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Abstract. Sub-Gaussian estimates for the natural random walk is typical of many regular fractal graphs. Subordination shows that

there exist heavy tailed jump processes whose jump indices are greater than or equal to two. However, the existing machinery

used to prove heat kernel bounds for such heavy tailed random walks fail in this case. In this work we extend Davies’ perturbation

method to obtain transition probability bounds for these anomalous heavy tailed random walks. We prove global upper and lower

bounds on the transition probability density that are sharp up to constants. An important feature of our work is that the methods we

develop are robust to small perturbations of the symmetric jump kernel.

Résumé. Pour de nombreux graphes réguliers de type fractal, la marche aléatoire simple satisfait des estimations de type sous-

Gaussiennes. La technique de la subordination montre alors qu’il existe des processus de saut à queue lourde dont l’indice des sauts

est supérieur ou égale a 2. Pour de tels processus, les techniques usuelles pour les estimations loin de la diagonale ne fonctionnent

pas. Nous étendons la célèbre méthode de Davies dans le cas de ces processus à sauts « anormaux. » Nous obtenons des bornes

supérieures et inférieures précises sur le noyau de transition par des méthodes qui sont stables sous de petites perturbations des

sauts.
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1. Introduction

The motivation behind this work is to obtain transition probability estimates for a class of random walks with heavy

tailed jumps on fractal-like graphs. Many fractals satisfy the following sub-Gaussian estimates on the transition prob-

ability density pt for the natural diffusion: there exists c1, c2,C3,C4 > 0 such that

c1

tdf /dw
exp

(

−
(

d(x, y)dw

c2t

)1/(dw−1))

≤ pt (x, y) ≤
C3

tdf /dw
exp

(

−
(

d(x, y)dw

C4t

)1/(dw−1))

(1)

for all points x, y in the underlying space and for all times t > 0 [3,5,11,28,31]. The parameters df , dw > 0 are

intrinsic and depend on the geometry of the underlying space. Sub-Gaussian estimates similar to (1) were obtained in
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the discrete time setting for the nearest neighbor walks on fractal like graphs [4,6,9,26,27,30]. A precise formulation

of these sub-Gaussian estimates for graphs is provided in USG(df , dw) and LSG(df , dw) in Section 3.1.

If L denotes the generator of a diffusion whose heat kernel satisfies the sub-Gaussian estimate (1), then for any

β ∈ (0, dw), the operator −(−L)β/dw , is the generator of a non-local Dirichlet form, and its heat kernel admits the

estimate

pt (x, y) �
1

tdf /β

(

1 +
d(x, y)

t1/β

)−(df +β)

(2)

for all times t and for all points x, y in the underlying space (see, for example, [32,38], [22, Lemma 5.4]). Here �
means that the ratio between both sides of the expression is bounded above and below by finite positive constants that

do not depend on x, y, t . Estimates similar to (2) can be established using subordination in the discrete time context

as well [36, Section 5]. Furthermore, it was shown in [25] that (1) and (2) exhaust all possible two-sided estimates of

heat kernels of self-similar type. We call the parameter β in (2) the jump index.

Obtaining estimates of the form (2) for the case β ∈ (0,2) has received much attention recently, both in the context

of continuous time jump processes (see, for example, [8,10,14,15]) and discrete time heavy tailed random walks (see

[12,35]). For the case β ∈ (0,2), Davies’ method is used to obtain estimates of the form (2) which are stable under

bounded perturbations of the corresponding Dirichlet form. However it is known that the use of Davies’ method to

obtain the upper bound in (2) is no longer adequate for the case β ≥ 2 (see [24, Section 1], [36, Remark 1.4(d)]).

Recently characterizations of bounds of the form (2) for the case β ≥ 2 have been given in [24, Theorem 2.1

and Theorem 2.3]. However these characterizations rely on probabilistic estimates on the exit times (called survival

estimates and tail estimates in [24]). It is not known if these survival and tail estimates are stable under bounded

perturbation of the jump kernel of the jump process in the continuous time case or the conductance of the heavy tailed

random walk in the discrete time case. Therefore there is a need to develop techniques to obtain (2) that are robust

under bounded perturbation of the Dirichlet form for the case β ≥ 2 – see Example 1 for a concrete example that

compares our result with previous works.

The main goal of the work is to show that the estimate (2) is stable under bounded perturbation of conductances

for a heavy tailed random walk in the case β ≥ 2, under some natural hypothesis. This is carried out by modifying

the Davies’ perturbation method using a cutoff Sobolev inequality. We extend the techniques developed in [37] to a

non-local setting. Although our work concerns discrete time heavy tailed random walks, we expect that the techniques

we develop extends to continuous time jump processes as well. For instance, in the proof of upper bound (see Proposi-

tion 3.1), we obtain corresponding continuous time bounds – cf. (71). Indeed, the modified Davies’ method developed

in this work can be implemented for continuous time processes in the metric measure space setting without any new

essential difficulties [29].

To state the results precisely, we recall some standard notions concerning graphs and Markov chains. Let G =
(X,E) be an infinite, simple, connected, locally finite graph. The elements of the set X are called vertices. Some

of the vertices are connected by an edge, in which case we say that they are neighbors. Let d(x, y) be the graph

distance between points x, y ∈ X, that is the minimal number of edges in any edge path connecting x and y. Consider

a measure μ on X. We sometimes abuse notation and consider μ as a function on X by setting μ(x) to be μ({x}).
Denote the metric balls and their measures as follows

B(x, r) :=
{

y ∈ X : d(x, y) ≤ r
}

and V (x, r) := μ
(

B(x, r)
)

for all x ∈ X and r ≥ 0. For convenience, we refer to the graph (X,E) endowed with the graph distance d and a

measure μ as a metric measure space (X,d,μ) which we call a vertex weighted graph. We consider a vertex weighted

graph (X,d,μ) that satisfies the polynomial volume growth assumption: there exists df > 0, CV > 0 such that

C−1
V rdf ≤ V (x, r) ≤ CV rdf V(df )

for all r ≥ 1 and for all x ∈ X. We use the notation N= {0,1,2,3, . . .} and N
∗ = {1,2,3, . . .}.

Definition 1.1 (Symmetric Markov operator). We say that K : �∞(X) → �∞(X) is a μ-symmetric sub-Markov

operator on a vertex weighted graph (X,d,μ) if there exists a kernel k : X × X → [0,∞) that satisfies

k(x, y) = k(y, x) for all x, y ∈ X,
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∑

y∈X

k(x, y)μ(y) ≤ 1 for all x ∈ X,

Kf (x) =
∑

y∈X

k(x, y)f (y)μ(y) for all x ∈ X,f ∈ �∞(X).

If the inequality above is replaced by an equality we say that K is a μ-symmetric Markov operator on a vertex

weighted graph.

Given a set U ⊂ X and a μ-symmetric Markov operator K on X with kernel k, we define the μ-symmetric sub-

Markov operator KU as the operator with kernel kU (x, y) = k(x, y)1U (x)1U (y).

There is a natural random walk (Yn)n∈N on X associated with a μ-symmetric Markov operator K with kernel k. The

Markov chain (Yn)n∈N is defined by the following one-step transition probability

Px(Y1 = y) := P(Y1 = y Y0 = x) = k(x, y)μ(y).

The sub-Markov operator KU then corresponds the Markov chain (Yn) killed upon exiting U .

We say that a μ-symmetric Markov operator K on a vertex weighted graph (X,d,μ) satisfies J(β), if there exists

a constant C > 0 such that the corresponding kernel k satisfies

C−1 1

(1 + d(x, y))df +β
≤ k(x, y) = k(y, x) ≤ C

1

(1 + d(x, y))df +β
J(β)

for all x, y ∈ X, where df is the volume growth exponent given in V(df ). If K satisfies J(β) for some β > 0, then we

say that β is the jump index of the random walk driven by K .

Let kn(x, y) denote the kernel of the iterated power Kn with respect to the measure μ. We are interested in obtaining

estimates on kn(x, y) for all values of n ∈ N
∗ and for all x, y ∈ X. We say that a μ-symmetric Markov operator K

satisfies HKP(df , β), if there is a constant C > 0 such that the iterated kernel kn satisfies the estimate

C−1 min

(

1

ndf /β
,

n

(d(x, y))df +β

)

≤ kn(x, y) ≤ C min

(

1

ndf /β
,

n

(d(x, y))df +β

)

HKP(df , β)

for all x, y ∈ X and for all n ∈ N
∗, where df is the volume group exponent given by V(df ). We say that K satisfies

UHKP(df , β), if the iterated kernel kn satisfies the upper bound in HKP(df , β). Similarly, we say that K satisfies

LHKP(df , β), if the iterated kernel kn satisfies the lower bound in HKP(df , β). Note that HKP(df , β) is same as the

bounds described in (2), since

1

ndf /β

(

1 +
d(x, y)

n1/β

)−(df +β)

≤ min

(

1

ndf /β
,

n

(d(x, y))df +β

)

,

min

(

1

ndf /β
,

n

(d(x, y))df +β

)

≤ 2df +β 1

ndf /β

(

1 +
d(x, y)

n1/β

)−(df +β)

.

The goal of this work is to develop methods to obtain the bound HKP(df , β) that are robust to small perturbations

of Dirichlet form in the sense given by J(β). Similar to the anomalous diffusion setting [37], we rely on a cutoff

Sobolev inequality to implement Davies’ method. To introduce cutoff Sobolev inequality, we first need to define

cutoff functions and energy measure.

Definition 1.2 (Cutoff function). Let U ⊂ V be finite sets in X. We say that φ : X → R is a cutoff function for

U ⊂ V if φ ≡ 1 on U and φ ≡ 0 on V �.

Definition 1.3 (Energy measure). For a μ-symmetric Markov operator K with kernel k(x, y) with respect to μ, and

for functions f,g ∈ L∞(X,μ), we define the energy measure corresponding to K as the function

�(f,g)(x) =
1

2

∑

y∈X

(

f (x) − f (y)
)(

g(x) − g(y)
)

k(x, y)μ(y)μ(x)
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for all x ∈ X. The function �(f,g) can be considered as a (signed) measure where the measure of the singleton {x} is

�(f,g)(x).

We introduce a cutoff Sobolev inequality that plays an important role in obtaining HKP(df , β). Cutoff Sobolev in-

equalities were first introduced by Barlow and Bass in [7] for graphs and then extended by Barlow, Bass and Kumagai

[8] to metric measure spaces. Recently Andres and Barlow simplified the cutoff Sobolev inequalities in [1]. We obtain

transition probability estimates using the following cutoff Sobolev inequality. The motivation behind studying cutoff

Sobolev inequalities in [1,7,8] is that they provide a method to obtain sub-Gaussian estimates that is robust to bounded

perturbation of the Dirichlet form. We are motivated by similar reasons to formulate a version of cutoff Sobolev in-

equality for heavy tailed random walks. Our definition below is inspired by the cutoff Sobolev annulus inequality in

[1] and a self-improving property of cutoff Sobolev inequality [1, Lemma 5.1].

Definition 1.4 (Cutoff Sobolev inequality). Let K be a μ-symmetric Markov operator on a vertex weighted graph

(X,d,μ) and let � denote the corresponding energy measure. Let β ≥ 2. We say that K satisfies the cutoff Sobolev

inequality CSJ(β) if it satisfies the following property: for any x ∈ X and for any R, r > 0, there exists a cutoff

function φ for B(x,R) ⊂ B(x,R + r) such that

φ ≡ 1 in B(x,R + r/2), (3)

φ ≡ 0 in B(x,R + 9r/10)�, (4)

and for any function f ∈ L2(X,μ)

∑

y∈U

f 2(y)�U (φ,φ)(y) ≤ C1

∑

y∈U

�U (f,f )(y) +
C2

rβ

∑

y∈U

f 2(y)μ(y), (5)

where U = B(x,R + r) \ B(x,R) and �U is the energy measure corresponding to the sub-Markov operator KU .

The condition CSJ(β) is useful because it preserved under bounded perturbation of the Markov kernel. The appearance

of the expression rβ in the second term of (5) signifies the role played by β in the space-time scaling relation of the

walk.

The main result is the following characterization of UHKP(df , β) using CSJ(β).

Theorem 1.5. Let (X,d,μ) be a vertex weighted graph satisfying V(df ) with volume growth exponent df . Let K

be μ-symmetric Markov operators whose kernel with respect to μ satisfies J(β) for some β ≥ 2. Then K satisfies

UHKP(df , β) if and only if K satisfies CSJ(β).

As a corollary we show that HKP(df , β) is stable under bounded perturbation of the Markov kernel.

Corollary 1.6 (Stability of HKP(df , β)). Let (X,d,μ) be a vertex weighted graph satisfying V(df ) with volume

growth exponent df . Let K1 and K2 be two μ-symmetric Markov operators whose kernels with respect to μ satisfy

J(β) for some β ≥ 2. Then K1 satisfies HKP(df , β) if and only if K2 satisfies HKP(df , β).

In Section 3.1, we show how Theorem 1.5 and Corollary 1.6 apply to a large family of graphs that satisfy sub-Gaussian

estimates for the simple random walk.

2. Cutoff Sobolev inequalities for heavy-tailed random walks

In this section, we prove the implication UHKP(df , β) =⇒ CSJ(β) in Theorem 1.5. Then we show a self-improving

property of CSJ(β).

Proposition 2.1. Let (X,d,μ) be a vertex weighted graph satisfying V(df ). Let K be a μ-symmetric Markov operator

satisfying UHKP(df , β), for some β ≥ 2. Then K satisfies CSJ(β).
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We follow the approach of Andres and Barlow in [1, Section 5] to prove the cutoff Sobolev inequality in Propo-

sition 2.1. The first step is to obtain estimates on exit times. We define the exit time for the Markov chain (Yn)n∈N
as

τY
B(x,r) = min {k ∈N : Yk /∈ B(x, r)} .

The exit time τY
B(x,r) satisfies the following survival estimate.

Lemma 2.2. Let (X,d,μ) be a vertex weighted graph satisfying V(df ) with volume growth exponent df . Let K be

μ-symmetric Markov operator satisfying UHKP(df , β), for some β ≥ 2. Let (Yn)n∈N denote the Markov chain driven

by the operator K . There exist constants ε, δ ∈ (0,1) such that for all x ∈ X and for all r ≥ 1,

Px

(

τY
B(x,r) ≤ δrβ

)

≤ ε. (6)

Proof. We follow the argument in [10, p. 15]. By UHKP(df , β) and V(df ), there exists C1, C2 ≥ 1 such that

Px

(

d(Yn, x) ≥ r
)

=
∑

y /∈B(x,r)

kn(x, y)μ(y) ≤ C1

∑

y∈B(x,r)�

nμ(y)

d(x, y)df +β
≤ C2

n

rβ
(7)

for all n ∈ N
∗ and for all x ∈ X. By (7) and the strong Markov property of {Yk} at time τ = τY

B(x,r), there exists C3 ≥ 1

such that

Px(τ ≤ n) ≤ Px

(

τ ≤ n,d(Y2n, x) ≤ r/2
)

+ Px

(

d(Y2n, x) > r/2
)

≤ Px

(

τ ≤ n,d(Y2n, Yτ ) ≥ r/2
)

+ 21+βC2n/rβ

= E
x
(

1{τ≤n}PYτ

(

d(Y2n−τ , Y0) ≥ r/2
))

+ 21+βC2n/rβ

≤ sup
y∈B(x,r)�

sup
s≤n

Py

(

d(Y2n−s, y) ≥ r/2
)

+ 21+βC2n/rβ

≤ C3n/rβ

for all x ∈ X, k ∈ N
∗ and for all r > 0. This immediately implies the desired bound (6). �

For D ⊂ X and a μ-symmetric Markov operator K with kernel k, recall from Definition 1.1 that KD denotes the

sub-Markov operator corresponding to the walk killed upon exiting D. As before, we define the exit time of D as

τD = τY
D = min {n ∈N : Yn /∈ D} ,

where (Yn)n∈N is the Markov chain corresponding to the operator K . For D ⊂ X, λ > 0, we define corresponding the

‘resolvent operator’ as

GD
λ f (x) =

(

I −
KD

1 + λ

)−1

f (x) =
∞
∑

i=0

(1 + λ)−iK i
Df (x) = Ex

τD
∑

i=0

(1 + λ)−if (Yi). (8)

Lemma 2.3. Let (X,d,μ) be a vertex weighted graph satisfying V(df ) with volume growth exponent df . Let K be a

Markov operator satisfying UHKP(df , β). Let x0 ∈ X, r > 10, R > 0 and define the annuli D0 = B(x0,R + 9r/10) \
B(x0,R + r/10),D1 = B(x0,R +4r/5)\B(x0,R + r/5), D2 = B(x0,R +3r/5)\B(x0,R +2r/5). Let λ = r−β and

set

h = G
D0

λ 1D1
, (9)
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where G
D0

λ is as defined in (8). Then h is supported in D0 and satisfies

h(x) ≤ 2rβ for all x ∈ X, (10)

h(x) ≥ c1r
β for all x ∈ D2. (11)

Proof. Since KD0
is a contraction in L∞, we have

h(x) =
∞
∑

i=0

(1 + λ)−iK i
D0

1D1
(x) ≤

∞
∑

i=0

(1 + λ)−i = (1 + λ)λ−1 ≤ 2rβ

for all r ≥ 1, for all x0, x ∈ X.

Let (Yn)n∈N denote the Markov chain driven by K . Let ε, δ ∈ (0,1) be given by Lemma 2.2. Let r0 = r/5, x ∈ D2

and B1 = B(x, r0) ⊂ D1. Then there exists c1 > 0 such that for all x0 ∈ X, for all r > 10, for all x ∈ D2, we have

h(x) =
∞
∑

i=0

(1 + λ)−iK i
D0

1D1
(x) ≥

∞
∑

i=0

(1 + λ)−iK i
B1

1B1
(x)

≥
(

1 + r−β
)−δrβ

Ex

[�δrβ
∧τY
B1

∑

i=0

1B1
(Yi)

]

≥
(

1 + r−β
)−δrβ

δrβ
Px

(

τY
B1

> δrβ
)

≥
(

1 + r−β
)−δrβ

δrβ(1 − ε) ≥ c1r
β . �

The Dirichlet form corresponding to a μ-symmetric sub-Markov operator P is defined as

EP (f, g) :=
〈

f, (I − P)g
〉

for all f,g ∈ L2(X,μ), where 〈·, ·〉 denotes the inner product in L2(X,μ).

Lemma 2.4 (Folklore). Let P be a μ-symmetric sub-Markov operator with kernel p and let EP and � denote the

corresponding Dirichlet form and energy measure respectively.

(a) We have

EP (f, g) =
∑

x∈X

�(f,g)(x) +
∑

x∈X

f (x)g(x)
(

1 − P 1(x)
)

μ(x) (12)

for all f,g ∈ L2(X,μ). In particular, if P is a Markov operator we have

EP (f, g) =
〈

f, (I − P)g
〉

=
∑

x∈X

�(f,g)(x). (13)

(b) The energy measure � satisfies the integrated version of Leibnitz rule

∑

x∈X

�(fg,h)(x) =
∑

x∈X

[

f (x)�(g,h)(x) + g(x)�(f,h)(x)
]

(14)

for all bounded functions f , g, h, as long as the above sums are absolutely convergent.

Proof. Note that

EP (f, g) =
〈

f, (I − P)g
〉

=
∑

x∈X

f (x)g(x)μ(x) −
∑

x∈X

f (x)Pg(x)μ(x)

=
∑

x∈X

f (x)g(x)μ(x)
(

1 − P 1(x) + P 1(x)
)

−
∑

x∈X

f (x)Pg(x)μ(x). (15)
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By symmetry p(x, y) = p(y, x), we have

∑

x∈X

�(f,g)(x) =
1

2

∑

x,y

(

f (x) − f (y)
)(

g(x) − g(y)
)

p(x, y)μ(x)μ(y)

=
1

2

∑

x∈X

f (x)g(x)P 1(x)μ(x) +
1

2

∑

y∈X

f (y)g(y)P 1(y)μ(y)

−
1

2

∑

x∈X

f (x)Pg(x)μ(x) −
1

2

∑

y∈X

f (y)Pg(y)μ(y)

=
∑

x∈X

f (x)g(x)P 1(x)μ(x) −
∑

x∈X

f (x)Pg(x)μ(x). (16)

Combining (15) and (16), we obtain (12).

To prove (b), we follow [13, Theorem 3.7] and write

(

f (x)g(x) − f (y)g(y)
)(

h(x) − h(y)
)

=
1

2

(

g(x) + g(y)
)(

f (x) − f (y)
)(

h(x) − h(y)
)

+
1

2

(

f (x) + f (y)
)(

g(x) − g(y)
)(

h(x) − h(y)
)

.

Then an application of symmetry p(x, y) = p(y, x) similar to (a) yields the desired result (14). �

The following technical lemma is a consequence of Leibnitz rule above.

Lemma 2.5. ([13, Lemma 3.5]) Let (X,d,μ) be a vertex weighted graph and let P with a μ-symmetric sub-Markov

operator with kernel p with respect to μ. Let � denote the corresponding energy measure. If f,h ∈ L2(X,μ) and

g ∈ L∞(X,μ), we have

∑

x∈X

g(x)�(f,h)(x) =
1

2

∑

x∈X

[

�(gh,f )(x) + �(gf,h)(x) − �(g,f h)(x)
]

.

Proof. We use Leibnitz rule (Lemma 2.4(b)) to all terms in the right hand side to obtain the desired equality. The

absolute convergence of the various sums are a consequence of Hölder inequality. �

Remark. Using the observation �(f1, f2)(x) = �(f1 + c1, f2 + c2)(x), for any c1, c2 ∈ R and for all f1, f2 ∈ L∞,

we could slightly generalize Lemma 2.5.

Proof of Proposition 2.1. If r ≤ 10, we may assume φ = 1B(x,R+r/2). Let r > 10 and let h, c1 be as defined in

Lemma 2.3. Set

g(y) =
h(y)

c1rβ
for all y ∈ X, (17)

φ(y) =

{

1 ∧ g(y) if y ∈ B(x,R + r/2)�,

1 if y ∈ B(x,R + r/2).
(18)

By Lemma 2.3, we have (3) and (4). It remains to verify (5). By Leibnitz rule (Lemma 2.4(b), (14)) and the fact that

�U (g, g) is supported in U , we obtain

∑

y∈U

f 2(y)�U (g, g)(y) =
∑

y∈X

f 2(y)�U (g, g)(y)
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=
∑

y∈X

�U

(

f 2g,g
)

(y) −
∑

y∈X

g(y)�U

(

f 2, g
)

(y). (19)

As in the Lemma 2.3, we set λ = r−β and D1 = B(x0,R + 4r/5) \ B(x0,R + r/5). Since g is supported in D0 =
B(x,R + 9r/10) \ B(x,R + r/10), by (12) of Lemma 2.4(a) and Lemma 2.3, we obtain

∑

y∈X

�U

(

f 2g,g
)

≤ EKU

(

f 2g,g
)

≤
〈

f 2g, (I − KU )g
〉

L2(U,μ)
+ λ

〈

f 2g,g
〉

L2(U,μ)

=
〈

f 2g,
(

(1 + λ)I − KU

)

g
〉

L2(U,μ)

=
〈

f 2g,
(

(1 + λ)I − KD0

)

g
〉

L2(D0,μ)

= (1 + λ)
(

c1r
β
)−1〈

f 2g,
(

I − (1 + λ)−1KD0

)

G
D0

λ 1D1

〉

L2(D0,μ)

= (1 + λ)
(

c1r
β
)−1〈

f 2g,1D1

〉

L2(D0,μ)

≤ 4c−2
1 r−β

∑

y∈D1

f 2(y)μ(y). (20)

We use Cauchy–Schwarz inequality, the μ-symmetry of KU and ab ≤ a2/4 + b2 to obtain

∣

∣

∣

∣

∑

y∈X

g(y)�U

(

f 2, g
)

(y)

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∑

y,z∈U

g(y)
(

f 2(y) − f 2(z)
)(

g(y) − g(z)
)

k(y, z)μ(y)μ(z)

∣

∣

∣

∣

≤
1

2

∣

∣

∣

∣

∑

y,z∈U

g(y)f (y)
(

f (y) − f (z)
)(

g(y) − g(z)
)

k(y, z)μ(y)μ(z)

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∑

y,z∈U

g(y)f (z)
(

f (y) − f (z)
)(

g(y) − g(z)
)

k(y, z)μ(y)μ(z)

∣

∣

∣

∣

≤
1

4

∑

y∈U

f 2(y)�U (g, g)(y) +
∑

y∈U

g2(y)�U (f,f )(y)

+
1

4

∑

z∈U

f 2(z)�U (g, g)(z) +
∑

y∈U

g2(y)�U (f,f )(y)

=
1

2

∑

y∈U

f 2(y)�U (g, g)(y) + 2
∑

y∈U

g2(y)�U (f,f )(y). (21)

Combining the above, we obtain

∑

y∈U

f 2(y)�(φ,φ)(y) ≤
∑

y∈U

f 2(y)�(g, g)(y)

≤ 2
∑

y∈X

�U

(

f 2g,g
)

(y) + 4
∑

y∈U

g2(y)�U (f,f )(y)

≤ 4c−2
1

∑

y∈U

�U (f,f )(y) + 8c−2
1 r−β

∑

y∈U

f 2(y)μ(y).
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For the first line above we use |φ(y) − φ(z)| ≤ |g(y) − g(z)|, the second line follows from (19) and (21), and the last

line follows from (20) and g ≤ c−1
1 . �

The “linear cutoff function” for B(x, r) ⊂ B(x,2r)

ψ(y) = max

(

min

(

1,
2r − d(x, y)

r

)

,0

)

(22)

is commonly used to obtain off-diagonal estimates using Davies’ method (see, for example, [10,20]). We will first see

how this linear cutoff functions compares to the ones obtained in Proposition 2.1 satisfying inequality (5).

Lemma 2.6. Let (X,d,μ) be a vertex weighted graph satisfying V(df ). Let K be a μ-symmetric Markov operator

satisfying J(β), for some β ≥ 2. Let ψ is the cutoff function in (22) for B(x,R) ⊂ B(x,R + r) for some x ∈ X and

r ≥ 1. Then there exists C1 > 0 such that the corresponding energy measure �(ψ,ψ) satisfies the inequality

�(ψ,ψ)(y) ≤

{

C1

r2 if β > 2,
C1 log(1+r)

r2 if β = 2
(23)

for all y ∈ X, where C1 does not depend on x ∈ X, r ≥ 1 or R > 0.

Proof. Let k denote the μ-symmetric kernel of K . Note that ψ is 1/r-Lipschitz function and |ψ(y) − ψ(z)| ≤ 1 for

all y, z ∈ X. Therefore

�(ψ,ψ)(y) =
∑

z∈X

(

ψ(y) − ψ(z)
)2

k(y, z)μ(z)μ(y)

≤
∑

z∈B(y,r)

r−2d(y, z)2k(y, z)μ(z)μ(y) +
∑

z/∈B(y,r)

k(y, z)μ(z)μ(y). (24)

To bound the second term above, by J(β) and V(df ) there exists C2,C3 > 0 such that

∑

z/∈B(y,r)

k(y, z)μ(z)μ(y) ≤
∑

z/∈B(y,r)

C2μ(z)

(d(y, z))df +β

=
∞
∑

i=1

∑

z:2i−1r<d(y,z)≤2ir

C2μ(z)

(d(y, z))df +β
≤

∞
∑

i=1

C2V (y,2ir)

(2i−1r)df +β

≤ C3r
−β ≤ C3r

−2 (25)

for all y ∈ X and for all r ≥ 1.

For the first term in (24), by J(β) and V(df ) there exists C4,C5 > 0 such that

∑

z∈B(y,r)

d(y, z)2k(y, z)μ(z)μ(y) ≤
�log2 r�
∑

i=0

∑

z∈X:2i≤d(y,z)<2i+1

d(y, z)2k(y, z)μ(z)μ(y)

≤ C4

�log2 r

∑

i=0

2i(2−β)

≤

{

C5 log(1 + r) if β = 2

C5 if β > 2
(26)

for all y ∈ X and for all r ≥ 1. Combining (24), (25) and (26), we obtain the desired bound (23). �
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For a μ-symmetric Markov operator K with kernel k(·, ·) and for bounded function f , we define the energy measure

corresponding to a truncation at scale L > 0 as

�(L)(f,f )(x) =
1

2

∑

y∈B(x,L)

(

f (x) − f (y)
)2

k(x, y)μ(y)μ(x). (27)

Next, we show a self-improving property of the cutoff-Sobolev inequality that will play an important role in the next

section.

Proposition 2.7. Let (X,d,μ) be a vertex weighted graph satisfying V(df ) with volume growth exponent df . Let K

be μ-symmetric Markov operator whose kernel with respect to μ satisfies J(β) for some β ≥ 2. If K satisfies CSJ(β),

then K satisfies the following estimate: there exists C1,C2 > 0 such that for all n ∈ N
∗, for all x ∈ X, for all r ≥ 1,

there exists a cut-off function φn for B(x, r) ⊂ B(x,2r) such that

∑

y∈X

f 2(y)�(φn, φn)(y) ≤
C1

n2

∑

y∈X

�(f,f )(y) +
C2Gβ(n)

rβ

∑

y∈X

f 2(y)μ(y), (28)

where the function Gβ is given by

Gβ(n) =

{

nβ−2 if β > 2,

log(1 + n) if β = 2.
(29)

Further the function φn above satisfies

‖φn − ψ‖∞ ≤ n−1, (30)

where ψ is the linear cutoff function given by

ψ(y) = max

(

min

(

1,
2r − d(x, y)

r

)

,0

)

.

Proof. Let � denote the energy measure of K . By Lemma 2.6, without loss of generality we may assume r > 10n.

We divide the annulus U = B(x,2r) \ B(x, r) into n-annuli U1,U2, . . . ,Un of equal width, where

Ui := B(x, r + ir/n) \ B
(

x, r + (i − 1)r/n
)

, i = 1,2, . . . , n.

By Proposition 2.1, there exists C3,C4 > 0 and cutoff functions φ(i) for B(x, r + (i − 1)r/n) ⊂ B(x, r + ir/n)

satisfying 0 ≤ φ(i) ≤ 1,

φ(i) ≡ 1 in B
(

x, r + (i − 1)r/n + r/(2n)
)

, (31)

φ(i) ≡ 0 in B
(

x, r + (i − 1)r/n + 9r/(10n)
)�

, (32)

∑

y∈Ui

f 2(y)�Ui
(φ(i), φ(i))(y) ≤ C3

∑

y∈Ui

�Ui
(f,f )(y) +

C4

(r/n)β

∑

Ui

f 2(y)μ(y) (33)

for i = 1,2, . . . , n. We define φn = n−1
∑n

i=1 φ(i), s = r/(10n) and �(s) truncated energy measure at scale s as given

by (27). Note that φn satisfies (30) because φn(y) ∈ [1 − i/n,1 − (i − 1)/n] for all y ∈ Ui and for all i = 1,2, . . . , n.

By (31) and (32), we have

�(s)(φn, φn)(y) = n−2
n

∑

i=1

�(s)(φ(i), φ(i))(y) ≤ n−2
n

∑

i=1

�Ui
(φ(i), φ(i))(y) (34)
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for all y ∈ X. Combining (33) and (34), we obtain

∑

y∈X

f 2(y)�(s)(φn, φn)(y) ≤ C3n
−2

∑

y∈X

�(f,f )(y) +
C4n

β−2

rβ

∑

y∈X

f 2(y)μ(y). (35)

To bound �(φn, φn)(y) − �(s)(φn, φn)(y), we write

�(φn, φn) − �(s)(φn, φn) = �(φn, φn) − �(r)(φn, φn) + �(r)(φn, φn) − �(s)(φn, φn). (36)

Since 0 ≤ φn ≤ 1 by (25) there exists C5 > 0 such that

�(φn, φn)(y) − �(r)(φn, φn)(y) ≤
∑

y∈B(x,r)�

k(x, y)μ(x)μ(y) ≤ C5r
−β (37)

for all r > 0 and n ∈N
∗. Note that for all y, z ∈ X such that d(y, z) ≥ s = r/(10n), by (30) we have |φn(y)−φn(z)| ≤

r−1d(y, z) + 2/n ≤ 21r−1d(y, z). Therefore by a similar calculation as (26), there exists C6 > 0 such that, for all

y ∈ X, for all n ∈N
∗ and for all r > 10n, we have

�(r)(φn, φn)(y) − �(s)(φn, φn)(y)

=
1

2

∑

z∈B(y,r)\B(y,s)

(

φn(y) − φn(z)
)2

k(y, z)μ(z)μ(y)

≤
212

2

∑

z∈B(y,r)\B(y,s)

r−2d(y, z)2k(y, z)μ(z)μ(y)

≤
212

2

�log2(10n)

∑

i=0

∑

z∈B(y,2i+1s)\B(y,2is)

r−2d(y, z)2k(y, z)μ(z)μ(y)

≤ C6

Gβ(n)

rβ
. (38)

Combining (35), (36), (37) and (38), we obtain

∑

y∈X

f 2(y)�(φn, φn)(y) ≤
C3

n2
EK(f,f ) + (C4 + C6 + C7)

Gβ(n)

rβ

∑

y∈X

f 2(y)μ(y) (39)

for all x ∈ X, for all n ∈N
∗ and for all r > 10n. Combining (36) with Lemma 2.6 yields the desired result. �

3. Davies’ method

In this section, we carry out the Davies perturbation method to obtain heat kernel upper bounds UHKP(df , β) for

heavy tailed walks satisfying J(β) and the cutoff Sobolev inequality CSJ(β), for some β ≥ 2. For the case the

β ∈ (0,2), in [10] the heat kernel upper bounds for the corresponding continuous time process was obtained. The

corresponding discrete time bounds were obtained in [35].

The idea behind the approach of [10] is to use Meyer’s construction [33] to split the jump kernel intro small and

large sums and then apply Davies’ method for the smaller jumps (see [10, Section 3]). However as mentioned in

the introduction (see [24, Section 1]), the above approach is no longer adequate to obtain UHKP(df , β) for the case

β ≥ 2. The goal of this section is to modify Davies’ perturbation method to obtain upper bounds for heavy tailed jump

processes satisfying J(β) for the case β ≥ 2. The following Proposition is the converse of Proposition 2.7.

Proposition 3.1. Let (X,d,μ) be a vertex weighted graph satisfying V(df ) with volume growth exponent df . Let K

be μ-symmetric Markov operator whose kernel with respect to μ satisfies J(β) for some β ≥ 2. If K satisfies the cutoff

Sobolev inequality CSJ(β), then K satisfies the transition probability upper bounds UHKP(df , β).
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We introduce two definitions below.

Definition 3.2. We say that a μ-symmetric sub-Markov operator T on a graph (X,d) is L-local if its corresponding

kernel t satisfies t (x, y) = 0 whenever x, y ∈ X satisfies d(x, y) > L.

Definition 3.3. Let ψ be a function on a graph (X,d) and let L > 0. We define the oscillation of ψ at scale L as

osc(ψ,L) := sup
x,y∈X:d(x,y)≤L

∣

∣ψ(x) − ψ(y)
∣

∣.

The following Lemma is an analogue of [13, Theorem 3.9]. The computations are similar to the ones in [13] but we

will use a different strategy to control the energy measure at various places.

Lemma 3.4. Let T be a μ-symmetric, L-local, sub-Markov operator on a vertex weighted graph (X,d,μ) and let �

denote the corresponding energy measure. Then for any function ψ ∈ L∞(X,μ) with bounded support, for all p ≥ 1

and for all f ∈ L2(X,μ) with f ≥ 0, we have

∑

x∈X

�
(

e−ψf, eψf 2p−1
)

(x)

≥
1

2p

∑

x∈X

�
(

f p, f p
)

(x) − 9pe2 osc(ψ,L)
∑

x∈X

f 2p(x)�(ψ,ψ)(x). (40)

Proof. Let t denote the kernel of T with respect to μ. Then by Lemma 2.5, we have

∑

x∈X

�
(

e−ψf, eψf 2p−1
)

(x) =
∑

x∈X

(

�
(

e−ψf 2p, eψ
)

(x) + �
(

f,f 2p−1
)

(x)
)

− 2
∑

x∈X

e−ψ(x)f (x)�
(

eψ , f 2p−1
)

(x). (41)

A diligent reader will observe that one cannot directly apply Lemma 2.5 because eψ /∈ L2(X,μ). However, since ψ

has bounded support, eψ −1 ∈ L2(X,μ) and we can apply Lemma 2.5 with f , g, h replaced by eψ −1, e−ψf , f 2p−1

respectively. Then we use the remark following Lemma 2.5 to obtain (41).

We use Leibniz rule (Lemma 2.4(b)) for the first term in the right in (41) to obtain

∑

x∈X

�
(

e−ψf, eψf 2p−1
)

(x) =
∑

x∈X

f 2p−1(x)�
(

e−ψf, eψ
)

(x)

+
∑

x∈X

(

�
(

f,f 2p−1
)

(x) − e−ψ(x)f (x)�
(

eψ , f 2p−1
)

(x)
)

. (42)

Note that

∑

x∈X

(

f 2p−1(x)�
(

e−ψf, eψ
)

(x) − e−ψ(x)f (x)�
(

eψ , f 2p−1
)

(x)
)

=
1

2

∑

x,y∈X

{(

e−ψ(x)f (x)f 2p−1(y) − e−ψ(y)f (y)f 2p−1(x)
)

.

×
(

eψ(x) − eψ(y)
)

t (x, y)μ(x)μ(y)
}

. (43)

We define a(x, y) := t (x, y)μ(x)μ(y) for all x, y ∈ X. Next, we rewrite the right side of (43) as

1

2

∑

x,y∈X

(

f 2p(y) − f 2p(x)
)

e−ψ(x)
(

eψ(x) − eψ(y)
)

a(x, y)
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+
1

2

∑

x,y∈X

f 2p(x)
(

e−ψ(x) − e−ψ(y)
)(

eψ(x) − eψ(y)
)

a(x, y)

+
∑

x,y∈X

f 2p−1(y)
(

f (x) − f (y)
)

eψ(y)
(

e−ψ(y) − e−ψ(x)
)

a(x, y). (44)

For the first term in (44), we use Cauchy–Schwartz inequality to obtain

1

2

∑

x,y∈X

(

f 2p(y) − f 2p(x)
)

e−ψ(x)
(

eψ(x) − eψ(y)
)

a(x, y)

=
1

2

∑

x,y∈X

f p(y)
(

f p(y) − f p(x)
)

eψ(y)
(

e−ψ(y) − e−ψ(x)
)

a(x, y)

+
1

2

∑

x,y∈X

f p(x)
(

f p(y) − f p(x)
)

e−ψ(x)
(

eψ(x) − eψ(y)
)

a(x, y)

≥ −
(

∑

x∈X

�
(

f p, f p
)

(x)

)1/2[(

∑

y∈X

f 2p(y)e2ψ(y)�
(

e−ψ , e−ψ
)

(y)

)1/2

+
(

∑

x∈X

f 2p(x)e−2ψ(x)�
(

eψ , eψ
)

(x)

)1/2]

. (45)

For the second term in (44), we use Cauchy–Schwartz inequality to obtain

1

2

∑

x,y∈X

f 2p(x)
(

e−ψ(x) − e−ψ(y)
)(

eψ(x) − eψ(y)
)

a(x, y)

=
∑

x∈X

f 2p(x)�
(

e−ψ , eψ
)

(x)

≥ −
(

∑

x∈X

f 2p(x)e2ψ(x)�
(

e−ψ , e−ψ
)

(x)

)1/2(
∑

x∈X

f 2p(x)e−2ψ(x)�
(

eψ , eψ
)

(x)

)1/2

. (46)

For the last term in (44), we use Cauchy–Schwartz inequality to obtain

∑

x,y∈X

f 2p−1(y)
(

f (x) − f (y)
)

eψ(y)
(

e−ψ(y) − e−ψ(x)
)

a(x, y)

≥ −2

(

∑

x∈X

f 2p−2(x)�(f,f )(x)

)1/2(
∑

x∈X

f 2p(x)e2ψ(x)�
(

e−ψ , e−ψ
)

(x)

)1/2

. (47)

We need two more elementary inequalities (Cf. (3.16) and (3.17) in [13]). For any non-negative function f ∈ L2(X,μ)

and for all p ≥ 1, we have

∑

x∈X

�
(

f 2p−1, f
)

(x) ≥
∑

x∈X

f 2p−2(x)�(f,f )(x) ≥
1

2p − 1

∑

x∈X

�
(

f 2p−1, f
)

(x) (48)

and

∑

x∈X

�
(

f p, f p
)

(x) ≥
∑

x∈X

�
(

f 2p−1, f
)

(x) ≥
2p − 1

p2

∑

x∈X

�
(

f p, f p
)

(x). (49)
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Since T is L-local, we use the inequality (ea − 1)2 ≤ e2|a|a2 to obtain

max
(

e2ψ(x)�
(

e−ψ , e−ψ
)

(x), e−2ψ(x)�
(

eψ , eψ
)

(x)
)

≤ e2 osc(ψ,L)�(ψ,ψ)(x) (50)

for all x ∈ X. Combining equations (42) through (50), we have

∑

x∈X

�
(

e−ψf, eψf 2p−1
)

(x)

≥
2p − 1

p2

∑

x∈X

�
(

f p, f p
)

(x) − e2 osc(ψ,L)
∑

x∈X

f 2p(x)�(ψ,ψ)(x)

− 4eosc(ψ,L)

(

∑

x∈X

�
(

f p, f p
)

(x)

)1/2(
∑

x∈X

f 2p(x)�(ψ,ψ)(x)

)1/2

.

We use the inequality 4ab ≤ a2/(2p) + 8pb2 and p ≥ 1 to obtain

∑

x∈X

�
(

e−ψf, eψf 2p−1
)

(x)

≥
1

2p

∑

x∈X

�
(

f p, f p
)

(x) − 9pe2 osc(ψ,L)
∑

x∈X

f 2p(x)�(ψ,ψ)(x)

for all bounded functions ψ and for all non-negative functions f ∈ L2(X,μ). �

Remark. The elementary inequalities (48) and (49) are sometimes called Stroock–Varopolous inequalities. An uni-

fied approach to such inequalities is provided in [34, Lemma 2.4].

The next step is to bound the second term in the right side of (40) using cutoff Sobolev inequalities developed in

Section 2.

Lemma 3.5. Let (X,d,μ) be a vertex weighted graph satisfying V(df ) with volume growth exponent df . Let K be

a μ-symmetric Markov operator whose kernel k = k1 satisfies J(β) for some β ≥ 2. Further assume that K satisfies

the cutoff Sobolev inequality CSJ(β). Let � denote the energy measure corresponding to K and let �(L) correspond

to the truncated version of � for some L > 0. Define

ϑ :=
1

8(df + β)
.

Then there exists λ0 ≥ 1, C0 ≥ 1 such that the following property holds: For all λ ≥ λ0, for all p ≥ 1, for all x ∈ X,

for all r ≥ 1, there exists a cut-off function φ = φp,λ for B(x, r) ⊂ B(x,2r) such that for all non-negative functions

f ∈ L2(X,μ) we have

∑

y∈X

�(ϑr)

(

e−λφf, eλφf 2p−1
)

≥
1

4p

∑

y∈X

�
(

f p, f p
)

(y) −
C0p

βe8βϑλ

rβ

∑

y∈X

f 2p(y)μ(y), (51)

where the cutoff function φ above satisfies

‖φ − ψ‖∞ ≤
1

λp
, (52)

where ψ is given by (22).
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Proof. By Lemma 3.4, for any cutoff function φ for B(x, r) ⊂ B(x,2r), for all p ≥ 1, for all λ > 0, and for all

non-negative f ∈ L2(X,μ) we have

∑

y∈X

�(ϑr)

(

e−λφf, eλφf 2p−1
)

≥
1

2p

∑

y∈X

�(ϑr)

(

f p, f p
)

(y) − 9pλ2e2λosc(φ,ϑr)
∑

y∈X

f 2p(y)�(φ,φ)(y). (53)

Using J(β) and a similar computation as [35, Equation (33)], there exists C2 > 0 such that

∑

y∈X

(

�
(

f p, f p
)

(y) − �(ϑr)

(

f p, f p
)

(y)
)

≤ C2r
−β

∑

y∈X

f 2p(y)μ(y) (54)

for all r ≥ 1, for all p ≥ 1 and for all f ∈ L2(X,μ). By CSJ(β), there exists C3,C4 > 1 such that for any n ∈N
∗ there

exists a cutoff function φ = φn for B(x, r) ⊂ B(x,2r) such that for all f ∈ L2(X,μ) with f ≥ 0, we have

∑

y∈X

f 2(y)�(φ,φ)(y) ≤
C3

n2

∑

y∈X

�(f,f )(y) +
C4Gβ(n)

rβ

∑

y∈X

f 2(y)μ(y), (55)

where the function φ = φn above satisfies

‖φ − ψ‖∞ ≤ n−1. (56)

We make the choice

n =
⌈

6pλ exp(3λϑ)
√

C3

⌉

(57)

and λ0 ≥ 1 such that n ≥ ϑ−1 for all λ ≥ λ0 and for all p ≥ 1. We will verify φ satisfies the desired properties (51)

and (52). Using (57) and (56), we immediately have (52). By (56), triangle inequality, n ≥ ϑ−1 and by the fact that ψ

is r−1-Lipschitz, we have

osc(φ,ϑr) ≤ osc(ψ,ϑr) + 2n−1 ≤ ϑ + 2ϑ = 3ϑ. (58)

By (57), (55), (58), we have

9pλ2e2λosc(φ,ϑr)
∑

y∈X

f 2p(y)�(φ,φ)(y)

≤
1

4p

∑

y∈X

�
(

f p, f p
)

(y) +
9C4pλ2e6ϑλGβ(n)

rβ

∑

y∈X

f 2p(y)μ(y), (59)

for all non-negative f ∈ L2(X,μ). We use n ≤ 12pλe3λϑ
√

C3, λ ≤ ϑ−1eϑλ and Gβ(n) ≤ nβ−1 for all n ∈ N
∗ to

obtain C5 > 0 (that depends on ϑ , β) such that

9C4pλ2e6ϑλ
Gβ(n) ≤ 9C4pλ2e6ϑλ

(

12pλe3λϑ
√

C3

)β−1 ≤ C5p
βe4(β+1)λϑ ≤ C5p

βe8βλϑ (60)

for all p, n ≥ 1 and for all λ > λ0. Combining (53), (54), (59) and (60), we obtain (51). �

We need the following Nash inequality to obtain off-diagonal estimates using Davies’ method.

Proposition 3.6 (Nash inequality). Let (X,d,μ) be a vertex weighted graph satisfying satisfies V(df ) with volume

growth exponent df . Let K be a μ-symmetric Markov operator whose kernel k satisfies J(β) for some β > 0. Let

E(·, ·) denote the corresponding Dirichlet form. Then there exists CN > 0 such that

‖f ‖2(1+β/df )

2 ≤ CNE(f,f )‖f ‖2β/df

1 (61)
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for all f ∈ L1(X,μ), where ‖ · ‖p denotes the Lp(X,μ) norm.

Proof. The proof of the Nash inequality (61) is essentially contained in [2, p. 1064]. We repeat the proof for conve-

nience.

For r > 0 and f ∈ L1(X,μ), we denote by fr : X →R the μ-weighted average

fr(x) =
1

V (x, r)

∑

y∈B(x,r)

f (y)μ(y).

We first bound ‖fr‖1. There exists CV > 0 such that

‖fr‖1 =
∑

x∈X

∣

∣fr(x)
∣

∣μ(x)

≤
∑

x∈X

∑

y∈B(x,r)

∣

∣f (y)
∣

∣V (x, r)−1μ(y)μ(x) =
∑

y∈X

∣

∣f (y)
∣

∣μ(y)
∑

x∈B(y,r)

V (x, r)−1μ(x)

≤ C2
V ‖f ‖1 (62)

for all f ∈ L1(X,μ) and for all r > 0. The second line above follows from triangle inequality and Fubini’s theorem

and the last line follows from V(df ). By V(df ), there exists C1 > 0 such that

‖fr‖∞ ≤ ‖f ‖1 sup
x∈X

V (x, r)−1 ≤ C1r
−df ‖f ‖1 (63)

f ∈ L1(X,μ) and for all r > 0. Combining (62) and (63), there exists C2 > 0 such that

‖fr‖2 ≤ ‖fr‖1/2
1 ‖fr‖1/2

∞ ≤ C2r
−df /2‖f ‖1 (64)

for all f ∈ L1(X,μ) and for all r > 0.

There exists C3 > 0 such that for all f ∈ L1(X,μ) and for all r > 0, we have

‖f − fr‖2
2 =

∑

x∈X

∣

∣f (x) − fr(x)
∣

∣

2
μ(x)

≤
∑

x∈X

1

V (x, r)

∑

y∈B(x,r)

(

f (x) − f (y)
)2

μ(y)μ(x)

≤ C1

∑

x,y∈X

(

f (x) − f (y)
)2

1{d(x,y)≤r}r
−df μ(x)μ(y)

≤ 2df +βC1r
β

∑

x,y∈X

(

f (x) − f (y)
)2 1

(1 + d(x, y))df +β
μ(x)μ(y)

≤
C3r

β

2

∑

x,y∈X

(

f (x) − f (y)
)2

k(x, y)μ(x)μ(y) = C3r
β
E(f,f ). (65)

The second line above follows from Jensen’s inequality, the third line follows from an application of V(df ) similar to

(63) and the last line follows from J(β) and Lemma 2.4(a).

By triangle inequality, (64) and (65), we have

‖f ‖2 ≤ ‖fr‖2 + ‖f − fr‖2 ≤ C2r
−df /2‖f ‖1 + C

1/2
3 rβ/2E(f,f )1/2 (66)



Anomalous heavy-tailed random walks 713

for all f ∈ L1(X,μ) and all r > 0. The Nash inequality (61) follows from (66) and the choice

r =
( ‖f ‖2

1

E(f,f )

)1/(df +β)

.
�

The following lemma is analogous to [13, Lemma 3.21] but the statement and its proof is slightly modified to suit

our context.

Lemma 3.7. Let w : [0,∞) → (0,∞) be a non-decreasing function and suppose that u ∈ C1([0,∞); (0,∞)) satis-

fies

u′(t) ≤ −
ε

p

(

t (p−2)/θp

w(t)

)θp

u1+θp(t) + δpβu(t) (67)

for some positive ε, θ and δ, β ∈ [2,∞) and p = 2k for some k ∈ N
∗. Then u satisfies

u(t) ≤
(

2pβ+1

εθ

)1/θp

t (1−p)/θpw(t)eδt/p. (68)

Proof. Set v(t) = e−δpβ tu(t). By (67), we have

v′(t) = e−δpβ t
(

u′(t) − δpβu(t)
)

≤ −
εtp−2

pw(t)θp
eθδpβ+1tv(t)1+θp.

Hence

d

dt

(

v(t)
)−θp ≥ εθtp−2w(t)−θpeθδpβ+1t

and so, since w is non-decreasing

eδθpβ+1tu(t)−θp ≥ εθw(t)−θp

∫ t

0

s(p−2)eθδpβ+1s ds. (69)

Note that

∫ t

0

s(p−2)eθδpβ+1s ds ≥
(

t/δθpβ+1
)p−1

∫ δθpβ+1

δθpβ+1(1−1/pβ+1)

y(p−2)ety dy

≥
tp−1

p − 1
exp

(

δθpβ+1t − δθt
)[

1 −
(

1 − p−β−1
)p−1]

≥
tp−1

2pβ+1
exp

(

δθpβ+1t − δθt
)

. (70)

In the last line above, we used the bound 1 − (1 − p−β−1)p−1 ≥ 1
2
p−β−1(p − 1) for all p, β ≥ 2. Combining (69)

and (70) yields (68). �

We now have all the necessary ingredients to prove Proposition 3.1.

Proof of Proposition 3.1. Let Ht := exp(t (K − I )) denote the corresponding continuous time semigroup. Note

that Ht is μ-symmetric and let ht be the kernel of Ht with respect to μ. As explained in [35, Remark 3], by [21,

Theorem 3.6] it suffices to show the following bound on ht : there exists C1 > 0 such that

ht (x, y) ≤ C1 min

(

1

tdf /β
,

t

(d(x, y))df +β

)

(71)
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for all x, y ∈ X and for all t ≥ 1. By [19, Proposition II.1] the Nash inequality (61) in Proposition 3.6 implies that

there exists C2 > 0 such that

ht (x, y) ≤
C2

tdf /β
(72)

for all x, y ∈ X and for all t ≥ 1.

Let t ≥ 1 and let x, y ∈ X such that d(x, y) ≥ 2. Let ϑ = 1/(8(df + β)) and λ0, C0 ≥ 1 be constants given by

Lemma 3.5. We define parameters L and r that depend only on x and y as

r = d(x, y)/2, L = ϑr. (73)

Let λ ≥ λ0 be arbitrary. Let � denote the energy measure corresponding to K and let �(L) denote its truncation. Define

the truncated Dirichlet form

EL(f,f ) =
∑

y∈X

�(L)(f,f )(y)

for all f ∈ L2(X,μ). Let h
(L)
t denote the continuous time kernel with respect to μ for the corresponding jump process

and let H
(L)
t denote the corresponding Markov semigroup. Let pk = 2k for k ∈ N and let ψk = λφpk,λ where φpk ,λ is

the cutoff function for B(x, r) ⊂ B(x,2r) given by Lemma 3.5. Define the ‘perturbed semigroup’

H
L,ψk
t f (x) = eψk(x)

(

H
(L)
t

(

e−ψkf
))

(x). (74)

We now pick f ∈ L2(X,μ) and f ≥ 0 with ‖f ‖2 = 1 and define

ft,k := H
L,ψk
t f (75)

for all k ∈ N, and P
ψk
t denotes the perturbed semigroup defined in (74). We remark that the constants below do not

depend on the choice of x, y ∈ X with d(x, y) ≥ 2 or the choice of f ∈ L2(X,μ), t ≥ 1 or λ ≥ λ0.

Using Lemma 3.5, we have

d

dt
‖ft,0‖2

2 = −2EL

(

eψ0ft,0, e
−ψ0ft,0

)

≤ 2C0
e8βϑλ

rβ
‖ft,0‖2

2 (76)

and

d

dt
‖ft,k‖2pk

2pk
= −2pkEL

(

eψkf
2pk−1
t,k , e−ψkft,k

)

≤ −
1

2
E
(

f
pk

t,k , f
pk

t,k

)

+ 2C0

e8βϑλp
β+1
k

rβ
‖ft,k‖2pk

2pk
(77)

for all k ∈ N
∗. By solving (76), we obtain

‖ft,0‖p1
= ‖ft,0‖2 ≤ exp

(

C0e
8βϑλt/rβ

)

‖f ‖2 = exp
(

C0e
8βϑλt/rβ

)

. (78)

Using (77) and Nash inequality (61), we obtain

d

dt
‖ft,k‖2pk

≤ −
1

4CNpk

‖ft,k‖
1+2βpk/df

2pk
‖ft,k‖

−2βpk/df
pk

+ C0p
β
k

e8βϑλ

rβ
‖ft,k‖2pk

(79)

for all k ∈ N
∗. By (52), we have ‖ψk − ψk−1‖∞ ≤ 3/pk . This along the fact that H

(L)
t is a contraction on L∞ yields

exp(−6/pk)ft,k−1 ≤ ft,k ≤ exp(6/pk)ft,k−1 (80)
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for all k ∈N
∗. Combining (79) and (80), we obtain

d

dt
‖ft,k‖2pk

≤ −
1

CApk

‖ft,k‖
1+2βpk/df

2pk
‖ft,k−1‖

−2βpk/df
pk

+ C0p
β

k

e8βϑλ

rβ
‖ft,k‖2pk

(81)

for all k ∈N
∗, where CA = 4CN exp(12β/df ).

Let uk(t) = ‖ft,k−1‖pk
and let

wk(t) = sup
{

sdf (pk−2)/(2βpk)uk(s) : s ∈ (0, t]
}

.

By (78), w1(t) ≤ exp(C0e
8βϑλt/rβ). Further by (81), uk+1 satisfies (67) with ε = 1/CA, θ = 2β/df , δ =

C0(e
8βϑλ/rβ), w = wk , p = pk . Hence by Lemma 3.7,

uk+1(t) ≤
(

2(β+1)k+1/εθ
)1/(θpk)t (1−pk)/θpkeδt/pkwk(t).

Therefore

wk+1(t)/wk(t) ≤
(

2(β+1)k+1/εθ
)1/(θ2k)

eδt/2k

for k ∈N
∗. Hence, we obtain

lim
k→∞

wk(t) ≤ C3e
δtw1(t) ≤ C2 exp

(

2C0e
8βϑλt/rβ

)

,

where C3 = C3(β, ε, θ) > 0. Hence

lim
k→∞

uk(t) =
∥

∥H
L,ψ∞
t f

∥

∥

∞ ≤
C2

tdf /2β
exp

(

2C0e
8βϑλt/rβ

)

,

where ψ∞ = limk→∞ ψk . Since the above bound holds for all non-negative f ∈ L2(X,μ), we obtain

∥

∥H
L,ψ∞
t

∥

∥

2→∞ ≤
C3

tdf /2β
exp

(

2C0e
8βϑλt/rβ

)

.

The estimate is unchanged if we replace ψk’s by −ψk . Since H
L,−ψ
t is the adjoint of H

L,ψ
t , by duality we have that

for all t > 0

∥

∥H
L,ψ∞
t

∥

∥

1→2
≤

C3

tdf /2β
exp

(

2C0e
8βϑλt/rβ

)

.

Combining the above, we have

∥

∥H
L,ψ∞
t

∥

∥

1→∞ ≤
C32df /β

tdf /β
exp

(

2C0e
8βϑλt/rβ

)

for all λ ≥ λ0, for all x, y ∈ M with d(x, y) ≥ 2, where L is as defined in (73). Therefore

h
(L)
t (x, y) ≤

C22df /β

tdf /β
exp

(

2C0e
8βϑλt/rβ + ψ∞(y) − ψ∞(x)

)

(82)

for all x, y ∈ X satisfying d(x, y) ≥ 2, for all t ≥ 1 and for all λ ≥ λ0.

Now we choose λ as

λ =
df + β

β
log

(

rβ/t
)

. (83)
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By (72), it suffices to show (71) for the case d(x, y) ≥ 2 and λ ≥ λ0. By the choices in (73), we have ψ∞(y) −
ψ∞(x) = −λ and hence by (82), we obtain

h
(L)
t (x, y) ≤

C22df /β

tdf /β
exp

(

2C0e
8βϑλt/rβ − λ

)

=
C22df /β

tdf /β
exp(2C0)

t1+(df /β)

rdf +β
. (84)

By (84), (73) along with Meyer decomposition bound in [10, Lemma 3.1], there exists C4,C5 > 0 such that for all

x, y ∈ X and for all t ≥ 1 satisfying d(x, y)β ≥ C5t , we have

ht (x, y) ≤
C4t

(d(x, y))df +β
.

The above equation along with (72) yields (71) which in turn implies UHKP(df , β). �

We will now prove the main results stated in the Introduction.

Proof of Theorem 1.5. Proposition 3.1 and Proposition 2.7 are the two desired implications. �

Proof of Corollary 1.6. Let K1 satisfy HKP(df , β). Then by Theorem 1.5, we have that K1 satisfies the cutoff

Sobolev inequality CSJ(β). Since two μ-symmetric Markov operators satisfying J(β) have comparable energy mea-

sures, K2 satisfies CSJ(β). Therefore by Theorem 1.5, K2 satisfies UHKP(df , β). The upper bounds UHKP(df , β),

(71), and the lower bound of the kernel in J(β) are sufficient to show the matching lower bounds LHKP(df , β) using

an iteration argument due to Bass and Levin [12]. The argument in [35, Sections 4 and 5] can be directly adapted to

this setting. Therefore K2 satisfies HKP(df , β). �

3.1. Applications

The following transition probability estimate is the main application of our stability result and provides several exam-

ples.

Theorem 3.8. Let (X,d,μ) be a vertex weighted graph satisfying V(df ) with volume growth exponent df . Let

(Sn)n∈N denote the simple random on X with transition probability Pn(x, y) = P(Xn = y X0 = x). Suppose that

the transition probability Pn satisfies the following sub-Gaussian estimates USG(df , dw) and LSG(df , dw) with walk

dimension dw: there exists constants c,C > 0 such that, for all x, y ∈ X

Pn(x, y) ≤
C

ndf /dw
exp

[

−
(

d(x, y)dw

Cn

)
1

dw−1
]

, ∀n ≥ 1; USG(df , dw)

and

(Pn + Pn+1)(x, y) ≥
c

ndf /dw
exp

[

−
(

d(x, y)dw

cn

)
1

dw−1
]

, ∀n ≥ 1 ∨ d(x, y). LSG(df , dw)

Let K be a μ-symmetric Markov operator whose kernel k = k1 satisfies J(β) for some β ∈ [2, dw). Then the corre-

sponding iterated kernel kn satisfies HKP(df , β).

Remark.

(a) For the case β ∈ (0,2), HKP(df , β) follows from V(df ) and J(β) (see [35, Theorem 1.1]). In this case there is no

assumption required on the heat kernel of (X,d,μ).

(b) For the case β ≥ dw , HKP(df , β) does not hold. We refer the reader to [36, Theorem 1.2] for on-diagonal esti-

mates. We do not know off-diagonal estimates in this case.

(c) We obtained matching two sided estimates on supx∈X k2n(x, x) in [36] for all β > 0. Due to Theorem 3.8, we

have analogous pointwise on-diagonal lower bounds on kn(x, x) for all x ∈ X for the case β ∈ [2, dw).



Anomalous heavy-tailed random walks 717

(d) The hypothesis of sub-Gaussian estimate for the simple random walk can be generalized to any random walk

satisfying certain uniform ellipticity hypothesis – see [36, Theorem 1.2] for such a set up.

(e) The application of Davies’ method in literature (see for example [10, Section 3.2]) is inadequate to obtain

UHKP(df , β) for the case β ≥ 2. If β > 2, the existing methods yields the off-diagonal upper bound correspond-

ing to the off-diagonal estimate in UHKP(df ,2) and therefore not optimal by a factor of (1 + d(x, y))β−2. Even

in the case β = 2, the existing method gives an off-diagonal upper bound that is not optimal by the logarithmic

factor log(2 + d(x, y)).

Proof of Theorem 3.8. By a known subordination argument (see [36, Theorem 5.1]), there exists a μ-symmetric

Markov operator satisfying J(β) and HKP(df , β). The desired result then follows from Corollary 1.6. �

In the remainder of this section, we will elaborate on a rich family of examples using Theorem 3.8.

Example 1. For any df ∈ [1,∞) and for any dw ∈ [2, df + 1], Barlow constructs graphs that satisfy sub-Gaussian

estimates USG(df , dw) and LSG(df , dw) – see [4, Theorem 2] and [27, Theorem 3.1]. Moreover, these are the com-

plete range of df and dw for which sub-Gaussian estimates USG(df , dw) and LSG(df , dw) could possibly hold for

graphs.

Let us fix one such graph (X,d) satisfying USG(df , dw) and LSG(df , dw) for some df ∈ [1,∞), dw ∈ (2, df +1].
Consider any function J : X × X → (0,∞) satisfying

C−1

(1 + d(x, y))df +β
≤ J (x, y) = J (y, x) ≤

C

(1 + d(x, y))df +β
∀x, y ∈ X. (85)

Any function J satisfying (85) defines a measure μ({x}) =
∑

y∈X J (x, y) and a μ-symmetric Markov operator K

with kernel k(x, y) = J (x, y)(μ(x)μ(y))−1. If β ∈ [2, dw), we obtain HKP(df , β) for the Markov operator K .

To compare with some earlier works in the continuous time case, let us point out that we obtain continuous time heat

kernel estimates corresponding to UHKP(df , β) in (71). Consider a continuous time jump process with symmetric

measure ν satisfying V(df ) and the Dirichlet form

E(f,f ) =
∫

X

∫

X

(

f (x) − f (y)
)2

J (x, y)ν(dx)ν(dy) (86)

on L2(X, ν), where J satisfies (85). The condition (85) on the jump kernel J of the Dirichlet form should be inter-

preted as the continuous time analog of J(β). By comparison of energy measures and the measures μ and ν, we obtain

Nash and cut-off Sobolev inequalities for the Dirichlet form E with symmetric measure ν. By the same argument as

the proof of (71), we obtain the continuous time analogue of UHKP(df , β) for the heat kernel of the continuous time

process associated with the above Dirichlet form E on L2(X, ν).

Now, let us consider a graph (X,d) satisfying USG(df , dw) and LSG(df , dw) with df = 100, dw = 101. As men-

tioned above, the heat kernel corresponding to (E,L2(X, ν)) satisfies the continuous time analogue of UHKP(df , β)

for all β ∈ [2,101). We note that the results of [24] imply the continuous time analogue of UHKP(df , β) for the case

β ∈ (100,101) – see [24, Corollary 6.14]. However, in the case β ∈ [2,100) the exit time and survival time estimates

appearing in [24, Theorems 2.1 and 2.3] are a priori difficult to verify.
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As the authors were working on this project, another group, Zhen-Qing Chen, Takashi Kumagai, and Jian Wang,

were pursuing similar goals based on somewhat different ideas [16]. Both groups obtain similar final results regarding

the heat kernel estimates HKP(df , β), independently. We believe that both works will prove useful in future progress.

The work [16] concerns similar estimates in the continuous time setting and allows for more general volume growth

and space-time scaling. Further their work involves a weaker version of cutoff Sobolev inequality. A crucial step in
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their proof involves a mean value inequality proved using an iteration procedure by repeated application of Faber–

Krahn and cutoff-Sobolev inequalities.

Added in revision: A more recent preprint of Grigor’yan, Hu, and Hu [23] also independently addresses similar

questions using a different approach. We would also like to point out that [17,18] addresses the stability of Har-

nack inequalities and the relationship between Harnack inequalities and heat kernel estimates in the context of jump

processes.
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