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Abstract. Sub-Gaussian estimates for the natural random walk is typical of many regular fractal graphs. Subordination shows that
there exist heavy tailed jump processes whose jump indices are greater than or equal to two. However, the existing machinery
used to prove heat kernel bounds for such heavy tailed random walks fail in this case. In this work we extend Davies’ perturbation
method to obtain transition probability bounds for these anomalous heavy tailed random walks. We prove global upper and lower
bounds on the transition probability density that are sharp up to constants. An important feature of our work is that the methods we
develop are robust to small perturbations of the symmetric jump kernel.

Résumé. Pour de nombreux graphes réguliers de type fractal, la marche aléatoire simple satisfait des estimations de type sous-
Gaussiennes. La technique de la subordination montre alors qu’il existe des processus de saut a queue lourde dont I’indice des sauts
est supérieur ou égale a 2. Pour de tels processus, les techniques usuelles pour les estimations loin de la diagonale ne fonctionnent
pas. Nous étendons la célebre méthode de Davies dans le cas de ces processus a sauts « anormaux. » Nous obtenons des bornes
supérieures et inférieures précises sur le noyau de transition par des méthodes qui sont stables sous de petites perturbations des
sauts.
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1. Introduction

The motivation behind this work is to obtain transition probability estimates for a class of random walks with heavy
tailed jumps on fractal-like graphs. Many fractals satisfy the following sub-Gaussian estimates on the transition prob-
ability density p; for the natural diffusion: there exists c1, ¢2, C3, C4 > 0 such that

Cl ox _ d(x’ y)dw 1/(dw—1)
tdr/dw P oot

C3 d(x, y)dw 1/(dy—1)
<px,y) < m‘”@’(‘(c—ﬂ

for all points x, y in the underlying space and for all times ¢ > 0 [3,5,11,28,31]. The parameters dr,d,, > 0 are
intrinsic and depend on the geometry of the underlying space. Sub-Gaussian estimates similar to (1) were obtained in
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the discrete time setting for the nearest neighbor walks on fractal like graphs [4,6,9,26,27,30]. A precise formulation
of these sub-Gaussian estimates for graphs is provided in USG(d, dy,) and LSG(d, dy,) in Section 3.1.

If £ denotes the generator of a diffusion whose heat kernel satisfies the sub-Gaussian estimate (1), then for any
B € (0,dy), the operator —(—E)ﬂ/ dW, is the generator of a non-local Dirichlet form, and its heat kernel admits the
estimate

d(x, y))‘(df”) )

1
pt(-xvy)xtdf/ﬁ <1+ tl/ﬁ

for all times ¢ and for all points x, y in the underlying space (see, for example, [32,38], [22, Lemma 5.4]). Here <
means that the ratio between both sides of the expression is bounded above and below by finite positive constants that
do not depend on x, y, ¢. Estimates similar to (2) can be established using subordination in the discrete time context
as well [36, Section 5]. Furthermore, it was shown in [25] that (1) and (2) exhaust all possible two-sided estimates of
heat kernels of self-similar type. We call the parameter 8 in (2) the jump index.

Obtaining estimates of the form (2) for the case § € (0, 2) has received much attention recently, both in the context
of continuous time jump processes (see, for example, [8,10,14,15]) and discrete time heavy tailed random walks (see
[12,35]). For the case 8 € (0, 2), Davies’ method is used to obtain estimates of the form (2) which are stable under
bounded perturbations of the corresponding Dirichlet form. However it is known that the use of Davies’ method to
obtain the upper bound in (2) is no longer adequate for the case § > 2 (see [24, Section 1], [36, Remark 1.4(d)]).

Recently characterizations of bounds of the form (2) for the case 8 > 2 have been given in [24, Theorem 2.1
and Theorem 2.3]. However these characterizations rely on probabilistic estimates on the exit times (called survival
estimates and tail estimates in [24]). It is not known if these survival and tail estimates are stable under bounded
perturbation of the jump kernel of the jump process in the continuous time case or the conductance of the heavy tailed
random walk in the discrete time case. Therefore there is a need to develop techniques to obtain (2) that are robust
under bounded perturbation of the Dirichlet form for the case 8 > 2 — see Example 1 for a concrete example that
compares our result with previous works.

The main goal of the work is to show that the estimate (2) is stable under bounded perturbation of conductances
for a heavy tailed random walk in the case B > 2, under some natural hypothesis. This is carried out by modifying
the Davies’ perturbation method using a cutoff Sobolev inequality. We extend the techniques developed in [37] to a
non-local setting. Although our work concerns discrete time heavy tailed random walks, we expect that the techniques
we develop extends to continuous time jump processes as well. For instance, in the proof of upper bound (see Proposi-
tion 3.1), we obtain corresponding continuous time bounds — cf. (71). Indeed, the modified Davies’ method developed
in this work can be implemented for continuous time processes in the metric measure space setting without any new
essential difficulties [29].

To state the results precisely, we recall some standard notions concerning graphs and Markov chains. Let G =
(X, E) be an infinite, simple, connected, locally finite graph. The elements of the set X are called vertices. Some
of the vertices are connected by an edge, in which case we say that they are neighbors. Let d(x, y) be the graph
distance between points x, y € X, that is the minimal number of edges in any edge path connecting x and y. Consider
a measure u on X. We sometimes abuse notation and consider p as a function on X by setting u(x) to be u({x}).
Denote the metric balls and their measures as follows

B(x,r):={yeX:dx,y)<r} and V(x,r):=p(Bx,r))

for all x € X and r > 0. For convenience, we refer to the graph (X, E) endowed with the graph distance d and a
measure i as a metric measure space (X, d, ;) which we call a vertex weighted graph. We consider a vertex weighted
graph (X, d, u) that satisfies the polynomial volume growth assumption: there exists dy > 0, Cy > 0 such that

C;]rdf <V(x,r) < Cyr¥ Vdy)
for all » > 1 and for all x € X. We use the notation N={0,1,2,3,...} and N*={1,2,3,...}.

Definition 1.1 (Symmetric Markov operator). We say that K : £°°(X) — £°°(X) is a u-symmetric sub-Markov
operator on a vertex weighted graph (X, d, w) if there exists a kernel k : X x X — [0, co) that satisfies

k(x,y)=k(y,x) forallx,yeX,
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Zk(x, yu(y) <1 forallx e X,
yeX

Kf(x)= Zk(x,y)f(y)u(y) forallx € X, f € £(X).
yeX

If the inequality above is replaced by an equality we say that K is a w-symmetric Markov operator on a vertex
weighted graph.

Given a set U C X and a p-symmetric Markov operator K on X with kernel k, we define the p-symmetric sub-
Markov operator Ky as the operator with kernel ky (x, y) = k(x, y)1y (x)1y (v).

There is a natural random walk (Y,,),en on X associated with a u-symmetric Markov operator K with kernel k. The
Markov chain (Y}),en is defined by the following one-step transition probability

P.(Y1=y) =P =y|Yo=x) =k(x, y)n(y).

The sub-Markov operator Ky then corresponds the Markov chain (Y,) killed upon exiting U.
We say that a u-symmetric Markov operator K on a vertex weighted graph (X, d, ) satisfies J(8), if there exists
a constant C > 0 such that the corresponding kernel k satisfies

1 1 1

(e, pydr 8 =Ko =k 0 = € T+

J(B)

for all x, y € X, where d is the volume growth exponent givenin V(dy). If K satisfies J(8) for some 8 > 0, then we
say that B is the jump index of the random walk driven by K.

Let k, (x, y) denote the kernel of the iterated power K" with respect to the measure 1. We are interested in obtaining
estimates on &, (x, y) for all values of n € N* and for all x, y € X. We say that a u-symmetric Markov operator K
satisfies HKP(d s, B), if there is a constant C > 0 such that the iterated kernel k,, satisfies the estimate

1 n 1 n
S .
C m]n<ndf/ﬁv(d(x’y))df_,’_ﬁ)Skn(xvy)icmln(ndf/ﬂ’ (d()(j’y))df_'—ﬁ) HKP(df?ﬂ)

for all x, y € X and for all n € N*, where d is the volume group exponent given by V(dr). We say that K satisfies
UHKP(dy, B), if the iterated kernel k, satisfies the upper bound in HKP(d s, 8). Similarly, we say that K satisfies
LHKP(dy, B), if the iterated kernel k;, satisfies the lower bound in HKP(d s, B). Note that HKP(d s, B) is same as the
bounds described in (2), since

1 d(x,y)\~@*h 1 n
1+ ’ < min , ,
ndf/ﬂ< nl/p > B (ndf/ﬂ (d(x,y)>df+ﬁ>

1 1 d(x, —(dr+B)
min( g " y ) < 2drth y (1 + Q) )
nr /B’ (d(x, y))drth ndr/B nl/B

The goal of this work is to develop methods to obtain the bound HKP(d s, 8) that are robust to small perturbations
of Dirichlet form in the sense given by J(8). Similar to the anomalous diffusion setting [37], we rely on a cutoff
Sobolev inequality to implement Davies’ method. To introduce cutoff Sobolev inequality, we first need to define
cutoff functions and energy measure.

Definition 1.2 (Cutoff function). Let U C V be finite sets in X. We say that ¢ : X — R is a cutoff function for
UcVif¢=1onUandp=0on VC.

Definition 1.3 (Energy measure). For a pu-symmetric Markov operator K with kernel k(x, y) with respect to u, and
for functions f, g € L°°(X, u), we define the energy measure corresponding to K as the function

1
T == (f&)—fM)(gx) — g)k(x, Y)u(y)pu(x)
2

yeX
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for all x € X. The function I'( f, g) can be considered as a (signed) measure where the measure of the singleton {x} is

L(f, 9)x).

We introduce a cutoff Sobolev inequality that plays an important role in obtaining HKP(d s, B). Cutoff Sobolev in-
equalities were first introduced by Barlow and Bass in [7] for graphs and then extended by Barlow, Bass and Kumagai
[8] to metric measure spaces. Recently Andres and Barlow simplified the cutoft Sobolev inequalities in [1]. We obtain
transition probability estimates using the following cutoff Sobolev inequality. The motivation behind studying cutoff
Sobolev inequalities in [1,7,8] is that they provide a method to obtain sub-Gaussian estimates that is robust to bounded
perturbation of the Dirichlet form. We are motivated by similar reasons to formulate a version of cutoff Sobolev in-
equality for heavy tailed random walks. Our definition below is inspired by the cutoff Sobolev annulus inequality in
[1] and a self-improving property of cutoff Sobolev inequality [1, Lemma 5.1].

Definition 1.4 (Cutoff Sobolev inequality). Let K be a p-symmetric Markov operator on a vertex weighted graph
(X,d, ) and let " denote the corresponding energy measure. Let § > 2. We say that K satisfies the cutoff Sobolev
inequality CSJ(B) if it satisfies the following property: for any x € X and for any R,r > 0, there exists a cutoff
function ¢ for B(x, R) C B(x, R + r) such that

¢=1 inB(x,R+r/2), 3)
¢=0 inB(x,R+9r/10)C, 4)

and for any function f € L*(X, )

C
> POTu@. 90 = C1Y_Tu(f N+ 3 L0, 5)

yeU yeU yeU

where U = B(x, R +r) \ B(x, R) and 'y is the energy measure corresponding to the sub-Markov operator K.

The condition CSJ(B) is useful because it preserved under bounded perturbation of the Markov kernel. The appearance
of the expression r# in the second term of (5) signifies the role played by 8 in the space-time scaling relation of the
walk.

The main result is the following characterization of UHKP(d 7, ) using CSJ(B).

Theorem 1.5. Let (X,d, 1) be a vertex weighted graph satisfying V(dy) with volume growth exponent dy. Let K
be w-symmetric Markov operators whose kernel with respect to  satisfies J(B) for some B > 2. Then K satisfies
UHKP(dy, B) if and only if K satisfies CSI(B).

As a corollary we show that HKP(d ¢, B) is stable under bounded perturbation of the Markov kernel.

Corollary 1.6 (Stability of HKP(d, B)). Let (X,d, u) be a vertex weighted graph satisfying V(dy) with volume
growth exponent dy. Let K| and K3 be two p-symmetric Markov operators whose kernels with respect to i satisfy

J(B) for some B > 2. Then K satisfies HKP(d ¢, B) if and only if K; satisfies HKP(d s, B).

In Section 3.1, we show how Theorem 1.5 and Corollary 1.6 apply to a large family of graphs that satisfy sub-Gaussian
estimates for the simple random walk.

2. Cutoff Sobolev inequalities for heavy-tailed random walks

In this section, we prove the implication UHKP(d s, 8) = CSJ(B) in Theorem 1.5. Then we show a self-improving
property of CSJ(B).

Proposition 2.1. Let (X, d, j1) be avertex weighted graph satisfying V(dy). Let K be a j1-symmetric Markov operator
satisfying UHKP(d ¢, B), for some B > 2. Then K satisfies CSJ(B).
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We follow the approach of Andres and Barlow in [1, Section 5] to prove the cutoff Sobolev inequality in Propo-
sition 2.1. The first step is to obtain estimates on exit times. We define the exit time for the Markov chain (Y;),en
as

Thry=min{k €N : ¥i ¢ B(x,r)}.
The exit time © }; ) satisfies the following survival estimate.

Lemma 2.2. Let (X, d, i) be a vertex weighted graph satisfying V(dy) with volume growth exponent dy. Let K be
w-symmetric Markov operator satisfying UHKP(d ¢, B), for some B > 2. Let (Y,)neN denote the Markov chain driven
by the operator K. There exist constants €, § € (0, 1) such that for all x € X and for all r > 1,

P, (rg(x’r) < Srﬂ) <e. (6)
Proof. We follow the argument in [10, p. 15]. By UHKP(d s, B) and V(dy), there exists C1, C2 > 1 such that

Pdtnnzr)= Y kcooum=c Y O o n @)

df+ﬂ - r/S
Y¢B(x,r) yEB(x,r)c d(x’y)

for all n € N* and for all x € X. By (7) and the strong Markov property of {Y;} at time t = 'L'g(x ) there exists C3 > 1
such that

P(t <n) <Pu(v <n,d(Y2n, x) <7/2) + Px(d(Yan, ) > 1/2)
<P.(v <n,d(Yan, Yo) > 1/2) + 2" Con/rP
=E* (L <Py, (d(Yon—z., Yo) = r/2)) + 2P Con/rP

< sup supPy(d(Yaus, y) > r/2) + 2P Con/rP
yeB(x,r)b S=n

<Cin/r?
for all x € X, k € N* and for all r > 0. This immediately implies the desired bound (6). (]

For D C X and a pu-symmetric Markov operator K with kernel &, recall from Definition 1.1 that Kp denotes the
sub-Markov operator corresponding to the walk killed upon exiting D. As before, we define the exit time of D as

TDZ‘EEZHliIl{nGN 1 Y, ¢ D},

where (Y;)en is the Markov chain corresponding to the operator K. For D C X, A > 0, we define corresponding the
‘resolvent operator’ as

Kp
1+A

-1 00 ™
) fEO =) A+NTKLf)=E Y (1407 F (). ®)

i=0 i=0

fou>=(1

Lemma 2.3. Let (X, d, i) be a vertex weighted graph satisfying V(d y) with volume growth exponent dy. Let K be a
Markov operator satisfying UHKP(d ¢, B). Let xo € X, r > 10, R > 0 and define the annuli Dy = B(xo, R +9r/10) \
B(xp, R+r/10), D1 = B(xg, R+4r/5)\ B(xo, R+7r/5), D2 = B(xo, R+3r/5)\ B(xg, R+2r/5). Let > = r=B and
set

h=G;1p,, ©)
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where Gfo is as defined in (8). Then h is supported in Do and satisfies
h(x) < 2rP forall x € X, (10)
h(x) > c1rf forall x € D;. (1)

Proof. Since K p, is a contraction in L°°, we have

hx)=> 1+ Kplp @) <Y A+ =0 +0r" <27
i=0 i=0

for all r > 1, for all xo, x € X.
Let (Y;)nen denote the Markov chain driven by K. Let €, § € (0, 1) be given by Lemma 2.2. Let ro =7/5, x € D>
and By = B(x, rg) C D;. Then there exists ¢; > 0 such that for all xg € X, for all » > 10, for all x € D,, we have

h() =) (L+ D KpIp, (1) = ) (1 +1) 7 Kj 15, (x)
i=0 i=0

Y
L(Srﬁj/\TBl

> (1+ r—ﬂ)—‘”ﬂE{ Z 15, (Yi):|

i=0
> (1 + r7f3)76r/3(SrﬁIE”x(t,_,);1 > (Srﬂ) > (1 + riﬁ)iarﬂb‘rﬂ(l —e)>arh. O
The Dirichlet form corresponding to a p-symmetric sub-Markov operator P is defined as
Ep(f.9)=(f.(I - P)g)
for all f, g € L?(X, ), where (-, -) denotes the inner product in L2(X, ).

Lemma 2.4 (Folklore). Let P be a u-symmetric sub-Markov operator with kernel p and let Ep and T denote the
corresponding Dirichlet form and energy measure respectively.
(a) We have

Ep(fig)= Z I'(f, 9)(x) + Z F)g)(1 = P1(x))p(x) (12)

xeX xeX

forall f,g e L*(X, ). In particular, if P is a Markov operator we have
Ep(f.9)={f.(I - P)g)= Y T(f.0)). (13)
xeX
(b) The energy measure I satisfies the integrated version of Leibnitz rule
Y I(fg. ) =Y [T &)+ g (f.h)(x)] (14)
xeX xeX

for all bounded functions f, g, h, as long as the above sums are absolutely convergent.
Proof. Note that

Ep(f,)=(f,(I=P)g)=)_ f)gIn(x) = Y f(x)Pgx)p(x)

xeX xeX

=Y f)g@r@) (1 — PLx) + P1()) — Y f(x) Pgx) (). (15)

xeX xeX
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By symmetry p(x,y) = p(y, x), we have

1
D T(f ) = 5 D (F@ = FM) () = () plx, M) u(y)

xeX X,y

1 1
=5 2 f@E@PIML@) + 5 3 F(MgM PLOIRG)

xeX yeX

1 1
=3 2 F@POME) = 3 3 FIPEOIRG)

xeX yeX
=Y f)EE®PIx)u(x) = Y f(x) Pg(x) (). (16)
xeX xeX

Combining (15) and (16), we obtain (12).
To prove (b), we follow [13, Theorem 3.7] and write

(f ()2 = Feg) (h(x) = h(y)
1
=5 (80 +2M) (f () = F) (A) = h(y)

1
+5(F0) + FD) (800 =) () = h ().
Then an application of symmetry p(x, y) = p(y, x) similar to (a) yields the desired result (14). O
The following technical lemma is a consequence of Leibnitz rule above.

Lemma 2.5. ([13, Lemma 3.5]) Let (X, d, ) be a vertex weighted graph and let P with a p-symmetric sub-Markov
operator with kernel p with respect to . Let T' denote the corresponding energy measure. If f,h € L*(X, 1) and
g € L®(X, ), we have

1
> 8N = 5 Y [M(gh. () +T(ef M) =g, fh))]

xeX xeX

Proof. We use Leibnitz rule (Lemma 2.4(b)) to all terms in the right hand side to obtain the desired equality. The
absolute convergence of the various sums are a consequence of Holder inequality. (]

Remark. Using the observation I'( f1, f2)(x) = T'(f1 + c1, f2 + ¢2)(x), for any ¢, ¢; € R and for all fi, f> € L*°,
we could slightly generalize Lemma 2.5.

Proof of Proposition 2.1. If » < 10, we may assume ¢ = 1p(y r4/2). Let ¥ > 10 and let h, ¢; be as defined in
Lemma 2.3. Set

h
gly)= % forall y € X, 17

|1Age ifyeB@, R+r/2)C,
=1, if y e Bx, R+71/2). (18)

By Lemma 2.3, we have (3) and (4). It remains to verify (5). By Leibnitz rule (Lemma 2.4(b), (14)) and the fact that
'y (g, g) is supported in U, we obtain

D OTuE. M =Y fF0Tu (. )

yeu yex



704 M. Murugan and L. Saloff-Coste

=Y Tu(f?8.8)0) =D eMTu (£ g)().

yeX yeX

19)

As in the Lemma 2.3, we set A = r—# and D; = B(xo, R + 4r/5) \ B(xo, R +r/5). Since g is supported in Dy =

B(x, R 4+ 9r/10) \ B(x, R +r/10), by (12) of Lemma 2.4(a) and Lemma 2.3, we obtain

Z FU(fzgv g) = gKU (fzgv g) = (fzgﬂ - KU)g)LZ(U,u) +)"<f2gv g)LZ(U,u)
yeX

= (e (L+ M1 = Kv)g) o

= (/8. (L +21 = Kpy)g)12py )

=1+ (arf) (e (1-0 +/\)_1KDo)GfOIDI>L2(Do,u)
= +0)(cr?) (2810, 2y

<4c7r 7P o).

yeDy

We use Cauchy—Schwarz inequality, the j1-symmetry of Ky and ab < a”/4 + b? to obtain

> ey (£, g)(y)'

yeX

2

D 2200 = £2) (e — g@)k(y, D ()

y,zeU

=

D g MO = F@)(8() = 8@)k(y. D))

y,zeU

2

Y e F@(fO) = F@) (8 — 8@k, D))

y,zeU

!
2

1
<12 POl O+ Y E0lu(f, H)

yeU yeU

1
+ 32 @I 0@ + ) &Myl )

zelU yeU

1
=52 FPOTu@. M +23 &My (f. ).

yeU yeU

Combining the above, we obtain

DO A <Y P )

yeU yeU
<2) Tu(f2e.8)M+4)  EWu(f, HY)
yeX yeU

<4c72 Y Tuf HO) +8c2r P> F20n).

yeU yeU

(20)

21
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For the first line above we use |¢(y) — ¢ (2)| < |g(y) — g(z)|, the second line follows from (19) and (21), and the last
line follows from (20) and g < ¢} O

The “linear cutoff function” for B(x,r) C B(x, 2r)

V() =max<min<1, w),o) (22)

r

is commonly used to obtain off-diagonal estimates using Davies’ method (see, for example, [10,20]). We will first see
how this linear cutoff functions compares to the ones obtained in Proposition 2.1 satisfying inequality (5).

Lemma 2.6. Let (X, d, i) be a vertex weighted graph satisfying V(dy). Let K be a p-symmetric Markov operator
satisfying J(B), for some B > 2. Let \r is the cutoff function in (22) for B(x, R) C B(x, R + r) for some x € X and
r > 1. Then there exists C1 > 0 such that the corresponding energy measure I (W, ) satisfies the inequality

(o] j 2
. ’ = lfﬂ> s 23
W wxy)s{% 52 =

forall y € X, where Cy does not dependonx € X,r >1or R > 0.

Proof. Let k denote the p-symmetric kernel of K. Note that ¢ is 1/r-Lipschitz function and |y (y) — ¥ (z)| <1 for
all y, z € X. Therefore

INCUADIOES Z(wm - W(Z))zk(y, D) (y)

zeX
< D0 Ok or@uM + Y kG, @), 24
z€B(y.r) EBO)

To bound the second term above, by J(8) and V(dy) there exists C>, C3 > 0 such that

Cru(2)

Y kG au@uy) < Y Ao i F

z¢B(y,r) 2¢B(y.r)

[ee] 00 .
C CrVi(y, 2!
=Y Y Sy
i=1 z:2i~lr<d(y,z)<2r ’ i=1
<Cyr P <Cyr? 25)

forall y € X and forall r > 1.
For the first term in (24), by J(8) and V(d ) there exists C4, C5 > 0 such that

[log, r]
D A0 DkG @B < Y > d(y, 2°k(y, D)
z€B(y,r) i=0 zeX:2i<d(y,z)<2it!

Llog, r]

<Cy Z 2i(2—=p)
i=0

- Cslog(l+r) ?f,B=2 26)

Cs if 8>2

for all y € X and for all » > 1. Combining (24), (25) and (26), we obtain the desired bound (23). U
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For a p-symmetric Markov operator K with kernel (-, -) and for bounded function f, we define the energy measure
corresponding to a truncation at scale L > 0 as

1
Py (f N =5 D0 (F@) = FO) k. rGIRE). @7

yeB(x,L)

Next, we show a self-improving property of the cutoff-Sobolev inequality that will play an important role in the next
section.

Proposition 2.7. Let (X, d, i) be a vertex weighted graph satisfying V(d r) with volume growth exponent dy. Let K
be p-symmetric Markov operator whose kernel with respect to u satisfies J(B) for some B > 2. If K satisfies CSJ(8),
then K satisfies the following estimate: there exists C1, Cy > 0 such that for all n € N*, for all x € X, for all r > 1,
there exists a cut-off function ¢, for B(x,r) C B(x, 2r) such that

> POT G600 = 23T H0 + 2D S 2, 28)
yex yex yex
where the function Gg is given by
9mm={£;i+m Z@Zé (29)
Further the function ¢,, above satisfies
lpn = Ylloo <n™", (30)

where Vr is the linear cutoff function given by

Y(y) = max(min(l, w), 0)_

r

Proof. Let I denote the energy measure of K. By Lemma 2.6, without loss of generality we may assume r > 10n.
We divide the annulus U = B(x, 2r) \ B(x, r) into n-annuli Uy, U, ..., U, of equal width, where

U, .= B(x,r+ir/n)\B(x,r+(i — l)r/n), i=1,2,...,n.

By Proposition 2.1, there exists C3, C4 > 0 and cutoff functions ¢y for B(x,r + (i — 1)r/n) C B(x,r +ir/n)
satisfying 0 < ¢;) <1,

piy=1 inB(x,r+@(—r/n+r/2n)), 31
$iy=0 in B(x,r+ (i — Dr/n+9r/(10m)°, 32)
C
3 20 @6 ¢ <C3 Y Tu (L O+ = 3 i) (33)
(r/n)P
yveU; yeU; Ui
fori =1,2,...,n. We define ¢, = n! Z?:l @), s =r/(10n) and I'(5) truncated energy measure at scale s as given

by (27). Note that ¢,, satisfies (30) because ¢,,(y) € [1 —i/n,1 — (i —1)/n] forall y e U; and foralli =1,2,...,n.
By (31) and (32), we have

(s (@n, $n) () =177 Y T (@i, 60) ) <172 Y T (i), i) () (34)

i=1 i=1
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for all y € X. Combining (33) and (34), we obtain

> L0 (Gn ) () < C3n 2 Y T(f () + C“f,f - > On). (35)
yeX yeX yeX
To bound T'(¢hn, ¢2) () — T'(5) (B, $u) (), we write
T (¢ns &) = Tis) (@n @n) =T (bns ) = Tiry (B> D) + Ty (b $n) — Ts) (B b).- (36)
Since 0 < ¢,, < 1 by (25) there exists C5 > 0 such that
L@ o)) = Ty (@, )3 < D k(x, y)puop(y) < Csr™P 37
yeB(x,r)C

for all r > 0 and n € N*. Note that for all y, z € X such that d(y, z) > s =r/(10n), by (30) we have |¢, (y) — ¢, (2)| <
r~Yd(y,z) +2/n <21r~'d(y, z). Therefore by a similar calculation as (26), there exists Cs > 0 such that, for all
y € X, for all n € N* and for all » > 10n, we have

L) (Dn, @n)(¥) = L) (@ns #) (y)

1
=3 X (0 = 6@ kO DrE@R0)

Z€B(y,r\B(y,s)

212 -
= Z r2d(y, 2%k(y, D) u(y)
zeB(y,r)\B(y,s)

512 Uoga10m)

<= X > r2d(y, 2°k(y, D)

i=0  zeB(y,2i+15)\B(y,2!s)

< 9. (38)
rB
Combining (35), (36), (37) and (38), we obtain
2 Cs gﬂ (n) 2
D SPOT@n$)0) < —3Ek (f ) +(Cat Co+ CNT= 37 () (39)
yeX n yeX
for all x € X, for all n € N* and for all » > 10n. Combining (36) with Lemma 2.6 yields the desired result. ]

3. Davies’ method

In this section, we carry out the Davies perturbation method to obtain heat kernel upper bounds UHKP(d s, 8) for
heavy tailed walks satisfying J(8) and the cutoff Sobolev inequality CSJ(8), for some B8 > 2. For the case the
B € (0,2), in [10] the heat kernel upper bounds for the corresponding continuous time process was obtained. The
corresponding discrete time bounds were obtained in [35].

The idea behind the approach of [10] is to use Meyer’s construction [33] to split the jump kernel intro small and
large sums and then apply Davies’ method for the smaller jumps (see [10, Section 3]). However as mentioned in
the introduction (see [24, Section 1]), the above approach is no longer adequate to obtain UHKP(d s, 8) for the case
B > 2. The goal of this section is to modify Davies’ perturbation method to obtain upper bounds for heavy tailed jump
processes satisfying J(8) for the case B > 2. The following Proposition is the converse of Proposition 2.7.

Proposition 3.1. Let (X, d, u) be a vertex weighted graph satisfying V(d ) with volume growth exponent dy. Let K
be p-symmetric Markov operator whose kernel with respect to u satisfies J(B) for some B > 2. If K satisfies the cutoff
Sobolev inequality CSI(B), then K satisfies the transition probability upper bounds UHKP(d s, B).



708 M. Murugan and L. Saloff-Coste
We introduce two definitions below.

Definition 3.2. We say that a p-symmetric sub-Markov operator 7' on a graph (X, d) is L-local if its corresponding
kernel ¢ satisfies 7 (x, y) = 0 whenever x, y € X satisfies d(x,y) > L.

Definition 3.3. Let ¢ be a function on a graph (X, d) and let L > 0. We define the oscillation of i at scale L as

osc(y, L) == sup  |Yr(x) — v ()|

x,yeX:d(x,y)<L

The following Lemma is an analogue of [13, Theorem 3.9]. The computations are similar to the ones in [13] but we
will use a different strategy to control the energy measure at various places.

Lemma 3.4. Let T be a p-symmetric, L-local, sub-Markov operator on a vertex weighted graph (X, d, ) and let T’
denote the corresponding energy measure. Then for any function ¥ € L°° (X, u) with bounded support, for all p > 1
and for all f € L*(X, w) with f >0, we have

Y r(eV fel 7P

xeX

. % SIS, 7)) = 9pe2 D 3 F2 (O (g, ) (x). (40)

xeX xeX

Proof. Let ¢ denote the kernel of 7" with respect to x. Then by Lemma 2.5, we have

DT e @ =3 (e e ) + (£ 7))

xeX xeX

—2) e VO rr(e?, 27 ). (41)

xeX

A diligent reader will observe that one cannot directly apply Lemma 2.5 because ¢V ¢ L?(X, ). However, since v/
has bounded support, e¥ — 1 € L?(X, 1) and we can apply Lemma 2.5 with f, g, h replaced by e¥ — 1, eV f, f2P~!
respectively. Then we use the remark following Lemma 2.5 to obtain (41).

We use Leibniz rule (Lemma 2.4(b)) for the first term in the right in (41) to obtain

Yr(eVhel P =) T r (e £V ) )

xeX xeX
+ (0 77 @) — e ¥ for (e, £ ). (42)
xeX
Note that
S (P r (e foeh) ) — e VW F@r (e, 27 ()
xeX

1 )
=3 YAV @ T o) e VY F 3 7 ),

x,yeX
x (7™ — VN (x, (). (43)

We define a(x, y) :=1(x, y)u(x)u(y) for all x, y € X. Next, we rewrite the right side of (43) as

Z Z 2P(y) ZP(x))eﬂp(x) (elﬁ(x) _ ew(”)a(x, y)
x ,yeX
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b2 XD () - YO ¥ Oaga,y)
x)EX

+ 20 O @ = F3)! O (Y = eV D)agx, ). “)

x,yeX

For the first term in (44), we use Cauchy—Schwartz inequality to obtain

Z Z 2P(y) 2p(x))e7¢(x) (eW(X) _ ew(y))a(x, y)
x ,yeX

=2 X OO — ) O eV atx, )

x,yeX

+ % Z fp(x)(fp(y) _ fp(x))e_wx)(e‘”(x) _ ewy))a(x, y)

x,yeX

> — (Z r(f?, fp)(x)) 1/2 [(Z eV OIT (e )(y)) 1/2

xeX yeX
172
+ (Z AP x)e” VO (e ,e‘/’)(x)) } (45)
xeX

For the second term in (44), we use Cauchy—Schwartz inequality to obtain

Z f2p(x) Yix) _ T//(Y))(eﬂ//(x) — eW(y))a(X, y)

x yeX

= Z FPEr(e ™V, e’)(x)

xeX
1/2

1/2
(Zfz”(x)ez'/’(x)F( )(x)) (Zf2f’(x)e—2¢<)‘>r(e1/f,e*/f)(x)) ) (46)

xeX xeX

For the last term in (44), we use Cauchy—Schwartz inequality to obtain

> PO = F0)er O (VY — eV W)ax, y)

x,yeX

1/2 1/2
—2<Zf21’—2(x>r<f, f)(x)) (Zfzp(x>e2'”<x)r(e‘*”,e—*”)(x>) : (47)

xeX xeX

We need two more elementary inequalities (Cf. (3.16) and (3.17) in [13]). For any non-negative function f € L%(X, 1)
and for all p > 1, we have

;{ ( 2p—1 (x) >)§f2p—2(x)F(f, Hx) > P );(F(fZP—l’ f)(x) 8)
and
YU ) = Y (A ) > 2 Z (£, £7) ). (49)

xeX xeX eX
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Since T is L-local, we use the inequality (e — l)2 < e2lalg2 o obtain
max(e?V T (eV, e V) (x), e 2V (¥, eV ) (x)) < 2 VDT (g, y) (x) (50)

for all x € X. Combining equations (42) through (50), we have

YTV fe? ;P

xeX
2p—1
> = D T(fP 7)) = OB Y POy, Y (x)
p xeX xeX
1/2 172
— 4oL (Z r(fP, f”)(x)) (Z FPOT W, w><x)>
xeX xeX
We use the inequality 4ab < a/(2p) + 8pb? and p > 1 to obtain
DTV fe @)
xeX
1
= 5 D TS 7)) = 9pe et 3 7 f2 ()T (3, ) (x)
p xeX xeX
for all bounded functions  and for all non-negative functions f € L?(X, u). ]

Remark. The elementary inequalities (48) and (49) are sometimes called Stroock—Varopolous inequalities. An uni-
fied approach to such inequalities is provided in [34, Lemma 2.4].

The next step is to bound the second term in the right side of (40) using cutoff Sobolev inequalities developed in
Section 2.

Lemma 3.5. Let (X, d, ) be a vertex weighted graph satisfying V(dy) with volume growth exponent dy. Let K be
a u-symmetric Markov operator whose kernel k = ky satisfies J(B) for some > 2. Further assume that K satisfies
the cutoff Sobolev inequality CSJ(B). Let I denote the energy measure corresponding to K and let 'y correspond
to the truncated version of I for some L > 0. Define
_ 1
8(dr+p)
Then there exists Ao > 1, Co > 1 such that the following property holds: For all A > Ly, for all p > 1, for all x € X,

for all r > 1, there exists a cut-off function ¢ = ¢, ; for B(x,r) C B(x,2r) such that for all non-negative functions
fe L2(X, W) we have

1 CopPedP
Y Tan(e ™ £ ) 2 2 30 (7)) L > PG, 51)
yeX yeX yeXx

where the cutoff function ¢ above satisfies

1
16 = Vlloo = 5 (52)
P

where r is given by (22).
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Proof. By Lemma 3.4, for any cutoff function ¢ for B(x,r) C B(x,2r), for all p > 1, for all A > 0, and for all
non-negative f € L%(X, u) we have

> Tonl(e?? .2

yeX
> 2— D Ton(fP, 7)) = 9pa*e @I 3" 2P ()T (b, $) (). (53)
yeX yeX
Using J(B) and a similar computation as [35, Equation (33)], there exists C» > 0 such that
DL ) =Tan(f2. 7)) < Cor P 2P (uly) (54)
yeX yeX

forallr > 1, forall p > 1 andforall f € L2(X, w). By CSJ(B), there exists C3, C4 > 1 such that for any n € N* there
exists a cutoff function ¢ = ¢,, for B(x,r) C B(x, 2r) such that for all f € L?(X, ) with f > 0, we have

Y FAOT@. () < =5 ZF(f HO+ 4%( GI W 5 2 (), (55)
yex yex yex
where the function ¢ = ¢,, above satisfies
1 — Wlloo <" (56)
We make the choice
n = [6prexp(319)/C3] (57)

and Ag > 1 such that n > 9! for all A > Ao and for all p > 1. We will verify ¢ satisfies the desired properties (51)
and (52). Using (57) and (56), we immediately have (52). By (56), triangle inequality, n > 9 ~! and by the fact that v/
is V_I-LipSChitZ, we have

osc(¢, vr) <osc(y, vr) + 2l <9 4209 =3 (58)
By (57), (55), (58), we have

Opa2ePr @I N " L2 ()T ($, ) ()

yeX

1 9C, )»2 69 A
< (s )+ ZEEETI D 5 ), (59)

4
p yeX yeX

for all non-negative f € L*(X, ). We use n < 12pre??/C3, A <9~ and Gg(n) < nP~! for all n € N* to
obtain C5 > 0 (that depends on ¥, 8) such that

9C4pk2e6“9ﬁ(n) < 9C4pk266“(12pke3w Cg,)ﬂ_1 < C5pﬂe4(ﬂ“'l))‘l9 < C5p’368’3m (60)

for all p, n > 1 and for all A > Ag. Combining (53), (54), (59) and (60), we obtain (51). O
We need the following Nash inequality to obtain off-diagonal estimates using Davies’ method.

Proposition 3.6 (Nash inequality). Let (X, d, ) be a vertex weighted graph satisfying satisfies V(d ) with volume
growth exponent dy. Let K be a p-symmetric Markov operator whose kernel k satisfies J(B) for some B > 0. Let
E(-, ) denote the corresponding Dirichlet form. Then there exists Cn > 0 such that

2(1+B/dy) 2B/dy¢

£l

< CNEW DI (61)
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forall f e LY (X, ), where | - |, denotes the LP (X, ) norm.

Proof. The proof of the Nash inequality (61) is essentially contained in [2, p. 1064]. We repeat the proof for conve-
nience.
Forr > 0and f € L' (X, 1), we denote by f, : X — R the u-weighted average

1
Vix,r)

frx) = Y fOmo).

YEB(x,r)

We first bound || f,-||1. There exists Cy > 0 such that

NATED IR ACNINES

xeX
=Y Ve umu@ = 1fmke) Y Ve uew
xeX yeB(x,r) yeX x€B(y,r)
<Cyllflh (62)

for all f € L'(X, u) and for all » > 0. The second line above follows from triangle inequality and Fubini’s theorem
and the last line follows from V(dy). By V(dy), there exists C1 > 0 such that

I frlloo < ILfllsup V(x, )™t < Cir™r ) £y (63)
xeX

fe L'(X, ) and for all » > 0. Combining (62) and (63), there exists C, > 0 such that

1/2 1/2 _
I frll2 < WA < Cor= U 2 £ 1 (64)

forall f € L'(X, ) and for all r > 0.
There exists C3 > 0 such that for all f € L' (X, ) and for all » > 0, we have

If = £13= D1 F ) = £ ue)

xeX

1
5; Vi > (f@ = fO) rGKE)

YEB(x,r)

<C1 Y. (F@) = FO) Nayyzrr ™ n@uy)

x,yeX

<2*PCirf 3 (F@) - f»)’

x,yeX

1
At dn. y))dfw/x(x)u(y)

CarB
== 2 (F0 = FOI) ke R = CarPES. ). (65)

x,yeX

The second line above follows from Jensen’s inequality, the third line follows from an application of V(dy) similar to
(63) and the last line follows from J(8) and Lemma 2.4(a).
By triangle inequality, (64) and (65), we have

If N2 < W frlla 4+ 1F = frlla < Cor™ Y £lly 4+ C3PrPlRECF, 1)12 (66)
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forall f € L'(X, 1) and all r > 0. The Nash inequality (61) follows from (66) and the choice

IR\
T <5<f, f)) |

The following lemma is analogous to [13, Lemma 3.21] but the statement and its proof is slightly modified to suit
our context.

]

Lemma 3.7. Let w : [0, 0c0) — (0, 00) be a non-decreasing function and suppose that u € C1([0, 00); (0, 00)) satis-

fies

€ (,(p—Z)/f?p

Op
W(t) < —— —) u 0P (1) 4+ 8pPu(r) (67)
w(t)

for some positive €, 0 and 8, B € [2, 00) and p = 2% for some k € N*. Then u satisfies

7 pB+1N 1/6p
u(t) < (p_@) t(l_p)/epw(t)e&/”. (68)
€

Proof. Set v(t) = e~%"""u(t). By (67), we have

erP—2
v/(t) = e—Spﬂt(u/(t) _ Spﬁu(t)) < _—698])/3+1tv(l‘)1+6p.

pw(n)fr

Hence

i,
- () P > 0P 2w (1) PP

and so, since w is non-decreasing

t
P ()P > e (r) 0P / s(P=2080" s 4o (69)
0
Note that
t P . s0pPt1
/ S(p72)895p Sds > (t/sepﬂ+1)P / y(P*Z)ely dy
0 86pPHI(1—1/pP+l)
! 1 1yp—1
> — exp(86pP Tt —s01)[1 — (1— p~ P~ 1) ]
p—
e p+1

In the last line above, we used the bound 1 — (1 — p~#=1)P—1 > %p_/s_l(p — 1) for all p, B > 2. Combining (69)
and (70) yields (68). O

We now have all the necessary ingredients to prove Proposition 3.1.
Proof of Proposition 3.1. Let H, := exp(t(K — I)) denote the corresponding continuous time semigroup. Note

that H; is u-symmetric and let /; be the kernel of H; with respect to u. As explained in [35, Remark 3], by [21,
Theorem 3.6] it suffices to show the following bound on #;: there exists C1 > 0 such that

. 1 t
hi(x,y) = Ci mln(tdf/ﬁ’ (d(x,y))df+’3) (71)
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for all x,y € X and for all # > 1. By [19, Proposition II.1] the Nash inequality (61) in Proposition 3.6 implies that
there exists Cp > 0 such that

(&)
he(x,y) < ;7B (72)

forall x,y € X and for all t > 1.
Let # > 1 and let x, y € X such that d(x,y) > 2. Let ¢ =1/(8(ds + B)) and Ao, Co > 1 be constants given by
Lemma 3.5. We define parameters L and r that depend only on x and y as

r=d(x,y)/2, L=9r. (73)

Let A > A be arbitrary. Let I' denote the energy measure corresponding to K and let I' ;) denote its truncation. Define
the truncated Dirichlet form

EL(f )= _Twy(f. HG)

yeX

forall f € L*>(X, u). Let h;L) denote the continuous time kernel with respect to p for the corresponding jump process
and let HI(L) denote the corresponding Markov semigroup. Let py = 2% for k € N and let ¥y = ADp,. 1 Where ¢y, 5 is
the cutoff function for B(x, r) C B(x,2r) given by Lemma 3.5. Define the ‘perturbed semigroup’

HEV f () = PO (B (e ) ). 7
We now pick f € L?(X, ) and f > 0 with || f|l = I and define
fra=HEf (75)

for all k € N, and P,‘//" denotes the perturbed semigroup defined in (74). We remark that the constants below do not
depend on the choice of x, y € X with d(x, y) > 2 or the choice of f € L>(X, ), t > 1o0r A > A.
Using Lemma 3.5, we have

d _
an,,on% =-2E(e" fr0,e7 " f10)

o8BI 5
=200 frol} (76)

and

d 2 201
an,,knzﬁ’;=—2pk5L(vet,,fk eV fik)

8pvA B+l

1 e 21
< =5 E(5% 10 +2C0——5 — Il fukliy, a7
for all k € N*. By solving (76), we obtain
1fi0llp =11 froll2 < exp(Coe® " t/rP) || £ 1l = exp(Coe®#" 1 /7). (78)

Using (77) and Nash inequality (61), we obtain

8RN

1 1428py /d —2Bpi/dy e
W illape ™ ol + Copf —5= ko, (79)

N Pk

< —

dllf I
dr VK2 ="T00

Pk

for all k € N*. By (52), we have ||Yx — ¥k—1]lco < 3/pk. This along the fact that H,(L) is a contraction on L yields

exp(—6/pi) fr.k—1 = frk < exp(6/pi) fr k-1 (80)
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for all kK € N*. Combining (79) and (80), we obtain

d 142Bp/d 2Bp/d p e
E”fz,k”zm_——”ft flp M ekl Copf = fillap, @1

for all k € N*, where C4 =4Cy exp(128/dy).
Let ug(t) = || fr.k—1llp, and let

wi (1) = sup{ s P2/ @BPOY, (5) 15 € (0,11}

By (78), wi(t) < exp(Coed#?*¢/rP). Further by (81), uxs+1 satisfies (67) with € = 1/Ca, 6 = 28/dy, § =
Co(e8P?* /1Py w = wy, p = px. Hence by Lemma 3.7,

U1 (t) < (2(/3+1)k+1/69)1/(9Pk)t(l—pk)/9pke8t/pkwk(t).
Therefore

Wi (1) /g (0) < (20 DkH 1) VO o0
for k € N*. Hence, we obtain

klirn wi (1) < C3e® wi (1) < Corexp(2Coe® "1 /1P),
— 00

where C3 = C3(8, €,6) > 0. Hence

hm u(t) = || HL 1[/°°f|| exp(ZCoegﬁ“t/rﬁ),

oo— d/2/3

where Yoo = limg_, oo Y. Since the above bound holds for all non-negative f € L2(X , L), we obtain

H H, exp(ZCoegﬂ“t/r )

Cs3
v ”2»00 = 14728

The estimate is unchanged if we replace v ’s by —. Since HIL’H[/ is the adjoint of H,L‘w, by duality we have that
forallt >0

exp (2Coe8ﬁ’“t/r )

- C3
HHL]I/ ||1—>2— 17 /2B

Combining the above, we have

C32df//3

LYoo
L S

exp(ZCoeSﬂ“t/rﬁ)

for all A > Ag, for all x, y € M with d(x, y) > 2, where L is as defined in (73). Therefore

Cy211/8
hE 0 3) < = exp (200 M /P Yo (3) = Yoo () (82)
for all x, y € X satisfying d(x, y) > 2, for all > 1 and for all A > Ag.
Now we choose A as
+p
P 5 log(r? /1). (83)
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By (72), it suffices to show (71) for the case d(x,y) > 2 and A > Ag. By the choices in (73), we have oo (y) —
Yoo (x) = —A and hence by (82), we obtain

ds/B 1+dys/B)

Cr2

dr/B
(@) C22%
ht (x,)’)< tdf/ﬁ

8B0r, /B _ 1) _
= —47p exp(2Coe t/r A)_

(84)

By (84), (73) along with Meyer decomposition bound in [10, Lemma 3.1], there exists C4, C5 > 0 such that for all
x,y € X and for all r > 1 satisfying d (x, y)ﬁ > Cst, we have

Cyt

ht(x’ y) S W

The above equation along with (72) yields (71) which in turn implies UHKP(d s, B). (|
We will now prove the main results stated in the Introduction.
Proof of Theorem 1.5. Proposition 3.1 and Proposition 2.7 are the two desired implications. (|

Proof of Corollary 1.6. Let K satisfy HKP(d s, B). Then by Theorem 1.5, we have that K satisfies the cutoff
Sobolev inequality CSJ(B). Since two pu-symmetric Markov operators satisfying J(8) have comparable energy mea-
sures, K7 satisfies CSJ(8). Therefore by Theorem 1.5, K> satisfies UHKP(d s, B). The upper bounds UHKP(d s, B),
(71), and the lower bound of the kernel in J(8) are sufficient to show the matching lower bounds LHKP(d 7, 8) using
an iteration argument due to Bass and Levin [12]. The argument in [35, Sections 4 and 5] can be directly adapted to
this setting. Therefore K satisfies HKP(d s, B). O

3.1. Applications

The following transition probability estimate is the main application of our stability result and provides several exam-
ples.

Theorem 3.8. Let (X,d, ) be a vertex weighted graph satisfying V(dy) with volume growth exponent dy. Let
(Sn)neN denote the simple random on X with transition probability P,(x,y) = P(X, = y| Xo = x). Suppose that
the transition probability P, satisfies the following sub-Gaussian estimates USG(dy, dy,) and LSG(dy, dyy) with walk
dimension dy,: there exists constants ¢, C > 0 such that, forall x,y € X

1
Pa(x,y) < Lexp[—<M)mi| Vi > 1 USG(dy, dy)
T pdr/de Cn ’ - ’
and
c d(x,y)h BT
(Py+ Ppy1)(x,y) > a7 exp|:—(7> i|, Yn>1vd(x,y). LSG(dy, dw)

Let K be a p-symmetric Markov operator whose kernel k = k1 satisfies J(B) for some B € [2,dy,). Then the corre-
sponding iterated kernel k, satisfies HKP(d s, B).

Remark.

(a) For the case g € (0, 2), HKP(dy, B) follows from V(ds) and J(B) (see [35, Theorem 1.1]). In this case there is no
assumption required on the heat kernel of (X, d, ).

(b) For the case 8 > dy,, HKP(ds, B) does not hold. We refer the reader to [36, Theorem 1.2] for on-diagonal esti-
mates. We do not know off-diagonal estimates in this case.

(c) We obtained matching two sided estimates on sup, .y k2, (x, x) in [36] for all 8 > 0. Due to Theorem 3.8, we
have analogous pointwise on-diagonal lower bounds on &, (x, x) for all x € X for the case 8 € [2, dy,).
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(d) The hypothesis of sub-Gaussian estimate for the simple random walk can be generalized to any random walk
satisfying certain uniform ellipticity hypothesis — see [36, Theorem 1.2] for such a set up.

(e) The application of Davies’ method in literature (see for example [10, Section 3.2]) is inadequate to obtain
UHKP(dy, B) for the case 8 > 2. If B > 2, the existing methods yields the off-diagonal upper bound correspond-
ing to the off-diagonal estimate in UHKP(d s, 2) and therefore not optimal by a factor of (1 +d(x, y)#~2. Even
in the case B = 2, the existing method gives an off-diagonal upper bound that is not optimal by the logarithmic
factor log(2 4+ d(x, y)).

Proof of Theorem 3.8. By a known subordination argument (see [36, Theorem 5.1]), there exists a pu-symmetric
Markov operator satisfying J(8) and HKP(d ¢, B). The desired result then follows from Corollary 1.6. ]

In the remainder of this section, we will elaborate on a rich family of examples using Theorem 3.8.

Example 1. For any dy € [1, 00) and for any d, € [2,d; + 1], Barlow constructs graphs that satisfy sub-Gaussian
estimates USG(dy, dy) and LSG(dy, d,)) — see [4, Theorem 2] and [27, Theorem 3.1]. Moreover, these are the com-
plete range of dy and d,, for which sub-Gaussian estimates USG(dy, d,,) and LSG(d, d,) could possibly hold for
graphs.

Let us fix one such graph (X, d) satisfying USG(ds, d,,) and LSG(d, d,) for some dy € [1, 00),dy, € (2,dy +1].
Consider any function J : X x X — (0, oo) satisfying

c-! C

U+ de, ypdrep =V =T00 = G a+s

Vx,y e X. (85)

Any function J satisfying (85) defines a measure u({x}) = Zye x J(x,y) and a p-symmetric Markov operator K
with kernel k(x, y) = J (x, y)(n(x)n(»)) 1. If B € [2, dy), we obtain HKP(d, B) for the Markov operator K.

To compare with some earlier works in the continuous time case, let us point out that we obtain continuous time heat
kernel estimates corresponding to UHKP(ds, 8) in (71). Consider a continuous time jump process with symmetric
measure v satisfying V(dy) and the Dirichlet form

e, f)zfxfx(f(x)—f(y))zf(x,y)v(dx)v(dy) (86)

on L2(X, v), where J satisfies (85). The condition (85) on the jump kernel J of the Dirichlet form should be inter-
preted as the continuous time analog of J(8). By comparison of energy measures and the measures p and v, we obtain
Nash and cut-off Sobolev inequalities for the Dirichlet form £ with symmetric measure v. By the same argument as
the proof of (71), we obtain the continuous time analogue of UHKP(d ¢, B) for the heat kernel of the continuous time
process associated with the above Dirichlet form £ on L2(X , V).

Now, let us consider a graph (X, d) satisfying USG(dy, d,) and LSG(d, dy,) with dy =100, d,, = 101. As men-
tioned above, the heat kernel corresponding to (€, L2(X , 1)) satisfies the continuous time analogue of UHKP(d, B)
for all B € [2, 101). We note that the results of [24] imply the continuous time analogue of UHKP(d s, B) for the case
B € (100, 101) — see [24, Corollary 6.14]. However, in the case 8 € [2, 100) the exit time and survival time estimates
appearing in [24, Theorems 2.1 and 2.3] are a priori difficult to verify.
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As the authors were working on this project, another group, Zhen-Qing Chen, Takashi Kumagai, and Jian Wang,
were pursuing similar goals based on somewhat different ideas [16]. Both groups obtain similar final results regarding
the heat kernel estimates HKP(d ¢, ), independently. We believe that both works will prove useful in future progress.
The work [16] concerns similar estimates in the continuous time setting and allows for more general volume growth
and space-time scaling. Further their work involves a weaker version of cutoff Sobolev inequality. A crucial step in



718

M. Murugan and L. Saloff-Coste

their proof involves a mean value inequality proved using an iteration procedure by repeated application of Faber—
Krahn and cutoff-Sobolev inequalities.

Added in revision: A more recent preprint of Grigor’yan, Hu, and Hu [23] also independently addresses similar
questions using a different approach. We would also like to point out that [17,18] addresses the stability of Har-
nack inequalities and the relationship between Harnack inequalities and heat kernel estimates in the context of jump
processes.
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