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ABSTRACT

To enjoy more social network services, users nowadays are usually
involved in multiple online sites at the same time. Aligned social
networks provide more information to alleviate the problem of data
insufficiency. In this paper, we target on the collective link predic-
tion problem and aim to predict both the intra-network social links
as well as the inter-network anchor links across multiple aligned
social networks. It is not an easy task, and the major challenges
involve the network characteristic difference problem and different
directivity properties of the social and anchor links to be predicted.
To address the problem, we propose an application oriented net-
work embedding framework, Hierarchical Graph Attention based
Network Embedding (HGANE), for collective link prediction over
directed aligned networks. Very different from the conventional
general network embedding models, HGANE effectively incorpo-
rates the collective link prediction task objectives into consideration.
It learns the representations of nodes by aggregating information
from both the intra-network neighbors (connected by social links)
and inter-network partners (connected by anchor links). What’s
more, we introduce a hierarchical graph attention mechanism for
the intra-network neighbors and inter-network partners respec-
tively, which resolves the network characteristic differences and
the link directivity challenges effectively. Extensive experiments
have been conducted on real-world aligned networks datasets to
demonstrate that our model outperformed the state-of-the-art base-
line methods in addressing the collective link prediction problem
by a large margin.
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1 INTRODUCTION

Nowadays, online social networks have become very popular and
extensively used in our lives. To enjoy more services, it is ubiq-
uitous for users to participate in multiple online social platforms
concurrently. For example, users may share photos with Instagram
and check the latest news information via Twitter. To simplify the
sign up/in process, most social platforms usually allow users to
use their existing Twitter/Facebook/Google IDs to create their ac-
counts at these new social sites, which will align different online
networks together naturally. Each of these platforms can be repre-
sented as a massive network where nodes represent user accounts
and intra-network links represent the social relationships among
users. Especially, accounts owned by the same user in different
networks are defined as anchor nodes [9] and inter-network cor-
responding relationships between the anchor users are defined as
anchor links [9]. Different online networks connected by anchor
links are defined as multiple aligned social networks [31].

In recent years, there has been a surge of interest in multi-
network analysis. Traditional methods that target on one single
network require sufficient information to build effective models.
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However, as proposed in [25], this assumption can be violated seri-
ously when dealing with the cold start [10] and data sparsity prob-
lems. The study of multiple aligned networks provides a direction
to alleviate the data insufficiency problem. Some research works
propose to transfer information across networks by anchor links
to enhance the link prediction results within multiple networks
mutually [1, 30, 31]. Besides, many existing works aim at anchor
link formation prediction [11, 12, 21]. However, most of these works
study either intra-network or inter-network link prediction tasks
separately. As discovered in [26], multiple link prediction tasks
in the same networks can actually be done simultaneously and
enhanced mutually due to their strong correlations.

Predicting multiple kinds of links among users across multiple
aligned networks is defined as the collective link prediction prob-
lem in [23]. The collective link prediction problem covers several
different link formation prediction tasks simultaneously including
both the intra-network social link prediction and the inter-network
anchor link prediction. It can take advantage of the strong cor-
relations between these different tasks to enhance the prediction
performance across these aligned networks synergistically. Fig-
ure 1 shows an example of the collective link prediction tasks of
two social networks. In the figure, black lines with the arrow indi-
cate existing directed intra-network social links and the gray lines
indicate the existing inter-network anchor links instead. These di-
rected/undirected red dashed lines with question marks signify the
potential intra-network and inter-network links to be predicted,
respectively.

The problem of collective link prediction is worth exploring due
to both its importance and novelty. Some existing methods have
been introduced to tentatively address the problem [23]. However,
these existing methods mostly ignore the contradiction of different
characteristics of aligned networks or adopt fixed parameters to
control the proportion of information diffused across networks,
which usually need to be fine-tuned manually. Besides, these works
also fail to consider the connectivity of the links within and across
networks.

The collective link prediction problem studied in this paper is
also very challenging to solve due to the following reasons:

o Network characteristic differences: Since users normally
join in different networks for different purposes, each net-
work usually has different characteristics and reveals differ-
ent aspects of the users. For example, professional relations
are established on LinkedIn while personal social-tiers are
built in Twitter. Thus, information transferred from other
networks may be different from the target network that we
want to study. Previous work found information transfer
could also deteriorate the performance of intra-network link
prediction [31]. Correspondingly, anchor link prediction can
be more susceptible as anchor links are directly related to in-
formation transferred across networks. Therefore, it is more
crucial but challenging to overcome network characteristic
difference problem for collective link prediction.

e Link directivity differences: The intra-network social
links are usually uni-directed from the initiator pointing
to the recipient instead. For the users involved in the social
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Figure 1: An example of collective link prediction over mul-
tiple aligned networks

network, the social links pointing to them reflect the objec-
tive recognition from the community, whereas that from
them to others reflect their personal social interest. Thus,
these social relations collaboratively define a unique charac-
ter in social networks. However, the inter-network anchor
links are bi-directed according to the definition. Such differ-
ent directivity properties on social links and anchor links
should be carefully considered in the prediction model.

In this paper, we propose a novel application oriented network
embedding framework, namely Hierarchical Graph Attention based
Network Embedding (HGANE), to solve the collective link pre-
diction problem over aligned networks. Very different from the
conventional general network embedding models, HGANE effec-
tively incorporates the collective link prediction task objectives into
consideration. It learns node embeddings in multiple aligned net-
works by aggregating information from the related nodes, including
both the intra-network social neighbors and inter-network anchor
partners. What’s more, we introduce a hierarchical graph atten-
tion mechanism for the intra-network neighbors and inter-network
partners respectively, which handles the network characteristic
differences and link directivity differences. HGANE balances be-
tween the prediction tasks of both the intra-network social link
and inter-network anchor link and the learned embedding results
can resolve the collective link prediction problem effectively. We
conduct detailed empirical evaluations using several real-world
datasets and show that our model outperforms other competitive
approaches.

We summarize the main contributions of this paper as follows:

e We propose a novel embedding framework to learn the rep-
resentations of nodes by aggregating information from both
the intra-network neighbors (connected by social links) and
inter-network partners (connected by anchor links).

e We introduce a hierarchical graph attention mechanism. It
includes two levels of attention mechanisms — one at the
node level and one at the network level — to resolve the
network characteristic differences and link directivity chal-
lenges effectively.

e HGANE incorporates the collective link prediction task ob-
jectives into consideration and balances between the predic-
tion tasks of the intra-network social link and inter-network
anchor link, respectively.
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e Extensive experiments are conducted on two real-world
aligned social network datasets. The results demonstrate
that the proposed model outperforms existing state-of-the-
art approaches by a large margin.

2 PRELIMINARY

Definition 1. (Multiple Aligned Social Networks) : In this
paper, we follow the definitions introduced in [9]. Given n
networks {G(l),...,G(")} with shared users, they can be de-
fined as multiple aligned networks G = ((G(l),G(z), e ,G(")),
(A(l,Z),A(l,?’)’ s AL AR3) L ’A(H*LH))), where G0 =
(V(i),E(i)),i € {1,2,---,n} is a network consisting of nodes and
links, and A(-/) represents the anchor links between G and GY).

For two nodes v € V() and vU) € V), node pair (v(i), Wy e
A iff o) and V) are the accounts of the same user in networks
G and GU) respectively.

For two online networks, such as Foursquare and Twitter used
in this paper, we can represent them as two aligned social networks
G = ((G(l), Gy, (A(l’z))), which will be used as an example to
illustrate the model. A simple extension of the proposed framework
can be applied to multiple aligned networks conveniently.

Problem Definition : The collective link prediction problem
studied in this paper includes simultaneous prediction of both intra-
network social links and inter-network anchor links. Formally,
given two aligned networks G = ((G(l), G(Z)), (A(l'z) )) where both
of GV and G®@ are directed social networks. We can represent all
the unknown social links among the nodes in G as Utk) = yik)
VONER) U {(u,u)}, cya)) where k € {1,2}. And the unknown
anchor links across G and G®) can be denoted as U(1-2) = V(1) x
VA2 We aim at building a mapping f : vOuu@uutd -
[0, 1] to project these intra-network social links and inter-network
anchor links to their formation probabilities.

3 PROPOSED METHOD

Table 1: Descriptions of notations in our framework.

Notation | Description
u; Node i in GV
vj Node j in G?)
ué” Initiator feature of u; in G(V)
vj.” Initiator feature of v; in G
uf® Recipient feature of u; in G
vjr. € Recipient feature of v; in G
Nt(u;) Intra-network neighbors of u; as the initiator
N (ui) Intra-network neighbors of u; as the recipient
N%u;) Inter-network anchor partners of u;
e’:”(ui, uj) | Intra-network initiator attention of u; to u;
e'™(u;,vj) | Inter-network initiator attention of u; to vj
e"®(uj,uj) | Intra-network recipient attention of u; to u;
e"®(u;,vj) | Inter-network recipient attention of u; to v;

421

CIKM ’19, November 3-7, 2019, Beijing, China

In this section, we will introduce the framework HGANE in
detail. For the convenience of elaboration, we provide the main
notations used through this paper in Table 1. At the beginning,
the hierarchical graph attention mechanism will be introduced to
handle the problems of network characteristic differences and link
directivity challenges. After that, we will propose a novel node
embedding method in multiple aligned networks. Finally, we will
introduce the application oriented network embedding framework
which can resolve the collective link prediction problem effectively.

3.1 Hierarchical Graph Attention Mechanism

Node Level | Network Level Aligned Networks Level
; Net1 Net1 Net2
~ =28 -8 &
T/e T / o & Q
~

Figure 2: Hierarchical structure of multiple aligned net-
works

Social networks consist of nodes and social links, while multiple
aligned social networks consist of many social networks and anchor
links across them. Therefore, multiple aligned social networks have
a hierarchical structure, which is illustrated in Figure 2. Besides,
for the target node, it is observed that the relevance of different
neighbors is different. For the target network, other networks are
differentially informative since they have different characteristics.
Furthermore, as each node is cooperatively characterized by its
neighbor nodes and anchor partners in other networks, their im-
portance is highly dependent on node embeddings.

Therefore, we propose the hierarchical graph attention mecha-
nism in this section. It includes two levels of attention mechanisms
— one at the node level and the other at the network level — to
make our model pay more or less attention to different neighbor
nodes and networks when constructing the node representations.
These two levels of attention mechanisms are formally called the
intra-network social attention and the inter-network anchor attention.
They are essential to resolve the problems of network characteristic
differences and link directivity challenges in the multiple aligned
networks. In the following subsections, we will introduce the defi-
nitions and motivations of these two attention mechanisms.

3.1.1 Intra-Network Social Attention.

Given two aligned networks G = ((G(l), G®@), (A(l’z))), the an-
chor links are defined to be bi-directed; while the intra-network
social links are usually uni-directed from the initiator pointing to
the recipient instead. Thus, every node plays these two roles within
the social network. Normally, we represent each node u; with two
vector representations, the initiator feature ué” € R9 and the re-

cipient feature uf € e Rd, where d is the feature dimension. The
initiator feature u;:” represents the characteristic of the node as the
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initiator following others while the recipient feature u}® represents
the characteristic of the node as the recipient followed by others. By
distinguishing the initiator and recipient features for each node, we
can lay the foundation for resolving the problem of link directivity
challenges effectively.

For the target node u;, we define the nodes followed by it as
its intra-network recipient neighbors. The set of intra-network
recipient neighbors of the initiator u; is denoted as N*(u;). The
node u; € N (u;) iff (u;, uj) € EW, Similarly, the nodes following
u; are defined as its intra-network initiator neighbors and the set of
these neighbors of the recipient u; is denoted as N" (u;). The node
uj € N"(u;) iff (uj, u;) € EW. Here, based on the two node roles,
we introduce intra-network initiator attention and intra-network
recipient attention, to leverage the structural information within
the social network.

For intra-network social neighbors, the characteristic of the ini-
tiator is relevant to the recipient. The intra-network initiator atten-
tion mechanism computes the coefficients to judge the importance
of the intra-network recipient neighbor to the target initiator. Here,
the concept of intra-network initiator attention mechanism can be
represented formally.

Definition 2. (Intra-Network Initiator Attention) : For the target
node u; and its intra-network recipient neighbor u; € N'*(u;), the
intra-network initiator attention coefficient of u; to u; can be given
as .
. 1 N
e™(uj, uj) = U(agn) [Wgn)uin

wilure]),
where -T represents transposition and || is the concatenation op-

eration. WEL) € R¥*d and W(,le) € R¥*d are the weight matrixes
applied to every node as the initiator and the recipient for shared

T ’
linear transformation in G(V). a&) € R% s a weight vector and
T T T
o denotes the activation function. a(rle) , agl’ 2" and a(rle’ 2" will be
used with similar meanings.

Similarly, since the characteristics of the initiator and the recipi-
ent are correlative, we can introduce the definition of intra-network
initiator attention mechanism formally to obtain the importance of
the intra-network initiator neighbor to the target recipient.

Definition 3. (Intra-Network Recipient Attention) : For the target
node u; and its intra-network initiator neighbor u; € N (u;), the
intra-network recipient attention coefficient of u; to u;j can be given

as " ])
W ‘u||,

in"j

1 T
e"(uj, uj) = O'(a(re) :

|widure

o’

where a,; is also a weight vector.

With these two kinds of intra-network attention mechanism, our
model can pay more attention on useful information and neglect
harmful information within the social networks. It is significant
to resolve the problem of directivity challenges effectively and
leverage structural information within social networks.

3.1.2  Inter-Network Anchor Attention.

Different from the intra-network social attention mechanism
which targets at the node level, the inter-network anchor attention
is for the network level. The anchor links connecting multiple
networks play a crucial role in cross-network information transfer.
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However, due to the problem of network characteristic differences,
information transferred from other networks could also undermine
the learned embeddings of the target network.

To handle this problem, we introduce the inter-network anchor
attention mechanism. For the target node, the inter-network anchor
attention coefficient to its anchor partners in the other network
indicates the importance of information transferred from that net-
work. As mentioned in the last section, each node is represented
by the initiator and recipient embeddings. To transfer the directed
structural information within networks, two kinds of inter-network
anchor attention will be introduced according to these two roles of
the nodes.

Different from uni-directed social links, since the anchor nodes
reveal the information of the same user from different aspects, it
is intuitive that their initiator and recipient features in different
networks can be related correspondingly. For the target node and
its anchor partner in some network, the inter-network initiator
attention coefficient indicates the importance of information from
that network to the target node as the initiator. Firstly, we represent
the set of the inter-network anchor partners in the other network
for the target node u; as N'%(u;). If the node pair (u;, v;) € A2
vj € N%(u;). And the definition of inter-network initiator attention
is introduced as follows.

Definition 4. (Inter-Network Initiator Attention): For the target
node u; and its inter-network anchor partner v; € N%(u;), the intra-
network initiator attention coefficient of u; to v; as the initiator
can be given as

127
in

(1) i
[Wmu;”

W)

em(ui,vj) = a(a j

where WE; 2) s the weight matrix applied to every anchor node

in G@ as the initiator while transferring information to G and
(1,2)T . .
a;’" isaweight vector.

Similarly, considering the recipient role of nodes, it is intuitive
that the recipient features of anchor partners are related. Based
on this, we give the concept of inter-network recipient attention,
which denotes the importance of information from that network to
the target node as the recipient.

Definition 5. (Inter-Network Recipient Attention) : For the target
node u; and its inter-network anchor partner v; € N(u;), the intra-
network recipient attention coefficient of u; to v; as the recipient
can be given as

12"

e (uj, vj) = O'(a,e :

|wiupe

wievre|),
where W(rle 2) is the weight matrix for every anchor node in G as

(1,2)

T
the recipient and a,;” is also a weight vector.

Inter-network anchor attention mechanism can make a great con-
tribution to effective cross-network information transfer. It handles
the problem of network characteristic differences by making our
model focus on more important networks with useful information.

Besides, to make multiple coefficients easily comparable across
different nodes, we normalize all the coefficients mentioned above
across all choices of intra-network neighbors and inter-network
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partners using the softmax function. Thus, the four kinds of at-
tention coefficients of the concerned nodes within networks and
across networks can be rewritten into a unified formula:

a"p(ui,uj/vj) = softmaxuj/vj(eOP(ui, uj/vj))
= exp(e®? (u;, uJ-/vj))/SUMz‘iO

, where op € {in, re} indicates the role of the target node. And the
denominator is set as

2
v eN(u;)

ur €EN°P(u;)

SUM,F =

exp(e” (ui, ug)) + exp(e’” (ui, vg))

3.2 Multiple Aligned Network Embedding

With the hierarchical graph attention introduced in the previous
section, we will introduce the cross-network embedding framework
HGANE in this part. HGANE is based on the cross-network graph
neural network model, which extends the traditional graph neural
network (GNN) model [16] to the multiple aligned social networks
scenario. According to the principle of GNN, embeddings can cap-
ture the localized structural features by utilizing information propa-
gated from the intra-network social neighbors. What’s more, it can
preserve more comprehensive features by leveraging cross-network
information transferred by anchor links. Therefore, HGANE learns
the node representations by aggregating information from both the
intra-network neighbors and inter-network partners. At the same
time, HGANE takes advantage of the hierarchical graph attention
mechanism to focus on more important information to handle the
problems of network characteristic differences and link directivity
challenges. The architecture of HGANE is illustrated in Figure 3.
Each node is represented by two embeddings, ui:” and u}*®
cording to its two role in social networks. The implicit initiator and
recipient representations of the node are represented as uﬁ”' eR?

,ac-

and ure' e R? of the potentially dif’ferent dimension d’.

The initiator embedding of u;, u!", which indicates its features
as the initiator in the social network depends on its intra-network

recipient neighbors. Therefore, for the node uj € N Huy), ujr.e can

contribute to ué” with the coefficient, ai"(ui, uj), determined by
intra-network initiator attention. We define the intra-network neigh-
bor recipient contribution (NRC) from u; to u; as

NRC(ui, uf) = o™ (us, up) Wi e

As to inter-network anchor partners, node embeddings can pre-
serve more comprehensive information by taking their features of
the same role in other networks into consideration. For the anchor
node v; € N%(u;), its initiator embedding Vj." also contribute to

the initiator embedding uf" of the target node. To overcome the
problem of network characteristic differences, the inter-network
initiator attention will compute the weights of information from
different networks. The inter-network partner initiator contribution
(PIC) from v; to u; is introduced as

PIC(uj,vj) = o' (u,,v])W(1 Dy ’”

Formally, we can obtain the initiator embedding of u; by aggre-
gating the intra-network neighbor recipient contribution and the
inter-network partner initiator contribution as
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u;;nlzg( > NRCGu+ Y PIC(u,-,vj)),

u; N (u;) v EN(u;)

Where o denotes a nonlinearity. Besides, the recipient embedding
of u;, ul®, can be generated in the similar way. Inter-network and
inter- network recipient attention will determine the importance of
different related nodes’ contribution. As the recipient, u; is naturally
characterized by its intra-network initiator neighbors who actively
follow it in social networks. Such intuition leads to the contribution
from every node, such as u; € N7 (u;), to u;. The intra-network
neighbor initiator contribution (NIC) from u; to u; can be defined as

NIC(u;,uj) = a" (u,,u])ng) ]m

The inter-network anchor partners provide more information
about the recipient role of the target node from different sources.
Thus, the recipient embedding of u; will aggregate the information
from other networks by the anchor nodes with different weights
computed by the inter-network recipient attention in other net-
works. We can obtain the inter-network partner recipient contribution
(PRC) from u; to u; to be

PRC(u;,vj) = a"(uj, vj)W(rl,;Z)er-e

By combining these contributions from intra-network initiator
neighbors and inter-network partners, the recipient embedding of
u; can be represented formally as

u{e' = a( Z NIC(ui, uj) + Z PRC(ui,vj))
u; €N (u;) v EN(u;)

To stabilize the learning process of node embeddings, we have
found extending our mechanism to employ multi-head attention to
be beneficial, inspired by Vaswani et al. 2017 [20]. Specifically, K
independent attention mechanisms execute the above transforma-
tion, and then their embeddings are concatenated, resulting in the
following initiator and recipient feature representations:

K

ui:", = || o'( Z NRCk(ui,uj)+ Z PICk(ub’Uj))
k=1 u;eNi(u;) v EN(u;)
K

u;‘er | ( Z NICk(ul,uj) + Z PRCk(ui,vj))
k=1 upeN"(u;) v N (u;)

where NRC, PIC, NIC and PRC with the subscript k in the formu-
las denote the contributions computed with the k-th hierarchical
attention mechanism.

With reference to above equations, the formula derivation of
computing the node embeddings for G@ can be obtained in the
similar way. They are not listed due to the page limit.

3.3 Collective Link Prediction Oriented
Network Embedding Framework

The embeddings of each node in multiple aligned networks can be
generated by aggregating information from both the intra-network
neighbors and inter-network partners as introduced in last section.
In this part, we will introduce the network embedding optimization
framework oriented to collective link prediction. The task includes
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Figure 3: HGANE model architecture. Each node is represented by the initiator and recipient embeddings (the orange and
green little squares) in the aligned networks. The left plot provides the example of learning node embeddings (u; in Net1) by
aggregating information from both the intra-network neighbors (uz, u3 in Net1) and inter-network partners (v; in Net2), which
is weighted by hierarchical graph attention. The right plot illustrates how HGANE resolves the collective link prediction with

the learned embeddings.

the simultaneous prediction of the social links within each network
and the anchor links between every two networks.

For a node pair (u;, u;) within the social network, we define
the probability of the intra-network social link formation from the
initiator u; pointing to the recipient u; as

inT

re
i u;

pluiuj) = o(u ),
where o(x) = 1/(1+exp(—x)) is the sigmoid function. And we adopt
the approach of negative sampling [13] to define the objective of
intra-network social link formation from the initiator u; to the

recipient u; as

Lsoc(ui,uj) = logp(ui,uj) + Z log (l —p(um,un)),
{(um,un)}

where {(um,un)} denotes the set of the negative social links ran-
dom sampled from the unknown links among nodes in G(. In the
objective, the first term models the existing social links while the
second term models the negative links. By adding the objective of
each intra-network social link, the final objective for GW can be
formally represented as

L(l) = Z Lsoc(uivuj)

(ui,u;)€ED

Similarly, we can define the objective for the embedding results
for G, which can be formally represented as £LO.

Besides, anchor nodes reflect information of same users. There-
fore, their features tend to be in a close region in the embedding
space whether as the initiator or the initiator. For the cross-network
node pair (u;,v;) where u; € EW andv; € E@, we concatenate
the initiator and recipient embeddings of each node to define the
the probability of the inter-network anchor link formation as

plui,vj) = o((i"lufe)" - (vir|IvEe))
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Similarly with the objective of the intra-network social link
formation, the objective of node alignment with negative sampling
can be defined as

Lach(ui,vj) = 1ogp(ui,vj) + Z log (1 —p(um,vn)),
{(um>vn)}

where {(upm,, v,)} denotes the set of the negative anchor links ran-
dom sampled from the unknown anchor links across G1) and G2,
By aligning anchor nodes, we can leverage information from mul-
tiple sources to learn the node embeddings comprehensively. In-
formation transfer across networks is achieved based on every
inter-network anchor link. Formally, the information transfer ob-
jective between G() and G is represented by summing up the
the objective of each anchor link as

L0 = (Lach (i,v)))

(u,v;)€ATD

To incorporate the collective link prediction task into a unified
framework, we learn the node representations with rich information
by jointly training the objective function including the objective
for networks G, G®, and the objective of information transfer,
which can be denoted as

L(Gm’c(z)) Sy R I R

The parameter « denotes the weight of the information transfer
objective to balance between the several prediction tasks of both
the intra-network social link and the inter-network anchor link. In
the objective function, the term L4 is added to avoid overfitting
and the parameter f# denotes the weight of it. By optimizing the
above objective function, the node embeddings can be learned to
resolve the collective link prediction problem effectively.
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Table 2: Statistics of datasets

Dataset #Nodes | #Social Links | #Anchor Links
Twitter 5,223 164,920 3,388
Foursquare 5,392 76,972
Facebook 4,137 57,528 4137
Twitter 4,137 147,726 ’

4 EXPERIMENT
4.1 Datasets

We conducted experiments using two real-world aligned social
networks: Twitter-Foursquare and Facebook-Twitter(Statistical in-
formation in Table 2):

o Twitter-Foursquare [9]: Twitter is the most popular world-
wide microblog site and Foursquare is the famous location-
based social network. There are 5,223 users and 164,920 fol-
low links in Twitter and 5,392 users and 76,972 social links
in Foursquare. Among these crawled Foursquare users, 3,388
of them are aligned by anchor links with Twitter.

e Facebook-Twitter [2]: Facebook is another worldwide on-
line social media. The Facebook and Twitter accounts of
4,137 users were crawled. Every node has a counterpart in
the other network. There are 57,528 social links in Facebook
and 147,726 follow links in Twitter among these users.

It is noted that these two datasets were crawled respectively and
there is no overlap of these two Twitter subnetworks.

Source Code: The source code of HGANE is available in http:
//github.com/yzjiao/HierarchicalGraphAttention.

4.2 Comparison Methods

Table 3: Comparision of different models

Links Network Predict Predict
Multiple  Directi. Charact. Social Anchor
Method  Networks Differe.  Differe. Link Link
DeepWalk v
Node2Vec v
GAT v
IONE v v v
DIME v v v
MNN v v v
CLF v v v
HGANE v v v v v

The network embedding methods used in the experiment are
listed as follows (summarized in Table 3):

e DeepWalk [15]: Skip-gram based vertex embedding method
for a single network that extends the word2vec [14] to the
network scenario.

e Node2Vec [6]: Word-to-vector approach for a single net-
work that modifies the random walk strategy in DeepWalk
into a more sophisticated schemes.
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GAT [20]: A neural network architecture for a single net-
work to learn node representation by leveraging masked
self-attention layers.

IONE [12]: A representation learning model for multiple
aligned network by preserving the proximity of users with
“similar” followers/followees in the embedded space for net-
work alignment.

DIME [30]: An embedding framework for multiple heteroge-
neous aligned network with aligned autoencoders to transfer
information and improve the link prediction in emerging
networks.

e MNN [1]: A multi-neural-network framework for intra-
network link prediction over aligned networks. It is not
suitable for anchor link prediction as it assigns anchor users
with the same feature vectors.

CLF [23]: A method aiming at collective link prediction by
propagating the probabilities of predicted links across the
partially aligned networks with collective random walk.

4.3 Experiment Setting

In our experiment, we will target on the collective link prediction
task and concern the performance of social link prediction in GV,
G® , and anchor link prediction across these two networks. These
three subtasks will be denoted as Soc1, Soc2, Ach in the experiment
results. As link prediction is regarded as a binary classification
task, the performance will be evaluated with Area Under the Curve
(AUC) metric.

All the existing links in the two aligned networks are used as
the positive link set, including social links within two networks
and anchor links across these two networks. We sample a subset
of unknown links among nodes in the same network randomly
as the negative social link set, which is of the double size of the
positive social link set. The negative anchor link set is generated
by the random sample of unknown cross-network links. The size
of the negative anchor link set is five times of that of the positive
set. A proportion of the links in the positive and negative sets are
sampled as the training set, the rest as the test set.

For our embedding framework HGANE, we initialize the initiator
and recipient features of each node with the common initiator and
recipient neighbor features within its networks. There are two
attention-based layers involved for each network. The first layer
consists of K = 8 attention heads computing 256 features each,
followed by an exponential linear unit (ELU) [4] nonlinearity. The
second layer is a single attention head to compute node embeddings,
followed by a softmax activation. The dimension of the embeddings
is 100. During training, we apply dropout [17] to the normalized
attention coefficients. And we train for 3000 epochs using the Adam
optimizer [8] with the learning rate of 0.005. The parameters o =
1.0 and f = 0.0005 are used in the experiments.

For the comparison methods that target at one single network,
such as Node2vec, DeepWalk and GAT, we preprocess the datasets
by merging two networks into one and regarding anchor links as
social links within networks. We apply the linear SVM classifier for
those embedding methods that can’t directly predict the formation
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Table 4: Performance comparison with different methods. Soc1, Soc2 and Ach indicate social link prediction in the first and

second network and anchor link prediction respectively.

CIKM ’19, November 3-7, 2019, Beijing, China

Training Ratio

Dataset | Method | 0.2 | 0.4 | 0.6 | 0.8
‘ ‘ Socl Soc2 Ach ‘ Socl Soc2 Ach ‘ Socl Soc2 Ach ‘ Socl Soc2 Ach
DeepWalk | 75.8% 725% 57.9% | 80.3% 76.9% 63.1% | 82.2% 79.7% 67.3% | 85.7% 82.5% 75.4%
Node2Vec | 82.5% 77.4% 64.3% | 84.6% 80.9% 66.1% | 86.4% 843% 72.1% | 89.3% 88.3% 78.9%
GAT 85.5% 78.2% 65.5% | 91.5% 86.9% 68.9% | 92.5% 90.3% 75.8% | 92.6% 92.3% 80.9%
Twitter IONE 83.2% 75.7% 72.1% | 86.2% 81.7% 78.0% | 88.2% 84.7% 85.6% | 88.7% 84.7% 87.4%
& DIME 85.1% 76.2% 74.8% | 88.4% 80.3% 763% | 89.8% 83.0% 82.6% | 92.0% 85.2% 84.9%
Foursquare MNN 89.2% 72.4% - 92.9% 81.1% - 94.8% 86.1% - 96.3% 87.6% -
CLF 84.5% 78.7% 70.9% | 86.7% 80.5% 75.2% | 90.9% 84.2% 83.1% | 92.3% 86.5% 87.1%
HGANE | 94.4% 90.3% 76.7% | 96.4% 95.1% 85.8% | 97.1% 96.8% 90.0% | 97.5% 97.5% 93.0%
DeepWalk | 76.3% 70.3% 55.8% | 81.5% 75.2% 70.9% | 84.0% 81.6% 77.7% | 90.9% 86.5% 78.9%
Node2Vec | 83.0% 81.5% 58.6% | 86.6% 85.7% 76.2% | 88.8% 87.5% 81.0% | 91.3% 88.2% 83.2%
GAT 87.3% 86.1% 60.2% | 92.0% 90.0% 78.5% | 94.7% 92.8% 83.5% | 95.7% 93.4% 85.5%
Facebook IONE 82.8% 79.1% 77.9% | 85.9% 82.6% 85.4% | 87.4% 85.1% 89.4% | 90.9% 89.1% 92.1%
& DIME 87.1% 86.2% 743% | 88.4% 87.3% 81.9% | 89.8% 90.0% 85.1% | 94.0% 92.2% 87.5%
Twitter MNN | 88.6% 87.1% - 92.4%  91.3% - 94.4%  93.1% - 95.7%  94.8% -
CLF 84.9% 81.1% 80.5% | 88.7% 85.9% 84.2% | 91.4% 88.9% 87.6% | 93.1% 90.2%  90.4%
HGANE | 91.8% 90.9% 84.8% | 95.2% 94.8% 93.4% | 97.1% 96.9% 95.8% | 98.1% 97.5% 97.1%

Table 5: Validation of the design of represent each node with
two embeddings to resolve the link directivity differences
problem. Our full model outperforms two variants with ei-
ther the initiator or recipient features.

| Twitter&Foursquare | Facebook& Twitter
Feature
‘ Socl Soc2 Ach ‘ Socl Soc2 Ach
initiator | 93.4% 93.2% 85.2% | 97.0% 94.9% 95.8%
recipient | 93.0% 93.7% 85.6% | 97.1% 95.1% 96.2%
both 97.2% 96.8% 93.0% | 98.1% 97.5% 97.1%

of links. Notably, we have chosen optimal hyper-parameters care-
fully for different baselines in this paper to ensure the fairness of
comparison experiments.

4.4 Experiment Result

In the collective link prediction task, we compare the performance
of eight different embedding methods under different training rate
A € {20%,40%, 60%, 80%}. Table 4 shows the performance of our
model and other seven baseline methods evaluated by AUC with
different training rate A. The method we proposed in this paper,
HGANE, performs much better than the other methods in the three
subtasks simultaneously, which shows its effectiveness in the col-
lective link prediction task. HGANE incorporates the task-oriented
objectives into consideration and thus balance between the predic-
tion tasks of both the intra-network social link and inter-network
anchor link simultaneously.

Considering the experiments with different training rate A, as
the ratio drops, the performance of all the methods deteriorates.
However, the performance degradation of the proposed model is
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rather moderate compared to other methods since we leverage the
information of the multiple aligned networks and handle the prob-
lem of network characteristic differences. Even when the training
rate A is as low as 20%, the baseline models will suffer from the
information sparsity a lot, but our model can still obtain very good
performance.

To demonstrate the effectiveness of considering the directivity,
we compare our full model to its two variants with either the initia-
tor features or the recipient features. The experiment results show
in Table 5 with the training ratio as 0.8. We found that the two
variants can give better results than other baselines but their per-
formance is much inferior to that of the full model. According to the
experimental statistics of two datasets, the performance of social
link prediction within the more dense network can be improved
more by distinguishing nodes’ initiator and recipient roles.

4.5 Hypothesis Verification

As mentioned in the method part, in our framework, each node
is represented with the initiator and recipient features and it is
crucial to determine how to aggregate information from the neigh-
bors connected by social links and anchor links. If the neighbor’s
initiator and recipient features contribute to the target node’ s re-
cipient and initiator respectively, we name it as cross-contribution.
Conversely, if the initiator and recipient features of two neighbor
nodes are related correspondingly, we name it direct-contribution.
By combining two mechanisms with two kinds of links, there are
four different hypotheses as illustrated in Figure 4.

The hypotheses SC+AD is adopted in our framework. To validate
it, we study the variants of our full model with the other three
hypotheses and compared their performances on the collective link
prediction task in Table 6. The experimental results indicate the
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Figure 4: Four hypotheses about how the neighbors con-
tribute to the target node. There are two kinds of contribu-
tion modes for social neighbors and anchor partners respec-
tively.

model with SC+AD can achieve the best performance in both social
link prediction and anchor link prediction. If direct-contribution
is replaced with cross-contribution for anchor links, AUC of the
anchor link prediction decreases a lot in two datasets. And the
performances of the social link prediction are affected if we adopt
direct-contribution for social links.

Table 6: Hypothesis verification. SC+AD is adopted in our
framework and achieves the best results.

Twitter&Foursquare | Facebook&Twitter
Hypothesis
| Socl  Soc2  Ach | Socl  Soc2  Ach
SC+AC 97.2% 96.0% 89.4% | 98.1% 97.0% 96.0%
SD+AD 91.8% 91.3% 82.8% | 97.0% 95.2% 95.3%
SD+AC 91.8% 91.3% 82.1% | 96.9% 953% 94.3%
SC+AD 97.2% 96.7% 92.4% | 98.1% 97.1% 96.7%

4.6 Parameter Analysis

Now we examine the influence of three key parameters in our
framework: the embedding size d and the weight of the information
transfer objective a and the weight of the regularization . The three
subfigures on the left in Figure 5 show the sensitivity analysis on the
first dataset while the rest is about the second dataset. The results
in the first two subfigures indicate that setting the embedding size
d to 100 can provide the best performance on both two datasets.
Even when d is as low as 10, our model can achieve good results
on three kinds of link prediction simultaneously.

The parameter a denotes the strength of aligning the two net-
works. The two subfigures about « in the middle show how different
values of « can affect the results on different datasets. The optimal
a is near 1.0. When setting « in [1, 3], all the link prediction tasks
perform well and stably. Anchor link prediction and social link
prediction in sparser networks are affected as « increases. However,
social link prediction in the dense networks is still stable. For the
weight parameter f3, the best setting is in [0.1, 0.2] according to the
last two subfigures. It has a certain impact on anchor link prediction
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Figure 5: Hyperparameter analysis. Our method is robust to
choices of d, « and f on two datasets

across the network while social link prediction within the network
is not that sensitive to the parameter f on both two datasets.

5 RELATED WORK

Multi-Network Analysis Traditional network embedding meth-
ods focus on one single network [6, 15, 32] and suffer from the
data insufficiency problem in the cold start scenarios. Therefore,
multi-network analysis has been a hot research topic and studied
for data enrichment for several years on which dozens of works
have been published [24, 28]. Some work studied on information
transfer across networks by anchor links to improving the quality
of inter-network link prediction [1, 25, 26, 30, 31]. Besides, many ex-
isting works aim at anchor link formation prediction automatically
[9, 27]. However, most of these works study either intra-network
or inter-network link prediction tasks separately. Zhang et al. first
proposed the collective link prediction task [23]. The existing meth-
ods mostly ignore the contradiction of different characteristics of
aligned networks or adopt fixed parameters to control the propor-
tion of information diffused across networks, which usually need
to be fine-tuned manually. Besides, these works also fail to consider
the link connectivity of the links within and across networks.



Session: Long - Network Embedding |

Neural attention mechanism Neural attention mechanism
has inspired many state-of-the-art models in several machine learn-
ing tasks including image caption generation [22], machine trans-
lation [5, 19] and semantic role labeling [18]. Its effectiveness is
owed to making the model focus on more important detailed in-
formation and neglecting the useless information. In recent years,
some works have also investigated the use of attention on graphs
[3, 20, 29]. Our work propose the hierarchical graph attention to
model multiple aligned networks and overcome network character-
istics contradiction to transfer more effective information across
networks.

6 CONCLUSION

In this paper, we study the collective link prediction problem in mul-
tiple aligned social networks. We propose a novel application ori-
ented network embedding framework, namely Hierarchical Graph
Attention based Network Embedding (HGANE) to learn node em-
beddings. The hierarchical graph attention mechanism is intro-
duced to resolve the network characteristic differences and link
directivity differences. We conduct detailed empirical evaluations
using several real-world datasets and the results demonstrate that
our model outperforms other competitive approaches and handles
the collective link prediction problems effectively.
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