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ABSTRACT 
 The mitochondrial calcium uniporter (MCU) is a protein located in the inner mitochondrial 
membrane that is responsible for mitochondrial Ca2+ uptake. Under certain pathological 
conditions, dysregulation of Ca2+ uptake through the MCU results in cellular dysfunction and 
apoptotic cell death. Given the role of the MCU in human disease, researchers have developed 
small-molecule compounds capable of inhibiting mitochondrial calcium uptake as tools for 
understanding the role of this protein in cell death. Herein we describe recent findings on the 
role of the MCU in mediating pathological conditions and the search for small-molecule 
inhibitors of this protein for potential therapeutic applications. 
 
INTRODUCTION. 

Mitochondria are critical for the regulation of cellular respiration and energy production 
within eukaryotes. These organelles also serve a complementary function of buffering 
intracellular calcium (Ca2+) levels. Mitochondria effectively uptake these ions to restore 
equilibrium Ca2+ concentrations when cytosolic levels are elevated. This mitochondrial Ca2+ 
(mCa2+) uptake is mediated by the highly selective and inwardly rectifying mitochondrial calcium 
uniporter (MCU)[1]. Although mCa2+ uptake is essential for signaling and bioenergetic 
processes, overload of mitochondria with these ions triggers the release of cytochrome c, 
overproduction of reactive oxygen species (ROS), mitochondrial swelling, and opening of the 
mitochondrial permeability transition pore (mPTP), all of which contribute to apoptotic cell 
death[2]. Over the past two decades, a significant number of studies have shown that this type 
of dysregulation of mCa2+ levels, caused in part by improper MCU activity, can have deleterious 
effects on cellular function, which manifest a number of serious pathological conditions[3,4••,5].  
As such, the MCU has arisen as a potential therapeutic target for the treatment of diseases 
related to mitochondrial dysfunction such as neurodegeneration, ischemia/reperfusion injury, 
and cancer[6]. 

 
THE MITOCHONDRIAL CALCIUM UNIPORTER (MCU) COMPLEX. 
Although the calcium-buffering capabilities of the mitochondria have been known for over 50 
years, the precise identity of the MCU as the major Ca2+-transporter remained elusive until 
2011[1,7]. A series of combined efforts involving NMR spectroscopy[8·,9], cryo-EM[9–14], and 
x-ray crystallography[13••,15,16,17•,18] have elucidated the structure of this membrane-bound 
transporter and its regulatory machinery. The pore-forming subunit of the MCU contains 351 
amino acid residues with both the N- and C-terminal domains located in the matrix of the 
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mitochondria. The two transmembrane domains, TM1 and TM2, are connected by a solvent-
exposed loop with a highly conserved DXXE motif, which is essential for Ca2+ transport, located 
in the upper helix of TM2 (Figure 1). 

Although initial structural studies suggested that the MCU complex exists as a pentamer 
comprising 5 identical subunits[9], more recent studies have clarified that this protein complex 
actually assumes a tetrameric, dimer of dimers assembly[10–13]. Tight regulation of MCU-
mediated mCa2+ uptake is carried out by the associated protein MICU1[19] and its homologues 
MICU2[17] and MICU3[20•]. These regulatory proteins contain EF-hands, which enable them to 
sense Ca2+ ions and tune mCa2+ uptake through the MCU[17,18,21,22]. Three additional 
proteins in the MCU complex, EMRE[14], MCUb[23], and MCUR1[24] also exhibit important 
regulatory roles in restricting or enhancing mCa2+ uptake.  

 
Figure 1. Topology diagram of human MCU showing the pore-forming subunit, the 

relevant regulator proteins MICU1/2, MCUR1, and EMRE and the orientation of the MCU in the 
inner mitochondrial membrane (IMM). Insets depict (left) the location of C97 in the crystal 
structure of the N-terminal domain (NTD; residues 72 – 189; PDB 5KUJ) and (right) location of 
the DXXE motif and S259 in the solvent accessible region of the MCU pore (PDB 5ID3). 

 
 
THE MCU, MITOCHONDRIAL Ca2+, AND DISEASE. 
Neurodegenerative and Neuromuscular Disorders. 
 A number of neurodegenerative diseases exhibit improper handling of mCa2+[25–28]. In 
Alzheimer’s Disease (AD), for example, accumulation of amyloid-β (Aβ) plaques in brain tissue 
leads to increased mCa2+

 uptake in neurons and cell death via excitotoxicity[29,30]. As such, 
approaches to modulate mCa2+ levels have been suggested as a therapeutic strategy for the 
prevention of AD[31]; inhibition of mCa2+ uptake through the MCU was recently shown to inhibit 
Aβ-induced mCa2+ overload and apoptosis in vitro[32•]. 

Parkinson's Disease (PD) is caused by α-synuclein aggregate accumulation in the brain, 
which causes mCa2+ overload, overproduction of ROS, and death of dopaminergic neurons[33]. 
It was recently reported that the integrity of the MCU complex is compromised in early onset 
PD, as reflected by the degradation of MICU1 by the protein ligase Parkin, leading to increased 
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mCa2+ uptake and apoptosis[34]. Supporting this conclusion, genetic knockdown of the MCU 
rescues dopaminergic neurons from PD-mediated cell death[35•].  

Another neurodegenerative disease, amyotrophic lateral sclerosis (ALS), is also directly 
linked to mCa2+ overload. Disrupted regulation of glutamate in neurons and astrocytes leads to 

mCa2+ overload and cell death[36]. MCU expression in neurons varies over the progression of 
ALS;  presymptomatic neurons upregulate the MCU, presumably to counter the high cytosolic 
Ca2+ influx, whereas late stage neurons show reduced expression to compensate for the 
cytotoxic mCa2+ overload[37]. 

In addition to neurodegenerative disease, the MCU complex has been identified to play 
a major role in neuromuscular disease. Loss or mutation of MICU1 induces myopathy, learning 
difficulties, and progressive movement disorders[38]. These symptoms can prove lethal and 
appear to be a primary result of defective Ca2+ signaling, mCa2+ overload, and a fragmented 
mitochondrial network[39,40]. Taken together, these findings emphasize the central role of the 
MCU in neurological disease and suggest that enforcing proper regulation of mCa2+ uptake could 
be a powerful therapeutic strategy. 

 
Ischemia/Reperfusion Injury and Ischemic Stroke 
 Ischemia/Reperfusion injury (IRI), which arises from the rapid restoration of oxygenated 
blood to oxygen-deficient, or ischemic, tissue, occurs in situations such as heart failure, organ 
transplant, stroke or ischemic brain injury[2]. Under ischemic conditions, oxygen-deficient cells 
employ anaerobic glycolysis as the primary metabolic pathway, which leads to the production of 
lactic acid and a concomitant decrease in cytosolic pH. Simultaneously, the mitochondrial 
membrane potential (∆Ψm) is diminished due to the cessation of oxygen-dependent oxidative 
phosphorylation. The drop in cytosolic pH sequentially activates Na+/H+ and Na+/Ca2+ exchanger 
proteins, leading to a net increase in cytosolic Ca2+ levels. Upon reperfusion, the return of 
oxygen leads to rapid restoration of the ∆Ψm as oxidative phosphorylation resumes, generating 
a surge of ROS. This restoration of ∆Ψm provides a strong driving force for the entry of the 
cytosolic Ca2+ into the mitochondria via the MCU, triggering mitochondrial calcium overload, cell 
death, and the characteristic tissue damage associated with IRI[41]. 
 Based on the contributing role of mCa2+ overload in IRI, the MCU represents a potential 
therapeutic target for this condition. Surprisingly, the constitutive knockout of the MCU either 
specifically in the heart[42] or globally does not protect cardiac[43] or brain[44] tissues from IRI. 
By contrast, acute chemical inhibition or conditional knockout of the MCU in adult animals does 
confer the expected protective effects[43,45••,46]. These results suggest that the role of mCa2+ in 
IRI may be more complex than originally expected and may indicate that alternative, as-of-yet 
undiscovered means of handling mitochondrial bioenergetics exist. 
 
Cancer 

Mitochondria and mCa2+ levels play an important role in tumorigenesis and cancer 
biology. The MCU is highly expressed in certain forms of colorectal, breast, pancreatic, 
stomach, and prostate cancers. Additionally, various components of the MCU regulatory 
machinery show variable levels of expression and mutation in different cancer types; the 
significance of these mutations, however, is still not fully understood[47•].  
 The role of the MCU complex has most extensively been studied in the context of breast 
and colorectal cancers. Some models of breast cancer show high expression of the MCU 
channel, which facilitates metastasis in vivo. Similarly, overactivation of the MCU in colorectal 
cancer by receptor-interacting protein kinase 1, RIPK1, promotes cancer proliferation[48]. This 
hypothesis was confirmed by the  knockdown and inhibition of the MCU, which drastically 
reduces cancer progression[49].  

Recent work has also suggested that overexpression of components of the MCU 
complex may contribute to chemo-resistance in cancer cells[50]. In pancreatic and colon 
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cancers, overexpression of MICU1 and MICU2 decreases mCa2+ levels and prevents mCa2+ 
overload-induced apoptosis[51,52]. The role of the MCU in cancer is only beginning to be 
studied, but it is clear that mCa2+ regulation is fundamental to cancer cell growth. Given the 
seemingly contradictory roles of the MCU and mCa2+ in different cancer types, further 
investigations are required to decipher the function of this transporter in cancer.   
 
REGULATION OF mCa2+ UPTAKE BY SMALL-MOLECULE INHIBITORS 
 Given the importance of mCa2+

 dynamics in the pathological conditions described above, 
there has been a strong interest in developing small-molecule inhibitors of the MCU for use as 
therapeutic agents or tools for studying the role of this transporter in human disease. In recent 
years there have been a handful of studies aimed at identifying small molecules capable of 
inhibiting MCU-mediated Ca2+ uptake (Figure 2, Table 1).  

 
Figure 2. Structures of MCU inhibitors discussed in this work. 
 

The organic molecules mitoxantrone[53•] and DS16570511[54•] were identified from 
distinct libraries comprising over 120,000 compounds to be potent inhibitors of the MCU. The 
MCU-inhibitory activity of several other small molecules was recognized serendipitously as a 
secondary function. For example, the necrosis inhibitor NecroX-5[55–57•], the Na+/Ca2+ 
exchange inhibitor KB-R7943[58], and the antibiotics minocycline[59,60] and doxycycline[60,61] 
all possess MCU-inhibitory properties. Of these organic compounds, DS16570511 is the most 
potent, as reflected by its 50% MCU-inhibitory concentration of 860 nM in isolated 
mitochondria[54·]. This compound protects perfused rat hearts from mCa2+ overload, 
demonstrating its potential as a therapeutic agent for diseases related to mCa2+ dysregulation. 
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In comparing these organic MCU inhibitors, there is no apparent structure-activity 
relationship (SAR) that would be predictive of their inhibitory activities. Furthermore, these 
compounds are generally nonselective for the MCU, as reflected by their ability to induce off-
target biological effects. For example, mitoxantrone is a cardiotoxic anticancer agent that 
inhibits human topoisomerase II[62,63]. Additionally, DS16570511 has recently been shown to 
depolarize mitochondria and induce mPTP opening[64]. These results highlight the challenge in 
finding compounds that can inhibit the MCU selectively in the absence of additional biological 
perturbations, which can complicate analysis of results and compromise their therapeutic 
viability.  
 
Table 1. MCU inhibitors discussed in this work, their MCU-inhibitory activity, and observed off-
target biological effects. 

Compound IC50 (µM)a 
IC50 

determination 
conditions 

Off-target effects Ref 

Mitoxantrone 8.3 
Yeast 

mitochondriab 

Topoisomerase II 
inhibition, DNA binding, 

cardiotoxicity 
[53•,62,63] 

DS16570511 0.860 
Isolated 

mitochondriac 
Mitochondrial 

depolarization, cell death 
[54•,64] 

NecroX-5 NDd – 
Necrosis inhibition, ROS 

scavenging 
[55–57•] 

Minocycline ND 
Isolated 

mitochondria 

Antibiotic activity, 
mitochondrial 

depolarization, Ca2+ 

binding, membrane 
binding 

[59,60] 

Doxycycline ND 
Isolated 

mitochondria 

Antibiotic activity, altered 
cell metabolism and 

proliferation 
[60,61] 

KB-R7943 5.5 
Permeabilized 

HeLa cells 

Na+/Ca2+ exchanger 
inhibition, inhibition of 

mitochondrial complex I 
[58] 

Ln3+ salts 0.02 
Isolated 

mitochondria 
Membrane binding, 

localization to bone tissue 
[65–68] 

[Co(NH3)5(H2O)]3+ 0.54 
Isolated 

mitochondria 
ND [69] 

[Co(NH3)6]3+ 1.66 
Isolated 

mitochondria 
mucopolysaccharide 

channel inhibition 
[69,70] 

[Co(en)3]3+  0.053 
Isolated 

mitochondria 
ND [70] 

[Cr(en)3]3+ 0.490 
Isolated 

mitochondria 
ND [70] 

[Rh(en)3]3+ 0.360 
Isolated 

mitochondria 
ND [70] 

[Co(NH3)5(NH2(CH2)5NH3)]4+ 0.250 
Isolated 

mitochondria 
ND [70] 

RuRed 0.0036 
Isolated 

mitochondria 

Membrane binding, broad 
spectrum ion channel 
inhibition, induction of 

seizures 

[70–87]  

Ru360 0.227 
Yeast 

mitochondria Membrane binding 
[6–8,32,88–

95] 

Ru360ʹ 0.038 
Yeast 

mitochondria ND [96] 
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Ru265 0.0025 
Permeabilized 

HeLa cells 
None observed [97•]  

a. Concentration required for 50% MCU inhibition 
b. Yeast genetically modified to express the MCU and its regulator EMRE 
c. Mitochondria isolated from mammalian cell lines 
d. Not determined 

 

 Inorganic salts and coordination complexes have also been shown to inhibit mCa2+ 
uptake. The trivalent lanthanide ions, which have ionic radii and coordination preferences 
comparable to Ca2+, can bind to mitochondria and competitively inhibit mCa2+ uptake[65–68].  
Several transition metal coordination complexes, bearing ammine (NH3) or amine ligands, have 
also been demonstrated to inhibit mCa2+ uptake. Most notably, complexes of Co3+, Cr3+, and 
Rh3+ inhibit Ca2+ uptake in isolated mitochondria at nanomolar concentrations without negatively 
affecting ∆Ψm[69,70]. Like the organic compounds discussed above, the SAR for these 
coordination complexes is lacking, given that complexes with diverse coordination environments 
appear to exhibit MCU-inhibitory activity. Moreover, these coordination complexes have not 
been evaluated in intact cellular systems.   
 
Ruthenium Red (RuRed) and Ruthenium 360 (Ru360) 
 The most well-known and widely employed inhibitor of the MCU is the trinuclear oxo-
bridged complex ruthenium red (RuRed)[71,80]. This +6 cation contains a nearly linear Ru–O–
Ru–O–Ru core, with the remainder of the ruthenium coordination spheres supported by neutral 
NH3 ligands (Figure 2).  The +6 charge is a result of its mixed valent ground state, which arises 
from two formally Ru3+ centers and one Ru4+ center[71]. RuRed, named for its intense red color 

(532nm = 85,900 M-1 cm-1), was first synthesized in 1892[82] and found use as a cytological stain 
shortly after[81,83].  

The widespread use of RuRed as a cytological stain led to the discovery that this 
compound inhibits mCa2+ uptake by the MCU without negatively affecting mitochondrial 
respiration or Ca2+ efflux[84–87]. Furthermore, researchers have shown that RuRed can 
mitigate tissue damage due to IRI[74] and reduce cancer cell migration[75]. Despite the 
potential utility of RuRed as a mCa2+

 uptake inhibitor, its purification has always been a 
challenging matter. In fact, nearly all commercial sources of RuRed supply this compound in 
poor purity (<80%)[78]. Thus, most commercial formulations of RuRed actually contain mixtures 
of several different ruthenium ammine complexes. Not surprisingly, commercial formulations of 
RuRed have exhibited poor selectivity for the MCU, often showing inhibitory activity for other ion 
channels as well[76].  

One of the minor impurities found within most formulations of RuRed is a binuclear oxo-
bridged complex, called ruthenium 360 (Ru360). This compound,  named for its intense UV-vis 
spectral absorption at 360 nm, is the active component of RuRed mixtures that is responsible 
for the perceived MCU-inhibitory activity[90–92]. This discovery was consistent with the fact that 
samples of highly purified RuRed are actually less active inhibitors than impure samples[78]. 
Inhibition of the MCU by Ru360 is selective and does not interfere with sarcoplasmic reticulum 
and cytosolic Ca2+ dynamics, Na+/Ca2+ exchanger activity, or L-type Ca2+ channels[92].  

In contrast to RuRed, Ru360 contains only two Ru centers bridged by a single oxo 
ligand. In addition to the bridging oxo, each Ru bears 4 ammine ligands and an axial formate 
ligand (Figure 2).  Ru360 is paramagnetic and  mixed valent, formally containing a Ru4+ and 
Ru3+ center[91]. Isolation of Ru360 can be achieved via a low-yielding synthesis that requires 
tedious ion exchange chromatographic purification[91]. Our group has developed synthetic 
methods for the preparation of a functional analogue of Ru360, which we call Ru360ʹ, where the 
axial formate ligands have been replaced with water ligands[96]. Because the axial formate 
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ligands of Ru360 undergo a fairly rapid aquation reaction, we have found that the aqua ligands 
of Ru360ʹ have no negative impact on its MCU-inhibitory activity.  

Given the high potency and selectivity of Ru360 for inhibiting mCa2+
 uptake, this 

commercially available complex has been widely employed for the study of calcium-dependent 
cellular processes and as a therapeutic agent for the prevention of IRI[93,94]. Ru360 was also 
shown to prevent glutamate-induced excitotoxicity in cortical neurons[89], and prevent Aβ-
induced apoptosis by reducing oxidative stress in microglia[32]. Despite the apparent success of 
Ru360 in these studies, there are several reported concerns regarding the cell permeability of 
this reagent. For example, it has been noted that this compound binds the exterior of cell 
membranes and has low cell permeability[92], properties that are further reflected by its low 
accumulation in myocardial tissue in vivo[94] and highly variable results in biological assays[89]. 

Although Ru360 is widely used to study mCa2+ in biological systems, surprisingly little is 
known regarding its mechanism of action. A series of recent site-directed mutagenesis 
experiments[7,10,13,21,22], NMR studies[8·], and molecular dynamics simulations[8·] suggest 
that Ru360 inhibits mCa2+ uptake through interactions with conserved DXXE motif of the solvent 
exposed loop of the MCU that spans the TM1 and TM2 domains. Mutations of specific aspartate 
(D261) and serine (S259) residues in human MCU (Figure 1) maintain Ca2+-uptake activity but 
reduce the inhibitory effects of Ru360, suggesting these residues are intimately involved in the 
inhibitory activity of Ru360. The exact nature of these interactions, however, remain unknown.  
 
Ruthenium 265 
 Our group has recently reported the synthesis, characterization, and biological activity of 
a new ruthenium-based MCU inhibitor, called Ru265[97••]. This compound is structurally similar 
to Ru360 in that it contains two bridged Ru centers bearing ammine ligands. In contrast to 
Ru360, however, Ru265 is bridged by a nitrido (N3–) ligand and both ruthenium centers attain 
the +4 oxidation state (Figure 2). Nitrido-bridged ruthenium complexes can be easily obtained 
by subjecting the nitrido-bridged precursor complex K3[Ru2(µ-N)Cl8(OH2)2] to ligand substitution 
reactions. As such, Ru265 could be synthesized cleanly in moderate yields without the need for 
chromatographic purification. 
 Like Ru360, Ru265 is a potent inhibitor of mCa2+ uptake in both isolated mitochondria 
and permeabilized cell systems. The most striking aspect of Ru265, in comparison to Ru360, is 
its high cell permeability. Ru265 is taken up by cells over twice as effectively as Ru360. 
Furthermore, Ru265 is relatively non-toxic to HEK293 kidney cells and does not alter other 
aspects of mitochondria or Ca2+ trafficking, such as the rate of cytosolic Ca2+ clearance, the 
energetics of the ∆Ψm, the efflux of mCa2+, and the operation of the Na+/Ca2+ exchanger. Given 
the high selectivity and good cell permeability of Ru265, it was shown to protect neonatal rat 
ventricular myocytes from simulated IRI, prevent downstream mitochondrial swelling, mPTP 
opening, and cell death[97••]. 
 Site-directed mutagenesis studies on the MCU were carried out to elucidate the 
mechanism of action of Ru265.  As noted above in our discussion of Ru360, cells that express a 
mutated form of human MCU with a S259A mutation are somewhat resistant to Ru360 
inhibition. By contrast, this same mutation had no effect on the inhibitory activity of Ru265, 
suggesting that there may exist subtle differences in the way that these complexes interact with 
the MCU. Somewhat surprisingly, the mutation of a cysteine residue (Cys97, Figure 1) located 
on the matrix-residing NTD conferred resistance to Ru265 but not Ru360. This cysteine residue 
is an important redox sensor for the MCU, and thus this mutation may suggest that redox 
activation of the MCU is critical for the inhibitory activity of Ru265[97••]. Further studies are 
required to more fully understand this compound’s mechanism of action. Our initial studies on 
this compound have demonstrated its utility as a therapeutic agent for diseases associated with 

mCa2+ overload, which is a consequence of its potent MCU-inhibitory activity and good cell 
permeability[97••]. 
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Conclusions and Outlook  

Recent advances in understanding the structure and function of the MCU complex have 
highlighted the central role of this transporter in bioenergetic processes and pathological 
conditions. As such, modulating mCa2+ levels and MCU activity have been identified as 
promising targets for prevention or treatment of diseases such as IRI, neurodegeneration, and 
cancer[98]. Towards this goal, several groups have developed small molecules capable of 
inhibiting Ca2+ uptake through the MCU and preventing mCa2+ overload-induced cell damage. 
Many of these inhibitors, however, lack cell permeability or selectivity for MCU inhibition and 
have off-target biological effects. Despite the promise of MCU inhibitors as therapeutic 
candidates, it should be noted that the administration of RuRed in vivo induces a complex 
seizure response in rats[77]. This phenomenon may either be a side effect of MCU inhibition or 
a consequence of other bioactive impurities within the RuRed formulation. Further studies are 
required to understand the biological implications of using MCU inhibitors as potential 
therapeutic agents. 

The discovery of the greatly improved bioactivity of Ru265 compared to Ru360 
underscores the power of inorganic complexes as novel tools for understanding the role of the 
MCU in biological systems. Metal complexes can be easily modified through substitution 
reactions to give diverse structures, allowing clear understanding of SARs. Furthermore, the low 
toxicity of Ru265 in contrast to many other cytotoxic ruthenium compounds, highlights how the 
coordination environment around a metal center can strongly influence the biological activity of 
metal-based compounds, and that coordination compounds are promising candidates as 
effective MCU inhibitors. 
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