,𝑃 (𝑓1, . . . 𝑓𝑛) ∘𝑀1(∂𝑗𝑓𝑛+1).

Proof. The proof is based on the following two relations

(4.7) 𝑆𝑛+1,𝑃𝐷𝑗 (𝑓1, . . . , 𝑓𝑛+1) = 𝑆𝑛+1,𝑃 (𝑓1, . . . , 𝑓𝑛+1) ∘𝐷𝑗

−
𝑛+1∑︁
𝑘=1

𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑘, . . . , 𝑓𝑛+1) ∘𝑀1(∂𝑗𝑓𝑘)

and

(4.8) [𝐷𝑗 , 𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛)] = 𝑆𝑛,[𝐷𝑗 ,𝑃 ](𝑓1, . . . , 𝑓𝑛)

+

𝑛∑︁
𝑘=1

𝑆𝑛,𝑃 (𝑓1, . . . , ∂𝑗𝑓𝑘, . . . , 𝑓𝑛),



12 M. BAUER, M. BRUVERIS, E. CISMAS, J. ESCHER, AND B. KOLEV

which proofs are direct by induction, using the Leibniz identity for the first one and the Jacobi
identity for the second one. We have therefore

Rec𝑗(𝑆𝑛,𝑃 )(𝑓1, . . . , 𝑓𝑛+1) = [𝑓𝑛+1𝐷𝑗 , 𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛)]

−
𝑛∑︁

𝑘=1

𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛+1∂𝑗𝑓𝑘, . . . , 𝑓𝑛),

which can be rewritten, using the Leibniz identity, as

𝑀1(𝑓𝑛+1) ∘ [𝐷𝑗 , 𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛)] + [𝑓𝑛+1, 𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛)] ∘𝐷𝑗

−
𝑛∑︁

𝑘=1

𝑀1(𝑓𝑛+1) ∘ 𝑆𝑛,𝑃 (𝑓1, . . . , ∂𝑗𝑓𝑘, . . . , 𝑓𝑛)

−
𝑛∑︁

𝑘=1

𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑘, . . . , 𝑓𝑛+1) ∘𝑀1(∂𝑗𝑓𝑘).

Now, using (4.7) and (4.8), we obtain

𝑀1(𝑓𝑛+1) ∘ 𝑆𝑛,[𝐷𝑗 ,𝑃 ](𝑓1, . . . , 𝑓𝑛) + 𝑆𝑛+1,𝑃𝐷𝑗 (𝑓1, . . . , 𝑓𝑛+1)

+ 𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛) ∘𝑀1(∂𝑗𝑓𝑛+1),

which achieves the proof. �

Corollary 4.8. Let 𝑛 ≥ 1. Then, 𝐴𝑛(𝑢1, . . . , 𝑢𝑛) is a sum of terms of the following two types,

where 𝑓𝑖 stands for some component 𝑢𝑘𝑖𝜎(𝑖) of 𝑢𝜎(𝑖) and 𝜎 is a permutation of {1, . . . , 𝑛}. The

first type (Type I) writes

(4.9) 𝑃 1
𝑛(𝑓1, . . . , 𝑓𝑛) := 𝑀𝑛(𝑓1, . . . , 𝑓𝑛) ∘ ad𝛼

𝐷 𝑃,

where 𝑃 ∈ Ψ𝑟(R𝑑,R𝑑). The second type (Type II) writes

(4.10) 𝑃 2
𝑛(𝑓1, . . . , 𝑓𝑛) := 𝑀𝑚1(𝑓1, . . . , 𝑓𝑚1) ∘ 𝑆𝑚2,𝑃 (𝑓𝑚1+1, . . . , 𝑓𝑚1+𝑚2)

∘𝑀𝑚3(∂𝑝1𝑓𝑚1+𝑚2+1, . . . , ∂𝑝𝑚3
𝑓𝑚1+𝑚2+𝑚3) ∘𝐷𝑖,

where 𝑃 ∈ Ψ𝑟+𝑚2−1(R𝑑,R𝑑), and 𝑚1 +𝑚2 +𝑚3 = 𝑛.

Proof. We will prove the Lemma by induction on 𝑛 ≥ 1. For 𝑛 = 1, we get

𝐴1(𝑢1) =

𝑑∑︁
𝑗=1

[𝑢𝑗1𝐷𝑗 , 𝐴] =

𝑑∑︁
𝑗=1

(︁
𝑢𝑗1[𝐷𝑗 , 𝐴] + [𝑢𝑗1, 𝐴]𝐷𝑗

)︁
so we are done. Suppose now that the result holds for some 𝑛 ≥ 1, so that 𝐴𝑛 is a sum of
terms of type I and II. Then 𝐴𝑛+1 = Rec(𝐴𝑛) is a sum of terms Rec𝑗(𝑃 1

𝑛) and Rec𝑗(𝑃 2
𝑛) for

𝑗 = 1, . . . , 𝑑. Observe, moreover, that if 𝑛 = 𝑝+ 𝑞 and

𝑃𝑛(𝑓1, . . . , 𝑓𝑛) = 𝑄𝑝(𝑓1, . . . , 𝑓𝑝) ∘𝑅𝑞(𝑓𝑝+1, . . . , 𝑓𝑛),

then, due to the Leibniz rule (4.4), we have

(4.11) Rec𝑗(𝑄𝑝 ∘𝑅𝑞) = Rec𝑗(𝑄𝑝) ∘𝑅𝑞 +𝑄𝑝 ∘ Rec𝑗(𝑅𝑞).

Now, a direct computation shows that Rec𝑗(𝑀𝑛) = 0 for all 𝑛 ≥ 1. We get thus

Rec𝑗(𝑃 1
𝑛)(𝑓1, . . . , 𝑓𝑛+1) = 𝑀𝑛(𝑓1, . . . , 𝑓𝑛) ∘ Rec𝑗(ad𝛼

𝐷 𝑃 )(𝑓𝑛+1).

But
Rec𝑗(ad𝛼

𝐷 𝑃 )(𝑓𝑛+1) = 𝑓𝑛+1[𝐷𝑗 , ad𝛼
𝐷 𝑃 ] + [𝑓𝑛+1, ad𝛼

𝐷 𝑃 ]𝐷𝑗 ,

and hence

Rec𝑗(𝑃 1
𝑛)(𝑓1, . . . , 𝑓𝑛+1) = 𝑀𝑛+1(𝑓1, . . . , 𝑓𝑛+1) ∘ ad

(𝛼1,...,𝛼𝑗+1,...,𝛼𝑑)
𝐷 𝑃

+𝑀𝑛(𝑓1, . . . , 𝑓𝑛) ∘ 𝑆1,ad𝛼𝐷 𝑃 (𝑓𝑛+1) ∘𝐷𝑗 ,
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is a sum of operators of type I (4.9) and II (4.10) but of order 𝑛+ 1, because

𝑃 ∈ Ψ𝑟(R𝑑,R𝑑) =⇒ ad𝛼
𝐷 𝑃 ∈ Ψ𝑟(R𝑑,R𝑑),

by Lemma 3.3. Next, Rec𝑗(𝑃 2
𝑛)(𝑓1, . . . , 𝑓𝑛+1) is the sum of two terms. The first one

𝑀𝑚1(𝑓1, . . . , 𝑓𝑚1) ∘ Rec𝑗(𝑆𝑚2,𝑃 )(𝑓𝑚1+1, . . . , 𝑓𝑚1+𝑚2 , 𝑓𝑛+1)

∘𝑀𝑚3(∂𝑝1𝑓𝑚1+𝑚2+1, . . . , ∂𝑝𝑚3
𝑓𝑚1+𝑚2+𝑚3) ∘𝐷𝑖

can be rewritten, due to Lemma 4.7, as

𝑀𝑚1+1(𝑓1, . . . , 𝑓𝑚1 , 𝑓𝑛+1) ∘ 𝑆𝑚2,[𝐷𝑗 ,𝑃 ](𝑓𝑚1+1, . . . , 𝑓𝑚1+𝑚2)

∘𝑀𝑚3(∂𝑝1𝑓𝑚1+𝑚2+1, . . . , ∂𝑝𝑚3
𝑓𝑚1+𝑚2+𝑚3) ∘𝐷𝑖

+𝑀𝑚1(𝑓1, . . . , 𝑓𝑚1) ∘ 𝑆𝑚2+1,𝑃𝐷𝑗 (𝑓𝑚1+1, . . . , 𝑓𝑚1+𝑚2 , 𝑓𝑛+1)

∘𝑀𝑚3(∂𝑝1𝑓𝑚1+𝑚2+1, . . . , ∂𝑝𝑚3
𝑓𝑚1+𝑚2+𝑚3) ∘𝐷𝑖

+𝑀𝑚1(𝑓1, . . . , 𝑓𝑚1) ∘ 𝑆𝑚2,𝑃 (𝑓𝑚1+1, . . . , 𝑓𝑚1+𝑚2)

∘𝑀𝑚3+1(∂𝑝1𝑓𝑚1+𝑚2+1, . . . , ∂𝑝𝑚3
𝑓𝑚1+𝑚2+𝑚3 , ∂𝑗𝑓𝑛+1) ∘𝐷𝑖.

The second one

𝑀𝑚1(𝑓1, . . . , 𝑓𝑚1) ∘ 𝑆𝑚2,𝑃 (𝑓𝑚1+1, . . . , 𝑓𝑚1+𝑚2)

∘𝑀𝑚3(∂𝑝1𝑓𝑚1+𝑚2+1, . . . , ∂𝑝𝑚3
𝑓𝑚1+𝑚2+𝑚3) ∘ Rec𝑗(𝐷𝑖)(𝑓𝑛+1),

recasts as

−𝑀𝑚1(𝑓1, . . . , 𝑓𝑚1) ∘ 𝑆𝑚2,𝑃 (𝑓𝑚1+1, . . . , 𝑓𝑚1+𝑚2)

∘𝑀𝑚3+1(∂𝑝1𝑓𝑚1+𝑚2+1, . . . , ∂𝑝𝑚3
𝑓𝑚1+𝑚2+𝑚3 , ∂𝑖𝑓𝑛+1) ∘𝐷𝑗 ,

since

Rec𝑗(𝐷𝑖)(𝑓𝑛+1) = −𝑀1(∂𝑖𝑓𝑛+1) ∘𝐷𝑗 .

In both cases, these expressions are sums of operators of type I and II but of order 𝑛+1, because

𝑃 ∈ Ψ𝑟+𝑚2−1(R𝑑,R𝑑) =⇒ [𝐷𝑗 , 𝑃 ] ∈ Ψ𝑟+𝑚2−1(R𝑑,R𝑑),

and

𝑃 ∈ Ψ𝑟+𝑚2−1(R𝑑,R𝑑) =⇒ 𝑃𝐷𝑗 ∈ Ψ𝑟+𝑚2(R𝑑,R𝑑),

by Lemma 3.3. This achieves the proof. �

Proof of Proposition 4.4. We have to show that each operator 𝐴𝑛 extends to a bounded operator
in

ℒ𝑛(𝐻𝑞(R𝑑,R𝑑),ℒ(𝐻𝑞(R𝑑,R𝑑), 𝐻𝑞−𝑟(R𝑑,R𝑑))).

By corollary 4.8, this reduces to show that each operator of type I (4.9) or II (4.10) extends to
a bounded operator in

ℒ𝑛(𝐻𝑞(R𝑑,R),ℒ(𝐻𝑞(R𝑑,R𝑑), 𝐻𝑞−𝑟(R𝑑,R𝑑))).

Let 𝑓1, . . . , 𝑓𝑛 ∈ 𝐶∞
𝑐 (R𝑑,R) and 𝑤 ∈ 𝐻∞(R𝑑,R𝑑). For an operator of type I, we get by

Lemma 2.3 ⃦⃦
𝑃 1
𝑛(𝑓1, . . . , 𝑓𝑛)𝑤

⃦⃦
𝐻𝑞−𝑟 .

⃦⃦⃦⃦
⃦

𝑛∏︁
𝑘=1

𝑓𝑘

⃦⃦⃦⃦
⃦
𝐻𝑞

· ‖ad𝛼
𝐷 𝑃𝑤‖𝐻𝑞−𝑟

. ‖𝑓1‖𝐻𝑞 · · · ‖𝑓𝑛‖𝐻𝑞 · ‖𝑤‖𝐻𝑞 ,

since ad𝛼
𝐷 𝑃 ∈ Ψ𝑟(R𝑑,R𝑑) and 𝐻𝑞(R𝑑,R) is a multiplicative algebra (𝑞 > 1 + 𝑑/2). Consider

now an operator of type II (4.10) and set

𝑊 := 𝑀𝑚3(∂𝑝1𝑓𝑚1+𝑚2+1, . . . , ∂𝑝𝑚3
𝑓𝑚1+𝑚2+𝑚3)𝐷𝑖𝑤,
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so that

‖𝑊‖𝐻𝑞−1 .

(︃
𝑚3∏︁
𝑘=1

‖𝑓𝑚1+𝑚2+𝑘‖𝐻𝑞

)︃
· ‖𝑤‖𝐻𝑞 ,

because 𝑞 > 1 + 𝑑/2 and 𝐻𝑞−1(R𝑑,R) is a multiplicative algebra. We get thus, by Lemma 2.3
and Theorem A.1⃦⃦

𝑃 2
𝑛(𝑓1, . . . , 𝑓𝑛)𝑤

⃦⃦
𝐻𝑞−𝑟 .

(︃
𝑚1∏︁
𝑘=1

‖𝑓𝑘‖𝐻𝑞

)︃
· ‖𝑆𝑚2,𝑃 (𝑓𝑚1+1, . . . , 𝑓𝑚1+𝑚2)𝑊‖𝐻𝑞−𝑟

.

(︃
𝑚1+𝑚2∏︁
𝑘=1

‖𝑓𝑘‖𝐻𝑞

)︃
· ‖𝑊‖𝐻𝑞−1

.

(︃
𝑛∏︁

𝑘=1

‖𝑓𝑘‖𝐻𝑞

)︃
· ‖𝑤‖𝐻𝑞 ,

which achieves the proof, since 𝐶∞
𝑐 (R𝑑,R) is dense in 𝐻𝑞(R𝑑,R). �

4.2. Conjugates of a pseudo-differential operator acting on functions. In this part, we
aim to use the previously developed theory to prove the following theorem concerning the con-
jugation of a pseudo-differential operator 𝐴 acting on functions defined on a compact manifold
𝑀 , by a diffeomorphism of 𝑀 .

Theorem 4.9. Let 𝐴 be a pseudo-differential operator of class Ψ𝑟(𝑀) with 𝑟 ≥ 1. Then the
map

𝒟𝑞(𝑀) → 𝐿(𝐻𝑞(𝑀), 𝐻𝑞−𝑟(𝑀)) , 𝜙 ↦→ 𝐴𝜙

is smooth for 𝑞 ≥ 𝑟 and 𝑞 > 𝑑/2 + 1.

To prove this result we pursue the following strategy. We will use Whitney’s embedding theo-
rem to construct an embedding 𝜄𝑀 : 𝑀 → R𝑑0 for 𝑑0 large enough. We will use this embedding
to extend the pseudo-differential operator and the involved functions to the embedding space
R𝑑0 and thus reduce the result to the situation of the previous section. Our construction will
be based on extending all local representatives to pseudo-differential operators on R𝑑0 . In the
second step, we will then glue these operators together to obtain a pseudo-differential operator
on R𝑑0 which is an extension of our operator on 𝑀 . Here, by extension, we mean an operator
that satisfies an equation similar to (4.12) below. Therefore, we will consider first the case where
R𝑑 ⊂ R𝑑0 , with 𝑑 < 𝑑0 and R𝑑 is embedded in R𝑑0 as the subspace R𝑑 × {0}.

Lemma 4.10. Let 𝐴 be a pseudo-differential operator of class Ψ𝑟(R𝑑) with symbol 𝑎. Then,
there exists a pseudo-differential operator 𝐵 of class Ψ𝑟(R𝑑0) such that:

(4.12) 𝜄*R𝑑𝐵 = 𝐴𝜄*R𝑑 ,

where 𝜄R𝑑 : R𝑑 → R𝑑0 is the canonical embedding.

Proof. Denote the coordinates in R𝑑0 by 𝑥 = (𝑥′, 𝑥′′) ∈ R𝑑 × R𝑑0−𝑑. Let 𝑎(𝑥′, 𝜉′) be the symbol
of 𝐴 and define the symbol

𝑏(𝑥, 𝜉) = 𝑏(𝑥′, 𝑥′′, 𝜉′, 𝜉′′) := 𝑎(𝑥′, 𝜉′) .

It is clear that 𝑏 ∈ S𝑟(R𝑑0 × R𝑑0). Let 𝐵 = Op(𝑏).
To verify that 𝜄*R𝑑𝐵 = 𝐴𝜄*R𝑑 we start with the identity:

𝑓(·, 𝑥′′)(𝜉′) =

∫︁
R𝑑0−𝑑

𝑒2𝜋𝑖𝑥
′′·𝜉′′ ̂︀𝑓(𝜉′, 𝜉′′) 𝑑𝜉′′ ,
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and calculate:

𝐵𝑓(𝑥′, 𝑥′′) =

∫︁
R𝑑0

𝑒2𝜋𝑖𝑥·𝜉𝑎(𝑥′, 𝜉′) ̂︀𝑓(𝜉) 𝑑𝜉

=

∫︁
R𝑑

𝑒2𝜋𝑖𝑥
′·𝜉′𝑎(𝑥′, 𝜉′)

∫︁
R𝑑0−𝑑

𝑒2𝜋𝑖𝑥
′′·𝜉′′ ̂︀𝑓(𝜉′, 𝜉′′) 𝑑𝜉′′ 𝑑𝜉′

=

∫︁
R𝑑

𝑒2𝜋𝑖𝑥
′·𝜉′𝑎(𝑥′, 𝜉′)𝑓(·, 𝑥′′)(𝜉′) 𝑑𝜉′

= 𝐴
(︀
𝑓(·, 𝑥′′)

)︀
(𝑥′) .

We see thus that (︀
𝜄*R𝑑𝐵𝑓

)︀
(𝑥′) = (𝐵𝑓) (𝑥′, 0) = 𝐴 (𝑓(·, 0)) (𝑥′) =

(︀
𝐴𝜄*R𝑑𝑓

)︀
(𝑥′) ,

which achieves the proof. �

In the following theorem, we prove the analogue of the above lemma for the case of a compact
manifold 𝑀 .

Theorem 4.11. Let 𝑀 be a compact submanifold of R𝑑0 and 𝐴 a pseudo-differential operator
on 𝑀 of class Ψ𝑟(𝑀). There exists a pseudo-differential operator 𝐵 of class Ψ𝑟(R𝑑0), with
compactly supported symbol, in the 𝑥-variable, such that

𝜄*𝑀𝐵 = 𝐴𝜄*𝑀 ,

where 𝜄𝑀 : 𝑀 → R𝑑0 is the canonical embedding.

Proof. By the 2-cluster property [34], we can find a partition of unity {Φ′
𝑗}𝑗=1,𝐽0

associated with

a cover of 𝑀 , and a system of coordinate mappings {𝜅′𝑖 : 𝒰 ′
𝑖 → 𝑈 ′

𝑖}𝑖=1,𝐽1
such that every two

functions Φ′
𝑙,Φ

′
𝑚 have their support in some 𝒰 ′

𝑖 , which will be denoted here by 𝒰 ′
𝑙𝑚. The sets

𝒰 ′
𝑙𝑚 may be identical for some different pairs. Now decompose the operator 𝐴 as:

𝐴 =

𝐽0∑︁
𝑙,𝑚=1

Φ′
𝑙𝐴Φ′

𝑚 ,

which is equivalent with:

𝐴 =

𝐽0∑︁
𝑖,𝑗=1

𝜅′𝑙𝑚
*
(𝜙′

𝑙𝐴𝑙𝑚𝜙
′
𝑚) ,

where 𝐴𝑙𝑚 ∈ Ψ𝑟(R𝑑) exist according to Definition 3.9. Because 𝑀 is an embedded submanifold
there exist {𝜅𝑖 : 𝒰𝑖 → 𝑈𝑖}𝑖=1,𝐽1

on R𝑑0 such that 𝜅′𝑖 = 𝜅𝑖|𝑀 and 𝒰 ′
𝑖 = 𝒰𝑖 ∩𝑀 . Without loss of

generality, we can assume that the partition of unity {Φ′
𝑗}𝑗=1,𝐽0

is constructed by restricting a

portion of unity of the ambient space R𝑑0 to the embedded manifold 𝑀 . Thus we can extend
every Φ′

𝑗 trivially outside 𝑀 to Φ𝑗 and define the operator:

𝐵 :=

𝐽0∑︁
𝑙,𝑚=1

𝜅𝑙𝑚
*(𝜙𝑙𝐵𝑙𝑚𝜙𝑚) ,

where 𝐵𝑙𝑚 is obtained according to Lemma 4.10, and therefore

𝜄*R𝑑𝐵𝑙𝑚 = 𝐴𝑙𝑚𝜄
*
R𝑑 .

Moreover, this construction defines a pseudo-differential operator in the right class and 𝐵 is a
sum of pseudo-differential operators with x-compactly supported symbols. Further we make use
of the identities 𝜄*R𝑑(𝜙𝑓) = 𝜙

⃒⃒
R𝑑𝜄

*
R𝑑𝑓 , and 𝜄*𝑀𝑓 ∘ 𝜅′−1 = 𝜄*R𝑑

[︀
𝑓 ∘ 𝜅−1

]︀
, when supp 𝑓 ⊂ 𝑈 and

𝜅 : 𝑈 → 𝑉 is a diffeomorphism, in order to obtain:

𝜄*𝑀 (𝐵𝑓) = 𝐴(𝜄*𝑀𝑓), 𝑓 ∈ 𝐶∞
𝑐 (R𝑑0),

since:
𝜄*R𝑑

[︀
𝜙 · 𝑓 ∘ 𝜅−1

]︀
= 𝜙′ · 𝜄*𝑀𝑓 ∘ 𝜅′−1

,
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when 𝑓 ∈ 𝐶∞
𝑐 (R𝑑0). �

Remark 4.12. Here 𝜄*𝑀 denotes the trace operator, which is defined for continuous functions by
restriction of the function to the submanifolds. Due to the Sobolev embedding theorem and
our assumptions on 𝑞0, we always work with continuous functions and thus this operator is
well-defined and extends as a bounded operator to

𝜄*𝑀 : 𝐻𝑞0(R𝑑0) → 𝐻𝑞(𝑀) ,

where 𝑞0 = 𝑞 + (𝑑0 − 𝑑)/2.

It remains to extend the involved functions and diffeomorphisms. Therefore we will make use
of the following extension operator, whose construction can be found in [33, Theorem 4.10].

Lemma 4.13. Let𝑀 ⊂ R𝑑0 be a compact submanifold of dimension 𝑑. There exists a continuous
linear map

𝐸 : 𝐶∞(𝑀) → 𝐶∞
𝑐 (R𝑑0) ,

satisfying 𝜄*𝑀 ∘ 𝐸 = id𝐶∞(𝑀), such that for all 𝑞 ≥ 0 and 𝑞0 = 𝑞 + (𝑑0 − 𝑑)/2, 𝐸 extends as a
bounded operator to

𝐸 : 𝐻𝑞(𝑀) → 𝐻𝑞0(R𝑑0) .

Corollary 4.14. Given 𝑞 > 𝑑/2 + 1 and 𝑞0 = 𝑞 + (𝑑0 − 𝑑)/2, there exists 𝒰 ⊆ 𝒟𝑞(𝑀), an open
neighborhood of the identity such that the map

ℰ : 𝒰 → 𝒟𝑞0(R𝑑0) ℰ(𝜙) = 𝐸(𝜄𝑀 ∘ 𝜙− 𝜄𝑀 ) + idR𝑑0 ,

is well-defined, smooth and satisfies ℰ(id𝑀 ) = idR𝑑0 as well as

𝜄*𝑀 ∘ ℰ(𝜙) = ℰ(𝜙) ∘ 𝜄𝑀 = 𝜄𝑀 ∘ 𝜙 .
Proof. We consider 𝒟𝑞(𝑀) as a subset of 𝐻𝑞(𝑀,R𝑑0) and apply the extension operator 𝐸
component-wise. The map ℰ is well-defined and continuous into 𝐻𝑞0(R𝑑0 ,R𝑑0) and satisfies
ℰ(id𝑀 ) = idR𝑑0 . Because 𝒟𝑠0(R𝑑0) is open in 𝐻𝑞0(R𝑑0 ,R𝑑0), we can find a small neighborhood
𝒰 of id𝑀 such that ℰ maps 𝒰 into 𝒟𝑞0(R𝑑0). The required identity for ℰ follows from properties
of 𝐸 as follows,

ℰ(𝜙) ∘ 𝜄𝑀 = 𝐸(𝜄𝑀 ∘ 𝜙− 𝜄𝑀 ) ∘ 𝜄𝑀 + idR𝑑0 ∘ 𝜄𝑀
= 𝜄𝑀 ∘ 𝜙− 𝜄𝑀 + 𝜄𝑀 = 𝜄𝑀 ∘ 𝜙 . �

Lemma 4.15. Let 𝐴 be a pseudo-differential operator of class Ψ𝑟(𝑀) and 𝐵 a pseudo-differential
operator of Hörmander’s class Ψ𝑟(R𝑑0), such that 𝜄*𝑀𝐵 = 𝐴 𝜄*𝑀 . Let ℰ : 𝒰 → 𝒟𝑞0(R𝑑0) be as
above. Then for each 𝜙 ∈ 𝒰 ,

𝐴𝜙 = 𝜄*𝑀𝐵ℰ(𝜙)𝐸 .

Proof. We will use the following identities

𝜄*𝑀𝑅ℰ(𝜙) = 𝑅𝜙𝜄
*
𝑀 , 𝜄*𝑀𝑅ℰ(𝜙)−1 = 𝑅𝜙−1𝜄*𝑀 .

To check the first identity, take 𝑓 ∈ 𝐻𝑞0(R𝑑0). Then

𝜄*𝑀𝑅ℰ(𝜙)𝑓 = 𝑓 ∘ ℰ(𝜙) ∘ 𝜄𝑀 = 𝑓 ∘ 𝜄𝑀 ∘ 𝜙 = 𝑅𝜙𝜄
*
𝑀𝑓 .

The second identity follows from the first one by applying 𝑅𝜙−1 from the left and 𝑅ℰ(𝜙)−1 from
the right. The lemma now follows from

𝜄*𝑀𝐵ℰ(𝜙)𝐸 = 𝜄*𝑀𝑅ℰ(𝜙)𝐵𝑅ℰ(𝜙)−1𝐸

= 𝑅𝜙𝜄
*
𝑀𝐵𝑅ℰ(𝜙)−1𝐸

= 𝑅𝜙𝐴𝜄
*
𝑀𝑅ℰ(𝜙)−1𝐸

= 𝑅𝜙𝐴𝑅𝜙−1𝜄*𝑀𝐸 = 𝐴𝜙 ,

since 𝜄*𝑀 ∘ 𝐸 = id𝐻𝑞(𝑀). �

Proof of Theorem 4.9. Now the proof of Theorem 4.9 follows directly from Theorem 4.1 and
Lemma 4.15 �
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4.3. Conjugates of a pseudo-differential operator on a vector bundle. In the previous
section, we have shown that for pseudo-differential operators acting on functions conjugation is
smooth. By allowing matrix valued symbols this result generalizes directly to pseudo-differential
operators acting on trivial bundles, i.e., the map{︃

𝒟𝑞(𝑀) → ℒ(𝐻𝑞(𝑀,R𝑑), 𝐻𝑞−𝑟(𝑀,R𝑑))

𝜙 ↦→ 𝐴𝜙.

is smooth. For a pseudo-differential operator acting on mappings with values in a general vector
bundle 𝐸 over a compact manifold it is not straightforward to define the analogous statement.
Therefore, we first introduce spaces of 𝐻𝑠 sections over 𝒟𝑞(𝑀), see also [53]:

𝐻𝑠
𝒟𝑞(𝑀,𝑇𝑀) = {𝑣 ∈ 𝐻𝑠(𝑀,𝑇𝑀); such that 𝜋 ∘ 𝑣 = 𝜙 ∈ 𝒟𝑞(𝑀)} .

This allows us to consider the conjugation of an operator 𝐴 acting on functions with values
in the vector bundle 𝑇𝑀 :

𝐴 :

{︃
𝒟𝑞 → ℒ

(︁
𝐻𝑞

𝒟𝑞(𝑀,𝑇𝑀), 𝐻𝑞−𝑟
𝒟𝑞 (𝑀,𝑇𝑀)

)︁
𝜙 ↦→ 𝐴𝜙

We have the following result concerning the smoothness of 𝐴.

Theorem 4.16. Let 𝐴 be a pseudo-differential operator of class Ψ𝑟(𝑀,𝑇𝑀) with 𝑟 ≥ 1. Then

𝐴 is a smooth section of the vector bundle ℒ
(︁
𝐻𝑞

𝒟𝑞(𝑀,𝑇𝑀), 𝐻𝑞−𝑟
𝒟𝑞 (𝑀,𝑇𝑀)

)︁
, for any 𝑞 > 𝑑

2 + 1

with 𝑞 − 𝑟 ≥ 0.

Proof. Note first the following general observation: given two vector bundles 𝐸 and 𝐹 over a
manifold 𝑀 , we have an isomorphism between sections of ℒ(𝐸,𝐹 ) and bundle mappings between
𝐸 and 𝐹 . To prove this Lemma we will embed the manifold 𝑀 into R𝑑0 , which will allow us to
use the result from Section 4.2 for pseudo-differential operators acting on vector valued functions.
We can then choose a vector bundle 𝑁𝑀 over 𝑀 such that 𝑇𝑀 ⊕𝑁𝑀 ∼= 𝑇R𝑑0 |𝑀 . Extend the
operator 𝐴 to an operator 𝐵 acting on smooth sections of the trivial vector bundle 𝑇R𝑑0 |𝑀 :

𝐵 :

{︃
Γ(𝑇R𝑑0 |𝑀 ) → Γ(𝑇R𝑑0 |𝑀 )

(𝑣1 ⊕ 𝑣2) ↦→ (𝐴⊕ Θ)(𝑣1 ⊕ 𝑣2) := 𝐴𝑣1 ⊕ 𝜃
(4.13)

where Θ associates to every 𝑣2 ∈ Γ(𝑁𝑀) the zero section 𝜃 ∈ Γ(𝑁𝑀).
It is easy to see that 𝐵 is also a pseudo-differential operator of class Ψ𝑟(𝑇R𝑑0 |𝑀 ). Consider

an open set 𝒰 on 𝑀 to which both vector bundles 𝑇𝑀 , 𝑁𝑀 locally trivialize. Let Φ𝒰 :
𝑁𝒰 → 𝒰 × R𝑑0−𝑑 be a trivialization of 𝑁𝑀 , and 𝜅 : 𝒰 → 𝑈 , a coordinate mapping, then
Ψ𝒰 : 𝑇R𝑑0 |𝒰 → 𝒰 × R𝑑0 is a trivialization of 𝑇R𝑑0 |𝑀 :

Ψ𝒰 (𝑣1(𝑥) ⊕ 𝑣2(𝑥)) := (𝑥, 𝑇𝑥𝜅(𝑣1(𝑥)) ⊕ Φ𝒰 (𝑥)(𝑣2(𝑥))) , 𝑥 ∈ 𝒰 .
Similar to (3.1) and (3.2) the push-forward and the pullback can be defined:

𝜒*(𝑢1 ⊕ 𝑢2) =
(︀
𝜒𝑇𝑀

)︀*
(𝑢1) ⊕

(︀
𝜒𝑁𝑀

)︀*
(𝑢2)

𝜒*(𝑣1 ⊕ 𝑣2) =
(︀
𝜒𝑇𝑀

)︀
* (𝑣1) ⊕

(︀
𝜒𝑁𝑀

)︀
* (𝑣2)

We will use them to pullback operators like in Definition 3.11. For two arbitrary functions Φ,
Ψ in 𝐶∞

𝑐 (𝒰), we get the identity

Φ𝐵Ψ = 𝜒*
(︂
𝜙 (𝐴U ⊕ ΘU)𝜓

)︂
,

and thus 𝐵 ∈ Ψ𝑟(𝑇R𝑑0 |𝑀 ). Associated with 𝐵 we have the induced mapping:

𝐵̃ :

{︃
𝒟𝑞 → ℒ

(︁
𝐻𝑞

𝒟𝑞

(︁
𝑀,𝑇R𝑑0 |𝑀

)︁
, 𝐻𝑞−𝑟

𝒟𝑞

(︁
𝑀,𝑇R𝑑0 |𝑀

)︁)︁
𝜙 ↦→ 𝐵𝜙
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Now, let us introduce the mappings I and Π, defined by

I : 𝐻𝑞
𝒟𝑞(𝑀,𝑇𝑀) → 𝐻𝑞

𝒟𝑞(𝑀,𝑇R𝑑0 |𝑀 ), I(𝑣) := 𝑇𝜄 ∘ 𝑣.

where 𝑇𝜄 is the tangent map of the embedding 𝜄 : 𝑀 → R𝑑0 , and

Π : 𝐻𝑞−𝑟
𝒟𝑞 (𝑀,𝑇R𝑑0 |𝑀 ) → 𝐻𝑞−𝑟

𝒟𝑞 (𝑀,𝑇𝑀), Π(𝑣) := 𝑝 ∘ 𝑣,

where 𝑝 : 𝑇R𝑑0 |𝑀 → 𝑇𝑀 is the projection onto the first factor of the Whitney sum 𝑇𝑀 ⊕𝑁𝑀 .

The smoothness of the mapping 𝐵̃ follows from Theorem 4.9. The smoothness of I and Π is
a consequence of Lemma A.5 in [8]. Since the identities

I(𝑣 ∘ 𝜙−1) = (I𝑣) ∘ 𝜙−1 and Π(𝑤 ∘ 𝜙) = (Π𝑤) ∘ 𝜙

hold for all 𝑣 ∈ 𝐻𝑞
𝒟𝑞(𝑀,𝑇𝑀), 𝑤 ∈ 𝐻𝑞−𝑟(𝑀,𝑇R𝑑0 |𝑀 ), and 𝜙 ∈ 𝒟𝑞(𝑀) we have

Π𝜙𝐵̃I𝜙 = 𝐴.

Thus, altogether we have proven the smoothness of the section 𝐴. �

5. Smoothness of the metric and the spray on 𝒟𝑞(𝑀)

In this Section we will study the smoothness of the extended metric and spray on the Hilbert
manifold 𝒟𝑞(𝑀).

5.1. Smoothness of the extended metric. Let us first recall that a Riemannian metric 𝐺
on 𝒟𝑞(𝑀) is a smooth, symmetric, positive definite, covariant 2-tensor field on 𝒟𝑞(𝑀), i.e., for
each 𝜙 we have a symmetric, positive definite, bounded, bilinear form 𝐺𝜙 on 𝑇𝜙𝒟𝑞(𝑀) and, in
any local chart 𝑈 , the mapping

(5.1) 𝜙 ↦→ 𝐺𝜙, 𝑈 → ℒ2
Sym(𝐸,R)

is smooth. Here 𝐸 is a local trivialization of the tangent bundle of 𝒟𝑞(𝑀) over 𝑈 . We can then
also consider the bounded linear operator

(5.2) 𝐺̃𝜙 : 𝑇𝜙𝒟𝑞(𝑀) → 𝑇 *
𝜙𝒟𝑞(𝑀),

called the flat map, which is defined by 𝐺̃𝜙(𝑣) := 𝐺𝜙(𝑣, ·). The metric is called a strong Rie-

mannian metric if 𝐺̃𝜙 is a topological linear isomorphism for every 𝜙 ∈ 𝒟𝑞(𝑀), whereas it is
called a weak Riemannian metric if it is only injective for some 𝜙 ∈ 𝒟𝑞(𝑀).

Theorem 5.1. Let 𝐴 be a 𝐿2-symmetric, positive definite pseudo-differential operator of class
Ψ2𝑠(𝑀,𝑇𝑀) where 𝑠 ≥ 1

2 and let 𝑞 > 𝑑
2 + 1.

(1) If 𝑞 ≥ 2𝑠, then, the right-invariant, weak Riemannian metric

𝐺𝜙(𝑣1, 𝑣2) =

∫︁
𝑀

(𝐴𝜙𝑣1 · 𝑣2)𝜙*𝑑𝜇 , ∀𝑣1, 𝑣2 ∈ 𝑇𝜙Diff(𝑀)

defined on Diff∞(𝑀), extends to a smooth, weak Riemannian metric on the Banach
manifold 𝒟𝑞(𝑀).

(2) If 𝑞 = 𝑠 and 𝐴 = 𝐵2, where 𝐵 is a 𝐿2-symmetric, positive definite pseudo-differential
operator of class Ψ𝑠(𝑀,𝑇𝑀), then, the right-invariant, weak Riemannian metric defined
on Diff∞(𝑀) extends to a smooth, strong Riemannian metric on the Banach manifold
𝒟𝑞(𝑀).

Remark 5.2. The inertia operator of the fractional order Sobolev metric 𝐴 = (1 + ∆)𝑠 satisfies
the assumptions of the above theorem for 𝑠 ≥ 1/2.

We will now give the proof of Theorem 5.1.
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Proof of Theorem 5.1. Let 𝑟 = 2𝑠 ≥ 1. To prove that 𝐺 extends to a smooth Riemannian
metric on 𝒟𝑞(𝑀) it remains to show that 𝐺 depends smoothly on the foot point 𝜙. Using the
assumptions of item (1) and Theorem 4.16 it follows that the mapping

(5.3)

{︃
𝑇𝒟𝑞(𝑀) ×𝒟𝑞(𝑀) 𝑇𝒟𝑞(𝑀) → 𝐻𝑞−𝑟(𝑀,R)

(𝑣, 𝑤) ↦→ 𝐴𝜙(𝑣) · 𝑤.

is smooth. Here we used that

(5.4) (𝑣, 𝑤) ↦→ 𝑣 · 𝑤, 𝐻𝑞−𝑟(𝑀,𝑇𝑀) ×𝐻𝑞(𝑀,𝑇𝑀) → 𝐻𝑞−𝑟(𝑀,R)

is smooth for 𝑞 > 𝑑/2+1 and 𝑞 ≥ 𝑟. Using that the Radon–Nikodym derivative 𝜙*𝜇
𝜇 ∈ 𝐻𝑞−1(𝑀)

– since 𝜙 ∈ 𝒟𝑞(𝑀) the result follows by the Sobolev multiplication Lemma 2.3.
To prove item (2) we rewrite the metric as

𝐺𝜙(𝑣1, 𝑣2) =

∫︁
𝑀

(𝐴𝜙𝑣1 · 𝑣2)𝜙*𝑑𝜇

=

∫︁
𝑀

(︀
(𝐵𝜙)2𝑣1 · 𝑣2

)︀
𝜙*𝑑𝜇 =

∫︁
𝑀

(𝐵𝜙𝑣1 ·𝐵𝜙𝑣2)𝜙
*𝑑𝜇.

Using that

(5.5) (𝑣, 𝑤) ↦→ 𝑣 · 𝑤, 𝐿2(𝑀,𝑇𝑀) × 𝐿2(𝑀,𝑇𝑀) → 𝐿1(𝑀,R)

is smooth, the smoothness of the metric follows similar as for item (1). �

5.2. Smoothness of the extended spray. We will now prove smoothness of the extended
spray on 𝑇𝒟𝑞(𝑀), when the inertia operator 𝐴 is in the class ℰ2𝑠(𝑀,𝑇𝑀), as defined in 3.7.

Theorem 5.3. Let 𝑠 ≥ 1
2 and 𝑞 > 1 + 𝑑/2, with 𝑞 ≥ 2𝑠. Let 𝐴 be a pseudo-differential operator

of class ℰ2𝑠(𝑀,𝑇𝑀). Then the geodesic spray of the extended metric (1.1) on 𝒟𝑞(𝑀) is a
smooth vector field on 𝑇𝒟𝑞(𝑀).

Proof. Let 𝑟 = 2𝑠 ≥ 1. The proof below is a modified version of the arguments used in [5].
The derivation of the spray in the case of a compact manifold was detailed in [41, Section 3.1],
see also [47]. When 𝒟𝑞(𝑀) is not parallelizable, a few explanations are required first. In that
case, we need to introduce first an auxiliary connection on 𝑇Diff(𝑀), which is induced by the
Levi-Civita connection ∇𝑔 on 𝑀 and was first considered in [31] and then in [15] (see also [48,
Section 3]). We shall denote this covariant derivative by ∇. The remarkable observation is that
if 𝜙(𝑡) is a path on Diff(𝑀) and 𝑣(𝑡) is a vector field on Diff(𝑀) defined along the path 𝜙(𝑡),
we have

(5.6) (∇∂𝑡𝑣)(𝑡, 𝑥) = ∇𝑔
𝜙𝑡(𝑡,𝑥)

𝑣(·, 𝑥).

Moreover, one can recast the Euler-Arnold equation (1.3) in the form

(5.7) ∇∂𝑡𝜙̇ = 𝑆𝜙(𝜙̇) = 𝑅𝜙 ∘ 𝑆 ∘𝑅𝜙−1(𝜙̇),

where

𝑆(𝑢) = 𝐴−1
{︀

[𝐴,∇𝑢]𝑢− (∇𝑢)𝑡𝐴𝑢− (div 𝑢)𝐴𝑢
}︀
, 𝑢 ∈ Vect(𝑀).

Note, that this formula requires the invertibility of the operator 𝐴, which is guaranteed due
to the ellipticity and positivity assumptions on the class of operators. Let us now identify the
subbundle of 2-velocities

𝑇 2𝒟𝑞(𝑀) = {𝜉 ∈ 𝑇𝑇𝒟𝑞(𝑀) : 𝜋̄𝑇𝑀 (𝜉) = 𝑇 𝜋̄𝑀 (𝜉)}

with the Whitney sum 𝑇𝒟𝑞(𝑀) ⊕ 𝑇𝒟𝑞(𝑀) via (𝜙, 𝜙̇, 𝜙) → (𝜙̇,∇𝜙̇𝜙̇), as in [48]. Equation (5.7)
corresponds under this identification to the spray equation and the geodesic spray can be now
interpreted as a bundle map

𝑣 → (𝑣, 𝑆𝜙(𝑣)), 𝑇𝒟𝑞(𝑀) → 𝑇𝒟𝑞(𝑀) ⊕ 𝑇𝒟𝑞(𝑀).



20 M. BAUER, M. BRUVERIS, E. CISMAS, J. ESCHER, AND B. KOLEV

In this way we can argue, in an elegant manner, the smoothness of the extended spray by
investigating the three summands in 𝑆 separately. The smoothness of the bundle map

𝐴 : 𝑣 → 𝐴𝜙(𝑣), 𝐻𝑞
𝒟𝑞(𝑀,𝑇𝑀) → 𝐻𝑞−𝑟

𝒟𝑞 (𝑀,𝑇𝑀).

for 𝑞 > 𝑑
2 + 1 and 𝑠 ≥ 𝑟 follows from Theorem 4.16. The smoothness of

𝐴−1 : 𝑣 ↦→ 𝐴−1
𝜙 (𝑣), 𝐻𝑞−𝑟

𝒟𝑞 (𝑀,𝑇𝑀) → 𝑇𝒟𝑞(𝑀)

follows from the same arguments as in [5]. The smoothness of the mappings

𝑣 ↦→ 𝑄𝑘
𝜙(𝑣) =

(︁
𝑅𝜙 ∘𝑄𝑘 ∘𝑅𝜙−1

)︁
(𝑣), 𝑘 = 2, 3,

where
𝑄2(𝑢) := (∇𝑢)𝑡𝐴𝑢, and 𝑄3(𝑢) := (div 𝑢)𝐴𝑢

when 𝑢 ∈ Vect𝑞(𝑀), follows from the same line of reasoning as in [5, 41] or [23]. It remains
to show the smoothness of 𝑣 ↦→ 𝑄1

𝜙(𝑣), where 𝑄1(𝑢) := [∇𝑢, 𝐴]𝑢. Therefore, we note that the

covariant derivative ∇ extends to a smooth covariant derivative ̃︀∇ on the vector bundle

ℒ(𝐻𝑞
𝒟𝑞(𝑀), 𝐻

𝑞−𝑟
𝒟𝑞(𝑀)),

see [8]. This allows us to identify the term 𝑄1 as the first derivative of 𝐴 since we have

(5.8) (̃︀∇𝑣𝐴)𝑣 = ∇𝑣(𝐴𝑣) −𝐴(∇𝑣𝑣) = 𝑄1
𝜙(𝑣).

Thus the smoothness of 𝑄1
𝜙(𝑣) follows from the smoothness of 𝐴, which concludes the proof. �

Remark 5.4. Note, that for strong Riemannian metrics the smoothness of the spray follows
automatically, i.e., for metrics that satisfy the assumptions of item (2) in Theorem 5.1, we
obtain the smoothness of the spray on 𝒟𝑞(𝑀) for 𝑞 = 𝑠. We will later use this to obtain a global
existence result.

6. Local and global well-posedness of the EPDiff equation

In this section we will prove our main theorem concerning local and global well-posedness
properties of the geodesic equation.

6.1. Local and global well-posedness in the Sobolev category. We will first formulate
the result in the Sobolev category and will later see, that many of the properties continue to
hold in the smooth category.

Theorem 6.1. Let 𝑠 ≥ 1
2 and 𝑞 > 1 + 𝑑/2 with 𝑞 ≥ 2𝑠. Let 𝐴 be a pseudo-differential operator

in the class ℰ2𝑠(𝑀,𝑇𝑀), defined on the tangent bundle 𝑇𝑀 of a compact manifold 𝑀 and let
𝐺 be the right invariant metric induced by 𝐴. We have:

(1) The geodesic equations of the metric 𝐺 on 𝒟𝑞(𝑀) are locally well-posed, i.e., given any
𝑣0 ∈ 𝑇𝒟𝑞(𝑀), there exists a unique non-extendable geodesic

𝑣 ∈ 𝐶∞(𝐽, 𝑇𝒟𝑞(𝑀))

defined on some open interval 𝐽 , which contains 0 and such that 𝑣(0) = 𝑣0.
(2) The corresponding Euler-Arnold equation has, for any initial data 𝑢0 ∈ Vect𝑞(𝑀), a

unique non-extendable smooth solution

𝑢 ∈ 𝐶0(𝐽,Vect𝑞(𝑀)) ∩ 𝐶1(𝐽,Vect𝑞−1(𝑀))

defined on 𝐽 .

Proof. (1) follows directly from the Picard Lindelöf theorem (or Cauchy-Lipschitz theorem) on
Banach manifolds, using that the geodesic spray is a smooth vector field on 𝑇𝒟𝑞(𝑀) as shown
in Theorem 5.3.

To prove (2), let 𝑢0 ∈ Vect𝑞(𝑀). Then by (1), there exists a curve

𝑣 ∈ 𝐶∞(𝐽, 𝑇𝒟𝑞(𝑀))
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defined on some maximal time interval 𝐽 which contains 0 and such that 𝑣(0) = 𝑢0. Consider
now the Eulerian velocity

𝑢(𝑡) = 𝑣(𝑡) ∘ 𝜙(𝑡)−1

where 𝜋 : 𝑇𝒟𝑞(𝑀) → 𝒟𝑞(𝑀) is the canonical projection and 𝜙(𝑡) = 𝜋(𝑣(𝑡)). Note that

𝑢 ∈ 𝐶0(𝐽,Vect𝑞(𝑀)),

because the mapping

(𝜙, 𝑣) ↦→ 𝑣 ∘ 𝜙, 𝒟𝑞(𝑀) × 𝑇𝒟𝑞(𝑀) → 𝑇𝒟𝑞(𝑀)

and the inversion

𝜙 ↦→ 𝜙−1, 𝒟𝑞(𝑀) → 𝒟𝑞(𝑀)

are continuous, see [37, Theorem 1.2]. Moreover, the mappings

(𝜙, 𝑣) ↦→ 𝑣 ∘ 𝜙, 𝒟𝑞−1(𝑀) × 𝑇𝒟𝑞(𝑀) → 𝑇𝒟𝑞−1(𝑀)

and

𝜙 ↦→ 𝜙−1, 𝒟𝑞(𝑀) → 𝒟𝑞−1(𝑀)

are 𝐶1, see [37, Theorem 1.2]. �

The right invariance of the metric even allows us to obtain global well-posedness of the geodesic
equation and completeness of the corresponding metric space.

Theorem 6.2. Let 𝐴 = 𝐵2, where 𝐵 is of class ℰ𝑠(𝑀,𝑇𝑀) with 𝑠 > 1 + 𝑑/2. Then:

(1) The geodesic equations on 𝒟𝑠(𝑀) and the corresponding Euler-Arnold equation are glob-
ally well-posed.

(2) The space 𝒟𝑠(𝑀) equipped with the geodesic distance of the metric 𝐺 is a complete metric
space.

(3) Any two elements in the connected component of the identity in 𝒟𝑠(𝑀) can be connected
by a minimizing geodesic.

Proof. This result follows directly from [16, Corollary 7.6], using that the metric extends to a
smooth, strong, right-invariant metric by Theorem 5.1. �

In the following we will show that some of the well-posedness and completeness statements
continue to hold in the smooth category.

6.2. Local and global well-posedness in the smooth category. In their seminal article [24]
Ebin and Marsden made the remarkable observation that, due to the right-invariance of the
metric, the maximal interval of existence is independent of the parameter 𝑞. This enables us
to avoid Nash–Moser type schemes to prove local existence of smooth geodesics in the smooth
category.

Corollary 6.3. Let 𝑠 ≥ 1
2 and 𝐴 be a pseudo-differential operator in the class ℰ2𝑠(𝑀,𝑇𝑀),

defined on the tangent bundle 𝑇𝑀 of a compact manifold 𝑀 and let 𝐺 be the right invariant
metric induced by 𝐴. Then:

(1) The geodesic equations of the metric 𝐺 on Diff∞(𝑀) are locally well-posed, i.e., given
any 𝑣0 ∈ 𝑇Diff∞(𝑀), there exists a unique non-extendable geodesic

𝑣 ∈ 𝐶∞(𝐽, 𝑇Diff∞(𝑀))

defined on some maximal open time interval 𝐽 , which contains 0;
(2) The corresponding Euler-Arnold equation has, for any initial data 𝑢0 ∈ Vect(𝑀), a

unique non-extendable smooth solution

𝑢 ∈ 𝐶∞(𝐽,Vect(𝑀))

defined on 𝐽 .
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Proof. (1) follows from point (1) of Theorem 6.1, and the invariance of the spray; this is known
as the no-loss-no-gain lemma [24, Theorem 12.1].

In the smooth category, the mappings

(𝜙, 𝑣) ↦→ 𝑣 ∘ 𝜙, Diff∞(𝑀) × 𝑇Diff∞(𝑀) → 𝑇Diff∞(𝑀)

and

𝜙 ↦→ 𝜙−1, Diff∞(𝑀) → Diff∞(𝑀)

are smooth, see [37], which proves (2). �

It is clear, that one can never hope for metric completeness of a Sobolev type metric on the
space of smooth diffeomorphisms. However, the geodesic completeness results of the previous
section still hold in the smooth category.

Corollary 6.4. Let 𝐴 = 𝐵2, where 𝐵 is of class ℰ𝑠(𝑀,𝑇𝑀) with 𝑠 > 𝑑
2 +1. Then, the geodesic

equations on Diff∞(𝑀) and the corresponding Euler-Arnold equation are globally well-posed.

Proof. To prove this result we need a slightly improved version of the no-loss-no-gain result.
The reason is that using our results from Theorem 6.1, we only know the smoothness of the
geodesic spray on 𝑇𝒟𝑞(𝑀) for 𝑞 = 𝑠 and for 𝑞 ≥ 2𝑠, i.e., not for 𝑞 ∈ (𝑠, 2𝑠). To conclude the
global existence using [24, Theorem 12.1] in the smooth category one needs the smoothness of
the spray for all 𝑞 ≥ 𝑠 (or at least for all 𝑠+ 𝑘 with 𝑘 ∈ N). However, it has been shown in [14,
Corollary 4.5.], that the smoothness and 𝒟𝑟(𝑀)-equivariance of the spray on 𝒟𝑠(𝑀) already
imply the smoothness of the spray on 𝑇𝒟𝛼(𝑀) for all 𝛼 = 𝑠+ 𝑘 with 𝑘 ∈ N and thus the result
follows. �

Remark 6.5. Note that the results of this Section apply in particular to the 𝐻𝑠-metric for 𝑠 > 1/2
(and 𝑠 > 1 + 𝑑/2 for global well-posedness, respectively).

Appendix A. A Sobolev boundedness theorem

The goal of this appendix is to prove the following theorem.

Theorem A.1. Let 𝑃 ∈ Ψ𝑟+𝑛−1 with a Hermitian symbol compactly supported in 𝑥. Given
𝑤 ∈ C∞

𝑐 (R𝑑,R𝑑) and 𝑓1, . . . , 𝑓𝑛 ∈ C∞
𝑐 (R𝑑,R), we have:

‖𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛)𝑤‖𝐻𝑞−𝑟 . ‖𝑓1‖𝐻𝑞 · · · ‖𝑓𝑛‖𝐻𝑞 ‖𝑤‖𝐻𝑞−1 ,

for 𝑞 > 1 + 𝑑/2 and 𝑟 ≤ 𝑞, where:

𝑆𝑛,𝑃 (𝑓1, 𝑓2, . . . , 𝑓𝑛) := [𝑓1, [𝑓2 · · · [𝑓𝑛, 𝑃 ] · · · ]].

The proof we present here is inspired from [28, 5] which was given for a Fourier multiplier
but requires a trick for a pseudo-differential operator which is used to prove the 𝐿2 boundedness
theorem for an operator in Ψ0 (see [51, Part II, Section 2.4]). Because 𝑝(𝑥, 𝜉) is compactly
supported in 𝑥, we can use the Fourier transform of 𝑝(𝑥, 𝜉) with respect to 𝑥 :

𝑝(𝜆, 𝜉) :=

∫︁
R𝑑

𝑒−2𝜋𝑖⟨𝑥,𝜆⟩𝑝(𝑥, 𝜉) 𝑑𝑥,

which allows to rewrite 𝑃 as

(A.1) (𝑃𝑤)(𝑥) =

∫︁
R𝑑

𝑒2𝜋𝑖⟨𝑥,𝜆⟩ (𝑝(𝜆,𝐷)𝑤) (𝑥) 𝑑𝜆,

where 𝑝(𝜆,𝐷) is a Fourier multiplier with symbol 𝑝(𝜆, 𝜉). Before entering the details of the
proof of Theorem A.1, we will establish the following lemma.

Lemma A.2. Let 𝑃 ∈ Ψ𝑟 with a Hermitian symbol 𝑝(𝑥, 𝜉) compactly supported in 𝑥 and let
𝑓1, . . . , 𝑓𝑛 ∈ 𝐶∞

𝑐 (R𝑑,R), then for each 𝑛 ≥ 1 we have

(A.2) (𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛)𝑤) (𝑥) =

∫︁
R𝑑

𝑒2𝜋𝑖⟨𝑥,𝜆⟩(𝑃𝑛(𝜆)𝑤)(𝑥) 𝑑𝜆,



EPDIFF EQUATION WITH PSEUDO-DIFFERENTIAL INERTIA OPERATOR 23

where

F(𝑃𝑛(𝜆)𝑤)(𝜉) =

∫︁
𝜉0+···+𝜉𝑛=𝜉

𝑓1(𝜉1) · · · 𝑓𝑛(𝜉𝑛) · 𝑝𝑛(𝜆, 𝜉0, 𝜉1, . . . 𝜉𝑛)𝑤̂(𝜉0) 𝑑𝜇,

𝑑𝜇 is the Lebesgue measure on the subspace 𝜉0 + · · · + 𝜉𝑛 = 𝜉 of (R𝑑)𝑛+1 and

𝑝𝑛(𝜆, 𝜉0, 𝜉1, . . . , 𝜉𝑛) :=
∑︁

𝐽⊆{1,...,𝑛}

(−1)|𝐽 |𝑝

⎛⎝𝜆, 𝜉0 +
∑︁
𝑗∈𝐽

𝜉𝑗

⎞⎠
Proof. The proof is achieved by induction on 𝑛. For 𝑛 = 1, using (A.1), we get

[𝑓1, 𝑃 ]𝑤(𝑥) =

∫︁
R𝑑

𝑒2𝜋𝑖⟨𝑥,𝜆⟩ (𝑃1(𝜆)𝑤) (𝑥) 𝑑𝜆,

where
𝑃1(𝜆) := [𝑓1, 𝑝(𝜆,𝐷)].

Therefore, (A.2) is true for 𝑛 = 1 with

𝑝1(𝜆, 𝜉0, 𝜉1) = 𝑝(𝜆, 𝜉0) − 𝑝(𝜆, 𝜉0 + 𝜉1).

Suppose now that (A.2) is true for some 𝑛 ≥ 1. Using the fact that

𝑆𝑛+1,𝑃 (𝑓1, . . . , 𝑓𝑛+1) = [𝑓𝑛+1, 𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛)],

we get

(𝑆𝑛+1,𝑃 (𝑓1, . . . , 𝑓𝑛+1)𝑤)(𝑥) =

∫︁
R𝑑

𝑒2𝜋𝑖⟨𝑥,𝜆⟩ ([𝑓𝑛+1, 𝑃𝑛(𝜆)]𝑤) (𝑥) 𝑑𝜆.

But, by the coarea formula and the recurrence hypothesis, we have

F([𝑓𝑛+1, 𝑃𝑛(𝜆)]𝑤)(𝜉) =

∫︁
𝜉0+···+𝜉𝑛+1=𝜉

𝑓1(𝜉1) · · · 𝑓𝑛+1(𝜉𝑛+1)·[︁
𝑝𝑛(𝜆, 𝜉0, . . . , 𝜉𝑛) − 𝑝𝑛(𝜆, 𝜉0 + 𝜉𝑛+1, 𝜉1, . . . , 𝜉𝑛)

]︁
𝑤̂(𝜉0) 𝑑𝜇.

Thus, it remains to show that

𝑝𝑛(𝜆, 𝜉0, . . . , 𝜉𝑛) − 𝑝𝑛(𝜆, 𝜉0 + 𝜉𝑛+1, 𝜉1, . . . , 𝜉𝑛) = 𝑝𝑛+1(𝜆, 𝜉0, . . . , 𝜉𝑛+1).

To do this, take the formula for 𝑝𝑛+1 and split the sum as follows

𝑝𝑛+1(𝜆, 𝜉0, . . . , 𝜉𝑛+1) =
∑︁

𝐽⊆{1,...,𝑛}

(−1)|𝐽 |𝑝

⎛⎝𝜆, 𝜉0 +
∑︁
𝑗∈𝐽

𝜉𝑗

⎞⎠
−

∑︁
𝐽⊆{1,...,𝑛}

(−1)|𝐽 |𝑝

⎛⎝𝜆, 𝜉0 + 𝜉𝑛+1 +
∑︁
𝑗∈𝐽

𝜉𝑗

⎞⎠ ,

which is equal to
𝑝𝑛(𝜆, 𝜉0, . . . , 𝜉𝑛) − 𝑝𝑛(𝜆, 𝜉0 + 𝜉𝑛+1, 𝜉1, . . . , 𝜉𝑛),

and achieves the proof. �

Next, we will provide an estimate on 𝑝𝑛.

Lemma A.3. Suppose that 𝑝 ∈ S𝑟+𝑛−1(R𝑑 × R𝑑,M𝑑(C)) is compactly supported in 𝑥 and that
𝑟 ≥ 1, then the following estimate holds:

(A.3) |𝑝𝑛(𝜆, 𝜉0, 𝜉1, . . . 𝜉𝑛)|

≤ 𝐶𝑝,𝑁 (1 + |𝜆|)−𝑁

⎛⎝ 𝑛∏︁
𝑗=1

⟨𝜉𝑗⟩

⎞⎠ ∑︁
𝐽⊆{1,...,𝑛}

⟨
𝜉0 +

∑︁
𝑗∈𝐽

𝜉𝑗

⟩𝑟−1

,

for all 𝑁 ≥ 0, where 𝐶𝑝,𝑁 > 0 depends only on 𝑝 and 𝑁 .
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Proof. Fix 𝜉0, . . . , 𝜉𝑛 ∈ R𝑑. Let 𝐾0 = {𝜉0} and we define for 𝑘 = 1, . . . , 𝑛 the set 𝐾𝑘 to be
the convex hull of the sets 𝐾𝑘−1 and 𝐾𝑘−1 + 𝜉𝑛+1−𝑘. Then 𝐾𝑘 is the convex hull of the points
𝜉0 +

∑︀
𝑗∈𝐽 𝜉𝑗 , where 𝐽 is any subset of {𝑛+ 1 − 𝑘, . . . , 𝑛}. Let 𝐹𝑘 be the sequence of mappings

defined inductively by

𝐹0(𝜆, 𝜉) = 𝑝(𝜆, 𝜉), 𝐹𝑘(𝜆, 𝜉) = 𝐹𝑘−1(𝜆, 𝜉) − 𝐹𝑘−1(𝜆, 𝜉 + 𝜉𝑘),

for 𝑘 = 1, . . . , 𝑛. In particular, we have

𝐹𝑛(𝜆, 𝜉0) = 𝑝𝑛(𝜆, 𝜉0, 𝜉1, . . . 𝜉𝑛).

Then we can apply the mean value theorem to the recurrence relation to obtain

|𝐹𝑘(𝜆, 𝜉)| = |𝐹𝑘−1(𝜆, 𝜉) − 𝐹𝑘−1(𝜆, 𝜉 + 𝜉𝑘)| ≤ |𝜉𝑘| · sup
𝜂∈𝐾𝑛−𝑘+1

⃒⃒⃒
∇𝜉𝐹𝑘−1(𝜆, 𝜂)

⃒⃒⃒
,

for all 𝜉 ∈ 𝐾𝑛−𝑘 and 1 ≤ 𝑘 ≤ 𝑛 and where ∇𝜉 is the differential relative to the second variable
𝜉. Since the recurrence relation for 𝐹𝑘 is linear, it remains valid for all derivatives of 𝐹𝑘, i.e.,

sup
𝜉∈𝐾𝑛−𝑘

⃒⃒⃒⃒(︁
∇𝜉

)︁𝑗
𝐹𝑘(𝜆, 𝜉)

⃒⃒⃒⃒
≤ |𝜉𝑘| · sup

𝜂∈𝐾𝑛−𝑘+1

⃒⃒⃒⃒(︁
∇𝜉

)︁𝑗+1
𝐹𝑘−1(𝜆, 𝜂)

⃒⃒⃒⃒
,

for all 𝑗 ∈ N. Starting with 𝑘 = 𝑛 and applying the estimate iteratively we obtain

|𝐹𝑛(𝜆, 𝜉0)| ≤ |𝜉𝑛| · sup
𝜉∈𝐾1

⃒⃒⃒
∇𝜉𝐹𝑛−1(𝜆, 𝜉)

⃒⃒⃒
≤ · · ·

· · · ≤

⎛⎝ 𝑛∏︁
𝑗=1

|𝜉𝑗 |

⎞⎠ · sup
𝜉∈𝐾𝑛

⃒⃒⃒(︁
∇𝜉

)︁𝑛
𝑝(𝜆, 𝜉)

⃒⃒⃒
.

Now, given 𝛼, 𝛽 ∈ N𝑑, we have

(2𝜋𝑖𝜆)𝛼∂𝛽𝜉 𝑝(𝜆, 𝜉) =

∫︁
R𝑑

𝑒−2𝜋𝑖⟨𝑥,𝜆⟩∂𝛼𝑥 ∂
𝛽
𝜉 𝑝(𝑥, 𝜉) 𝑑𝑥 ,

from which we deduce that for every 𝑁 ≥ 0, there exists a constant 𝐶𝑝,𝑁 > 0 such that⃒⃒⃒(︁
∇𝜉

)︁𝑛
𝑝(𝜆, 𝜉)

⃒⃒⃒
≤ 𝐶𝑝,𝑁 (1 + |𝜆|)−𝑁 ⟨𝜉⟩𝑟−1

and it remains to estimate ⟨𝜉⟩𝑟−1 on the set 𝐾𝑛. For 𝑟 ≥ 1 the function 𝜉 ↦→ ⟨𝜉⟩𝑟−1 is convex
and so it attains its maximum at one of the points 𝜉0 +

∑︀
𝑗∈𝐽 𝜉𝑗 . Hence

sup
𝜉∈𝐾𝑛

⟨𝜉⟩𝑟−1 ≤
∑︁

𝐽⊆{1,...,𝑛}

⟨
𝜉0 +

∑︁
𝑗∈𝐽

𝜉𝑗

⟩𝑟−1

,

which achieves the proof, because |𝜉𝑗 | ≤ ⟨𝜉𝑗⟩. �

Proof of Theorem A.1: By Lemma A.2, we get

F (𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛)𝑤) (𝜉) =

∫︁
R𝑑

𝑒2𝜋𝑖⟨𝑥,𝜆⟩F (𝑃𝑛(𝜆)𝑤) (𝜉) 𝑑𝜆 ,

and thus

|F (𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛)𝑤) (𝜉)|

≤
∫︁
R𝑑

∫︁
𝜉0+···+𝜉𝑛=𝜉

⃒⃒⃒
𝑓1(𝜉1) · · · 𝑓𝑛(𝜉𝑛) · 𝑝𝑛(𝜆, 𝜉0, 𝜉1, . . . 𝜉𝑛)𝑤̂(𝜉0)

⃒⃒⃒
𝑑𝜇 𝑑𝜆 .
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where 𝑑𝜇 is the Lebesgue measure on the subspace 𝜉0 + 𝜉1 + . . . + 𝜉𝑛 = 𝜉 of (R𝑑)𝑛+1. Now, by
Lemma A.3, we get

|F (𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛)𝑤) (𝜉)| ≤ 𝐶𝑝,𝑁

(︂∫︁
R𝑑

(1 + |𝜆|)−𝑁 𝑑𝜆

)︂ ∑︁
𝐽⊆{1,...,𝑛}∫︁

𝜉0+···+𝜉𝑛=𝜉

⟨
𝜉0 +

∑︁
𝑗∈𝐽

𝜉𝑗

⟩𝑟−1
⎛⎝ 𝑛∏︁

𝑗=1

⟨𝜉𝑗⟩

⎞⎠ ⃒⃒⃒
𝑓1(𝜉1) · · · 𝑓𝑛(𝜉𝑛)

⃒⃒⃒
|𝑤̂(𝜉0)| 𝑑𝜇 .

But∫︁
𝜉0+···+𝜉𝑛=𝜉

⟨
𝜉0 +

∑︁
𝑗∈𝐽

𝜉𝑗

⟩𝑟−1
⎛⎝ 𝑛∏︁

𝑗=1

⟨𝜉𝑗⟩

⎞⎠ ⃒⃒⃒
𝑓1(𝜉1) · · · 𝑓𝑛(𝜉𝑛)

⃒⃒⃒
|𝑤̂(𝜉0)| 𝑑𝜇

= F

⎛⎝∏︁
𝑗∈𝐽𝑐

F−1
(︁⃒⃒⃒
⟨𝜉𝑗⟩𝑓𝑗

⃒⃒⃒)︁
Λ𝑟−1

⎡⎣∏︁
𝑗∈𝐽

F−1
(︁⃒⃒⃒
⟨𝜉𝑗⟩𝑓𝑗

⃒⃒⃒)︁
F−1 (|𝑤̂|)

⎤⎦⎞⎠ (𝜉) ,

where Λ𝑠 is the Fourier multiplier with symbol ⟨𝜉⟩𝑠. We have thus, using the Plancherel identity
and taking 𝑁 > 𝑑

‖𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛)𝑤‖𝐻𝑞−𝑟 =
⃦⃦
⟨𝜉⟩𝑞−𝑟F(𝑆𝑛,𝑃 (𝑓1, . . . , 𝑓𝑛)𝑤)

⃦⃦
𝐿2

.
∑︁

𝐽⊆{1,...,𝑛}

⃦⃦⃦⃦
⃦⃦∏︁
𝑗∈𝐽𝑐

F−1
(︁⃒⃒⃒
⟨𝜉𝑗⟩𝑓𝑗

⃒⃒⃒)︁
Λ𝑟−1

⎡⎣∏︁
𝑗∈𝐽

F−1
(︁⃒⃒⃒
⟨𝜉𝑗⟩𝑓𝑗

⃒⃒⃒)︁
F−1 (|𝑤̂|)

⎤⎦⃦⃦⃦⃦⃦⃦
𝐻𝑞−𝑟

.
∑︁

𝐽⊆{1,...,𝑛}

⃦⃦⃦⃦
⃦⃦∏︁
𝑗∈𝐽𝑐

F−1
(︁⃒⃒⃒
⟨𝜉𝑗⟩𝑓𝑗

⃒⃒⃒)︁⃦⃦⃦⃦⃦⃦
𝐻𝑞−1

⃦⃦⃦⃦
⃦⃦Λ𝑟−1

⎡⎣∏︁
𝑗∈𝐽

F−1
(︁⃒⃒⃒
⟨𝜉𝑗⟩𝑓𝑗

⃒⃒⃒)︁
F−1 (|𝑤̂|)

⎤⎦⃦⃦⃦⃦⃦⃦
𝐻𝑞−𝑟

. ‖𝑓1‖𝐻𝑞 · · · ‖𝑓𝑛‖𝐻𝑞 ‖𝑤‖𝐻𝑞−1 .

�
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[18] J.-Y. Chemin. Équations d’Euler d’un fluide incompressible. In Facettes mathématiques de la mécanique des
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