

Proc. 15th Int. Symp. Origin of Matter and Evolution of Galaxies (OMEG15) JPS Conf. Proc. 31, 011039 (2020) https://doi.org/10.7566/JPSCP.31.011039

Nuclear Weak Rates for Astrophysical Processes in Stars

Toshio SUZUKI^{1,2*}, Satoshi CHIBA³, Takashi YOSHIDA⁴, A. Baha BALANTEKIN⁵, Toshitaka KAJINO^{2,6,7}, Michio HONMA⁸, Yusuke TSUNODA⁹, Naofumi TSUNODA⁹, and Noritaka SHIMIZU⁹

We have updated nuclear weak rates relevant to the study of astrophysical processes in stars. Neutrino-induced reaction cross sections, electron-capture and β -decay rates at stellar environments are obtained with new shell-model Hamiltonians that prove to be successful in describing spin responses - Gamow-Teller and spin-dipole transitions - in nuclei. The cross sections and rates are applied to nucleosynthesis in supernovae, detection of ν and nuclear URCA processes.

KEYWORDS: e-capture, β -decay, ν -nucleus reaction, Shell-model, Nucleosynthesis, URCA process, Gamow-Teller transition, spin-dipole transition

1. Introduction

We have updated nuclear weak rates which are important to the study of astrophysical processes in stars. v-nucleus reaction cross sections on ¹²C [1], ¹³C [2], ¹⁶O [3], ⁴⁰Ar [4], ⁵⁶Fe, and ⁵⁶Ni [5] have been updated and applied to nucleosynthesis in supernovae [1,3,5], v detection [2-4] and study of v properties such as mass hierarchies [6]. The total and partial cross sections for various channels are tabulated for ¹²C, ¹³C and ¹⁶O.

Electron-capture and β-decay rates in pf-shell and sd-shell nuclei at stellar environments have been updated with GXPF1J [7] and USDB, respectively. They have been used to study synthesis of iron-group nuclei in type Ia supernovae [8], and nuclear URCA processes in degenerate O-Ne-Mg cores in stars with 8-10 solar masses [9,10]. Nuclear pairs, ²³Na-²³Ne and ²⁵Mg-²⁵Na, are found to be important for the cooling of the core, and the final fate of the stars is sensitive to the nuclear weak rates as well as their

¹Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3, Setagaya-ku, Tokyo 156-8550, Japan.

²National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan

³Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan

⁴Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan ⁵Department of Physics, University of Wisconsin, Wisconsin 53706, USA

⁶Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan

⁷School of Physics and Nuclear Energy Engineering, Beihan University, Beijing 100083, China

⁸Center for Mathematical Sciences, University of Aizu, Fukushima 965-8580, Japan

⁹Center for Nuclear Study, The University of Tokyo, Hongo, Tokyo 113-0033, Japan

^{*}E-mail: suzuki@phys.chs.nihon-u.ac.jp (Received August 29, 2019)

011039-2

mass. The rates for sd- and pf-shell nuclei are tabulated.

Extension of the study to e-capture and β -decay rates for neutron-rich nuclei along and near N=50 is in progress, where evaluations of forbidden transitions in pf-gds shells become crucial. The rates are important for stellar core-collapse processes. The rates for nuclei in the island of inversion with sd-pf shells are important for nuclear URCA processes in the neutron star crusts.

 ν -induced reaction cross sections on light nuclei are discussed in Sect. 2. We discuss e-capture and β -decay rates in sd-shell and pf-shell nuclei in Sect. 3. The rates for neutron-rich nuclei, where two-major shells are involved, will be discussed in Sect. 4. Summary is given in Sect. 5.

2. Neutrino-nucleus Reaction Cross Sections on Light Nuclei

$$2.1 \text{ v-}^{12}C$$
 and $\text{v-}^{13}C$

Neutrino-induced reactions on ¹²C and ¹³C at reactor and supernova v energies are investigated by shell-model calculations with the SFO Hamiltonian, which can well reproduce the Gamow-Teller (GT) strength in ¹²C. Nucleosynthesis of light nuclei in supernovae is studied with the updated cross sections, and enhancement of the production yield of ¹¹B and ⁷Li compared to previous studies is found [1]. v-¹³C cross sections are also updated for solar and reactor v [2] as well as for supernova v [11]. Coherent elastic scattering cross sections are also evaluated for ¹²C and ¹³C and sensitivity to neutron distributions are investigated [11].

$$2.2 \quad \nu^{-16}O$$

v-¹⁶O reactions, induced dominantly by spin-dipole transitions, are studied by shell-model calculations with the SFO-tls Hamiltonian [12], in which p-sd cross-shell matrix elements are improved with proper inclusion of the tensor forces. Charged- and neutral-current reaction cross sections in various channels are obtained, and applied to nucleosynthesis of ¹¹B and ¹¹C in supernovae through sizable αp emission channels [3]. Neutrino mass hierarchy dependence of the charged-current cross sections are studied for future detection of supernovae [6].

3. Electron-capture and β-decay Rates of Nuclei within One-major Shells

3.1 sd-shell

Electron-capture and β -decay rates for nuclear pairs in the sd-shell are evaluated at high densities and high temperatures relevant to the final evolution of electron-degenerate O–Ne–Mg cores of stars with initial masses of 8–10 M_{\odot} . The rates are important to determine the final fate of the stars, whether they end up with electron-capture supernovae or Fe core-collapse supernovae. The rates obtained by shell-model calculations with the USDB Hamiltonian are provided in tables with fine enough meshes at various densities and temperatures [10]. Effects of Coulomb corrections on the rates are taken into account. The rates for pairs with A = 23 and 25 are important for nuclear URCA processes that determine the cooling rate of the O–Ne–Mg core, while those for pairs with A = 20 and 24 are important for the core-contraction and heat generation rates in the core.

011039-3

3.2 pf-shell

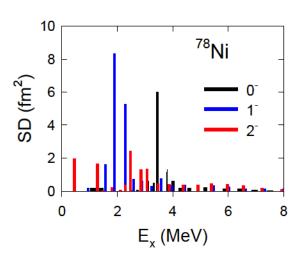
Electron-capture and β -decay rates in pf-shell nuclei have been updated with the use of the GXPF1J Hamiltonian, which can describe the GT strengths of Ni and Fe isotopes quite well [7]. The rates are applied to study nucleosynthesis of iron-group elements in type Ia supernovae. An over-production problem of the elements for the previous single-particle rates disappears for the updated shell-model rates, in particular, for the supernova model of delayed detonation after deflagration [8]. The updated rates are provided in the REACLIB database.

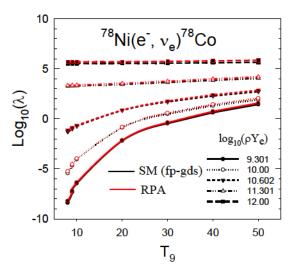
4. Electron-capture and β-decay Rates of Nuclei with Two-major Shells

4.1 sd-pf shell in the island of inversion

Electron-capture and β-decay rates are evaluated for nuclei in the island of inversion, where excitations of nucleons from sd-shell to pf-shell play important roles. Neutron-rich Ne and Mg isotopes are studied with an interaction obtained with the extended Kuo-Krenciglowa (EKK) method [13] from chiral N³LO interaction and Fujita-Miyazawa three-body forces. Large admixtures of pf-shell components with both 2p-2h and 4p-4h excitations are found in 32 Mg, and energy spectra in 31 Mg are well reproduced; the ground state is $1/2^+$ consistent with the observation. The weak rates for the 31 Mg- 31 Al pair, which are important for the URCA process in neutron star crusts [14], are evaluated, and the URCA density is assigned to be at $log_{10}(\rho Y_e) = 10.14$ [15].

4.2 pf-gds shell for ⁷⁸Ni


Electron-captures in neutron-rich nuclei near the N=50 closed neutron shell are pointed out to be important for core-collapse process in stars [16]. The e-capture rates for ⁷⁸Ni are evaluated by shell-model with pf-gds shell. The shell-model calculation is an extension of that for pf- $g_{9/2}d_{5/2}$ configuration with the use of the modified A3DA interaction [17]. Here, up to 5p-5h excitations outside filling configurations of ⁷⁸Ni are taken into account with full pf-gds shells. Dominant contributions come from the spin-dipole transitions. The spin-dipole strengths in ⁷⁸Ni are shown in Fig. 1. Sum of the strengths for $J^{\pi} = 0^{-}$, I^{-} and I^{-} are 11.60, 19.89 and 12.57 fm², respectively, which exhaust 95%, 96% and 79% of the sum-values, respectively.


Electron-capture rates on ⁷⁸Ni obtained by the shell-model calculations with pf-gds configuration space at densities $\rho Y_e \sim 10^9 - 10^{12}$ g cm⁻³ ($Y_e =$ proton fraction) and temperatures $T = (1-5) \times 10^{10}$ K are shown in Fig. 2. Calculated results are compared with those of an RPA calculation with the SG2 interaction [19]. The same Q value for the shell-model is used for the RPA calculation. Similar rates are obtained for the two methods.

5. Summary

Neutrino-nucleus reaction cross sections, e-capture and β -decay rates in stellar environments have been updated with the use of new shell-model Hamiltonians. The new rates are applied to nucleosynthesis in supernovae, nuclear URCA processes, evolution of stars, and ν detection. We have provided these updated cross sections and rates in tables so that they can be used for studies of astrophysical processes sensitive to

the weak rates.

Fig. 1. Spin-dipole strengths in ⁷⁸Ni obtained with the modified A3DA interaction with pf-gds shells.

Fig. 2. Electron capture rates on 78Ni obtained with shell-model (pf-gds) and RPA calculations.

Acknowledgements

This work has been supported in part by JSPS KAKENH Grant Nos. JP15K05090 and JP19K03855.

References

- [1] T. Suzuki et al., Phys. Rev. C 74, 034307 (2006); T. Yoshida et al., ApJ. 686, 448 (2008).
- [2] T. Suzuki, A. B. Balantekin, and T. Kajino, Phys. Rev. C 86, 015502 (2012).
- [3] T. Suzuki, S. Chiba, T. Yoshida, K. Takahashi, and H. Umeda, Phys. Rev. C 98, 034613 (2018).
- [4] T. Suzuki and M. Honma, Phys. Rev. C 87, 014607 (2013).
- [5] T. Suzuki, M. Honma, K. Higashiyama et al., Phys. Rev. C 79, 061603 (R) (2009).
- [6] K. Nakazato, T. Suzuki, and M. Sakuda, PTEP 2018, 123E02 (2018).
- [7] T. Suzuki, M. Honma, H. Mao, T. Otsuka, and T. Kajino, Phys. Rev. C 83, 044619 (2011).
- [8] K. Mori, M. Famiano, T. Kajino, T. Suzuki et al., ApJ. 833, 179 (2016).
- [9] H. Toki, T. Suzuki, K. Nomoto, S. Jones, and R. Hirschi, Phys. Rev. C 88, 015806 (2013).
- [10] T. Suzuki, H. Toki, and K. Nomoto, ApJ. 817, 163 (2016).
- [11] T. Suzuki, A. B. Balantekin, T. Kajino, and S. Chiba, J. Phys. G 46, 075103 (2019).
- [12] T. Suzuki and T. Otsuka, Phys. Rev. C 78, 061301 (R) (2008).
- [13] N. Tsunoda et al., Phys. Rev. C 95, 021304 (R) (2017).
- [14] H. Schatz et al., Nature 505, 65 (2014).
- [15] T. Suzuki, N. Tsunoda, Y. Tsunoda, N. Shimizu and T. Otsuka, EPJ Web of Conf. 165, 01048 (2017).
- [16] C. Sullivan, E. O'connor, R. G. T. Zegres, T. Grubb and S. M. Austin, ApJ. 816, 44 (2016).
- [17] Y. Tsunoda et al., Phys. Rev. C 89, 031301 (R) (2014).
- [18] Nguyen Van Giai and H. Sagawa, Phys. Lett. B 106, 379 (1981).