
Collective Link Prediction Oriented Network Embedding
with Hierarchical Graph Attention

Yizhu Jiao
Shanghai Key Laboratory of Data Science, Shanghai

Institute for Advanced Communication and Data Science,
School of Computer Science, Fudan University,

Shanghai, China, yzjiao18@fudan.edu.cn

Yun Xiong
Shanghai Key Laboratory of Data Science, Shanghai

Institute for Advanced Communication and Data Science,
School of Computer Science, Fudan University,

Shanghai, China, yunx@fudan.edu.cn

Jiawei Zhang
IFM Lab, Department of Computer Science

Florida State University, Tallahassee, FL, USA
jiawei@ifmlab.org

Yangyong Zhu
Shanghai Key Laboratory of Data Science, Shanghai

Institute for Advanced Communication and Data Science,
School of Computer Science, Fudan University,

Shanghai, China, yyzhu@fudan.edu.cn

ABSTRACT

To enjoy more social network services, users nowadays are usually

involved in multiple online sites at the same time. Aligned social

networks provide more information to alleviate the problem of data

insufficiency. In this paper, we target on the collective link predic-

tion problem and aim to predict both the intra-network social links

as well as the inter-network anchor links across multiple aligned

social networks. It is not an easy task, and the major challenges

involve the network characteristic difference problem and different

directivity properties of the social and anchor links to be predicted.

To address the problem, we propose an application oriented net-

work embedding framework, Hierarchical Graph Attention based

Network Embedding (HGANE), for collective link prediction over

directed aligned networks. Very different from the conventional

general network embedding models, HGANE effectively incorpo-

rates the collective link prediction task objectives into consideration.

It learns the representations of nodes by aggregating information

from both the intra-network neighbors (connected by social links)

and inter-network partners (connected by anchor links). What’s

more, we introduce a hierarchical graph attention mechanism for

the intra-network neighbors and inter-network partners respec-

tively, which resolves the network characteristic differences and

the link directivity challenges effectively. Extensive experiments

have been conducted on real-world aligned networks datasets to

demonstrate that our model outperformed the state-of-the-art base-

line methods in addressing the collective link prediction problem

by a large margin.
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1 INTRODUCTION

Nowadays, online social networks have become very popular and

extensively used in our lives. To enjoy more services, it is ubiq-

uitous for users to participate in multiple online social platforms

concurrently. For example, users may share photos with Instagram

and check the latest news information via Twitter. To simplify the

sign up/in process, most social platforms usually allow users to

use their existing Twitter/Facebook/Google IDs to create their ac-

counts at these new social sites, which will align different online

networks together naturally. Each of these platforms can be repre-

sented as a massive network where nodes represent user accounts

and intra-network links represent the social relationships among

users. Especially, accounts owned by the same user in different

networks are defined as anchor nodes [9] and inter-network cor-

responding relationships between the anchor users are defined as

anchor links [9]. Different online networks connected by anchor

links are defined as multiple aligned social networks [31].

In recent years, there has been a surge of interest in multi-

network analysis. Traditional methods that target on one single

network require sufficient information to build effective models.
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initiator following others while the recipient feature ur ei represents

the characteristic of the node as the recipient followed by others. By

distinguishing the initiator and recipient features for each node, we

can lay the foundation for resolving the problem of link directivity

challenges effectively.

For the target node ui , we define the nodes followed by it as

its intra-network recipient neighbors. The set of intra-network

recipient neighbors of the initiator ui is denoted as N i (ui ). The

node uj ∈ N i (ui ) iff (ui ,uj ) ∈ E(1). Similarly, the nodes following

ui are defined as its intra-network initiator neighbors and the set of

these neighbors of the recipient ui is denoted as Nr (ui ). The node

uj ∈ Nr (ui ) iff (uj ,ui ) ∈ E(1). Here, based on the two node roles,

we introduce intra-network initiator attention and intra-network

recipient attention, to leverage the structural information within

the social network.

For intra-network social neighbors, the characteristic of the ini-

tiator is relevant to the recipient. The intra-network initiator atten-

tion mechanism computes the coefficients to judge the importance

of the intra-network recipient neighbor to the target initiator. Here,

the concept of intra-network initiator attention mechanism can be

represented formally.

Definition 2. (Intra-Network Initiator Attention) : For the target

node ui and its intra-network recipient neighbor uj ∈ N i (ui ), the

intra-network initiator attention coefficient of ui to uj can be given

as

ein (ui ,uj ) = σ
(

a
(1)T

in

[

W
(1)
in u

in
i








W
(1)
r e u

r e
j

] )

,

where ·T represents transposition and ∥ is the concatenation op-

eration. W
(1)
in ∈ Rd

′×d and W
(1)
r e ∈ Rd

′×d are the weight matrixes

applied to every node as the initiator and the recipient for shared

linear transformation in G(1). a
(1)T

in ∈ R2d
′
is a weight vector and

σ denotes the activation function. a
(1)T

r e , a
(1,2)T

in and a
(1,2)T

r e will be

used with similar meanings.

Similarly, since the characteristics of the initiator and the recipi-

ent are correlative, we can introduce the definition of intra-network

initiator attention mechanism formally to obtain the importance of

the intra-network initiator neighbor to the target recipient.

Definition 3. (Intra-Network Recipient Attention) : For the target

node ui and its intra-network initiator neighbor uj ∈ Nr (ui ), the

intra-network recipient attention coefficient ofui touj can be given

as

er e (ui ,uj ) = σ
(

a
(1)T

r e

[

W
(1)
r e u

r e
i








W
(1)
in u

in
j

] )

,

where a
(1)T

r e is also a weight vector.

With these two kinds of intra-network attention mechanism, our

model can pay more attention on useful information and neglect

harmful information within the social networks. It is significant

to resolve the problem of directivity challenges effectively and

leverage structural information within social networks.

3.1.2 Inter-Network Anchor Attention.

Different from the intra-network social attention mechanism

which targets at the node level, the inter-network anchor attention

is for the network level. The anchor links connecting multiple

networks play a crucial role in cross-network information transfer.

However, due to the problem of network characteristic differences,

information transferred from other networks could also undermine

the learned embeddings of the target network.

To handle this problem, we introduce the inter-network anchor

attention mechanism. For the target node, the inter-network anchor

attention coefficient to its anchor partners in the other network

indicates the importance of information transferred from that net-

work. As mentioned in the last section, each node is represented

by the initiator and recipient embeddings. To transfer the directed

structural information within networks, two kinds of inter-network

anchor attention will be introduced according to these two roles of

the nodes.

Different from uni-directed social links, since the anchor nodes

reveal the information of the same user from different aspects, it

is intuitive that their initiator and recipient features in different

networks can be related correspondingly. For the target node and

its anchor partner in some network, the inter-network initiator

attention coefficient indicates the importance of information from

that network to the target node as the initiator. Firstly, we represent

the set of the inter-network anchor partners in the other network

for the target node ui as N
a (ui ). If the node pair (ui ,vj ) ∈ A(1,2),

vj ∈ Na (ui ). And the definition of inter-network initiator attention

is introduced as follows.

Definition 4. (Inter-Network Initiator Attention): For the target

nodeui and its inter-network anchor partnervj ∈ Na (ui ), the intra-

network initiator attention coefficient of ui to vj as the initiator

can be given as

ein (ui ,vj ) = σ
(

a
(1,2)T

in

[

W
(1)
in u

in
i








W
(1,2)
in v

in
j

] )

,

where W
(1,2)
in is the weight matrix applied to every anchor node

in G(2) as the initiator while transferring information to G(1) and

a
(1,2)T

in is a weight vector.

Similarly, considering the recipient role of nodes, it is intuitive

that the recipient features of anchor partners are related. Based

on this, we give the concept of inter-network recipient attention,

which denotes the importance of information from that network to

the target node as the recipient.

Definition 5. (Inter-Network Recipient Attention) : For the target

nodeui and its inter-network anchor partnervj ∈ Na (ui ), the intra-

network recipient attention coefficient of ui to vj as the recipient

can be given as

er e (ui ,vj ) = σ
(

a
(1,2)T

r e

[

W
(1)
r e u

r e
i








W
(1,2)
r e v

r e
j

] )

,

where W
(1,2)
r e is the weight matrix for every anchor node in G(2) as

the recipient and a
(1,2)T

r e is also a weight vector.

Inter-network anchor attentionmechanism canmake a great con-

tribution to effective cross-network information transfer. It handles

the problem of network characteristic differences by making our

model focus on more important networks with useful information.

Besides, to make multiple coefficients easily comparable across

different nodes, we normalize all the coefficients mentioned above

across all choices of intra-network neighbors and inter-network
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partners using the softmax function. Thus, the four kinds of at-

tention coefficients of the concerned nodes within networks and

across networks can be rewritten into a unified formula:

αop (ui ,uj/vj ) = softmaxuj /vj (e
op (ui ,uj/vj ))

= exp(eop (ui ,uj/vj ))
/

SUM
op
ui

, where op ∈ {in, re} indicates the role of the target node. And the

denominator is set as

SUM
op
ui =

∑

uk ∈Nop (ui )

exp(eop (ui ,uk )) +
∑

vk ∈N
a (ui )

exp(eop (ui ,vk ))

3.2 Multiple Aligned Network Embedding

With the hierarchical graph attention introduced in the previous

section, we will introduce the cross-network embedding framework

HGANE in this part. HGANE is based on the cross-network graph

neural network model, which extends the traditional graph neural

network (GNN) model [16] to the multiple aligned social networks

scenario. According to the principle of GNN, embeddings can cap-

ture the localized structural features by utilizing information propa-

gated from the intra-network social neighbors. What’s more, it can

preserve more comprehensive features by leveraging cross-network

information transferred by anchor links. Therefore, HGANE learns

the node representations by aggregating information from both the

intra-network neighbors and inter-network partners. At the same

time, HGANE takes advantage of the hierarchical graph attention

mechanism to focus on more important information to handle the

problems of network characteristic differences and link directivity

challenges. The architecture of HGANE is illustrated in Figure 3.

Each node is represented by two embeddings, uini and u
r e
i , ac-

cording to its two role in social networks. The implicit initiator and

recipient representations of the node are represented as uini
′
∈ Rd

′

and u
r e
i

′ ∈ Rd
′
of the potentially different dimension d ′.

The initiator embedding of ui , u
in
i , which indicates its features

as the initiator in the social network, depends on its intra-network

recipient neighbors. Therefore, for the node uj ∈ N i (ui ), u
r e
j can

contribute to u
in
i with the coefficient, α in (ui ,uj ), determined by

intra-network initiator attention.We define the intra-network neigh-

bor recipient contribution (NRC) from uj to ui as

NRC(ui ,uj ) = α in (ui ,uj )W
(1)
r e u

r e
j

As to inter-network anchor partners, node embeddings can pre-

serve more comprehensive information by taking their features of

the same role in other networks into consideration. For the anchor

node vj ∈ Na (ui ), its initiator embedding v
in
j also contribute to

the initiator embedding u
in
i of the target node. To overcome the

problem of network characteristic differences, the inter-network

initiator attention will compute the weights of information from

different networks. The inter-network partner initiator contribution

(PIC) from vj to ui is introduced as

PIC(ui ,vj ) = α in (ui ,vj )W
(1,2)
in v

in
j

Formally, we can obtain the initiator embedding of ui by aggre-

gating the intra-network neighbor recipient contribution and the

inter-network partner initiator contribution as

u
in
i

′
= σ

(
∑

uj ∈Ni (ui )

NRC(ui ,uj ) +
∑

vj ∈Na (ui )

PIC(ui ,vj )
)

,

where σ denotes a nonlinearity. Besides, the recipient embedding

of ui , u
r e
i , can be generated in the similar way. Inter-network and

inter-network recipient attention will determine the importance of

different related nodes’ contribution. As the recipient,ui is naturally

characterized by its intra-network initiator neighbors who actively

follow it in social networks. Such intuition leads to the contribution

from every node, such as uj ∈ Nr (ui ), to ui . The intra-network

neighbor initiator contribution (NIC) from uj to ui can be defined as

NIC(ui ,uj ) = αr e (ui ,uj )W
(1)
in u

in
j

The inter-network anchor partners provide more information

about the recipient role of the target node from different sources.

Thus, the recipient embedding of ui will aggregate the information

from other networks by the anchor nodes with different weights

computed by the inter-network recipient attention in other net-

works.We can obtain the inter-network partner recipient contribution

(PRC) from uj to ui to be

PRC(ui ,vj ) = αr e (ui ,vj )W
(1,2)
r e v

r e
j

By combining these contributions from intra-network initiator

neighbors and inter-network partners, the recipient embedding of

ui can be represented formally as

u
r e
i

′
= σ

(
∑

uj ∈Nr (ui )

NIC(ui ,uj ) +
∑

vj ∈Na (ui )

PRC(ui ,vj )
)

To stabilize the learning process of node embeddings, we have

found extending our mechanism to employ multi-head attention to

be beneficial, inspired by Vaswani et al. 2017 [20]. Specifically, K

independent attention mechanisms execute the above transforma-

tion, and then their embeddings are concatenated, resulting in the

following initiator and recipient feature representations:

u
in
i

′
=

Kn

k=1

σ
(

∑

uj ∈Ni (ui )

NRCk (ui ,uj ) +
∑

vj ∈Na (ui )

PICk (ui ,vj )
)

u
r e
i

′
=

Kn

k=1

σ
(

∑

uk ∈Nr (ui )

NICk (ui ,uj ) +
∑

vj ∈Na (ui )

PRCk (ui ,vj )
)

where NRC, PIC, NIC and PRC with the subscript k in the formu-

las denote the contributions computed with the k-th hierarchical

attention mechanism.

With reference to above equations, the formula derivation of

computing the node embeddings for G(2) can be obtained in the

similar way. They are not listed due to the page limit.

3.3 Collective Link Prediction Oriented

Network Embedding Framework

The embeddings of each node in multiple aligned networks can be

generated by aggregating information from both the intra-network

neighbors and inter-network partners as introduced in last section.

In this part, we will introduce the network embedding optimization

framework oriented to collective link prediction. The task includes
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Table 2: Statistics of datasets

Dataset #Nodes #Social Links #Anchor Links

Twitter 5,223 164,920
3,388

Foursquare 5,392 76,972

Facebook 4,137 57,528
4,137

Twitter 4,137 147,726

4 EXPERIMENT

4.1 Datasets

We conducted experiments using two real-world aligned social

networks: Twitter-Foursquare and Facebook-Twitter(Statistical in-

formation in Table 2):

• Twitter-Foursquare [9]: Twitter is the most popular world-

wide microblog site and Foursquare is the famous location-

based social network. There are 5,223 users and 164,920 fol-

low links in Twitter and 5,392 users and 76,972 social links

in Foursquare. Among these crawled Foursquare users, 3,388

of them are aligned by anchor links with Twitter.

• Facebook-Twitter [2]: Facebook is another worldwide on-

line social media. The Facebook and Twitter accounts of

4,137 users were crawled. Every node has a counterpart in

the other network. There are 57,528 social links in Facebook

and 147,726 follow links in Twitter among these users.

It is noted that these two datasets were crawled respectively and

there is no overlap of these two Twitter subnetworks.

Source Code: The source code of HGANE is available in http:

//github.com/yzjiao/HierarchicalGraphAttention.

4.2 Comparison Methods

Table 3: Comparision of different models

Method
Multiple

Networks

Links
Directi.
Differe.

Network
Charact.
Differe.

Predict
Social
Link

Predict
Anchor
Link

DeepWalk !

Node2Vec !

GAT !

IONE ! ! !

DIME ! ! !

MNN ! ! !

CLF ! ! !

HGANE ! ! ! ! !

The network embedding methods used in the experiment are

listed as follows (summarized in Table 3):

• DeepWalk [15]: Skip-gram based vertex embedding method

for a single network that extends the word2vec [14] to the

network scenario.

• Node2Vec [6]: Word-to-vector approach for a single net-

work that modifies the random walk strategy in DeepWalk

into a more sophisticated schemes.

• GAT [20]: A neural network architecture for a single net-

work to learn node representation by leveraging masked

self-attention layers.

• IONE [12]: A representation learning model for multiple

aligned network by preserving the proximity of users with

łsimilarž followers/followees in the embedded space for net-

work alignment.

• DIME [30]: An embedding framework for multiple heteroge-

neous aligned network with aligned autoencoders to transfer

information and improve the link prediction in emerging

networks.

• MNN [1]: A multi-neural-network framework for intra-

network link prediction over aligned networks. It is not

suitable for anchor link prediction as it assigns anchor users

with the same feature vectors.

• CLF [23]: A method aiming at collective link prediction by

propagating the probabilities of predicted links across the

partially aligned networks with collective random walk.

4.3 Experiment Setting

In our experiment, we will target on the collective link prediction

task and concern the performance of social link prediction in G(1),

G(2), and anchor link prediction across these two networks. These

three subtasks will be denoted as Soc1, Soc2, Ach in the experiment

results. As link prediction is regarded as a binary classification

task, the performance will be evaluated with Area Under the Curve

(AUC) metric.

All the existing links in the two aligned networks are used as

the positive link set, including social links within two networks

and anchor links across these two networks. We sample a subset

of unknown links among nodes in the same network randomly

as the negative social link set, which is of the double size of the

positive social link set. The negative anchor link set is generated

by the random sample of unknown cross-network links. The size

of the negative anchor link set is five times of that of the positive

set. A proportion of the links in the positive and negative sets are

sampled as the training set, the rest as the test set.

For our embedding frameworkHGANE, we initialize the initiator

and recipient features of each node with the common initiator and

recipient neighbor features within its networks. There are two

attention-based layers involved for each network. The first layer

consists of K = 8 attention heads computing 256 features each,

followed by an exponential linear unit (ELU) [4] nonlinearity. The

second layer is a single attention head to compute node embeddings,

followed by a softmax activation. The dimension of the embeddings

is 100. During training, we apply dropout [17] to the normalized

attention coefficients. And we train for 3000 epochs using the Adam

optimizer [8] with the learning rate of 0.005. The parameters α =

1.0 and β = 0.0005 are used in the experiments.

For the comparison methods that target at one single network,

such as Node2vec, DeepWalk and GAT, we preprocess the datasets

by merging two networks into one and regarding anchor links as

social links within networks. We apply the linear SVM classifier for

those embedding methods that can’t directly predict the formation
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Table 4: Performance comparison with different methods. Soc1, Soc2 and Ach indicate social link prediction in the first and

second network and anchor link prediction respectively.

Dataset Method

Training Ratio

0.2 0.4 0.6 0.8

Soc1 Soc2 Ach Soc1 Soc2 Ach Soc1 Soc2 Ach Soc1 Soc2 Ach

Twitter
&

Foursquare

DeepWalk 75.8% 72.5% 57.9% 80.3% 76.9% 63.1% 82.2% 79.7% 67.3% 85.7% 82.5% 75.4%

Node2Vec 82.5% 77.4% 64.3% 84.6% 80.9% 66.1% 86.4% 84.3% 72.1% 89.3% 88.3% 78.9%

GAT 85.5% 78.2% 65.5% 91.5% 86.9% 68.9% 92.5% 90.3% 75.8% 92.6% 92.3% 80.9%

IONE 83.2% 75.7% 72.1% 86.2% 81.7% 78.0% 88.2% 84.7% 85.6% 88.7% 84.7% 87.4%

DIME 85.1% 76.2% 74.8% 88.4% 80.3% 76.3% 89.8% 83.0% 82.6% 92.0% 85.2% 84.9%

MNN 89.2% 72.4% - 92.9% 81.1% - 94.8% 86.1% - 96.3% 87.6% -

CLF 84.5% 78.7% 70.9% 86.7% 80.5% 75.2% 90.9% 84.2% 83.1% 92.3% 86.5% 87.1%

HGANE 94.4% 90.3% 76.7% 96.4% 95.1% 85.8% 97.1% 96.8% 90.0% 97.5% 97.5% 93.0%

Facebook
&

Twitter

DeepWalk 76.3% 70.3% 55.8% 81.5% 75.2% 70.9% 84.0% 81.6% 77.7% 90.9% 86.5% 78.9%

Node2Vec 83.0% 81.5% 58.6% 86.6% 85.7% 76.2% 88.8% 87.5% 81.0% 91.3% 88.2% 83.2%

GAT 87.3% 86.1% 60.2% 92.0% 90.0% 78.5% 94.7% 92.8% 83.5% 95.7% 93.4% 85.5%

IONE 82.8% 79.1% 77.9% 85.9% 82.6% 85.4% 87.4% 85.1% 89.4% 90.9% 89.1% 92.1%

DIME 87.1% 86.2% 74.3% 88.4% 87.3% 81.9% 89.8% 90.0% 85.1% 94.0% 92.2% 87.5%

MNN 88.6% 87.1% - 92.4% 91.3% - 94.4% 93.1% - 95.7% 94.8% -

CLF 84.9% 81.1% 80.5% 88.7% 85.9% 84.2% 91.4% 88.9% 87.6% 93.1% 90.2% 90.4%

HGANE 91.8% 90.9% 84.8% 95.2% 94.8% 93.4% 97.1% 96.9% 95.8% 98.1% 97.5% 97.1%

Table 5: Validation of the design of represent each nodewith

two embeddings to resolve the link directivity differences

problem. Our full model outperforms two variants with ei-

ther the initiator or recipient features.

Feature
Twitter&Foursquare Facebook&Twitter

Soc1 Soc2 Ach Soc1 Soc2 Ach

initiator 93.4% 93.2% 85.2% 97.0% 94.9% 95.8%

recipient 93.0% 93.7% 85.6% 97.1% 95.1% 96.2%

both 97.2% 96.8% 93.0% 98.1% 97.5% 97.1%

of links. Notably, we have chosen optimal hyper-parameters care-

fully for different baselines in this paper to ensure the fairness of

comparison experiments.

4.4 Experiment Result

In the collective link prediction task, we compare the performance

of eight different embedding methods under different training rate

λ ∈ {20%, 40%, 60%, 80%}. Table 4 shows the performance of our

model and other seven baseline methods evaluated by AUC with

different training rate λ. The method we proposed in this paper,

HGANE, performs much better than the other methods in the three

subtasks simultaneously, which shows its effectiveness in the col-

lective link prediction task. HGANE incorporates the task-oriented

objectives into consideration and thus balance between the predic-

tion tasks of both the intra-network social link and inter-network

anchor link simultaneously.

Considering the experiments with different training rate λ, as

the ratio drops, the performance of all the methods deteriorates.

However, the performance degradation of the proposed model is

rather moderate compared to other methods since we leverage the

information of the multiple aligned networks and handle the prob-

lem of network characteristic differences. Even when the training

rate λ is as low as 20%, the baseline models will suffer from the

information sparsity a lot, but our model can still obtain very good

performance.

To demonstrate the effectiveness of considering the directivity,

we compare our full model to its two variants with either the initia-

tor features or the recipient features. The experiment results show

in Table 5 with the training ratio as 0.8. We found that the two

variants can give better results than other baselines but their per-

formance is much inferior to that of the full model. According to the

experimental statistics of two datasets, the performance of social

link prediction within the more dense network can be improved

more by distinguishing nodes’ initiator and recipient roles.

4.5 Hypothesis Verification

As mentioned in the method part, in our framework, each node

is represented with the initiator and recipient features and it is

crucial to determine how to aggregate information from the neigh-

bors connected by social links and anchor links. If the neighbor’s

initiator and recipient features contribute to the target node’ s re-

cipient and initiator respectively, we name it as cross-contribution.

Conversely, if the initiator and recipient features of two neighbor

nodes are related correspondingly, we name it direct-contribution.

By combining two mechanisms with two kinds of links, there are

four different hypotheses as illustrated in Figure 4.

The hypotheses SC+AD is adopted in our framework. To validate

it, we study the variants of our full model with the other three

hypotheses and compared their performances on the collective link

prediction task in Table 6. The experimental results indicate the
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Neural attention mechanism Neural attention mechanism

has inspired many state-of-the-art models in several machine learn-

ing tasks including image caption generation [22], machine trans-

lation [5, 19] and semantic role labeling [18]. Its effectiveness is

owed to making the model focus on more important detailed in-

formation and neglecting the useless information. In recent years,

some works have also investigated the use of attention on graphs

[3, 20, 29]. Our work propose the hierarchical graph attention to

model multiple aligned networks and overcome network character-

istics contradiction to transfer more effective information across

networks.

6 CONCLUSION

In this paper, we study the collective link prediction problem in mul-

tiple aligned social networks. We propose a novel application ori-

ented network embedding framework, namely Hierarchical Graph

Attention based Network Embedding (HGANE) to learn node em-

beddings. The hierarchical graph attention mechanism is intro-

duced to resolve the network characteristic differences and link

directivity differences. We conduct detailed empirical evaluations

using several real-world datasets and the results demonstrate that

our model outperforms other competitive approaches and handles

the collective link prediction problems effectively.
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