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Abstract. In this contribution to the proceedings of a conference honoring the career of Francesco Iachello, two applications of
symmetry principles to neutrino physics are described. These applications are the connection between fermion pairing in many-
body physics and the neutrino mass as well as collective neutrino oscillations.

INTRODUCTION

Symmetry principles and associated algebraic techniques play a very special role in physics. Presence of symmetries
determine if a problem is exactly solvable. Exactly solvable problems are certainly interesting on their own. They
may also be useful as toy models or may serve as a starting point of systematic approximations dealing with more
complicated problems. Even breaking of symmetries leads to very interesting physics. In this contribution the utility
of symmetry arguments is illustrated using two examples from neutrino physics: Symmetries of neutrino mass and
collective neutrino oscillations. The natural mathematical framework to discuss symmetries is the language of Lie
groups and Lie algebras. However, one does not necessarily need to employ complicated mathematical structures. In
the examples chosen here it is shown that most of the salient physics can be recovered using the simplest Lie algebra,
that of the angular momentum.

NEUTRINO MASS AS A PAIRING PROBLEM

A Dirac spinor with four independent components represents a Dirac fermion. The contribution of the mass of a Dirac
fermion to the Lagrangian is given by

LD = −mD

(
ψLψR + ψRψL

)
(1)

where mD is the mass of the Dirac fermion and ψL, ψR are the left- and right-handed components of the associated
spinors. In contrast, a spinor describing a Majorana fermion is self charge-conjugate. Hence it is possible to assign
different masses to the right-handed and left-handed components, resulting in the mass Lagrangian

LM = −
mL

2

(
ψLψ

C
L + h.c.

)
−

mR

2

(
ψRψ

C
R + h.c.

)
(2)

where the spinor ψC is the charge-conjugate of the spinor ψ and mL,R are the two independent Majorana masses. The
factor 1/2 is introduced to avoid double counting. Since the mass terms in Equation (2) violate charge conservation,
Majorana masses are only possible for neutral fermions, such as neutrinos. In the Standard Model of particle physics
all masses of the massive elementary particles, possibly except those for neutrinos, are Dirac masses generated by the
Yukawa couplings of the Higgs. A recent review surveying various properties of neutrinos, including their masses, is
given in Reference [1].

Hamiltonians associated with the mass Lagrangians given above are reminiscent of the pairing Hamiltonians
in nuclear and condensed-matter physics. Indeed the analogy between fermion mass and pairing gap in the theory
of superconductivity was already discussed a long time ago in exploring consequences of spontaneous symmetry
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breaking. [2, 3] Pairing is ubiquitous in many-fermion systems. For example in nuclear physics s-wave (L = 0)
pairing of nucleons in a single Shell Model orbital j is described by the quasi-spin algebra:

Ŝ +
j =

∑
m>0

(−1)( j−m)a†j ma†j −m,

Ŝ −j =
∑
m>0

(−1)( j−m)a j −ma j m,

Ŝ 0
j =

1
2

∑
m>0

(
a†j ma j m + a†j −ma j −m − 1

)
. (3)

where m takes values − j ≤ m ≤ + j. This algebra is an SU(2) algebra the quadratic Casimir operator of which is
Ω j(Ω j/2 + 1)/2, where Ω j = j + 1/2. Once can also introduce d-wave (L = 2) pairing, enlarging the algebra to SU(6)
and leading to the celebrated Interacting Boson Model describing the structure of low-lying states of medium-heavy
nuclei [4].

To establish the connection with the fermion masses we introduce massless fermion fields

ψL(x, t) =

∫
d3p

2E(2π)3

[
a(p, h = −1) u(p, h = −1)e−ip.x + b†(p, h = +1) v(p, h = +1)eip.x

]
, (4)

and

ψR(x, t) =

∫
d3p

2E(2π)3

[
a(p, h = +1) u(p, h = +1)e−ip.x + b†(p, h = −1) v(p, h = −1)eip.x

]
, (5)

where h is the helicity, u and v are the Dirac spinors in the helicity basis, a and b are the associated creation-annihilation
operators. We then can write down the mass term of the free fermion Hamiltonian as

mD

∫
d3x

(
ψLψR + ψRψL

)
= mD

∑
h

∫
d3p

2E(2π)3

[
a†(p, h)b†(−p, h) + b(−p, h)a(p, h)

]
. (6)

One observes the similarity between Dirac mass term in Equation (6) and the quasispin algebra of Equation (3). In
fact such a mass term can be written as the sum of the ladder operators of an SU(2) algebra, which we designate
as SU(2)D. One can of course also introduce such SU(2) algebras for the Majorana mass terms made out of left-
and right-handed fermion fields: SU(2)L and SU(2)R. Since the left- and right-handed components of a fermion field
are independent, SU(2)L and SU(2)R algebras commute with each other (but of course not with SU(2)D). In general
from four independent components of a Dirac spinor one expects to form an Sp(4) ∼ SO(5) algebra [5]. The SU(2)L×

SU(2)R ∼ SO(4)LR is the maximum subalgebra of this SO(5) algebra. It is known that the SO(5) algebra includes four
different SU(2) algebras, not all of which are mutually commuting. Three of these subalgebras are SU(2)L, SU(2)R, and
SU(2)D. It turns out that this fourth SU(2) algebra, labeled here as SU(2)PG, generates the Pauli-Gürsey transformation
[6]

ψ→ ψ′ = ÛψÛ† = aψ + bγ5ψ
c, |a|2 + |b|2 = 1 (7)

where Û is the SU(2)PG group rotation associated with this fourth SU(2) subalgebra of SO(5) [5].

COLLECTIVE NEUTRINO OSCILLATIONS

It is a well-established experimental fact that the neutrino flavor eigenstates, which participate in the weak interactions,
are linear combinations of mass eigenstates. As neutrinos travel in vacuum, this mixing leads to interference between
two or more quantum states, which is observed as flavor oscillations. In the presence of background particles with
relatively low densities one usually ignores collisions of neutrinos with these background particles as the cross sections
are very small (proportional to the square of the Fermi constant, G2

F). However the amplitude of the coherent forward
scattering of neutrinos off the background particles, proportional to GF , could contribute to the phases of the neutrino
wavefunctions which interfere with each other. The resulting phenomena is referred to as the matter-enhanced neutrino
oscillations.
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For two flavors of neutrinos, labeled as e and x, one can introduce creation and annihilation operators for a
neutrino with three momentum p, and write down the generators of an SU(2) algebra representing neutrino flavor
isospin [7]:

J+(p) = a†x(p)ae(p), J−(p) = a†e(p)ax(p),

J0(p) =
1
2

(
a†x(p)ax(p) − a†e(p)ae(p)

)
. (8)

Using the operators in Equation (8) the Hamiltonian for neutrinos traveling through static, locally charge-neutral, and
unpolarized matter takes the form

Hν =

∫
d3p

δm2

2p

[
cos 2θ J0(p) +

1
2

sin 2θ (J+(p) + J−(p))
]
−
√

2GF

∫
d3p Ne J0(p) (9)

where θ is the mixing angle between two neutrino flavor states, and Ne is the electron density of the background.
Defining ωp = δm2/2p and introducing an auxiliary vector B in the flavor basis

Bflavor = (sin 2θ, 0,− cos 2θ). (10)

the Hamiltonian in Equation (11) takes the form

Hν =

∫
d3p

(
ωp B · J(p) −

√
2GF Ne J0(p)

)
. (11)

Note that the auxiliary vector B takes the form

Bmass = (0, 0,−1) (12)

in the mass basis.
In many astrophysical sites, such as core-collapse supernovae and merging neutron stars, an abundant number

of neutrinos are present. For example the entire gravitational binding energy of a pre-supernova star is deposited into
the proto-neutron star and is converted into neutrinos, yielding ∼ 1057 − 1058 neutrinos. In such situations one can
no longer ignore coherent forward scattering of neutrinos off other neutrinos and one has to add a second term to the
Hamiltonian in Equation (11) to account for this effect:

Hνν =
√

2
GF

V

∫
d3p d3q (1 − cosϑpq) J(p) · J(q), (13)

where ϑpq is the angle between neutrino momenta p and q and V is the normalization volume. Note that the Hamil-
tonian in Equation (11) includes a “kinetic energy” term and a one-body interaction of the neutrino with the electron
background. In contrast the Hamiltonian in Equation (13) includes a genuine two-body interaction.

To calculate propagation of a very large number of neutrinos subject to the Hamiltonian Hν + Hνν is indeed
a formidable task and typically many approximations are employed. Near the proto-neutron star in a core-collapse
supernova, the sheer number of neutrinos overwhelms the interactions of neutrinos with background electrons; one
can then ignore Ne term and write

H =

∫
d3p ωp B · J(p) +

√
2 GF

V

∫
d3p d3q (1 − cosϑpq) J(p) · J(q). (14)

(Of course in the outer shells of the supernova, the neutrino flux is significantly diminished. In that region the term
with Ne is significantly larger than the Hνν term and cannot be ignored). It is straightforward to include a third flavor
of neutrinos (by enlarging the SU(2) algebra to SU(3) algebra) and introduce antineutrinos (by introducing a second
set of SU(3) algebras to describe antineutrinos).

A commonly utilized approximation is the mean field approximation, replacing products of operators with one
single operator and the expectation value of the second operator. This approximation can be rigorously derived from
the path-integral formalism as the saddle-point approximation [7]. Recalling the neutrino-neutrino interaction is a
current-current interaction, the interaction of Fierz-transformed neutrino currents is approximated as

ψνLγ
µψνLψνLγµψνL → ψνLγ

µψνL〈ψνLγµψνL〉 + · · · (15)
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where the averages are calculated using the SU(2) coherent states associated with the algebra in Equation (8) [7].
The SU(2) coherent state path-integral formalism in the saddle-point approximation gives the interaction of Fierz-
transformed neutrino-antineutrino currents as

ψνLγ
µψνLψνRγµψνR → ψνLγ

µψνL〈ψνRγµψνR〉 + · · · . (16)

It was pointed out that neutrino-antineutrino interaction can give rise to another mean field [8, 9, 10, 11]:

ψνLγ
µψνLψνRγµψνR → ψνLγ

µ〈ψνLψνRγµ〉ψνR + · · · . (17)

Noting that 〈ψνLψνR〉 ∝ mν from the symmetry principles, one concludes that effects of such a mean field would be
negligible if the medium is isotropic [12].

Many calculations in the mean-field approximation are available in the literature (for a review see Reference
[14]). These calculations observed that at a particular energy the final neutrino spectra emerging from the collective
neutrino oscillations are almost completely divided into parts of different flavors. This observations was termed spec-
tral swappings or splits [15, 16]. Spectral swaps and other effects resulting from collective neutrino oscillations can
have significant impact on astrophysics. For example, a recent mean-field calculation of collective neutrino oscilla-
tions with three flavors connected with a nucleosynthesis network calculation explored νp process nucleosynthesis in
proton-rich neutrino-driven winds. It found that there could be a significant enlargement of abundances of p-nuclei
[17].

For a Hamiltonian describing N particles each of which can occupy p states the dimension of the Hilbert space is
pN . Exact solutions for the eigenstates of such a Hamiltonian include both entangled and unentangled states. Adopting
a mean-field approximation eliminates the entangled states and reduces the dimension of the Hilbert space to pN.
Hence, exact solutions are desirable for a complete description of physics even in the limiting cases. One such limiting
case is the single-angle approximation. In this approximation the quantity (1−cosϑpq) is replaced by its average value
over the ensemble: √

2 GF

V
(1 − cosϑpq)→

√
2 GF

V
〈(1 − cosϑpq)〉 ≡ µ (18)

leading to the Hamiltonian
H =

∑
p

ωpB · J(p) + µ
∑

p,q,p,q

J(p) · J(q). (19)

The Hamiltonian in Equation (19) is exactly solvable [13] using the Bethe ansatz method as we describe in the next
section.

GAUDIN ALGEBRA AND BETHE ANSATZ

To apply the Bethe ansatz method it is more convenient to consider the discretized version in Equation (19). Here
we summarize only the salient points of the application of Bethe ansatz method to the problem of collective neutrino
oscillations. For a more detailed summary, the reader is referred to a recent review [18]. In general the Gaudin algebra
is defined by the commutation relations [19]

[S +(λ), S −(ρ)] = 2
S 0(λ) − S 0(ρ)

λ − ρ
, (20)

[S 0(λ), S ±(ρ)] = ±
S ±(λ) − S ±(ρ)

λ − ρ
, (21)

[S 0(λ), S 0(ρ)] = [S ±(λ), S ±(ρ)] = 0. (22)

In the above equations λ and ρ are arbitrary parameters which can take both real and complex values. For the neutrino
physics the appropriate realization of this algebra is given by

S 0(λ) =
1
µ

+
1
2

∑
p

a†x(p)ax(p) − a†e(p)ae(p)
ωp − λ

(23)
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S +(λ) =
∑

p

a†x(p)ae(p)
ωp − λ

, S −(λ) =
∑

p

a†e(p)ax(p)
ωp − λ

. (24)

One can show that the operators

X(λ) = S 0(λ)S 0(λ) +
1
2

S +(λ)S −(λ) +
1
2

S −(λ)S +(λ) (25)

commute for different values of the parameters:

[X(λ), X(ρ)] = 0, λ , ρ. (26)

Using the realization given in Equations (23) and (24) we can write

X(λ) =
∑

p

J2(p)
(ωp − λ)2 +H(λ) +

1
µ2 (27)

where we defined

H(λ) =
∑

p,q,p,q

J(p) · J(q)
(ωp − λ)(ωq − λ)

+
2
µ

∑
p

J0(p)
(ωp − λ)

. (28)

Taking the limit

lim
λ→ωp

(λ − ωp)H(λ) = 2
∑

q,q,p

J(p) · J(q)
ωp − ωq

−
2
µ

J0(p) (29)

and recalling Equation (26) we get the following mutually commuting operators, one for each p:

2hp

µ
= 2

∑
q,q,p

J(p) · J(q)
ωp − ωq

−
2
µ

J0(p). (30)

Multiplying Eq. (30) with ωP and summing over p in Eq. (30) gives the Hamiltonian of Eq. (19) written in the mass
basis:

H
µ

=
∑

p

ωp
hp

µ
=

∑
q,p,q,p

J(p) · J(q) −
1
µ

∑
p

ωpJ0(p). (31)

Eigenstates of the Hamiltonian in Equation (19) are given by

|ξ >≡ |ξ1, ξ2, . . . , ξn >∝ S +(ξ1)S +(ξ2) . . . S +(ξn)|0 > (32)

if the complex numbers ξ1, ξ2, . . . , ξn satisfy the Bethe Ansatz equations:

1
µ
−

∑
p

jp

ωp − ξα
=

n∑
β=1

(β,α)

1
ξα − ξβ

for α = 1, 2, . . . , n. (33)

In Equation (32) is the state annihilated by S −(λ) for all values of λ. In Equation (33), jp is the SU(2) label for the
algebra spanned by J(p) with the Casimir operator jp( jp + 1). The eigenvalues of the Hamiltonian in Equation (19)
are given by

En = µ
∑
p,q

jp jq +
1
2

∑
p

ωp jp − µn
∑

p

jp + µ
n(n − 1)

2
−

1
2

∑
α

ξα. (34)

It is again possible to extend the formalism presented above to include antineutrinos and three-flavor mixing including
CP-violating phases [20].

One reason to seek an exact solution to the problem is to test the limits of validity of the mean-field approxima-
tions. A recent work explored adiabatic evolution of an initial thermal distribution of electron neutrinos (T=10 MeV)
and antineutrinos of another flavor (T=12 MeV) using the exact formalism described in this section. It considered 108
neutrinos and antineutrinos distributed over 1200 energy bins both for neutrinos and antineutrinos with solar neutrino
parameters and normal hierarchy. It found that spectral split phenomenon is still present even in the exact adiabatic
calculation [21].
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Solving Bethe ansatz equations

Many approaches are proposed to solve the Bethe ansatz equations. Here we outline a technique which goes back to
Stieltjes [22]. In this approach one starts writing down a polynomial the roots of which are the solutions of the Bethe
ansatz equations, ξα:

P(λ) =
∏
α

(λ − ξα) = exp

∑
α

log(λ − ξα)

 . (35)

Next one introduces

Λ(λ) =
dP/dλ
P(λ)

=

N∑
α=1

1
λ − ξα

. (36)

Assuming that the variables in Equation (35) are solutions of the Bethe ansatz equation in Equation (33), one can
show that the quantity Λ(λ) satisfies the following differential equation:

Λ2(λ) +
dΛ

dλ
+

1
µ

Λ(λ) = 2
∑

p

jp

λ − ωp

[
Λ(λ) − Λ(ωp)

]
. (37)

This is a non-linear equation, reflecting the fact that the collective neutrino oscillations it derives from is a non-linear
problem. An idea which was pursued in the literature by many authors is to calculate Λ(λ) and its derivatives with
respect to λ only for λ = ωp (see for example Reference [23]). Such a substitution yields the equation

Λ2(ωq) + (1 − 2 jq)Λ′(ωq) +
1
µ

Λ(ωq) = 2
∑
p,q

jp
Λ(ωq) − Λ(ωp)

ωq − ωp
, (38)

where prime denotes derivative with respect to λ. For jq = 1/2 the derivative term vanishes yielding an algebraic
equation for Λ(ωq). If all the jp are also 1/2, then one has a set of algebraic equations for all Λ(ωp). For higher
values of jp if one keeps taking derivatives, one eventually reaches to vanishing terms. For example, taking the next
derivative produces a second derivative term which vanishes for jq = 1:

2Λ(ωq)Λ′(ωq) + (1 − jq)Λ′′(ωq) +
Λ′(ωq)
µ

= 2
∑
p,q

jp

[
Λ′(ωq)
ωq − ωp

+
Λ(ωq) − Λ(ωp)

(ωq − ωp)2

]
. (39)

An application of this approach to adiabatic collective neutrino oscillations is in progress and will be presented else-
where [24].

CONCLUSION

Symmetries play a key role in understanding many physical phenomena as aptly illustrated by the body of scientific
work of Franco Iachello. In this contribution two examples of the applications of the symmetry principles to neutrino
physics are presented. Both examples, connection between neutrino mass and pairing problem as well as the collective
neutrino oscillations, are chosen from active research in neutrino physics and astrophysics.
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