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ABSTRACT

Propagating neural waves in the cerebral cortex influence the integration of incoming sensory
information with ongoing cortical activity. However, the neural circuit elements that support these cortical
waves remain to be fully defined. Here, a novel tangential slice preparation was developed that exhibited
propagating wave activity across the dorsal cortical sheet, as assessed using autofluorescence imaging
following focal electrical stimulation. Analysis of functional connectivity in the slice preparation with
laser-scanning photostimulation via glutamate uncaging (LSPS) revealed a lack of short-latency, presumed
monosynaptic, long-range connections (>300 um) in the slice preparation. These results establish a novel
slice preparation for assessing cortical dynamics and support the proposition that interactions among local

cortical elements are sufficient to enable widespread propagating wave activity.

INTRODUCTION

The propagation of neural activity in the cerebral cortex utilizes both local and long-range
connections among cortical areas [1-6]. In this manner, information is communicated among different
cortical regions to integrate incoming sensory streams with ongoing network activity [4, 7-10]. The
propagation of such activity across the cortical surface relies on both the network architecture and the
balance of excitatory and inhibitory inputs [1, 7, 11, 12]. However, the degree to which local and long-
range connections support such propagating cortical wave activity remains to be fully defined [7].
Determining the necessary and sufficient elements that support such activity would benefit from
preparations that isolate the individual network components [13, 14].

As an approach to characterizing such propagating wave activity, a novel in vitro slice preparation
of the neocortex in the mouse was developed that preserved much of the rostrocaudal and mediolateral
extents of the dorsal cortical surface, primarily encompassing sensory and motor areas [15]. Although prior
in vivo studies have observed propagating waves in these regions, connections to subcortical sites
potentially complicates their interpretation [1-12]. Similarly, prior in vitro analyses of tangential cortical

activity have typically been confined to more limited cortical domains, potentially constraining wave
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dynamics [13, 14, 16]. Utilizing this novel in vitro slice preparation enabled the broad assessment of spatial
and temporal patterns of activity following network perturbation, with prominent cortical wave activity
observed using flavoprotein autofluorescence imaging [17-19]. In addition, laser-scanning
photostimulation via uncaging of glutamate (LSPS) was employed to probe functional connectivity in the
tangential cortical slice preparation [20-22].

From these studies, widespread but variable patterns of cortical wave activity were observed in this
tangential slice preparation, but few long-range monosynaptic inputs to single neurons were detected with
LSPS mapping. As such, these data support the notion that local connectivity may be sufficient to propagate

wave activity across the cortical surface and influence computational processes on a global scale.

MATERIALS AND METHODS

Acute brain slices were prepared from C57BL/6J mice. All procedures were approved by the
Institutional Animal Care and Use Committee (IACUC) of the Louisiana State University School of
Veterinary Medicine. Animals were deeply anesthetized via inhalation of isoflurane. The brains were
quickly removed and submerged in cool, oxygenated (95% 0,-5% CO»), artificial cerebral spinal fluid
(ACSF; in mM: 125 NacCl, 25 NaHCOs3, 3 KCIl, 1.25 NaH,POs, 1 MgCl,, 2 CaCl,, 25 glucose) and then
blocked by tipping the brain by 10° and fixing the ventral surface to tangentially approach the naturally
flattened dorsal cerebrum of the mouse (Fig. 1C, inset). The cutting blade was then lowered towards the
dorsal cerebral surface and vibratome sectioned dorsoventrally at 500 pm. The slices collected thus capture
many of the dorsal cortical areas of the mouse, e.g.. visual, somatosensory, motor, and prefrontal (Fig. 1).
Slices were then incubated at 32°C in ACSF for 1 h.

For physiological recordings, the second section collected, representing ~250-750 pm below the
pial surface, was transferred to a submerged perfusion chamber (Automate Scientific, Berkeley, CA)
mounted on a custom microscope stage (Siskiyou, Grants Pass, OR) perfused continuously with oxygenated
(95% 0,-5% CO,), ACSF at 32°C, warmed with an in-line solution heater (Warner Instruments, Hamden,

CT), at a rate of 2-5 ml/min, supplied with a peristaltic perfusion pump (World Precision Instruments,
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Sarasota, FL). Oxygenation and inclusion of glucose in the ACSF was necessary to observe the wave
activity. Whole-cell recordings were made using a patch pipette filled with a cesium intracellular solution
(in mM: 110 mM d-gluconic acid, 110 mM CsOH, 10 mM CsCI2, 1 mM CaCl2, 1 mM EGTA, 1 mM Mg-
ATP, 10 mM HEPES, pH 7.3 obtained with KOH and osmolality of 290 mOsm obtained with distilled
water). Biocytin was not included in the recording pipette, due to ambiguity of assessing recovered cell

morphologies in the tangential slice plane, which necessarily truncates their apical and basal dendrites (see

Discussion). —Voltage clamp recordings were made using a Multiclamp 700B amplifier and pCLAMP
software (Molecular Devices, Sunnyvale, CA) and Ephus software (Janelia Farms, Ashburn, VA) [23].
Metabolic activity in response to electrical stimulation was measured by capturing green light
(~510-540 nm) generated by mitochondrial flavoproteins in the presence of blue light (~450—490 nm) using
epifluorescent illumination with a GFP filter cube set (Edmund Optics, Barrington, NJ) and a high-
sensitivity camera, Q-Retiga SRV (Qimaging, Surrey, BC) [17-19]. In order to preserve optical clarity with
the slice, electrical stimulation was performed using a glass pipette electrode filled with ACSF. The
stimulating electrode was situated in the center of the slice preparation to deliver a short pulse train.
Stimulation parameters were set at 125 Hz for 800 ms; 40-150 pA, based on prior experiments that
demonstrated these as optimal for eliciting flavoprotein responses in slice preparations [19, 24]. Optical
recordings were taken over 12 s using StreamPix software (NorPix, Montreal, Quebec), with an image
exposure time ranging from 80 to 150 ms. Images were collected using an Olympus BX-51 microscope
mounted with a UPlanSApo 4X, NAO0.16, WD13mm, infinity corrected objective (Olympus America,
Center Valley, PA). The images were processed using custom software running on Matlab (MathWorks,
Nartick, MA) and the signal profiles were analyzed using ImageJ (NIH, Bethesda, MD) [19, 25].
Laser-scanning photostimulation (LSPS) with caged glutamate was used to map the cortical regions
eliciting EPSP/Cs in recorded neurons, as previously described [20-22]. Nitroindolinyl (NI)-caged
glutamate (0.37 mM; Sigma-RBI) was added to the recirculating ACSF. Photolysis of the caged glutamate
was done focally with a pulsed UV laser (DPSS Lasers, Santa Clara, CA), with power adjusted between 5-

50 mW with a variable neutral density wheel (Edmund Optics, Barrington, NJ). Custom software (Ephus)
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written in MATLAB was used to analyze the data [23]. The evoked postsynaptic currents were
superimposed on photomicrographs corresponding to the stimulation sites and mean responses plotted using
Ephus.

For histological analysis, VGAT-Venus transgenic mice (colony established courtesy of Dr. Janice
Naegele at Wesleyan University) were employed to aid in the assessment of inhibitory neuronal distribution
in the tangential slice plane [21, 26-28]. Animals were deeply anesthetized with isoflurane and sacrificed
via transcardiac perfusion, using 10 mM phosphate-buffered saline (PBS) solution, followed by 4%
paraformaldehyde (PFA) in 10 mM PBS fixative. The brain was then removed and postfixed in 4% PFA in
10 mM PBS at 4° C for 24 hours, after which it was stored in a 4% PFA with 30% sucrose solution in 10
mM PBS for 24 hours for cryoprotection at 4° C. Subsequently, the brain was cryosectioned and the sections
mounted and coverslipped on slides using Vectashield anti-fade mounting medium containing DAPI and
Phalloidin (Vector Labs, Burlingame, CA). Images were collected using an FM-820T epifluorescence

microscope (Amscope, Irvine, CA) and analyzed using ImageJ (NIH, Bethesda, MD).

RESULTS

A novel in vitro tangential slice preparation of the dorsal cerebrum in the mouse was prepared that
contained intact functional neuronal connections, primarily among middle cortical layers, from ~250-750
pm below the pial surface (Fig. 1). The preparation preserved much of the dorsal cortical surface of the
mouse brain, spanning roughly 9 mm rostrocaudally and 5 mm lateromedially, along their longest
respective axes and encompassed most of the dorsal sensory, motor, and prefrontal areas (Fig. 1A) [15] .
The cytoarchitectural organization of the slice preparation was examined in the VGAT-Venus transgenic
mouse strain, which expresses the Venus fluorescent protein in inhibitory neurons (Fig. 1B). The
distribution of inhibitory neurons varied across the tangential slice surface, being relatively more
concentrated in the central than peripheral regions of the slice preparation, as seen in the variable

concentrations of Venus expressing cells across the surface (Fig. 1B). Similarly varied distributions of
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fiber and cell bodies were observed across the slice that correlated with the Venus labeling, as assessed by
co-staining with DAPI and Phalloidin, respectively (Fig. 1C, D).

In order to assess patterns of cortical activity, flavoprotein autofluorescence imaging of the slice
preparation was analyzed following focal electrical stimulation (Fig. 2). This imaging modality enables the
assessment of broad patterns of cortical activity by measuring changes in mitochondrial flavoprotein
autofluorescence that accompanies the increased metabolic demands of activated neurons and glia, as
discussed below [17]. Following electrical stimulation, propagating waves of neuronal activity were
observed across the cortical surface, which generally settled into local attractors, or functional sinks, at
single or multiple cortical foci that persisted for several seconds following stimulation (Fig. 2A-D;
Supplementary Movies). In general, two broad patterns of activity were observed that were classified as
divergent (Fig. 2A-B; Supplementary Movie 1) or convergent (Fig. 2C-D; Supplementary Movie 2). The
divergent activity pattern initiated at a single locus and spread to multiple distant loci (Fig. 2A-B;
Supplementary Movie 1), while the convergent pattern initiated at the periphery before coalescing into a
central locus of activity (Fig. 2C-D; Supplementary Movie 2).

The structural basis supporting these propagating waves was assessed by mapping functional
connectivity in the slice using laser-scanning photostimulation via glutamate uncaging [20]. Whole-cell,
voltage clamp recordings were made from neurons in the central region of the slice preparation and the
elicited postsynaptic currents (PSCs) assessed from a 16 X 16 photostimulation grid, with 80 um spacing
between stimulation sites (Fig. 3A). Both evoked excitatory (EPSCs) and inhibitory (IPSCs) postsynaptic
currents were elicited following photostimulation, while holding the cell at -20 mV. IPSCs dominated close
to the recording site (<~200 um), while weaker, longer-latency, EPSCs were observed outside of this
domain (Fig. 3A). No short latency (<10 ms) responses were observed outside ~300 um of the recording
site, while some long latency, presumed polysynaptic, responses were found within ~400 um (Fig. 3A-C),
even at low laser stimulation power. These data suggest that functional connections in this tangential slice

preparation are restricted to short-range local connections within ~300 pum.



129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153

DISCUSSION

In this study, a novel in vitro tangential slice preparation was developed that exhibited diverse
patterns of propagating wave activity, with intact, local (<300 pm), neural circuit connections. These results
support the proposition that functionally coupled local circuits are sufficient to enable the propagation of
wave activity across the cortical surface [6, 7, 10, 12]. Although this tangential slice preparation exhibited
cytoarchitectural variation across the surface, the diversity of cortical activity observed may result from

such variable preservation of interlaminar architectures. Moreover, the apical and basal dendrites of

preserved neurons are truncated in this slice plane, consequently affecting the preserved synaptic

connections. The resultant network architecture may favor the polysynaptic activity necessary for

propagating cortical waves, but which may technically limit its utility and relevance to fully intact cortical

structures ~whi

[1-12]. In this regard, short-range cortical connections may be sufficiently robust and degenerate to usurp
the laminar and dendritic variability across the tangential slice surface [29].

The assessment here of propagating wave activity with autofluorescence imaging contrasts with
prior approaches that utilized other imaging and electrophysiological methods to characterize these waves
[4,9, 13, 14, 29-31]. Although autofluorescence imaging correlates with neural activity, it is an indirect
measure that differs in its time course [17, 25]. Nevertheless, this imaging approach is highly sensitive,
since electrophysiologically measured neural activity correlates absolutely with the autofluorecence signal
[24, 32]. Interestingly, the source of the autofluorescence signal remains somewhat open, although most
likely reflects mitochondrial activation at presynaptic and/or postsynaptic terminals. In addition, the broad
spatiotemporal profile of the autofluorescence signal has been shown to reflect both monosynaptic and
polysynaptic activation, which can reflect differences in synaptic strength, composition, and integrity [17,
24, 32]. Thus, the spatial activation patterns observed here likely corresponds directly with those predicted

for electrophysiological measurements, but the temporal sequence is necessarily delayed and extended due
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to the slower onset and polysynaptic nature of the imaged mitochondrial flavoproteins, which somewhat
tempers direct comparisons of wave velocity across studies [17, 25].

Similarly, the determination of functional connectivity in this tangential slice preparation is
constrained by the limitations of the LSPS mapping method [20, 33]. Although no functional long-range
connections were observed in the slice, it remains possible that such connections are anatomically intact,
but weak or silent to photostimulation [34, 35]. Whether such potentially weak, long-range connections
are present and relevant to the propagation of cortical wave activity remains to be determined. Interestingly
though, long-latency, presumably polysynaptic responses were easily elicited in the slice preparation, even
at low stimulation intensities, suggesting that the maintained cortical circuit elements are predisposed to
eliciting the polysynaptic responses necessary for propagating wave activity.

Despite their prevalence, the functional role of propagating wave activity remains unresolved, with
potential influences ranging from developmental to computational [3, 7, 30, 36]. The occurrence of cortical
waves across spatial and temporal scales may reflect an emergent phenomenon of the underlying
connectional architecture, which has been appropriated to support these diverse roles [7, 12, 30]. A broader
assessment of these potential functions may now be further enabled with the novel tangential cortical slice

preparation described here.
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FIGURE LEGENDS

Figure 1. Cytoarchitectural characterization of the tangential cortical slice preparation using a VGAT-
Venus transgenic mouse strain. A: DIC image of the live tangential cortical slice preparation used for
flavorprotein autofluorescence imaging. The sectioned is anchored at the edges with thin fibers connected
to a metal harp. The stimulating electrode is positioned in the center of the slice (red star). Orientation axes:
C, caudal; L, lateral. B: Organization of inhibitory VGAT-Venus positive neurons (green) in the tangential
cortical slice. C: Phalloidin staining (red) of the tangential cortical slice preparation. Inset in C denotes
the tangential slicing angle through the center of the slice preparation in the dorsal cerebrum (modified
from Franklin and Paxinos, 2001). D: Cytoarchitecture of the slice preparation assessed using DAPI

staining (blue).

Figure 2. Flavoprotein autofluorescence imaging of widespread activation in the tangential cortical slice
preparation. A: Electrical stimulation of the slice (red star) results in multiple loci of divergent activation.
FA image (AF/F) is depicted at the time point of maximal activation. B: Percent of maximal (AF/F) plotted
as a function of time for the regions of interest indicated by the boxes in panel A. See also Supplementary
Video 1. C: Example of electrical stimulation (red star) resulting in convergent activation towards the
stimulating electrode. D: Plot of maximal (AF/F) for the regions of interest in panel C. See also

Supplementary Video 2.

Figure 3. Local functional connectivity in the tangential cortical slice assessed by laser-scanning
photostimulation via glutamate uncaging. A: Whole-cell patch clamp recordings in voltage-clamp mode
from a neuron in the barrel cortex of the tangential slice (red star) using a Cs+-intracellular solution to hold
the neuron at depolarized potentials (-20 mV). Plot illustrates the recorded postsynaptic currents (PSCs)
from stimulation at the site of overlay. Upward deflections indicate IPSCs and the downward deflections
indicate EPSCs. B-C: Plots of the mean evoked currents at the stimulation sites from two cases. The plot

is panel B is from the recordings in panel A.
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