
44

Continuous-Time Relationship Prediction in Dynamic

Heterogeneous Information Networks

SINA SAJADMANESH and SOGOL BAZARGANI, Sharif University of Technology

JIAWEI ZHANG, Florida State University

HAMID R. RABIEE, Sharif University of Technology

Online social networks, World Wide Web, media, and technological networks, and other types of so-called
information networks are ubiquitous nowadays. These information networks are inherently heterogeneous and
dynamic. They are heterogeneous as they consist of multi-typed objects and relations, and they are dynamic
as they are constantly evolving over time. One of the challenging issues in such heterogeneous and dynamic
environments is to forecast those relationships in the network that will appear in the future. In this article,
we try to solve the problem of continuous-time relationship prediction in dynamic and heterogeneous infor-
mation networks. This implies predicting the time it takes for a relationship to appear in the future, given
its features that have been extracted by considering both heterogeneity and temporal dynamics of the un-
derlying network. To this end, we first introduce a feature extraction framework that combines the power
of meta-path-based modeling and recurrent neural networks to effectively extract features suitable for rela-
tionship prediction regarding heterogeneity and dynamicity of the networks. Next, we propose a supervised
non-parametric approach, called Non-Parametric Generalized Linear Model (Np-Glm), which infers the hid-
den underlying probability distribution of the relationship building time given its features. We then present
a learning algorithm to train Np-Glm and an inference method to answer time-related queries. Extensive
experiments conducted on synthetic data and three real-world datasets, namely Delicious, MovieLens, and
DBLP, demonstrate the effectiveness of Np-Glm in solving continuous-time relationship prediction problem
vis-à-vis competitive baselines.

CCS Concepts: • Information systems → Data mining; Social recommendation; • Computing

methodologies→ Machine learning;

Additional Key Words and Phrases: Link prediction, social network analysis, heterogeneous network, non-
parametric modeling, recurrent neural network, autoencoder

ACM Reference format:

Sina Sajadmanesh, Sogol Bazargani, Jiawei Zhang, and Hamid R. Rabiee. 2019. Continuous-Time Relationship
Prediction in Dynamic Heterogeneous Information Networks. ACM Trans. Knowl. Discov. Data 13, 4, Article
44 (July 2019), 31 pages.
https://doi.org/10.1145/3333028

This work is partially supported by NSF through Grant IIS-1763365.

Authors’ addresses: S. Sajadmanesh, S. Bazargani, and H. R. Rabiee, Department of Computer Engineering, Sharif

University of Technology, Azadi Ave, Tehran 1458889694, Iran; emails: sajadmanesh@ce.sharif.edu, sogolb2@illinois.edu,

rabiee@sharif.edu; J. Zhang, IFM Lab, Department of Computer Science, Florida State University, 1017 Academic Way,

Tallahassee, Florida 32304; email: jiawei@ifmlab.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1556-4681/2019/07-ART44 $15.00

https://doi.org/10.1145/3333028

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:2 S. Sajadmanesh et al.

1 INTRODUCTION

Link prediction is the problem of prognosticating a certain relationship, like interaction or collab-
oration, between two entities in a networked system that are not connected already [23]. Due to
the popularity and ubiquity of networked systems in the real world, such as social, economic, or
biological networks, this problem has attracted a considerable attention in recent years and has
found its applications in various interdisciplinary domains, such as viral marketing, bioinformat-
ics, recommender systems, and social network analysis [43]. For example, suggesting new friends
in an online social network [21] or predicting drug-target interactions in a biological network [7]
are two quite different problems, but can both cast as the prediction task of friendship links and
drug-target links, respectively.
The problem of link prediction has a long literature and is studied extensively in the last decade.

Initial works on link prediction problem mostly concentrated on homogeneous networks, which
are composed of single type of nodes connected by links of the same type [21, 22, 40]. However,
many of today’s networks, such as online social networks or bibliographic networks, are inher-
ently heterogeneous, in which multiple types of nodes are interconnected using multiple types of
links [31, 37]. For example, a bibliographic network may contain author, paper, venue, and so on
as different node types; and write, publish, cite, and so on as diverse link types that bind nodes
with different types to each other. In these heterogeneous networks, the concept of a link can be
generalized to a relationship, which can be constructed by combining different links with different
types. For instance, the author-cite-paper relationship can be defined in a bibliographic network
as a combination of author-write-paper and paper-cite-paper links. Analogously, one can gener-
alize the link prediction to relationship prediction in heterogeneous networks that tries to predict
complex relationships instead of links [34].
While most of the studies on the link/relationship prediction in heterogeneous networks utilize

a static snapshot of the underlying network, many of these networks are dynamic in nature, which
means that new nodes and linkages are continually added to the network, and some existing nodes
and links may be removed from the network over time. For example, in online social networks,
such as Facebook, new users are joining in the network every day, and new friendship links are
being added to the network gradually. This dynamic characteristic causes the structure of the
network to change and evolve over time, and taking these changes into account can significantly
boost the quality of link prediction task [28].

In recent years, newer studies have shifted from traditional link prediction on static and homo-
geneous networks toward newer domains, considering heterogeneity and dynamicity of networks
[10, 12, 14, 25, 29]. However, most of theseworksmerely focus on one of these aspects, disregarding
the other. Although there are quite a few studies that address both the challenges of heterogeneity
and dynamicity [2, 30], to the best of our knowledge, all of them have ultimately formulated the
link prediction problem as a binary classification task, i.e., predicting whether a link will appear
in the network in the future. However, in dynamic networks, new links are continually appearing
over time. So a much more interesting problem, which we call it continuous-time link prediction

in this article, is to predict when a link will emerge or appear between two nodes in the network.
Examples of this problem include predicting the time at which two individuals become friends in
a social network or the time when two authors collaborate on writing a paper in a bibliographic
network [34]. Inferring the link formation time in advance can be very useful in many concrete ap-
plications in different disciplines, such as sociology, economics, biology, and epidemiology, where
the interactions between entities can be modeled via timed links. For example, in the biological
context, predicting the marker proteins interaction time in a gene regulatory network will lead to
predicting tumor progression and prognosis [38]. As another example in online social networks, if
the recommender system could predict the relationship building time between two people, then it

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:3

can issue a friendship suggestion close to that time since it will have a relatively higher chance to
be accepted. Good continuous-time link prediction results will lead to denser connections among
users, and can greatly improve users’ engagement that is the ultimate goal of online social net-
works [20].

In this article, we aim to solve the problem of continuous-time relationship prediction, in which
we forecast the relationship building time between two nodes in a dynamic and heterogeneous en-
vironment. This problem is very challenging from the technical perspective, and cannot be solved
trivially for three main reasons. First, the formulation of continuous-time relationship prediction
is quite different from the conventional link prediction due to the involvement of temporal dynam-
ics of the network and the necessity of considering network evolution time-line. Second, we only
know the building time of those relationships that are already present at the network and for the
rest of them that are yet to happen, which are excessive in number versus the existing ones, we lack
such information. Finally, as opposed to the works concerning the binary link prediction, there are
very rare works in the literature on continuous-time link prediction that attempt to answer the
“when” question. To the best of our knowledge, the only work that has studied the continuous-time
relationship prediction problem so far is proposed by Sun et al. [34]. They infer a probability distri-
bution over time for each pair of nodes given their features and answer time-related queries about
the relationship building time between the two nodes using the inferred distribution. However,
the drawback of their method, not to mention neglecting the temporal dynamics of the network,
is that it mainly relies on the assumption that relationship building times are coming from a cer-
tain probability distribution that must be fixed beforehand. This assumption though simplifying
is very restrictive, because in real applications this distribution is unknown, and considering any
specific one as a priori could be far from reality or limit the solution generality.
In order to address the above challenges, we propose a supervised non-parametric method to

solve the problem of continuous-time relationship prediction. To this end, we first formally de-
fine the continuous-time relationship prediction problem and formulate the approach to solve
it generally. Then, we introduce our novel feature extraction framework, which leverages meta-
path-based modeling and recurrent neural networks to deal with heterogeneity and dynamicity of
information networks. Next, we present Non-Parametric Generalized Linear Model (Np-Glm) that
models the distribution of relationship building time given the extracted features. The strength
of this non-parametric model is that it is capable of learning the underlying distribution of the
relationship building time, as well as the contribution of each extracted feature in the network.
Afterward, we propose an inference algorithm to answer queries, like the most probable time by
which a relationship will appear between two nodes or the probability of relationship creation be-
tween them during a specific period. Finally, we conduct comprehensive experiments over a syn-
thetic dataset to verify the correctness of Np-Glm’s learning algorithm, and on three real-world
dataset—DBLP, Delicious, and MovieLens—to demonstrate the effectiveness and generality of the
proposed method in predicting the relationship building time versus the relevant baselines. As a
summary, we can enumerate our major contributions as follows:

(1) The proposed feature extraction framework can tackle heterogeneity of the data as well
as capturing the temporal dynamics of the network by incorporating meta-path-based
features into a recurrent neural network based autoencoder.

(2) Our non-parametric model takes a unique approach toward learning the underlying dis-
tribution of relationship building time without imposing any significant assumptions on
the problem.

(3) Extensive evaluations over both synthetic and real-world datasets are performed to inves-
tigate the effectiveness of the proposed method.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:4 S. Sajadmanesh et al.

(4) To the best of our knowledge, this article is the first one that studies the continuous-time
relationship prediction problem in both dynamic and heterogeneous network configura-
tions.

The rest of this article is organized as follows. In Section 2, we provide introductory backgrounds
on the concept and formally define the problem of continuous-time relationship prediction. Then,
in Section 3, we introduce our novel feature extraction framework. Next, we go through the de-
tails of the proposed Np-Glm method in Section 4, explaining its learning method and how it
answers inference queries. Experiments on synthetic data and real-world datasets are described in
Sections 5 and 6, respectively. Section 7 discusses the related works, and finally in Section 8, we
conclude the article.

2 PROBLEM FORMULATION

In this section, we introduce some important concepts and definitions used throughout the article
and formally define the problem of continuous-time relationship prediction.

2.1 Heterogeneous Information Networks

An information network is heterogeneous if it contains multiple kinds of nodes and links. Formally,
it is defined as a directed graph G = (V ,E), where V =

⋃

i Vi is the set of nodes comprising the
union of all the node sets Vi of type i . Similarly, E =

⋃

j Ej is the set of links constituted by the
union of all the link sets Ej of type j. Now, we bring the definition of the network schema [35],
which is used to describe a heterogeneous information network at a meta-level:

Definition 2.1 (Network Schema). The schema of a heterogeneous network G is a graph SG =
(V,E), whereV is the set of different node types and E is the set of different link types inG.

In this article, we focus on the following three different heterogeneous and dynamic networks:
(1) DBLP bibliographic network1; (2) Delicious bookmarking network2; and (3) MovieLens recom-
mendation network.3 The schema of these networks is depicted in Figure 1. As an example, in the
bibliographic network, V = {Author , Paper ,Venue,Term} is the set of different node types, and
E = {write, publish,mention, cite} is the set of different link types.
Analogous to homogeneous networks where an adjacency matrix is used to represent whether

pairs of nodes are linked to each other or not, in heterogeneous networks, we define Heterogeneous
Adjacency Matrices to represent the connectivity of nodes of different types:

Definition 2.2 (Heterogeneous AdjacencyMatrix). Given a heterogeneous networkG with schema
SG = (V,E), for each link type ε ∈ E denoting the relation between node types νi ,νj ∈ V , the
heterogeneous adjacency matrixMε is a binary |Vνi | × |Vνj | matrix representing whether nodes of
type νi are in relation with nodes of type νj with link type ε or not.

For instance, in the bibliographic network, the heterogeneous adjacencymatrixMwrite is a binary
matrix where each row is associated with an author and each column is associated with a paper,
andMwrite (i, j) indicates if the author i has written the paper j.
As we mentioned in the Introduction section about heterogeneous networks, the concept of a

link can be generalized to a relationship. In this case, a relationship could be either a single link
or a composite relation constituted by the concatenation of multiple links that together have a
particular semantic meaning. For example, the co-authorship relation in the bibliographic network

1http://dblp.uni-trier.de/.
2http://delicious.com/.
3https://movielens.org/.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:5

Fig. 1. Schema of three different heterogeneous networks. Underlined characters are used as abbreviations

for corresponding node types.

with the schema shown in Figure 1(a) can be defined as the combination of twoAuthor-write-Paper
links, making Author-write-Paper-write-Author relation. When dealing with link or relationship
prediction in heterogeneous networks, we must exactly specify what kind of link or relationship
we are going to predict. This specific relation to be predicted is called the Target Relation [34].
For example, in DBLP bibliographic network we aim to predict if and when an author will cite a
paper from another author. Thus, the target relation, in this case, would be Author-write-Paper-

cite-Paper-write-Author.

2.2 Dynamic Information Networks

An information network is dynamic when its nodes and linkage structure can change over time.
That is, in a dynamic information network, all nodes and links are associated with a birth and
death time. More formally, a dynamic network at the timestamp τ is defined as Gτ

= (V τ
,Eτ)

where V τ and Eτ are, respectively, the set of nodes and the set of links existing in the network at
the timestamp τ .
In this article, we consider the case that an information network is both dynamic and hetero-

geneous. This means that all network entities are associated with a type, and can possibly have
birth and death times, regardless of their types. The bibliographic network is an example of both
dynamic and heterogeneous one. Whenever a new paper is published, a new Paper node will be
added to the network, alongside with the corresponding new Author, Term, and Venue nodes (if
they do not exist yet). New links will be formed among these newly added nodes to indicate the
write, publish, and mention relationships. Some linkages might also form between the existing
nodes and the new ones, like new cite links connecting the new paper with the existing papers in
its reference list.
In order to formally describe the state of a heterogeneous and dynamic network at any times-

tamp τ , we define the time-aware heterogeneous adjacency matrix in the following.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:6 S. Sajadmanesh et al.

Definition 2.3 (Time-Aware Heterogeneous Adjacency Matrix). Given a dynamic heterogeneous
network Gτ with schema SG = (V,E), for each link type ε ∈ E denoting the relation between
node types νi ,νj ∈ V , the time-aware heterogeneous adjacency matrixMτ

ε is a binary matrix rep-
resenting if nodes of type νi are in relation with nodes of type νj with link type ε at the timestamp
τ . More formally, for a ∈ νi and b ∈ νj we have

Mτ
ε (a,b) =

{

1, if (a,b) ∈ ε and bt (a,b) < τ ≤ dt (a,b)

0, otherwise
,

where bt (a,b) and dt (a,b) denote the birth and the death time of the link (a,b), respectively.

2.3 Continuous-Time Relationship Prediction

Suppose that we are given a dynamic and heterogeneous information network as Gτ lastly ob-
served at the timestamp τ , together with its network schema SG . Now, given the target relation
R, the aim of continuous-time relationship prediction is to forecast the building time t ≥ τ of the
target relation R between any node pair (a,b) in Gτ .
In order to solve this problem given a pair of nodes like (a,b), we try to train a supervised

model that can predict a point estimate on the time it takes for the relationship of type R to be
formed between them. The input to such a model will be a feature vector x corresponding to the
node pair (a,b). The model will then output with a continuous variable t that indicates when the
relationship of type R will be built between a and b. To train such a model, we need to assemble
a dataset comprising the feature vectors of all the node pairs between which the relation R have
already been formed. The process of selecting sample node pairs, extracting their feature vector,
and training the supervised model are explained in the subsequent sections.

3 FEATURE EXTRACTION FRAMEWORK

In this section, we present our feature extraction framework that is designed to have three ma-
jor characteristics: First, it effectively considers different type of nodes and links available in a
heterogeneous information network and regards their impact on the building time of the target
relationship. Second, it takes the temporal dynamics of the network into account and leverages
the network evolution history instead of simply aggregating it into a single snapshot. Finally, the
extracted features are suitable for not only the link prediction problem but also the generalized
relationship prediction. We will incorporate these features in the proposed non-parametric model
in Section 4 to solve the continuous-time relationship prediction problem.

3.1 Data Preparation For Feature Extraction

To solve the problem of continuous-time relationship prediction in dynamic networks, we need
to pay attention to the temporal history of the network data from two different points of view.
First, we have to mind the evolutionary history of the network for feature extraction, so that the
extracted features reflect the changes made in the network over time. Second, we have to specify
the exact relationship building time for each pair of nodes that have formed the target relationship.
This is because our goal is to train a supervised model to predict a continuous variable, which in
this case is the building time of the target relationship. Hence, for each sample pair of nodes, we
need a feature vector x, associated with a target variable t that indicates the building time of the
target relationship between them.
Suppose that we have observed a dynamic network Gτ recorded in the interval t0 < τ ≤ t1.

According to Figure 2, we split this interval into two parts: the first part for extracting the feature
x, and the second for determining the target variable t . We refer to the first interval as Feature
Extraction Window whose length is denoted by Φ, and the second as Observation Window, whose

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:7

Fig. 2. The evolutionary timeline of the network data.

length is denoted by Ω. Now, based on the existence of the target relationship in the observation
window, all the node pairs in the network will fall within either one of the following three different
groups:

(1) Node pairs that form the target relationship before the beginning of the observation win-
dow (in the feature extraction window).

(2) Node pairs that form the target relationship in the observation window for the first time
(not existing before in the feature extraction window).

(3) Node pairs that do not form the target relationship (neither in the feature extraction win-
dow nor in the observation window).

The node pairs in the second and third categories constitute our data samples, and will be used
in the learning procedure to train the supervised model. For such pairs, we extract their feature
vector x using the history available in the feature extraction window. For each node pair in the
second category, we see that the target relationship between them has been created at a time like
tr ∈ (t0 + Φ, t1]. So we set t = tr − (t0 + Φ) as the time it takes for the relationship to form since the
beginning of the observation window. For these samples, we also set an auxiliary variable y = 1
that indicates that we have observed their exact building time. On the other hand, For node pairs
in the third category, we have not seen their exact building time, but we know that it should be
definitely after t1. For such samples, that we call censored samples, we set t = t1 − (t0 + Φ) that
is equal to the length of the observation window Ω, and set y = 0 to indicate that the recorded
time is, in fact, a lower bound on the true relationship building time. These type of samples are
also of interest because their features will give us some information about their time falling after
t1. As a result, each data sample is associated with a triple (x,y, t) representing its feature vector,
observation status, and the time it takes for the target relationship to be formed, respectively.

3.2 Dynamic Feature Extraction

In this part, we describe how to utilize the temporal history of the network in the feature extraction
window in order to extract features for continuous-time relationship prediction problem. We first
begin with the meta-path-based feature set for heterogeneous information networks, and then
incorporate these features into a recurrent neural network based autoencoder to exploit the temporal
dynamics of the network as well. Hereby, we begin by defining the concept of meta-path [35]:

Definition 3.1 (Meta-Path). In a heterogeneous information network, a meta-path is a directed
path following the graph of the network schema to describe the general relations that can be
derived from the network. Formally speaking, given a network schemaSG = (V,E), the sequence

ν1
ε1
−→ ν2

ε2
−→ . . . νk−1

εk−1
−−−→ νk is a meta-path defined on SG , where νi ∈ V and εi ∈ E.

Meta-paths are commonly used in heterogeneous information networks to describe multi-
typed relations that have concrete semantic meanings. For example, in the bibliographic network
whose schema is shown in Figure 1(a), we can define the co-authorship relation by the following

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:8 S. Sajadmanesh et al.

meta-path:

Author
write
−−−→ Paper

write
←−−− Author,

or simply by A→ P ← A. Another example is the author citation relation, which in this article is
used as the target relation for DBLP network. It can be specified as

Author
write
−−−→ Paper

cite
−−→ Paper

write
←−−− Author,

abbreviated as A→ P → P ← A.
We can extend the concept of the heterogeneous adjacency matrix, which is used to indicate

relationships between nodes of different types, tometa-path adjacencymatrix, which wewill use to
indicate the number of path instances between two nodes of (possibly) different types, as explained
below.

Definition 3.2 (Meta-Path Adjacency Matrix). Given a heterogeneous network G with schema

SG = (V,E), and the meta-path ν1
ε1
−→ ν2

ε2
−→ . . . νk−1

εk−1
−−−→ νk defined over SG denoting the rela-

tion between node types νi ,νj ∈ V , the meta-path adjacency matrixMΨ is defined as follows:

MΨ =

k−1
∏

i=1

Mεi ,

which indicates the number of path instances between any node pair u ∈ ν1 and v ∈ νk following
the meta-path Ψ. The time-aware counterpart of meta-path adjacency matrix is defined analo-
gously by using the time-aware heterogeneous adjacency matrix.

Among the possible meta-paths that can be defined on a network schema, there are some that
capture the similarity between two nodes. For example, the co-authorship meta-path A→ P ← A

in a bibliographic network creates a sense of similarity between two Author nodes. These type
of meta-paths, called similarity meta-paths, are widely used to define topological features for link
prediction problem in heterogeneous networks [29, 33, 46]. Table 1 presents a number of similar-
ity meta-paths that can be defined on DBLP, Delicious, and MovieLens networks to capture the
heterogeneous similarity between different node types.
The concept of similarity meta-paths can be extended to define heterogeneous features suitable

for relationship prediction problem, where we have a target relation. Here, we follow the same ap-
proach as in [34], which suggests the following three meta-path-based building blocks to describe
features for relationship prediction problem, given a target relation between two nodes of type A
and B:

(1)

(2)

(3)

where � denotes a meta-path, with labels similarity and target denoting a similarity meta-path
and the target relation, respectively. The relation label denotes an arbitrary meta-path relating
two nodes of possibly different types. The first block tells that there are some nodes of type A

similar to a single node of the same type that has made the target relationship with a node of
type B. Therefore, those similar nodes may also form the target relation with the type B node.
An analogous intuition is behind the second block. For the third, it says that some nodes of type
A are in relation with some type C nodes, which are themselves in relation with some nodes of
type B. Hence, it is likely that typeA nodes form some relationships, such as the target relationship,

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:9

Table 1. Similarity Meta-Paths in Different Networks

Network Meta-path Semantic meaning
D
B
L
P

A→ P ← A Authors co-write a paper
A→ P ← A→ P ← A Authors have common co-author
A→ P ← V → P ← A Authors publish in the same venue
A→ P → T ← P ← A Authors use the same term
A→ P → P ← P ← A Authors cite the same paper
A→ P ← P → P ← A Authors are cited by the same paper

D
el
ic
io
u
s U ↔ U ↔ U Users have common contact

U → B ← U Users post the same bookmark

U → B → T ← B ← U Users post bookmarks with the same tag

M
o
v
ie
L
en
s

M → A← M Movies share an actor
M → C ← M Movies belong to the same country
M → D ← M Movies have the same director
M → G ← M Movies have the same genre
M → T ← M Movies have the same tag
U → M ← U Users rate common movie

U → M → A← M ← U Users rate movies sharing an actor
U → M → C ← M ← U Users rate movies from the same country
U → M → D ← M ← U Users rate movies of the same director
U → M → G ← M ← U Users rate movies with the same genre
U → M → T ← M ← U Users rate movies with the same tag

with type B nodes. We refer to the meta-paths that are created using these three blocks as feature
meta-paths.
As an example in DBLP bibliographic network, for the target relation, we use A→ P → P ← A

as a meta-path denoting the author citation relation. In Addition, Paper-cite-Author (P → P → A)
and Author-cite-Paper (A→ P → P) are also used as the arbitrary relations, and the similarity
meta-paths for DBLP network from Table 1 are used to define the features for author citation
relationship prediction.
After specifying feature meta-paths, we need a method to quantify them as numeric features.

Due to the dynamicity of the network, different links are emerging and vanishing from the network
over time. Therefore, the quantifying method must handle this dynamicity. Here, we formally
define Time-Aware Meta-Path-Based Features:

Definition 3.3 (Time-Aware Meta-Path-Based Feature). Suppose that we are given a dynamic het-
erogeneous networkGτ along with its network schemaSG = (V,E), and a target RelationA � B.

For a given pair of nodes a ∈ A and b ∈ B, and a feature meta-path Ψ = A
ε1
−→ ν1

ε2
−→ . . . νn−1

εn
−−→ B

defined on SG , the time-aware meta-path-based feature at the timestamp τ is the number of path
instances between a and b following Ψ:

f τΨ (a,b) = Mτ
Ψ[a,b].

This way, for any pair of nodes, we can quantify the number of path instances of a particular
meta-path at any specific timestamp τ . Although this quantification requires matrix multiplication,
it can be done efficiently due to the following reasons:

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:10 S. Sajadmanesh et al.

(1) The heterogeneous adjacency matrices are highly sparse, thus for calculating meta-path
adjacency matrices, we can considerably reduce the time complexity of each single matrix
multiplication by using fast sparse matrix multiplication algorithms [18].

(2) The process of calculating the meta-path adjacency matrices is highly parallelizable, as
the corresponding meta-paths decouples into simpler similarity meta-paths, which them-
selves decouple further into link types. Therefore, we can calculate the adjacency matrix
of different similarity meta-paths in parallel, and then multiply them together to obtain
the feature meta-path adjacency matrices.

(3) Due to the similarity meta-paths sharing common sub-paths, computation time for the
similarity meta-paths can also be saved using dynamic programming to avoid recalculat-
ing previously computed products. For example, for the DBLP dataset, if the target relation
is A→ P → P ← A, then by using the similarity meta-paths shown in Table 1, the path
A→ P → P will appear in all the following feature meta-paths:

A→ P → P ← P ← A

A→ P → P → P ← A

A→ P → P ← A.

Therefore, we can calculate MA→P→P once and then reuse it in the calculation of the ad-
jacency matrices of the above meta-paths.

(4) Finally, the symmetry of the similaritymeta-paths further reduces the number of products,
because we can calculate the matrix corresponding to half of the path, and then multiply
the resulting matrix by its transpose. For instance, the adjacency matrix of the similarity
meta-pathA→ P ← V → P ← A can be calculated asX · XT , whereX = Mwrite ·Mpublish,
reducing the number of multiplications from three to two.

So far we proposed a method to calculate the time-aware meta-path-based features, which is the
number of path instances of a particular meta-path at the timestamp τ . If we set this timestamp to
the end of the feature extraction window, it is as though we are aggregating the whole network
into a single snapshot observed at time t0 + Φ. In order to avoid such an aggregation, we divide
the feature extraction window into a sequence of k contiguous intervals of a constant size ∆, as
shown in Figure 2. By doing so, we intend to extract time-aware features in each sub-window that
results in a multivariate time series containing the information about the temporal evolution of
the topological features between any pair of nodes. With this in mind, we define Dynamic Meta-

Path-based Time Series as follows:

Definition 3.4 (Dynamic Meta-Path-Based Time Series). Suppose that we are given a dynamic
heterogeneous network Gτ observed in a feature extraction window of size Φ (t0 < τ ≤ t0 + Φ),
along with its network schema SG = (V,E) and a target relation A � B. Also, suppose that the
feature extraction window is divided into k fragments of size ∆. For a given pair of nodes a ∈ A
and b ∈ B inGt0+Φ, and a meta-path Ψ defined on SG , the dynamic meta-path-based time series of
(a,b) is calculated as follows:

x iΨ (a,b) = f
t0+i∆
Ψ

(a,b) − f
t0+(i−1)∆
Ψ

(a,b) i = 1 . . .k .

For each feature meta-path designed using the triple building blocks described before, we get a
unique time series. For each time step, we put the corresponding values from all the time series into
a vector. Consequently, we get a multivariate time series where each time step is vector-valued.
For example, if we have d feature meta-paths Ψ1 to Ψd , then each time step of the resulting time

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:11

Fig. 3. The architecture of the LSTM Autoencoder used for dynamic feature extraction. The first k steps

depicts the manner of the working of the encoder LSTM, while the second k steps describes the decoder

LSTM. The output of the kth stage is used as the feature vector x, which is fed into the decoder k times to

produce the input sequence in the reversed order.

series for any node pair (a,b) will become

xia,b =
[
x iΨ1

(a,b), . . . ,x iΨd (a,b)
]T
, i = 1 . . .k .

We refer to this vector-valued time series as Multivariate Meta-Path-Based Time Series. Such mul-
tivariate time series reflect how topological features change between two nodes across different
snapshots of the network. Based on the level of the network dynamicity, it can capture increas-
ing/decreasing trends or even periodic/re-occurring patterns.
Now it is time to convert the multivariate meta-path-based time series into a single feature

vector so that we can use it as the input to our non-parametric model that will be discussed in the
next section. A trivial solutionwould be to stack all the vector-valued time steps of themultivariate
time series into a single vector. However, this approach will result in a very high-dimensional
vector as the number of time steps increases and can lead to difficulties in the learning procedure
due to the curse of dimensionality. This is in contrast with our expectation that more time steps
would bring more information about the history of the network and should result in a better
prediction model. To overcome this problem, we combine the power of recurrent neural networks,
especially Long Short Term Memory (LSTM) units [17], which have proven to be very successful
in handling time series and sequential data, with Autoencoders [4], which are widely used to
learn alternative representations of the data such that the learned representation can reconstruct
the original input. Our goal is to transform the multivariate meta-path-based time series into a
compact vector representation such that the resulting vector holds as much information from the
original multivariate time series as possible.
Inspired by the work of Dai and Le on semi-supervised sequence learning [9], we design an

autoencoder that learns how to take a multivariate time series as input and compress it into a
latent vector representation. The architecture of such autoencoder is illustrated in Figure 3. The
autoencoder consists of two components as follows: (1) the encoder, which takes the input data
and transforms it into a latent representation; and (2) the decoder, which takes the encoded repre-
sentation and transforms it back to the input space. The autoencoder is trained in such a way that
it can reconstruct the original input data.
As the purpose of using the autoencoder in this article is to compress multivariate time series,

instead of using simple feed-forward neural networks, both encoder and decoder are built using
LSTMs. The input to the encoder LSTM is a multivariate time series of length k . The encoder
accepts the vector-valued time steps of the input multivariate time series sequentially. After re-
ceiving the kth time step, the output of the encoder LSTM will be the compressed feature vector
that we will use as the input to the Np-Glm method. In order to train the encoder to learn how to
compress the input time series, it is matched with a decoder LSTM. The decoder LSTM receives k
copies of the compressed feature vector one after another, and with a proper loss function (such
as mean squared error) it is forced to reconstruct the original multivariate time series in reverse

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:12 S. Sajadmanesh et al.

order. Reversing the output sequence will make the optimization of the model easier since it causes
the decoder to revert back the changes made by the encoder to the input sequence.
The benefits of using the LSTM autoencoder is three-fold as follows: (1) since the autoencoder

can reconstruct the original time series, which reflects the temporal dynamics of the network, we
get minimum information loss in the compressed feature vector; (2) as we can set the dimension-
ality of the compressed feature vector to any desired value, we can evade the curse of dimension-
ality; and (3) due to the inherent dynamicity of recurrent neural networks and LSTMs, when we
receive (k + 1)th snapshot of the network, we can easily fine-tune the previous autoencoder that
was learned with k snapshots to consider the new snapshot as well, instead of repeating the whole
learning procedure from scratch.
To conclude this section, we quickly review thewhole procedure of processing the network data,

training the autoencoder, and assembling a training dataset for the supervised model to predict
the building time of a particular target relation:

(1) The network evolution timeline is split into the feature extraction window and the obser-
vation window.

(2) Those node pairs that have either formed the target relationship in the observation win-
dow (observed samples) or have not formed the target relationship at all (censored sam-
ples) are selected as sample node pairs.

(3) By extracting feature meta-paths based on the target relation and similarity meta-paths,
a multivariate time series can be obtained for each sample node pair. Thus, if we have N
sample node pairs, we will have a dataset of N multivariate time series.

(4) The LSTM autoencoder is trained using the dataset of N multivariate time series to learn
how to compress time series into feature vectors.

(5) For each sample node pair, the corresponding multivariate time series is compressed into
a feature vector x using the learned encoder LSTM.

(6) For each observed node pair, the feature vector x is labeled with y = 1 and associates with
the variable t denoting the time it takes for the node pair to form the target relationship.
For censored node pairs, y is set to zero and t becomes equal to the size of the observation
window.

(7) Finally, we will have a dataset of the form {x,y, t }i , i = 1 . . .N that will be used to train
the supervised model.

We explain our proposed non-parametric model in the next section that takes the learned rep-
resentation as the feature vector x and attempts to predict the corresponding event time t .

4 SUPERVISED NON-PARAMETRIC MODEL

In this section, we introduce our proposed model, called Np-Glm, to solve the problem of
continuous-time relationship prediction based on the extracted features. Since the relationship
building time is treated as a continuous random variable, we attempt to model the probability dis-
tribution of this time, given the features of the target relationship. Thus, if we denote the target
relationship building time by t and its features by x, our aim is to model the probability density
function fT (t | x). A conventional approach to modeling this function is to fix a parametric distri-
bution for t (e.g., Exponential distribution) and then relate x to t using a Generalized Linear Model
[34]. The major drawback of this approach is that we need to know the exact distribution of the
relationship building time, or at least, we could guess the best one that fits. The alternative way
that we follow is to learn the shape of fT (t | x) from the data using a non-parametric solution.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:13

Table 2. Characteristics of Some Probability Distributions Used for Event-Time Modeling

Distribution Density function Survival function Intensity function Cumulative intensity
fT (t) S (t) λ(t) Λ(t)

Exponential α exp(−αt) exp(−αt) α αt

Rayleigh t
σ 2 exp

(

− t 2

2σ 2

)

exp
(

− t 2

2σ 2

)

t
σ 2

t 2

2σ 2

Gompertz αet exp{−α (et − 1)} exp{−α (et − 1)} αet αet

Weibull αtα−1

βα
exp

{
−
(

t
β

)α }
exp

{
−
(

t
β

)α } αtα−1

βα

(

t
β

)α

In the rest of this section, we first bring the necessary theoretical backgrounds related to the
concept, then we go through the details of the proposed model. In the end, we explain the learning
and inference algorithms of Np-Glm.

4.1 Background

Here, we define some essential concepts that are necessary to study before we proceed to the
proposed model. Generally, the formation of a relationship between two nodes in a network can
simply be considered as an event with its occurring time as a random variable T coming from a
density function fT (t). Regarding this, we can have the following definitions:

Definition 4.1 (Survival Function). Given the density fT (t), the survival function denoted by S (t),
is the probability that an event occurs after a certain value of t , which means

S (t) = P (T > t) =

∫ ∞

t

fT (t)dt . (1)

Definition 4.2 (Intensity Function). The intensity function (or failure rate function), denoted by
λ(t), is the instantaneous rate of event occurring at any time t given the fact that the event has
not occurred yet

λ(t) = lim
∆t→0

P (t ≤ T ≤ t + ∆t | T ≥ t)

∆t
. (2)

Definition 4.3 (Cumulative Intensity Function). The cumulative intensity function, denoted by
Λ(t), is the area under the intensity function up to a point t :

Λ(t) =

∫ t

0
λ(t)dt . (3)

The relations between density, survival, and intensity functions come directly from their defi-
nitions as follows:

λ(t) =
fT (t)

S (t)
(4)

S (t) = exp(−Λ(t)) (5)

fT (t) = λ(t) exp(−Λ(t)). (6)

Table 2 shows the density, survival, intensity, and cumulative intensity functions of some
widely-used distributions for event time modeling.

4.2 Model Description

Looking at Equation (6), we see that the density function can be specified uniquely with its in-
tensity function. Since the intensity function often has a simpler form than the density itself, if
we learn the shape of the intensity function, then we can infer the entire distribution eventually.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:14 S. Sajadmanesh et al.

Therefore, we focus on learning the shape of the conditional intensity function λ(t | x) from the
data, and then accordingly infer the conditional density function fT (t | x) based on the learned
intensity. In order to reduce the hypothesis space of the problem and avoid the curse of dimen-
sionality, we assume that λ(t | x), which is a function of both t and x, can be factorized into two
separate positive functions as the following:

λ(t | x) = д(wT x)h(t), (7)

where д is a function of x that captures the effect of features via a linear transformation using
coefficient vector w independent of t , and h is a function of t that captures the effect of time
independent of x . This assumption, referred to as proportional hazards condition [5], holds in GLM
formulations of many event-time modeling distributions, such as the ones shown in Table 2. Our
goal is now to fix the function д and then learn both the coefficient vector w and the function h

from the training data. In order to do so, we begin with the likelihood function of the data that can
be written as follows:

N
∏

i=1

fT (ti | xi)
yiP (T ≥ ti | xi)

1−yi . (8)

The likelihood consists of the product of two parts: The first part is the contribution of those
samples for which we have observed their exact building time, in terms of their density function.
The second part on the other hand, is the contribution of the censored samples, for which we use
the probability of the building time being greater than the recorded one. By applying Equations
(5) and (6), we can write the likelihood in terms of the intensity function:

N
∏

i=1

[
λ(ti | xi) exp{−Λ(ti | xi)}

]yi
exp{−Λ(ti | xi)}

1−yi . (9)

By merging the exponentials and applying Equations (3) and (7), the likelihood function becomes

N
∏

i=1

[
д
(

wT xi
)

h(ti)
]yi

exp

{

−д(wT xi)

∫ ti

0
h(t)dt

}

. (10)

Since we do not know the form of h(t), we cannot directly calculate the integral appeared in
the likelihood function. To deal with this problem, we treat h(t) as a non-parametric function by
approximating it with a piecewise constant function that changes just in ti s. Therefore, the integral
over h(t), denoted by H (t), becomes a series:

H (ti) =

∫ ti

0
h(t)dt 	

i
∑

j=1

h(tj) (tj − tj−1), (11)

assuming samples are sorted by t in increasing order, without loss of generality. The functionH (t)

defined above plays an important role in both learning and inference phases. In fact, both the
learning and inference phases rely on H (t) instead of h(t), which we will see later in this article.
Replacing the above series in the likelihood, taking the logarithm and negating, we end up with
the following negative log-likelihood function, simply called the loss function, denoted by L:

L(w,h) =

N
∑

i=1

{

д
(

wT xi
)

i
∑

j=1

h(tj) (tj − tj−1) − yi
[
logд
(

wT xi
)

+ logh(ti)
] }
. (12)

The loss function depends on both the vector w and the function h(t). In the next part, we
explain an iterative learning algorithm to learn both w and h(t) collectively.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:15

4.3 Learning Algorithm

Minimizing the loss function (Equation (12)) relies on the choice of the function д. There are no
particular limits on the choice of д except that it must be a non-negative function. For example,
both quadratic and exponential functions ofwT xwill do the trick. Here, we proceedwithд(wT x) =

exp(wT x) since it makes the loss function convex with respect tow. Subsequent equations can be
derived for other choices of д analogously.
Setting the derivative of the loss function with respect to h(tk) to zero yields a closed form

solution for h(tk):

h(tk) =
yk

(tk − tk−1)
∑N

i=k
exp
(

wT xi
) . (13)

By applying Equation (11), we get the following for H (ti):

H (ti) =

i
∑

j=1

yj
∑N

k=j
exp
(

wT xk
) , (14)

which depends on the vector w. On the other hand, we cannot obtain a closed form solution for
w from the loss function. Therefore, we turn to use Gradient-based optimization methods to find
the optimal value of w. The loss function with respect to w is as follows:

L(w) =

N
∑

i=1

{
exp
(

wT xi
)

H (ti) − yiw
T xi

}
+Const ., (15)

which depends on the function H . As the learning of both w and H depends on each other, they
should be learned collectively. Here, we use an iterative algorithm to learn w and H alternatively.
We begin with a random vector w(0) . Then, in each iteration τ , we first update H (τ) via Equa-
tion (14) usingw (τ−1) . Next, we optimize Equation (15) using the values of H (τ) (ti) to obtain w(τ) .
We continue this routine until convergence. Since this procedure successively reduces the value
of the loss function, and as the loss function (i.e., the negative log-likelihood) is bounded from be-
low, the algorithm will ultimately converge to a stationary point. The pseudo code of the learning
procedure is given in Algorithm 1.

4.4 Inference Queries

In this part, we explain how to answer the common inference queries based on the inferred distri-
bution fT (t | x). Suppose that we have learned the vectorw and the function H using the training
samples (xi ,yi , ti), i = 1 . . .N following Algorithm 1. Afterward, for a testing relationship R as-
sociated with a feature vector xR , the following queries can be answered:

4.4.1 Ranged Probability. What is the probability for the relationship R to be formed between
time tα and tβ ? This is equivalent to calculating P (tα ≤ T ≤ tβ | xR), which by definition is

P (tα ≤ T ≤ tβ | xR) = S (tα | xR) − S (tβ | xR)

= exp
{
− д
(

wT xR
)

H (tα)
}
− exp

{
− д
(

wT xR
)

H (tβ)
}
.

(16)

The problem here is to obtain the values of H (tα) and H (tβ), as tα and tβ may not be among ti s of
the training samples, for which H is estimated. To calculate H (tα), we find k ∈ {1, 2, . . . ,N } such
that tk ≤ tα < tk+1. Due to the piecewise constant assumption for the function h, we get

h(tα) =
H (tα) − H (tk)

tα − tk
. (17)

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:16 S. Sajadmanesh et al.

ALGORITHM 1: The learning algorithm of Np-Glm

Input: XN×d = (x1, . . . xN)T as d-dimensional feature vectors, yN×1 as observation states, and tN×1 as
recorded times.

Output: Learned parameters wd×1 and HN×1.
converдed ← False ;

threshold ← 10−4;

τ ← 0;

L(τ) = ∞;

Initialize w(τ) with random values;

while Not converдed do

τ ← τ + 1;

Use Equation (14) to obtain H(τ) using w(τ−1) ;

Minimize Equation (15) to obtain w(τ) using H(τ) ;

Use Equation (12) to obtain L(τ) using w(τ) and H(τ) ;

if
���L

(τ) − L(τ−1)
��� < threshold then

converдed ← True ;

end

end

w← w(τ) ;

H← H(τ) ;

On the other hand, since h only changes in ti s, we have

h(tα) = h(tk+1) =
H (tk+1) − H (tk)

tk+1 − tk
. (18)

Combining Equations (17) and (18), we get

H (tα) = H (tk) + (tα − tk)
H (tk+1) − H (tk)

tk+1 − tk
. (19)

Following the similar approach, we can calculate H (tβ), and then answer the query using Equa-
tion (16). The dominating operation here is to find the value of k . Since we have ti s sorted before-
hand, this operation can be done using a binary search with O (logN) time complexity.

4.4.2 Quantile. By how long the target relationship R will be formed with probability α? This
question is equivalent to find the time tα such that P (T ≤ tα | xR) = α . By definition, we have

1 − P (T ≤ tα | xR) = S (tα | xR) = exp
{
− д
(

wT xR
)

H (tα)
}
= 1 − α .

Taking logarithm of both sides and rearranging, we get

H (tα) = −
log(1 − α)

д
(

wT xR
) . (20)

To find tα , we first find k such that H (tk) ≤ H (tα) < H (tk+1). We eventually have tk ≤ tα < tk+1
since H is a non-decreasing function due to non-negativity of the function h. Therefore, we again
end up with Equation (19), by rearranging which we get:

tα = (tk+1 − tk)
H (tα) − H (tk)

H (tk+1) − H (tk)
+ tk . (21)

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:17

ALGORITHM 2: Synthetic dataset generation algorithm

Input: The number of observed samples No , the number of censored samples Nc , the dimension of the
feature vectors d , and the desired distribution dist

Output: Synthetically generated data XN×d , yN×1, and tN×1.
N ← No + Nc ;

Draw a weight vector w ∼ N (0, Id), where Id is the d-dimensional identity matrix;

Draw scalar intercept b ∼ N (0, 1);

for i ← 1 to N do

Draw feature vector xi ∼ N (0, Id);

Set distribution parameter αi ← exp(wT xi + b);

if dist == Rayleiдh then

Draw ti ∼ αi t exp{−0.5αi t
2};

else if dist == Gompertz then

Draw ti ∼ αi e
t exp{−αi (e

t − 1)};

end

Sort pairs (xi , ti) by ti in ascending order;

for i ← 1 to No do

yi ← 1;

end

for i ← (No + 1) to N do

yi ← 0;

end

By combining Equations (20) and (21), we can obtain the value of tα , which is the answer to the
quantile query. It is worth mentioning that if α = 0.5, then tα becomes the median of the distri-
bution fT (t | xR). Here, again the dominant operation is to find the value of k , which due to the
non-decreasing property of the functionH can be found using a binary search withO (logN) time
complexity.

4.4.3 Random Sampling. Generating random samples from the inferred distribution can easily
be carried out using the Inverse-Transform sampling algorithm. To pick a random sample from the
inferred distribution fT (t | x), we first generate uniform random variableu ∼ Uniform(0, 1). Then,
we find k such that S (tk+1 | x) ≤ u ≤ S (tk | x). We output tk+1 as the generated sample. Again,
searching for the suitable value of k is the dominant operation that can be undertaken via binary
search with O (logN) time complexity.

5 SYNTHETIC EVALUATIONS

We use synthetic data to verify the correctness of Np-Glm and its learning algorithm. Since
Np-Glm is a non-parametric method, we generate synthetic data using various parametric models
with previously known random parameters and evaluate how well Np-Glm can learn the param-
eters and the underlying distribution of the generated data.

5.1 Experiment Setup

We consider generalized linear models of two widely used distributions for event-time modeling,
Rayleigh and Gompertz, as the ground truth models for generating synthetic data. Algorithm 2
is used to generate a total of N data samples with d-dimensional feature vectors, consisting No

non-censored (observed) samples and remaining Nc = N − No censored ones. For all synthetic

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:18 S. Sajadmanesh et al.

Fig. 4. Convergence of Np-Glm’s average log-likelihood (logL) for different number of training samples (N).

Censoring ratio has been set to 0.5.

Fig. 5. Convergence of Np-Glm’s average log-likelihood (logL) for different censoring ratios with 1K

samples.

experiments, we generate 10-dimensional feature vectors (d = 10). We repeat every experiment
100 times and report the average results.

5.2 Experiment Results

5.2.1 Convergence Analysis. Since Np-Glm’s learning is done in an iterative manner, we first
analyze whether this algorithm converges as the number of iterations increases. We recorded the
log-likelihood of Np-Glm, averaged over the number of training samples N in each iteration. We
repeated this experiment for N ∈ {1,000, 2,000, 3,000} with a fixed censoring ratio of 0.5, which
means half of the samples are censored. The result is depicted in Figure 4. We can see that the
algorithm successfully converges with a rate depending on the underlying distribution. For the
case of Rayleigh, it requires about 100 iterations to converge but for Gompertz, this reduces to
about 30. Also, we see that using more training data leads to achieving more log-likelihood as
expected.
In Figure 5, we fixed N = 1,000 and performed the same experiment this time using different

censoring ratios. According to the figure, we see that by increasing the censoring ratio, the con-
vergence rate increases. This is because Np-Glm infers the values of H (t) for all t in the observa-
tion window. Therefore, as the censoring ratio increases, the observation window is decreased, so
Np-Glm has to infer a fewer number of parameters, leading to a faster convergence. Note that as
opposed to Figure 4, here a higher log-likelihood does not necessarily indicate a better fit, due to
the likelihood marginalization we get by censored samples.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:19

Fig. 6. Np-Glm’s mean absolute error (MAE) versus the number of training samples (N) for different censor-

ing ratios.

Fig. 7. Np-Glm’s mean absolute error (MAE) versus the number of censored samples (Nc) for different num-

ber of observed samples (No).

5.2.2 Performance Analysis. Next, we evaluated how good Np-Glm can infer the parameters
used to generate synthetic data. To this end, we varied the number of training samples N and
measured the mean absolute error (MAE) between the learned weight vector ŵ and the ground
truth. Figure 6 illustrates the result for different censoring ratios. It can be seen that as the number
of training samples increases, the MAE gradually decreases. The other point to notice is that more
censoring ratio results in a higher error due to the information loss we get by censoring.
In another experiment, we investigated whether censored samples are informative or not. For

this purpose, we fixed the number of observed samples No and changed the number of censored
samples from 0 to 200. We measured the MAE between the learned w and the ground truth for
No ∈ {200, 300, 400}. The result is shown in Figure 7. It clearly demonstrates that adding more
censored samples causes the MAE to dwindle up to an extent, after which we get no substantial
improvement. This threshold is dependent on the underlying distribution. In this case, for Rayleigh
and Gompertz it is about 80 and 120, respectively.

5.2.3 Running Time Analysis. Finally, we assess the running time of Np-Glm’s learning algo-
rithm against the size of the training data when it becomes relatively large. To this end, we varied
the number of samples from 10K to 100M and measured the average running time of the learning
algorithm of Np-Glm on a single machine whose specification is reported in Table 3. Figure 8 de-
picts the result in log–log scale for Rayleigh and Gompertz distributions under different censoring
ratios selected from the set {0.05, 0.25, 0.50}. It can be seen from the figure that the running time
scales linearly with the number of training samples since the number of parameters to be inferred

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:20 S. Sajadmanesh et al.

Table 3. PC Specification and Configuration

Operating system Windows 10
CPU Intel Core i7 1.8GHz
RAM 12GB DDR III
GPU Nvidia GeForce GT 750

Disk type SSD
Programming language Python 3.6

Fig. 8. Np-Glm’s average running time (T) measured in seconds versus the number of training samples (N)

in log–log scale for different censoring ratios.

in Np-Glm as a non-parametric model depends on the size of the training data. The censoring ra-
tio though negligible in scale can impact the running time of the algorithm, with more censoring
ratio resulting in less running time. This is because higher censoring ratio reduces the observation
window, which in turn reduces the number of parameters.

6 EXPERIMENTS ON REAL DATA

We apply Np-Glm with the proposed feature set on a number of real-world datasets to evaluate its
effectiveness and compare its performance in predicting the relationship building time vis-à-vis
state of the art models.

6.1 Datasets

6.1.1 DBLP. We use the DBLP bibliographic citation network, provided by [36], which has both
attributes of dynamicity and heterogeneity. The network contains four types of objects: authors,
papers, venues, and terms. The network schema of this dataset is depicted in Figure 1(a). Each paper
is associated with a publication date, with a granularity of one year. Based on the publication venue
of the papers, we limited the original DBLP dataset to those papers that are published in venues
relative to the theoretical computer science. This resulted in having about 16k authors and 37k
papers published from 1969 to 2016 in 38 venues.

6.1.2 Delicious. Another dynamic and heterogeneous dataset we use in our experiments is
the Delicious bookmarking dataset from [6], with a network schema presented in Figure 1(b).
It contains three types of objects, namely users, bookmarks, and tags, whose numbers are about
1.7k, 31k, and 22k, respectively. The dataset includes bookmarking timestamps from May 2006 to
October 2010.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:21

Table 4. Demographic Statistics of Real-World Datasets

Dataset Time span Entity Count

DBLP From 1969 to 2016
Nodes

Author 15,929 Venue 38
Paper 37,077 Term 12,028

Links
write 100,797 publish 42,872
cite 165,904 mention 284,156

Delicious From May 2006 to Oct 2010
Nodes

User 1,714 Taд 21,956
Bookmark 30,998

Links
contact 15,329 has-tag 437,594
post 437,594

MovieLens From Sep 1997 to Jan 2009

Nodes

User 1,421 Genre 19
Movie 5,660 Taд 5,561
Actor 6,176 Country 63
Director 2,401

Links
rate 855,599 has-genre 20,810
play-in 231,743 has-tag 47,958
direct 10,156 produced-in 10,198

6.1.3 MovieLens. The third heterogeneous dataset with dynamic characteristics has been ex-
tracted from MovieLens personalized movie recommendation website, provided by [15]. The
dataset comprises seven types of objects, that are users, movies, tags, genres, actors, directors,
and countries, as illustrated by the network schema in Figure 1(c). It contains about 1.4k users and
5.6k movies, with user-movie rating timestamps ranging from September 1997 to January 2009.
The demographic statistics of all datasets are presented in Table 4.

6.2 Experiment Settings

6.2.1 ComparisonMethods. To challenge the performance of Np-Glm, we use a number of base-
lines introduced in the following:

—Generalized Linear Model (Glm): This is the state-of-the-art method proposed in [34]. We
use the GLM-based framework with Exponential and Weibull distributions, denoted as
Exp-Glm and Wbl-Glm used in [34].

—Censored Regression Model (Crm): This model, also called type II Tobit model, is designed to
estimate linear relationships between variables when there is censoring in the dependent
variable. In other words, it is an extension to the ordinary least squares linear regression
for censored data [39]. The structural equation in this model is

t∗ = wT x + ϵ,

where ϵ is a normally distributed error term and t∗ is a latent variable, which is observed
within the observation window and censored otherwise. Accordingly, the observed t is de-
fined as

t =

{

t∗ if y = 1
Ω if y = 0

.

The coefficient vector w is learned using maximum likelihood estimation (more details in
[3]).

—Additive Regression Model (Arm): This model is another regression method suggested by
Aalen for censored data [1]. Like Np-Glm, it specifies the intensity function, but instead of

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:22 S. Sajadmanesh et al.

a multiplicative linear model, the Aalen’s model is additive:

λ(t | x) =

d
∑

i=0

wi (t)xi .

The learning algorithm infers
∫ t

0
wi (t)dt instead of estimating individual wi s. For more

details about the learning algorithm, the reader can refer to [19].

For all models, we consider the median of the distribution fT (t | xtest) as the predicted time for
any test sample and then compare it to the ground truth time ttest.

To examine the effect of considering different feature extractors on the performance of the mod-
els, we use another dynamic feature extractor and a static one against the proposed LSTMAutoen-
coder:

—Exponential Smoothing: This dynamic feature extractor previously used in [14] is an expo-
nentially weighted moving average over the features extracted in all the snapshots of the
network, which is calculated as

f i =

{

x1, if i = 1
αxi + (1 − α)f i−1, otherwise,

where f i is the smoothed feature after ith snapshot, xi is the ith step of the dynamic meta-
path-based time series, and α ∈ (0, 1) is the smoothing factor. We then set x = fk as the final
feature vector if we have k snapshots in total.

—Single Snapshot: This static feature extractor considers the whole network as a single snap-
shot, neglecting its temporal dynamics. This feature extractor is equivalent to the one pro-
posed in [34].

6.2.2 PerformanceMeasures. We assess differentmethods using a number of evaluationmetrics
that are described in the following:

—Mean Absolute Error (MAE): This metric measures the expected absolute error between the
predicted time values and the ground truth:

MAE (t, t̂) =
1

N

N
∑

i=1

|ti − t̂i |.

—Mean Relative Error (MRE): This metric calculates the expected relative absolute error be-
tween the predicted time values and the ground truth:

MRE (t, t̂) =
1

N

N
∑

i=1

�����

ti − t̂i

ti

�����
.

—Root Mean Squared Error (RMSE): This metric computes the root of the expected squared
error between the predicted time values and the ground truth:

RMSE (t, t̂) =

√
√

√

1

N

N
∑

i=1

(ti − t̂i)2.

—Mean Squared Logarithmic Error (MSLE): This measures the expected value of the squared
logarithmic error between the predicted time values and the ground truth:

MSLE (t, t̂) =
1

N

N
∑

i=1

(log (1 + ti) − loд(1 + t̂i))
2
.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:23

—Median Absolute Error (MDAE): It is the median of the absolute errors between the pre-
dicted time values and the ground truth:

MDAE(t, t̂) = median(|t1 − t̂1 | . . . |tN − t̂N |).

—Maximum Threshold Prediction Accuracy (ACC): This measures for what fraction of sam-
ples, a model have a lower absolute error than a given threshold:

ACC (t, t̂) =
1

N

N
∑

i=1

1(|ti − t̂i | < threshold).

—Concordance Index (CI): This metric is one of the most widely used performance measures
for survival models that estimates how good a model performs at ranking predicted times
[16]. It can be seen as the fraction of all the sample pairs whose predicted timestamps are
correctly ordered among all samples that can be ordered, and is considered as the gener-
alization of the Area Under Receiver Operating Characteristic Curve (AUC) when we are
dealing with censored data [32].

6.2.3 Experiment Setup. For DBLP dataset, we confine the data samples to those authors who
have publishedmore than five papers in the feature extractionwindow of each experiment. Follow-
ing the triple building blocks described for feature extraction in Section 3, and using the similarity
meta-paths in Table 1, we start the feature extraction process with 19 feature meta-paths. In all
experiments, the author citation relation (A→ P → P ← A) is chosen as the target relation. For
the case of the Delicious dataset, we select user–user relation (U ↔ U) as the target relation, and
design six feature meta-paths via the similarity meta-paths in Table 1. Regarding the MovieLens
dataset, we limit the actor list to the top three for each movie. To imply a notion of “like” relation
between user and movie, we only consider ratings above four in the scale of five. For this dataset,
the target relation is set to user rate movie (U → M), based on which, we design 11 final meta-
paths. For the sake of convenience, we convert the scale of time differences from timestamp to
month in Delicious and MovieLens datasets.
Except for parameter settings analysis (Section 6.3.3) wherewewill analyze the effect of different

parameters on the performance of different models, in the rest of the experiments in this section
we set the length of the observation window Ω to 6 for all three datasets. For DBLP dataset, the
number of snapshots k is set to 6, while for the other two datasets we set k = 12. We also fix
the time difference between network snapshots ∆ to 1 in all cases. These settings lead to having
a feature extraction window of size Φ = 6 years for DBLP, and Φ = 12 months for Delicious and
MovieLens. Accordingly, the number of labeled instances for DBLP, Delicious, and MovieLens are
about 3.4K, 3.9K, and 7.8K, respectively. About half of the labeled samples are censored ones, which
are picked uniformly at random among all the possible candidates.
We implemented the LSTM autoencoder using Keras deep learning library [8]. We used mean

square error loss function, linear activation function, and Adadelta optimizer [45] with default
parameters. For all datasets, we set the dimension of the encoded feature as twice as the input
dimension and trained the autoencoder in 50 epochs. For exponential smoothing feature extrac-
tor, the smoothing factor α were tuned to maximize the performance on the training dataset. For
Np-Glm, the data samples were ordered according to their corresponding time variables, as the
model needs the samples sorted by their recorded time. We use five-fold cross-validation and re-
port the average results for all the experiments in this section.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:24 S. Sajadmanesh et al.

6.3 Experiment Results

In the rest of this section, we first assess how well different methods perform over various datasets
and compare their performance based on different measures. Next, we discuss the efficiency of our
proposed method by measuring and comparing its running time against the other baselines. Fi-
nally, we analyze the effect of different parameters and problem configurations on the performance
of competitive methods.

6.3.1 Comparative Performance Analysis. In the first set of experiments, we evaluate the predic-
tion power of different models combined with different feature extractors on DBLP, Delicious and
MovieLens datasets. MAE, MRE, RMSE, MSLE, MDAE, and CI of all models using both dynamic
and static feature sets has been shown in Table 5. We see that in all three networks, Np-Glm with
the LSTM Autoencoder feature set is superior to the other methods under all performance mea-
sures. For instance, our model Np-Glm can obtain an MAE of 1.99 for DBLP dataset, which is 15%
lower than the MAE obtained by its closest competitor, Wbl-Glm. As of CI, Np-Glm achieves 0.62
on DBLP, which is 7% better than Wbl-Glm. On Delicious dataset, Np-Glm improves MAE and CI
by 11% and 23%, respectively, relative toWbl-Glm. Similarly, Np-Glm reduces MAE by 19% and in-
creases CI by 25%. Comparable results hold for other performance measures as well. Accordingly,
Wbl-Glm, which has two degrees of freedom, has shown a better performance compared to other
models. That is while Np-Glm, as a non-parametric model with highly tunable shape, outperforms
all the other “less-flexible” models by learning the true distribution of the data.
Moreover, it is evident from Table 5 that using the dynamic features learned with the LSTM au-

toencoder has boosted the performance of all models over different datasets, and has outperformed
the other feature extractors. Based on the results presented in Table 5, the alternative dynamic fea-
ture extractor, exponential smoothing, has performed better than the static single snapshot feature
extractor, yet not better than the proposed LSTMAutoencoder. Comparing the LSTMAutoencoder
with exponential smoothing feature extractor, over the DBLP dataset, the proposed feature extrac-
tor has achieved 7% less MAE and 17%more CI with Np-Glm. Over Delicious, Np-Glm with LSTM-
based features reducesMAE by about 7% and improves CI by 7%. Finally, on theMovieLens dataset,
combining LSTM Autoencoder and Np-Glm leads to an improvement of 8% and 7% under MAE
and CI, respectively. The other models behave more or less similarly when they are combined with
different feature extractors. This result clearly demonstrates that our feature extraction framework
is performing well on capturing the temporal dynamics of the networks.
In the next experiment, we investigated the performance of different models using the LSTM au-

toencoder feature extraction framework under maximum threshold prediction accuracy. To eval-
uate the prediction accuracy of a model, we record the fraction of test samples for which the
difference between their true times and predicted ones are lower than a given threshold, called
tolerated error. The results are plotted in Figure 9 where we varied the tolerated error in the range
{0.5, 1.0, . . . , 3.0}. We can see from the figure that Np-Glm and Wbl-Glm perform comparably,
yet Np-Glm outperforms Wbl-Glm in all cases. For example, on MovieLens dataset (Figure 9(c)),
Np-Glm can predict the relationship building time of all the test samples with 100% accuracy by
an error of 3 months, whereas for Wbl-Glm, this is reduced to 90%. Similarly, on the Delicious
dataset, Np-Glm with 3 months of tolerated error achieves around 80% accuracy, which is about
12% more than Wbl-Glm.

6.3.2 Efficiency Analysis. In this part, we analyze and compare the running time of Np-Glm
and Wbl-Glm models utilizing different feature extractors, namely LSTM autoencoder, expo-
nential smoothing, and single snapshot. All the algorithms were implemented in Python and
were run on a Windows 10 PC with Intel Core i7 1.8 GHz CPU and 12GB of RAM. The full

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:25

Table 5. Comprehensive Performance Comparison of Different Methods

Dataset Feature Model MAE MRE RMSE MSLE MDAE CI

D
B
L
P

LSTM Autoencoder

(Dynamic)

Np-Glm 1.99 0.95 2.43 0.30 1.73 0.62

Wbl-Glm 2.33 1.10 2.85 0.36 2.08 0.58
Exp-Glm 3.11 1.39 3.88 0.52 2.58 0.50
Crm 3.08 1.06 3.32 2.04 2.98 0.37
Arm 2.95 1.33 4.48 0.48 1.48 0.56

Exp. Smoothing

(Dynamic)

Np-Glm 2.15 1.07 2.54 0.32 1.98 0.53
Wbl-Glm 2.50 1.22 2.89 0.38 2.46 0.58
Exp-Glm 3.20 1.49 3.73 0.51 3.06 0.45
Crm 2.55 0.97 3.05 1.58 2.11 0.55
Arm 6.75 2.83 7.86 1.17 6.39 0.60

Single Snapshot

(Static)

Np-Glm 2.76 1.35 3.07 0.44 2.88 0.50
Wbl-Glm 2.81 1.38 3.16 0.45 2.88 0.48
Exp-Glm 3.28 1.57 3.70 0.53 3.30 0.14
Crm 2.96 1.03 3.21 1.73 2.97 0.38
Arm 3.89 1.76 5.45 0.66 2.11 0.46

D
el
ic
io
u
s

LSTM Autoencoder

(Dynamic)

Np-Glm 2.10 1.20 2.55 0.35 2.05 0.70

Wbl-Glm 2.37 1.31 2.89 0.40 2.16 0.57
Exp-Glm 3.21 1.58 3.84 0.54 2.89 0.55
Crm 6.38 3.10 6.55 1.33 6.87 0.43
Arm 5.20 2.56 6.23 0.86 4.99 0.52

Exp. Smoothing

(Dynamic)

Np-Glm 2.25 1.36 2.74 0.40 2.11 0.66
Wbl-Glm 2.61 1.64 3.20 0.47 2.17 0.56
Exp-Glm 3.52 1.99 4.54 0.62 3.20 0.39
Crm 3.28 3.69 3.84 2.07 2.88 0.43
Arm 6.36 3.24 7.80 1.09 6.72 0.56

Single Snapshot

(Static)

Np-Glm 2.33 1.46 2.80 0.41 2.17 0.61
Wbl-Glm 2.65 1.62 3.23 0.47 2.26 0.43
Exp-Glm 3.35 1.91 4.17 0.59 2.75 0.35
Crm 3.06 2.05 3.47 1.53 2.84 0.38
Arm 5.79 2.76 6.69 1.16 5.89 0.37

M
o
v
ie
L
en
s

LSTM Autoencoder

(Dynamic)

Np-Glm 2.48 3.08 3.04 0.55 2.14 0.70

Wbl-Glm 3.06 3.61 3.79 0.65 2.60 0.56
Exp-Glm 3.79 2.70 4.60 0.78 3.48 0.45
Crm 3.07 3.47 3.74 2.02 2.51 0.40
Arm 5.53 5.63 7.41 1.12 3.80 0.53

Exp. Smoothing

(Dynamic)

Np-Glm 2.69 3.35 3.18 0.59 2.61 0.66
Wbl-Glm 3.09 3.62 3.59 0.66 2.95 0.52
Exp-Glm 3.52 2.86 4.05 0.74 3.26 0.43
Crm 3.18 3.37 3.68 1.90 2.56 0.48
Arm 9.39 8.60 10.06 1.83 9.26 0.52

Single Snapshot

(Static)

Np-Glm 2.92 3.44 3.45 0.67 3.36 0.50
Wbl-Glm 2.99 3.52 3.51 0.69 3.37 0.49
Exp-Glm 3.42 2.89 3.86 0.78 3.82 0.49
Crm 3.14 3.48 3.63 2.20 3.55 0.35
Arm 5.71 5.50 7.30 1.23 5.18 0.47

All bold values are statistically significant at p-value < 0.001.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:26 S. Sajadmanesh et al.

Fig. 9. Prediction accuracy of different methods versus the maximum tolerated absolute error on different

datasets.

Table 6. Comparison of Computational Time Measured in Seconds

Dataset Model Feature extractor
Single snapshot Exp. smoothing LSTM autoencoder

DBLP
Np-Glm 35.92 98.35 93.59
Wbl-Glm 36.01 74.34 79.83

Delicious
Np-Glm 2.01 110.67 128.43
Wbl-Glm 1.89 97.44 123.53

MovieLens
Np-Glm 19.60 177.015 232.77
Wbl-Glm 19.70 154.86 213.7

specification of the host machine is reported in Table 3. We measured the running time of all
the methods during a complete training and test procedure, including feature extraction, learning,
and inference. For exponential smoothing feature extractor, we included the time required for tun-
ing the smoothing factor α using a separate validation set, while for LSTM based framework the
training time of the autoencoder is counted toward total running time. Table 6 presents the results
over each of the DBLP, Delicious, andMovieLens datasets. Since a considerable amount of running
time is spent on feature extraction, dynamic feature extraction frameworks require more time to
process the network data as opposed to static single snapshot feature extractors. However, the
proposed LSTM autoencoder performs comparably to exponential smoothing in terms of running
time. Even though LSTM autoencoder is a bit slower than the other dynamic feature extractors, it
demonstrates higher prediction performance compared to models utilizing exponential smooth-
ing. For example, on MovieLens network with more than 20K nodes and 1 million links, Np-Glm
with LSTM autoencoder requires less than 4 minutes to process the whole network, extract fea-
tures and learn from about 6K labeled samples, and perform prediction for about 2K instances on
a typical PC.

6.3.3 Parameter Setting Analysis. The performance of different models is influenced by two
parameters, the number of snapshots k , and the time difference between snapshots ∆, as these
parameters determine the length of the feature extraction window Φ. In this set of experiments,
we investigate how these parameters affect the performance of our model Np-Glm and its clos-
est competitor Wbl-Glm over Delicious and MovieLens datasets using the proposed LSTM based
feature extraction framework.
Firstly, the effect of increasing the number of snapshots on achievedMAE and CI by Np-Glm and

Wbl-Glm over Delicious and MovieLens datasets is illustrated in Figures 10 and 11, respectively.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:27

Fig. 10. Effect of choosing different number of snapshots on performance of different methods using Deli-

cious dataset.

Fig. 11. Effect of choosing different number of snapshots on performance of different methods using Movie-

Lens dataset.

For both datasets, we set ∆ = 1.5 and Ω = 18 and varied the number of snapshots in the range of
3–18. As we can see in both figures, increasing the number of snapshots results in lower prediction
error and higher accuracy. This is due to the fact that as the number of snapshots grows, a longer
history of the network is taken into account. Therefore, different models can benefit from more
information about the temporal dynamics of the network given to them through the extracted
feature vector.
Finally, the impact of choosing different values for ∆ is analyzed on the performance of Np-

Glm and Wbl-Glm in terms of MAE and CI. The results for Delicious and MovieLens datasets
are depicted in Figures 12 and 13, respectively. In this experiment, the number of snapshots and
observation window length are accordingly set to 6 and 24. Different values of ∆ are selected from
the set {0.5, 1.0, . . . , 3.0}. As illustrated in both figures, by increasing ∆ up to an extent, we witness
that the performance of models improves gradually. That is because increasing the value of ∆ leads
to a wider feature extraction window. However, since the number of snapshots is constant, we see
no performance improvement when the value of ∆ becomes greater than a certain threshold. This
is due to the fact that short-term temporal evolution of the network will be ignored when the value
of ∆ becomes too wide.

7 RELATEDWORKS

The problem of link prediction has been studied extensively in recent years and many approaches
have been proposed to solve this problem [41, 42]. Previous work on time-aware link predic-
tion has mostly considered temporality in analyzing the long-term network trend over time [11].

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:28 S. Sajadmanesh et al.

Fig. 12. Effect of choosing different values for∆ on performance of differentmethods usingDelicious dataset.

Fig. 13. Effect of choosing different values for ∆ on performance of different methods using MovieLens

dataset.

Authors in [28] have shown that temporal metrics are an extremely valuable new contribution to
link prediction, and should be used in future applications. Dunlavy et al. focused on the problem
of periodic temporal link prediction [13]. They concentrated on bipartite graphs that evolve over
time and also considered a weighted matrix that contained multilayer data and tensor-based meth-
ods for predicting future links. Oyama et al. solved the problem of cross-temporal link prediction,
in which the links among nodes in different time frames are inferred [26]. They mapped data ob-
jects in different time frames into a common low-dimensional latent feature space and identified
the links on the basis of the distance between the data objects. Özcan et al. proposed a novel link
prediction method for evolving networks based on NARX neural network [27]. They take the cor-
relation between the quasi-local similarity measures and temporal evolutions of link occurrences
information into account by using NARX for multivariate time series forecasting. Yu et al. devel-
oped a novel temporal matrix factorization model to explicitly represent the network as a function
of time [44]. They provided results for link prediction as a specific example and showed that their
model performs better than the state-of-the-art techniques.
The most relevant works to this study are available in [2, 14, 24, 30, 34]. The authors in [14] ap-

proach the problem of time series link prediction by extracting simple temporal features from the
time series, such as mean, (weighted) moving average, and exponential smoothing besides some
topological features like common neighbor and Adamic-Adar. But their method is designed for ho-
mogeneous networks and fail to consider the heterogeneity of modern networks. Aggarwal et al.
[2] tackle the link prediction problem in both dynamic and heterogeneous information networks
using a dynamic clustering approach alongside content-based and structural models. However,
they aim to solve the conventional link prediction problem, not the continuous-time relationship

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:29

prediction studied in this article. In [30], the authors proposed a feature set, called TMLP, well
suited for link prediction in dynamic and heterogeneous information networks. Although their
proposed feature set copes with both dynamicity and heterogeneity of the network, it cannot be
extended for the generalized problem of relationship prediction and is only designed for solving
the simpler link prediction problem. Milani Fard et al. developed an approach called MetaDynaMix
that utilizes a set of latent and topological features for predicting a target relationship between
two nodes in a dynamic heterogeneous information network [24]. They combine meta-path-based
topological features with inferred latent features that take temporal network evolutions into ac-
count, in order to capture both heterogeneity and dynamicity of the network.
Most of the aforementioned works answered the question of whether a link will appear in the

network. To the best of our knowledge, the only work that has focused on the continuous-time
relationship prediction problem is proposed by Sun et al. [34], in which a generalized linear model
based framework is suggested to model the relationship building time. They consider the building
time of links as independent random variables coming from a pre-specified distribution and model
the expectation as a function of a linear predictor of the extracted topological features. A short-
coming of this model is that we need to exactly specify the underlying distribution of relationship
building times. We came over this problem by learning the distribution from the data using a non-
parametric solution. Furthermore, we considered the temporal dynamics of the network that has
been entirely ignored in their work.

8 CONCLUSION

In this article, we studied the problem of continuous-time relationship prediction in both dynamic
and heterogeneous information networks. To effectively tackle this problem, we first introduced a
novel feature extraction framework based on meta-path modeling and recurrent neural network
autoencoders to systematically extract features that take both the temporal dynamics and hetero-
geneous characteristics of the network into account for solving the continuous-time relationship
problem.We then proposed a supervised non-parametric model, called Np-Glm, which exploits the
extracted features to predict the relationship building time in information networks. The strength
of our model is that it does not impose any significant assumptions on the underlying distribu-
tion of the relationship building time given its features, but tries to infer it from the data via a
non-parametric approach. Extensive experiments conducted on a synthetic dataset and real-world
datasets from DBLP, Delicious, and MovieLens demonstrated the correctness of our method and
its effectiveness in predicting the relationship building time.
For future work, we would like to design a unified architecture to combine feature extraction

step with the learning algorithm in an integrated deep learning framework. Moreover, although
the proposed method is able to scale to large information networks with thousands of nodes, it is
not currently extensible to web-scale information networks where the number of nodes is in the
scale of hundreds of millions. Learning temporal non-parametric models within an extremely huge
dataset is a challenging problem and is an interesting and important future work. As calculating
meta-path-based features are the primary computational bottleneck of our method, to make the
learning process scalable, we set to investigate node embedding and approximation techniques.

REFERENCES

[1] Odd O. Aalen. 1989. A linear regression model for the analysis of life times. Statistics in Medicine 8, 8 (1989), 907–925.

[2] ChamAggarwal, Yan Xie, and Philip S. Yu. 2012. On dynamic link inference in heterogeneous networks. In Proceedings

of the 2012 SIAM International Conference on Data Mining. SIAM, 415–426.

[3] Takeshi Amemiya. 1984. Tobit models: A survey. Journal of Econometrics 24, 1–2 (1984), 3–61.

[4] Yoshua Bengio. 2009. Learning deep architectures for AI. Foundations and Trends® in Machine Learning 2, 1 (2009),

1–127.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

44:30 S. Sajadmanesh et al.

[5] Norman E. Breslow. 1975. Analysis of survival data under the proportional hazards model. International Statistical

Review/Revue Internationale de Statistique 43, 1 (1975), 45–57.

[6] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. Proceedings of the 2nd workshop on information hetero-

geneity and fusion in recommender systems (HetRec 2011). In Proceedings of the 5th ACMConference on Recommender

Systems (RecSys’11). ACM, New York, NY.

[7] Xing Chen, Ming-Xi Liu, and Gui-Ying Yan. 2012. Drug–target interaction prediction by random walk on the hetero-

geneous network. Molecular BioSystems 8, 7 (2012), 1970–1978.

[8] François Chollet et al. 2015. Keras. Retrieved from https://keras.io.

[9] Andrew M. Dai and Quoc V. Le. 2015. Semi-supervised sequence learning. In Proceedings of Advances in Neural Infor-

mation Processing Systems. 3079–3087.

[10] Darcy Davis, Ryan Lichtenwalter, and Nitesh V. Chawla. 2011. Multi-relational link prediction in heterogeneous

information networks. In Proceedings of the 2011 International Conference on Advances in Social Networks Analysis

and Mining (ASONAM’11). IEEE, 281–288.

[11] Yugchhaya Dhote, Nishchol Mishra, and Sanjeev Sharma. 2013. Survey and analysis of temporal link prediction in

online social networks. In Proceedings of the 2013 International Conference on Advances in Computing, Communications

and Informatics (ICACCI’13). IEEE, 1178–1183.

[12] Yuxiao Dong, Jie Tang, Sen Wu, Jilei Tian, Nitesh V. Chawla, Jinghai Rao, and Huanhuan Cao. 2012. Link predic-

tion and recommendation across heterogeneous social networks. In Proceedings of the 2012 IEEE 12th International

Conference on Data Mining (ICDM’12). IEEE, 181–190.

[13] Daniel M. Dunlavy, Tamara G. Kolda, and Evrim Acar. 2011. Temporal link prediction using matrix and tensor fac-

torizations. ACM Transactions on Knowledge Discovery from Data 5, 2 (2011), 10.

[14] Alireza Hajibagheri, Gita Sukthankar, and Kiran Lakkaraju. 2016. Leveraging network dynamics for improved link

prediction. In Proceedings of the 9th International Conference on Social Computing, Behavioral-Cultural Modeling and

Prediction and Behavior, SBP-BRiMS 2016, Washington, DC, June 28–July 1, 2016. Springer, 142–151.

[15] F. Maxwell Harper and Joseph A. Konstan. 2015. The movielens datasets: History and context. ACM Transactions on

Interactive Intelligent Systems 5, 4, Article 19 (December 2015), 19 pages.

[16] Frank E. Harrell Jr, Robert M. Califf, David B. Pryor, Kerry L. Lee, and Robert A. Rosati. 1982. Evaluating the yield of

medical tests. JAMA 247, 18 (1982), 2543–2546.

[17] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory.Neural Computation 9, 8 (1997), 1735–1780.

[18] Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed. 1983. Fundamentals of Data Structures. Vol. 20. Computer

Science Press Rockville, MD.

[19] David W. Hosmer Jr, Stanley Lemeshow, and Susanne May. 2011. Applied Survival Analysis: Regression Modeling of

Time-to-Event Data. Vol. 618. John Wiley & Sons.

[20] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is Twitter, a social network or a news

media? In Proceedings of the 19th International Conference on World Wide Web. ACM, 591–600.

[21] David Liben-Nowell and Jon Kleinberg. 2007. The link prediction problem for social networks. Journal of the Associ-

ation for Information Science and Technology 58, 7 (2007), 1019–1031.

[22] Ryan N. Lichtenwalter, Jake T. Lussier, and Nitesh V. Chawla. 2010. New perspectives and methods in link prediction.

In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 243–

252.

[23] Linyuan Lü and Tao Zhou. 2011. Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and

its Applications 390, 6 (2011), 1150–1170.

[24] Amin Milani Fard, Ebrahim Bagheri, and Ke Wang. 2019. Relationship prediction in dynamic heterogeneous infor-

mation networks. In Proceedings of the European Conference on Information Retrieval (ECIR’19). Springer, 12 pages.

[25] Behnaz Moradabadi and Mohammad Reza Meybodi. 2017. A novel time series link prediction method: Learning au-

tomata approach. Physica A: Statistical Mechanics and Its Applications 482 (2017), 422–432.

[26] Satoshi Oyama, Kohei Hayashi, and Hisashi Kashima. 2011. Cross-temporal link prediction. In Proceedings of the 2011

IEEE 11th International Conference on Data Mining (ICDM’11). IEEE, 1188–1193.

[27] Alper Özcan and Şule Gündüz Öğüdücü. 2016. Temporal link prediction using time series of quasi-local node simi-

larity measures. In Proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications

(ICMLA’16). IEEE, 381–386.

[28] Anet Potgieter, Kurt A. April, Richard J. E. Cooke, and Isaac O. Osunmakinde. 2009. Temporality in link prediction:

Understanding social complexity. Emergence: Complexity and Organization 11, 1 (2009), 69.

[29] S. Sajadmanesh, H. R. Rabiee, and A. Khodadadi. 2016. Predicting anchor links between heterogeneous social net-

works. In Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining (ASONAM’16). 158–163.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

Continuous-Time Relationship Prediction 44:31

[30] Niladri Sett, Saptarshi Basu, Sukumar Nandi, and Sanasam Ranbir Singh. 2018. Temporal link prediction in multi-

relational network. World Wide Web 21, 2 (2018), 395–419.

[31] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S. Yu Philip. 2017. A survey of heterogeneous information

network analysis. IEEE Transactions on Knowledge and Data Engineering 29, 1 (2017), 17–37.

[32] Harald Steck, Balaji Krishnapuram, Cary Dehing-Oberije, Philippe Lambin, and Vikas C. Raykar. 2008. On ranking

in survival analysis: Bounds on the concordance index. In Proceedings of the 20th International Conference on Neural

Information Processing Systems. 1209–1216.

[33] Yizhou Sun, Rick Barber, Manish Gupta, Charu C. Aggarwal, and Jiawei Han. 2011. Co-author relationship prediction

in heterogeneous bibliographic networks. In Proceedings of the 2011 International Conference on Advances in Social

Networks Analysis and Mining (ASONAM’11). IEEE, 121–128.

[34] Yizhou Sun, Jiawei Han, Charu C. Aggarwal, and Nitesh V. Chawla. 2012. When will it happen? Relationship predic-

tion in heterogeneous information networks. In Proceedings of the 5th ACM International Conference on Web Search

and Data Mining (WSDM’12). ACM, New York, NY, 663–672.

[35] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Pathsim: Meta path-based top-k similarity

search in heterogeneous information networks. Proceedings of the VLDB Endowment 4, 11 (2011), 992–1003.

[36] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. ArnetMiner: Extraction and mining of

academic social networks. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD’08). ACM, New York, NY, 990–998.

[37] Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and Daphne Koller. 2004. Link prediction in relational data. In Proceedings

of the 16th International Conference on Neural Information Processing Systems. 659–666.

[38] Ian W. Taylor, Rune Linding, David Warde-Farley, Yongmei Liu, Catia Pesquita, Daniel Faria, Shelley Bull, Tony

Pawson, Quaid Morris, and Jeffrey L Wrana. 2009. Dynamic modularity in protein interaction networks predicts

breast cancer outcome. Nature Biotechnology 27, 2 (2009), 199.

[39] James Tobin. 1958. Estimation of relationships for limited dependent variables. Econometrica 26, 1 (1958), 24–36.

Retrieved from http://www.jstor.org/stable/1907382

[40] Chao Wang, Venu Satuluri, and Srinivasan Parthasarathy. 2007. Local probabilistic models for link prediction. In

Proceedings of the 7th IEEE International Conference on Data Mining (ICDM’07). IEEE, 322–331.

[41] Peng Wang, BaoWen Xu, YuRong Wu, and XiaoYu Zhou. 2015. Link prediction in social networks: The state-of-the-

art. Science China Information Sciences 58, 1 (2015), 1–38.

[42] Tingli Wang and Guoqiong Liao. 2014. A review of link prediction in social networks. In Proceedings of the 2014

International Conference on Management of e-Commerce and e-Government (ICMeCG’14). IEEE, 147–150.

[43] Stanley Wasserman and Katherine Faust. 1994. Social Network Analysis: Methods and Applications. Vol. 8. Cambridge

University Press.

[44] Wenchao Yu, Charu C Aggarwal, and Wei Wang. 2017. Temporally factorized network modeling for evolutionary

network analysis. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining. ACM,

455–464.

[45] Matthew D. Zeiler. 2012. ADADELTA: An adaptive learning rate method. arXiv:1212.5701.

[46] Jiawei Zhang, Philip S. Yu, and Zhi-Hua Zhou. 2014. Meta-path based multi-network collective link prediction. In

Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1286–

1295.

Received May 2018; revised March 2019; accepted May 2019

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 44. Publication date: July 2019.

