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Abstract—Network alignment aims at inferring a set of
anchor links matching the shared entities between different
information networks, which has become a prerequisite step
for effective fusion of multiple information networks. In this
paper, we will study the network alignment problem to fuse
online social networks specifically. The challenges of the net-
work alignment in social networks mainly come from three
perspectives, e.g., network heterogeneity, paucity of training data,
and one-to-one constraint. To resolve these challenges, a novel
network alignment model, namely Active Iterative Alignment
(ActiveIter), is introduced in this paper. ActiveIter defines
a set of inter-network meta diagrams for anchor link feature
extraction, adopts active learning for effective label query and
uses greedy link selection for anchor link cardinality filtering.
Extensive experiments were performed and have demonstrated
the effectiveness of ActiveIter compared with state-of-the-art
baseline methods. A full version of this paper can be accessed
in [1].
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I. INTRODUCTION

The network alignment problem [2, 3] denotes the task of

inferring the set of anchor links [4] between the shared in-

formation entities in different networks. Network alignment

has concrete applications in the real world, which can be

applied to discover the set of shared users between different

online social networks [2, 4], identify the common pro-

tein molecules between different protein-protein-interaction

(PPI) networks [3, 5], and find the mappings of POIs (points

of interest) across different traffic networks [2]. In this paper,

we will use online social networks to elucidate the proposed

model.

Online social networks have very complex structures,

involving different categories of nodes and links. Users’

personal preference may steer their online social activities,

and the network structure can provide insightful information

for differentiating users between networks. Furthermore, the

nodes in online social networks can be also attached with

various types of attributes. Based on such an intuition, both

the network structure and attribute information should be

incorporated in the network alignment model building.

Most of the existing network alignment models are based

on supervised learning [4]. Pre-labeled anchor links can pro-

vide necessary information for understanding the patterns of

aligned user pairs in their information distribution, especially

compared with the unsupervised alignment models [2, 3].

However, for the real-world social networks, cross-network

anchor link labeling is not an easy task, since it requires

tedious user-account pairing and manual user-background

checking, which can be very time-consuming and expensive.

In this paper, we propose to study the heterogeneous

network alignment problem based on the active learning set-

ting, which is formally referred to the Active heterogeNeous

Network Alignment (ANNA) problem. The ANNA problem

is a novel yet difficult task, and the challenges mainly

come from three perspectives, e.g., network heterogeneity,

paucity of training data, and one-to-one constraint [6]. To

address these challenges, we will introduce a novel network

alignment model Active Iterative Alignment (ActiveIter). To

model the diverse information available in social networks,

ActiveIter adopts the attributed heterogeneous social net-

work concept to represent the complex network structure,

and a unified feature extraction method based on a novel

concept namely meta diagram will be utilized in ActiveIter .

Active learning will be adopted in ActiveIter to deal with the

paucity of training data. An innovative query strategy is pro-

posed to make sure that ActiveIter can select mis-classified

false-negative anchor links more precisely. ActiveIter can

outperform other non-active models with less than 10% of

extra training instances which has the additional benefits of

reducing the time complexity.

A full version of this paper is available in [1].

II. CONCEPT AND PROBLEM DEFINITION

Definition 1 (Attributed Heterogeneous Social Networks):

The attributed heterogeneous social network can be repre-

sented as G = (V, E , T ), where V =
⋃

i Vi and E =
⋃

i Ei
represent the sets of diverse nodes and complex links in the

network. The set of attributes associated with nodes in V
can be represented as set T =

⋃

i Ti.
For the attributed heterogeneous social networks with

shared users, they can be represented as the aligned at-

tributed heterogeneous social networks (or aligned social

networks for short).

Definition 2 (Aligned Social Networks): Given online

social networks G(1), G(2) sharing common users, they



can be represented as the aligned social networks G =
(

(G(1), G(2)),A(1,2)
)

, where A(1,2) represents the set of

undirected anchor links connecting the common users.

Problem Definition: Given a aligned social networks G =
((G(1), G(2)),A(1,2)), we can represent all the potential

anchor links between networks G(1) and G(2) as set H =
U (1) × U (2), where U (1) and U (2) denote the user sets in

G(1) and G(2) respectively. For the known links, we can

group them as a labeled set L = A(1,2). The remaining

anchor links with unknown labels are those to be inferred,

and they can be formally denoted as the unlabeled set

U = H \ L. In the ANNA problem, we aim at building

a mapping function f : H → Y to infer anchor link

labels in Y = {0,+1} subject to the one-to-one constraint,

where class labels +1 and 0 denote the existing and non-

existing anchor links respectively. In the ANNA problem,

we are also allowed to query for the label of links in

set U with a pre-specified budget b, i.e., the number of

allowed queries. Besides learning the optimal variables in the

mapping function f(·), we also aim at selecting an optimal

query set Uq to improve the performance of the learned

mapping function f(·) as much as possible.

III. PROPOSED METHOD

A. Meta Diagram based Proximity Features
To effectively categorize the diverse information in the

aligned social networks, we introduce the aligned network

schema concept as follows.

Definition 3 (Aligned Social Network Schema): The schema

of the aligned social networks G = ((G(1), G(2)),A(1,2))
can be represented as SG = ((SG(1) , SG(2)), {anchor}).

Here, SG(1) = (N
(1)
V ∪ NT ,RE ∪ RA), where N

(1)
V and

NT denote the set of node types and attribute types in the

network, while RE represents the set of link types in the net-

work, and RA denotes the set of association types between

nodes and attributes. In a similar way, we can represent the

schema of G(2) as SG(2) = (N
(2)
V ∪NT ,RE ∪RA).

In the above definition, to simplify the representations, (1)

the attribute types have no superscript, since lots of attribute

types can be shared across networks; and (2) the relation

types also have no superscript, and the network they belong

to can be easily differentiated according to the superscript

of user/post node types connected to them. Based on the

definition, we can represent the Twitter network schema

as SG(1) = (N (1),R), N (1) = {User(1), Post(1), Word,

Location, Timestamp} (or N (1) = {U(1), P(1), W, L, T} for

short) and R = {follow, write, at, check-in}. The Foursquare

network schema has exactly the same representation.

Meta paths [7] may suffer from two major disadvantages.

Firstly, meta path cannot characterize rich semantics. For

instance, given two users u
(1)
i and u

(2)
j with check-in records

“u
(1)
i : (Chicago, Aug. 2016), (New York, Jan. 2017), (Los

Angeles, May 2017)”, and “u
(2)
j : (Los Angeles, Aug. 2016),

(Chicago, Jan. 2017), (New York, May 2017)” respectively,

based on meta path P5 and P6, user pair u
(1)
i , u

(2)
j have a lot

in common and are highly likely to be the same user, since

they have either checked-in the same locations (for 3 times)

or at the same time (for 3 times). However, their activities are

totally “dislocated” as they have never been at the same place

for the same moments. Secondly, different meta paths denote

different types of connections among users, and assembling

them in an effective way is another problem. To solve these

two challenges, we introduce Inter-Network Meta Diagram.

Definition 5 (Inter-Network Meta Diagram): Give a net-

work schema as SG = ((SG(1) , SG(2)), {anchor}), an inter-

network meta diagram can be formally represented as a

directed acyclic subgraph Ψ = (NΨ,RΨ, Ns, Nt), where

NΨ ⊂ N (1) ∪ N (2) and RΨ ⊂ R ∪ {anchor} represents

the node, attribute and link types involved, while Ns, Nt ∈
{U(1),U(2)} ∧ Ns 6= Nt denote the source and sink user

node types from network G(1) and G(2) respectively.

Several meta diagram examples have been shown in

Table I. The operator Pi ×Pj denotes the stacking of meta

paths Pi and Pj via the common node types shared by them.

Meta path [7] actually is a special type of meta diagram in

the shape of path. More description of the meta diagram and

the difference among several relating concepts can be seen

from the full version of this paper in [1].
Definition 6 (Meta Diagram Proximity): Based on the meta

diagram Φk, the meta diagram proximity between users u
(1)
i

and u
(2)
j in G can be represented as

sΦk
(u

(1)
i , u

(2)
j ) =

2|PΦk
(u

(1)
i , u

(2)
j )|

|PΦk
(u

(1)
i , ·)|+ |PΦk

(·, u
(2)
j )|

.

where PΦk
(u

(1)
i , u

(2)
j ) is the set of meta diagram Φk

instances connecting u
(1)
i and u

(2)
j , and PΦk

(u
(1)
i , ·) is the

set of Φk instances going out from user u
(1)
i .

B. Active Network Alignment Model

Formally, the feature vector extracted for anchor link

l ∈ H can be represented as vector xl ∈ R
d (parameter

d denotes the feature size). Meanwhile, we can denote the

label of link l ∈ L as yl ∈ Y (Y = {0,+1}), which denotes

the existence of anchor link l between the networks. For the

existing anchor links in set L+, they will be assigned with

+1 label; while the labels of anchor links in U are unknown.
The discriminative component can effectively differentiate

the positive instances from the non-existing ones, which
can be denoted as mapping f(·; θf ) : R

d → {+1, 0}
parameterized by θf . A linear model is used to fit the link
instances, and the discriminative model to be learned can be
represented as f(xl;w) = w>xl + b, and θf = [w, b]. By
incorporating the bias term b into the weight vector w, the
discriminative loss function on the labeled set L+ is:

L(f,L+;w) =
∑

l∈L+

(

f(xl;w)− yl
)2

=
∑

l∈L+

(w>
xl − yl)

2
.

For a unlabeled anchor link l ∈ U , we can represent
its inferred “label” as yl = f(xl;w). In the generative
component, we can represent the generated anchor link label



Table I
SUMMARY OF INTER-NETWORK META DIAGRAMS.

ID Notation Meta Diagram Semantics

P1 U → U ↔ U ← U User
follow
−−−−−→ User

anchor
←−−−−→ User

follow
←−−−−− User Common Anchored Followee

P2 U ← U ↔ U → U User
follow
←−−−−− User

anchor
←−−−−→ User

follow
−−−−−→ User Common Anchored Follower

P3 U → U ↔ U → U User
follow
−−−−−→ User

anchor
←−−−−→ User

follow
−−−−−→ User Common Anchored Followee-Follower

P4 U ← U ↔ U ← U User
follow
←−−−−− User

anchor
←−−−−→ User

follow
←−−−−− User Common Anchored Follower-Followee

P5 U → P → T ← P ← U User
write
−−−−→ Post

at
−−→ Timestamp

at
←−− Post

write
←−−−− User Common Timestamp

P6 U → P → L ← P ← U User
write
−−−−→ Post

checkin
−−−−−−→ Location

checkin
←−−−−−− Post

write
←−−−− User Common Checkin

Ψ1(P1 × P2) U ↔ U
anchor
←−−−−→ U ↔ U UserUser

anchor
User

follow

follow

User

follow

follow

Common Aligned Neighbors

Ψ2(P5 × P6) U P

T

L

P U User
write
−−−−→

Location

Timestamp
Post

checkin

at

Post

checkin

at

write
←−−−− User Common Attributes

Ψ3(P1 × P5 × P6)

U

U P
T

L
P U

U

Location

Timestamp
Post

checkin

at

Post

checkin

at

UserUser
anchor

User
write

follow

User
write

follow

Common Aligned Neighbor & Attributes

as sign
(

f(xl;w)
)

∈ {+1, 0}. Furthermore, a subset of the
anchor links in U will be selected to query for the labels,
which can be denoted as set Uq . The true label of anchor
link l ∈ Uq after query can be represented as ỹl ∈ {+1, 0}.
Depending on whether the labels of links are queried or not,
we can specify the loss function for set U as

L(f,U ;w) = L(f,Uq;w) + L(f,U \ Uq;w)

=
∑

l∈Uq

(w>
xl − ỹl)

2 +
∑

l∈U\Uq

(

w
>
xl − sign

(

f(xl;w)
)

)2

.

The anchor links to be inferred between networks are sub-
ject to the one-to-one cardinality constraint[6]. The cardinal-
ity constraint on anchor links should be effectively incorpo-
rated in model building, which will be modeled as the math-
ematical constraints on node degrees in this paper. To repre-
sent the user node-anchor link relationships in networks G(1)

and G(2) respectively, we introduce the user node-anchor

link incidence matrices A(1) ∈ {0, 1}|U
(1)|×|H|,A(2) ∈

{0, 1}|U
(2)|×|H|. Entry A(1)(i, j) = 1 iff anchor link lj ∈ H

is connected with user node u
(1)
i in G(1), and it is similar

for A(2). We can represent the labels of links in H as vector
y ∈ {+1, 0}|H|, where entry y(i) represents the label of link
li ∈ L. Therefore, the one-to-one constraint on anchor links
can be denoted as follows:

0 ≤ A
(1)

y ≤ 1, and 0 ≤ A
(2)

y ≤ 1.

By combining the loss terms introduced by the labeled,
queried and remaining unlabeled anchor links together with
the cardinality constraint, we can represent the joint opti-
mization objective function as

L(f,L+;w) + α · L(f,Uq;w) + β · L(f,U \ Uq;w)

= L(f,H;w) = ‖Xw − y‖22 ,

where X = [x>l1 ,x
>
l2
, · · · ,x>l|H|

]T denotes the feature matrix

of all the links in set H. We set the weight scalar α and β as

1, because we assume that each link is equally important for

training. In this paper, we design an hierarchical alternative

variable updating process for solving the problem:

• External Iteration Step (1): Fix Uq , Update y, w.

� Internal Iteration Step (1-1): Fix Uq , y, Update w.

With y, Uq fixed, the objective function is

min
w

c

2
‖Xw − y‖22 +

1

2
‖w‖22 .

The optimal solution of the objective function is:

w = Hy = c(I+ cX
>
X)−1

X
>
y,

where H = c(I+ cX>X)−1X> is a constant matrix.

� Internal Iteration Step (1-2): Fix Uq , w, Update y.
With Uq , w fixed, the objective function is

min
y

‖Xw − y‖22

s.t. yl ∈ {+1, 0}, ∀l ∈ U \ Uq,

yl = ỹl, ∀l ∈ Uq and yl = +1, ∀l ∈ L+,

0 ≤ A
(1)

y ≤ 1, and 0 ≤ A
(2)

y ≤ 1.

In this paper, we will use the greedy link selection algorithm

proposed in [6] based on values ŷ = Xw.

• External Iteration Step (2): Fix w, y, Update Uq .
Instead of selecting the optimal set Uq at one time, we

propose to choose several link instances greedily in each
iterations. Due to the one-to-one constraint, the unlabeled
anchor links no longer bears equal information, and querying
for labels of potential positive anchor links will be more
“informative” compared with negative anchor links. Among
the unlabeled links, ActiveIter selects a set of mis-classified
false-negative anchor links (but with a large positive score)
as the potential candidates, benefits introduced by whose
label queries includes both their own label corrections and
other extra label gains of their conflicting negative links
at the same time. Formally, among all the unlabeled links
in U , we can represent the set of links classified to be
positive/negative instances in the previous iteration step as
U+ = {l|l ∈ U , yl = +1} and U− = {l|l ∈ U , yl = 0}.
Based on these two sets, the group of potentially mis-
classified false-negative anchor link candidates as set

C = {l|l ∈ U−
, ∃l′, l′′ ∈ U+

that conflicts with l,

ŷl′ ∼ ŷl � ŷl′′ > 0},

where statement “l′/l′′ conflicts with l” denotes l′/l′′ and l

are incident to the same nodes respectively. Operator ŷl′ ∼
ŷl represents ŷl′ is close to ŷl. All the links in set C will be




