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ARTICLE INFO ABSTRACT

Keywords: Harmful cyanobacterial blooms (=cyanoHABs) are an increasing feature of many waterbodies throughout the

Climate change world. Many bloom-forming species produce toxins, making them of particular concern for drinking water

cyanoHABs supplies, recreation and fisheries in waterbodies along the freshwater to marine continuum. Global changes

Ezmperat“re resulting from human impacts, such as climate change, over-enrichment and hydrological alterations of wa-
2

terways, are major drivers of cyanoHAB proliferation and persistence. This review advocates that to better
predict and manage cyanoHABs in a changing world, researchers need to leverage studies undertaken to date,
but adopt a more complex and definitive suite of experiments, observations, and models which can effectively
capture the temporal scales of processes driven by eutrophication and a changing climate. Better integration of
laboratory culture and field experiments, as well as whole system and multiple-system studies are needed to
improve confidence in models predicting impacts of climate change and anthropogenic over-enrichment and
hydrological modifications. Recent studies examining adaptation of species and strains to long-term perturba-
tions, e.g. temperature and carbon dioxide (CO-) levels, as well as incorporating multi-species and multi-stressor
approaches emphasize the limitations of approaches focused on single stressors and individual species. There are
also emerging species of concern, such as toxic benthic cyanobacteria, for which the effects of global change are
less well understood, and require more detailed study. This review provides approaches and examples of studies
tackling the challenging issue of understanding how global changes will affect cyanoHABs, and identifies critical
information needs for effective prediction and management.

1. Introduction cyanobacterial blooms (thereafter cyanoHABs) can be massive. For

example, in the United States the costs have been estimated to be US

Cyanobacteria originated more than 2.5 billion years ago, evolved
through periods of dramatic oxygen increases, CO5 declines and cli-
matic variations during the Earth’s history, and diversified into a wide
range of natural habitats. At present, cyanobacteria play a key role in
the global carbon and nitrogen cycles, as well as being an important
component in many aquatic food webs. In bloom proportions, however,
they can have major environmental, social and economic impacts
(O’Neil et al., 2012; Huisman et al., 2018). This includes causing hy-
poxic conditions, resulting in fish kills and changes in the nutrient
biogeochemistry of a waterbody, as well as affecting the diversity and
abundance of other species. The economic costs of harmful
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$2.2 billion p.a., via the effects on water quality, recreation use, fishing
and property values (Dodds et al., 2008). Toxic cyanoHABs in Lake
Taihu (China) and Lake Erie (USA) have led to major drinking water
crises in large cities (Guo, 2007; Qin et al., 2010; Bullerjahn et al.,
2016), and the removal of cyanobacteria and their toxins from drinking
water reservoirs may lead to high water treatment costs (see review by
Hamilton et al., 2014a). Globally, these economic costs are predicted to
increase over time due to increasing incidences of cyanoHABs from
continued eutrophication and a warming climate (Wagner and Adrian,
2009; Carey et al., 2012; Visser et al., 2016).

Predicting the magnitude, intensity and duration of cyanoHABs, and
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2. Small scale manipulative experiments to understand species
responses

2.1. Laboratory culture studies

Designing experiments of sufficient temporal and spatial scale to
provide meaningful predictions of the effect of global changes on cya-
nobacteria is challenging. Laboratory-scale manipulative experiments
are typically used to study the response of individual species to one or
more environmental variables. This approach is the backbone of phy-
cological research. Much of the understanding of the physiology of
individual species, particularly harmful and nuisance cyanobacteria,
has come from laboratory-scale studies, as they allow characterization
of responses without the confounding interactions with other species,
and avoid the complexities of co-varying environmental conditions
(e.g., Fay, 1992; Walsby, 1994; Visser et al., 1997; Sandrini et al., 2014;
Schuurmans et al., 2018).

One aspect of global change research where laboratory studies have
provided useful insights is the response of cyanobacterial species to
temperature. Laboratory studies have identified that cyanobacterial
species typically have optimal growth at higher temperatures than di-
noflagellates and diatoms, e.g. Paerl et al. (2011); Griffith and Gobler
(this issue). Conversely, there were small differences in thermal optima
between green algae and cyanobacteria (Lurling et al., 2013). Visser
et al. (2016) took these laboratory findings one step further, calculating
relative increases in growth rate per unit temperature increase for dif-
ferent species, and showed that the specific growth rates of cyano-
bacteria tended to increase faster with temperature than those of green
algae, although there was considerable variation between species. This
is valuable information to help inform predictive models, especially if it
can be combined with data on other physiological responses to global
change variables, such as enhanced thermal stratification and higher
nutrient loadings (Carey et al., 2012).

Lack of uniformity in findings between laboratory studies on the
effect of increased CO- levels on growth of primary producers prompted
a study by Verspagen et al. (2014) to reconcile these differences. They
developed a model to test the interplay between pCO,, light (photo-
synthetically active radiation, PAR) and nutrient levels on growth, and
experimentally tested the model with the cyanobacterium, Microcystis
aeruginosa. They were able to reconcile contrasting results, demon-
strating inorganic carbon limitation at very low pCO, levels, whilst
nutrient limitation occurred at very low nutrient concentrations, and
light limitation in dense phytoplankton blooms at high pCO, levels and
high nutrient concentrations. This study highlights two key factors: the
need to examine multiple drivers of responses, and the need to stan-
dardize protocols to ensure reproducibility between laboratory studies.

The effect of global change on competition between phytoplankton
species is important for prediction, but has received little attention in
the laboratory. This is likely due to the challenging nature of studies
which typically require continuous cultures with a high level of reg-
ulation and maintenance. Studies of this nature, however, have pro-
vided valuable insights, e.g. chemostat experiments of responses of
green algae and cyanobacteria to changes in the partial pressure of CO,
(pCO,), which were then incorporated into a competition model (Ji
et al., 2017). Laboratory studies have also been conducted on Nodularia
spumigena and Aphanizomenon sp., growing together and separately,
to determine the combined effect of increased temperature and de-
creased salinity, and increased temperature and elevated pCO,
(Karlberg and Wulff, 2013). Outcomes differed in the experiments de-
pending on whether species were grown together or apart, suggesting
either allelopathy or resource competition affected dominance. These
factors remain poorly understood in the context of global change
biology, and are rarely built into predictive models.
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2.2. Physiological acclimation and phenotypic plasticity

One of the key challenges in the investigation of the response of
cyanobacteria to climate change is that cyanobacterial species are
highly flexible in their response. This flexibility can be due to (i) phy-
siological acclimation and phenotypic plasticity (i.e., variation within
strains), (ii) genetic variation between strains, and (iii) evolutionary
adaptation. This variability complicates the interpretation of laboratory
experiments, because results obtained for one set of conditions for one
strain in one laboratory may deviate from results obtained with other
conditions with other strains in other laboratories. Likewise, this
variability also complicates the interpretation of field studies, because
cyanobacterial blooms in different lakes or in different years in the
same lake may differ in physiological traits, genetic composition and
toxin production. This is particularly important if our future climate
exceeds present-day windows of climatic variation. The adaptability of
cyanobacteria may imply that future cyanobacterial blooms will deviate
from present-day blooms not only in terms of frequency, magnitude and
duration, but also in terms of their genetic and physiological traits.
Despite the challenges imposed by this variability, probably the best
way forward is to embrace the aptitude for acclimation and adaptation
of cyanobacteria and build it into our research programs.

Controlled laboratory experiments can be very useful in assessing
the potential for physiological acclimation and phenotypic plasticity in
cyanobacterial strains. One classic field of study is photosynthetic ac-
climation, and indeed lab experiments have shown major differences in
pigmentation, photosynthetic rates and even maximum growth rates
between Microcystis strains acclimated to low versus high light
(Bafiares-Espania et al., 2013). Light color may also have a major effect.
In particular, blue light greater than 450 nm is not absorbed by the
phycobilisomes of cyanobacteria, and consequently leads to much
lower rates of cyanobacterial photosynthesis and growth than light of
longer wavelengths (Luimstra et al., 2018).

Toxin production by cyanobacteria is also an important plastic trait.
Many cyanotoxins are relatively nitrogen-rich molecules (e.g., micro-
cystins, nodularins, anatoxin-a, saxitoxin), and several laboratory ex-
periments have shown that nitrogen enrichment stimulates production
of one of the cyanotoxins, microcystin (e.g., Downing et al., 2005; Van
de Waal et al., 2009; Horst et al., 2014). These laboratory results are
consistent with multi-year observations from western Lake Erie, where
the microcystin contents of Microcystis blooms were higher during
years with high inorganic nitrogen concentrations than during years of
reduced inorganic nitrogen loading (Horst et al., 2014; Gobler et al.,
2016).

Temperature is one of the key factors affecting the physiology,
morphology and growth of cyanobacteria, as temperature directly af-
fects photosynthesis and cellular metabolism. For instance, laboratory
experiments showed that Raphidiopsis raciborskii acclimated to high
temperature (32 °C) not only grows faster but also develops shorter
trichomes in comparison to R. raciborskii acclimated to lower tem-
peratures (Soares et al., 2013). These authors report that the same
pattern occurred in wild populations of R. raciborskii in a tropical re-
servoir, where shorter trichomes were observed in warmer months.
Further work on physiological acclimation of bloom-forming cyano-
bacteria to rising temperatures and CO, concentrations seems highly
warranted.

An increasing trend in culture-based studies is the incorporation of
-omic techniques, i.e. genomics, transcriptomics and metabolomics
(Hennon and Dyhrman, this issue). Transcriptomics has become a va-
luable method of investigating linkages between genetics, physiology
and ecology. Straub et al. (2011) showed that the metabolism of M.
aeruginosa is compartmentalized between light and dark periods, with
greater than 25% of genes varying significantly in their transcript
abundance. Harke and Gobler (2015) demonstrated that the global
transcriptomic patterns of M. aeruginosa changed daily, and varied
between nitrogen replete and deficient conditions. During nitrogen
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deprivation, genes involved in photosynthesis and respiration, carbon
acquisition, lipid metabolism, and amino acid biosynthesis were
downregulated, while those linked to nitrogen acquisition and transport
were upregulated.

To date, few studies of cyanoHAB species have incorporated meta-
bolomics (the study of the products of metabolism, which are influ-
enced by both genetic and environmental factors; Schwarz et al., 2013).
Significant differences in metabolite profiles were observed between
toxic and non-toxic strains of Microcystis when exposed to varying light
conditions, and a comparison between Microcystis and the model cya-
nobacterium Synechocystis demonstrated that Microcystis invests more
in photosynthetic output, i.e. carbon reserves such as glycogen, after
high light exposure (Meissner et al., 2015). Steffen et al. (2014) coupled
transcriptomic and metabolomics analyses to study M. aeruginosa in
various nutrient-reduced conditions. Significant gene expression dif-
ferences were measured between different nutrient treatments. Corre-
sponding metabolomes showed comparably few differences indicating
that broad changes to gene transcription are required to maintain me-
tabolic homeostasis. Current and emerging -omic approaches now
provide powerful new tools to understand how species utilize their
genomic information under different environmental conditions (Mock
et al., 2016).

2.3. Genetic variation

It is becoming clear that quantification of the variability in strain
(i.e. ecotypes within a species) responses to environmental conditions is
a key element of understanding global change-related responses (see
review by Lakeman et al., 2009; Raven et al., this issue). Laboratory
experiments can play an important role in determining the range of
strain responses to environmental conditions. Strains of Microcystis and
R. raciborskii (basionym Cylindrospermopsis raciborskii) were shown
to vary in their growth responses to parameters, such as temperature
(Xiao et al., 2017a), meaning that predicting how species will compete
under different temperature scenarios is complicated. A follow-up
modelling study of this data by Xiao et al. (2017b) found that there
were no clear winners in terms of dominant strains. A study of 20 Mi-
crocystis strains also showed wide genetic and phenotypic variation in
carbon uptake systems, demonstrating the flexibility of the species to
adapt to changing CO, conditions (Sandrini et al., 2014, 2015). The
authors found variation in gene composition, gene expression and en-
zymatic activity of the carbon concentrating mechanism between
strains.

Microcystis strains also show widely varying responses of aggrega-
tion and disaggregation of colonies to turbulence (Li et al., 2018). This
has implications for determining their responses under increased global
temperatures and climate variability, if it alters the timing and duration
of stratification versus turbulent mixing. Studies of strain responses of
R. raciborskii have also demonstrated intraspecific variation to in-
creased pCO, (Pierangelini et al., 2015). The marine cyanobacterium,
Trichodesmium also showed large strain-specific differences in the re-
lationship between nitrogen fixation and CO,, suggesting that in-
dividual strains within each genus are adapted to grow and fix nitrogen
at different CO, concentrations (Hutchins et al., 2013). Four strains of
the toxic diazotrophic N. spumigena also had different intraspecific
responses to increased ultraviolet-B radiation (UV-B radiation,
280-320 nm) (Wulff et al., 2007). The significance of these responses
also relates to global change as increased greenhouse gas concentra-
tions alter UV-B radiation at the Earth's surface, with potentially dif-
ferent directional changes in UV-B radiation between tropical and polar
latitudes (Bais et al., 2011).

Genome comparisons are providing new insights into why different
species or strains have varied responses, reinforcing the genetic basis
for the strain-to-strain variability described above. Willis et al. (2018)
sequenced the genomes of nine R. raciborskii strains isolated from a
sample from a single lake, and showed an intraspecific variation in
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genes associated with environmental responses and adaptation, parti-
cularly those involved in phage defence, DNA repair, membrane
transport, and stress.

2.4. Evolutionary adaptation

Culture experiments are typically focussed on acclimation, i.e. the
degree to which a species has physiological resilience to environmental
conditions. This is because most experiments are undertaken with
single strains that are assumed to have fixed traits. However, gradual,
long term increases in pCO, or temperature may also lead to adapta-
tion, i.e. changes in the traits of species driven by natural selection
(Hennon and Dyhrman, 2019). Although adaptation is typically a long
term change, adaptation to changing environmental conditions may
also occur rapidly, on timescales of weeks, through the sorting of ex-
isting genetic variation (e.g., Yoshida et al., 2003; Padfield et al., 2015).
For example, Sandrini et al. (2016) investigated changes in the strain
composition of Microcystis in response to rising pCO, levels in both
laboratory selection experiments and field data. They found that strains
containing both high-affinity and high-flux bicarbonate uptake systems
prevailed at low pCO, levels, but were replaced within a few weeks by
strains with only the high-flux bicarbonate uptake system at elevated
CO,. Hutchins et al. (2013) used kinetic constants from the individual
CO,, response curves of strains of both Trichodesmium and the uni-
cellular cyanobacterial genus, Crocosphaera, to show that strains
adapted to high pCO, concentrations could potentially be favoured in a
future acidified ocean.

Some studies have also investigated the implications of natural se-
lection over longer time spans. For example, Hutchins et al. (2015)
exposed cultures of the marine bloom-forming cyanobacterium, Tri-
chodesmium to a range of pCO, concentrations for 4.5 years, then
brought them back to contemporary pCO, levels. They found that in-
creased growth in response to elevated pCO, occurred rapidly, but long-
term exposure to higher pCO, resulted in permanent changes in fitness
of the cultured species to contemporary pCO, levels, relative to control
cultures. This permanent change in fitness was demonstrated using
complementary molecular studies (Walworth et al., 2016). Similarly,
Irwin et al. (2015) suggest that some eukaryotic and prokaryotic phy-
toplankton are adapting to climate change. However, this irreversible
response is not consistent amongst studies and species.

Another important consideration is the adaptation of cultures grown
long term in the laboratory. Typically, monocultures of cyanobacteria
(and eukaryotic algae) are grown in the laboratory under set light and
temperature conditions, and exposed to relatively high nutrients con-
centrations in growth media. This contrasts with field conditions were
environmental parameters are constantly changing. There is evidence
that these cultures adapt to fixed laboratory conditions, meaning that
their traits may gradually deviate from those of natural populations
(Lakeman et al., 2009). For example, morphology often changes, and
species can lose their toxin producing capacity. Overall, the research
outlined above highlights that laboratory experiments need to be
carefully designed, taking into account adaptation and acclimation re-
sponses of individual species and strains.

2.5. The issue of scale

Another challenge with laboratory experiments is understanding the
relevance of scientific findings to global scale predictions. One reason
for this is that laboratory studies cannot readily examine responses to
physical factors, such as stratification and turbulence, which affect
cyanobacterial blooms across larger spatial scales than the typical
Erlenmeyer or culture flask, and hence cannot be easily studied at the
laboratory scale. This highlights a key dilemma in undertaking la-
boratory experiments: Are culture conditions appropriate for predicting
real world responses? Are there other approaches that would be more
helpful to enable better predictive capability?
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2.6. Small-scale in situ experimental units

Small-scale manipulative experiments in the field provide another
approach to understanding responses of cyanoHABs species to global
change. The advantage of these studies over laboratory studies is that
species have not acclimated to laboratory conditions, and species in-
teractions are implicitly embedded within the experiment (Lakeman
et al., 2009). Compared to laboratory studies, relatively few microcosm
experiments have been conducted. A study of the response of Tricho-
desmium colonies to a range of pCO, levels in field studies showed no
enhancement of nitrogen or carbon fixation in response to changes in
pCO,, levels (Gradoville et al., 2014). The authors concluded that the
lack of response was due to the interacting effects of strains and other
nitrogen fixers within the colonies. In outdoor experiments, Davis et al.
(2009) showed that higher temperatures coupled with elevated phos-
phorus concentrations frequently yielded higher growth rates of toxic
Microcystis cells over non-toxic cells.

The effect of UV radiation (280-400 nm wavelength), nutrients,
pCO- and salinity on diazotrophic filamentous cyanobacteria and as-
sociated natural microplanktonic communities in the Baltic Sea was
examined with outdoor factorial experiments. Studies showed that fi-
lamentous cyanobacteria tolerated relatively high ambient radiation
conditions, including ultraviolet radiation, even when they were nu-
trient limited (Mohlin and Wulff, 2009; Pattanaik et al., 2010; Mohlin
et al., 2012). Cyanobacteria were not negatively affected by increased
pCO, (Wulff et al., 2018; Olofsson et al., in press) but decreased salinity
had a species-specific effect (Wulff et al., 2018). This highlights the
importance of considering multiple stressors as well as multiple species
Griffith and Gobler (this issue).

3. Larger-scale experimental units

Larger-scale experimental units (sometimes called mesocosms)
provide another useful intermediary step between laboratory studies
and lake-scale studies. They involve larger-scale vessels than smaller
scale experimental units (typically many litres). They also have the
benefit of more realistic conditions than the laboratory, as well as the
ability to test the effect of a range of drivers individually, or in com-
bination. They are expensive and logistically challenging to undertake,
so relatively few studies have been conducted. Hansson et al. (2013),
for example, undertook a study with larger-scale experimental units to
show that higher humic levels in water, combined with higher tem-
perature, promoted higher growth rates of the cyanobacterium, Mi-
crocystis, compared with temperature alone.

An enclosed experimental study of coastal rocky shores showed that
the combination of ocean acidification (elevated pCO,) and global
warming promoted benthic cyanobacteria over other species (Ullah
et al., 2018). These authors also found that cyanobacteria did not fuel
productivity of higher trophic levels, but rather promoted a detrital-
driven food web, possibly because cyanobacteria can be a poor quality
food source. Another study in larger-scale experimental units (55 m®) in
the Gulf of Finland found that the biomass of cyanobacteria cells > 5
um diameter was not significantly affected by elevated pCO,
(Bermtdez et al., 2016; Paul et al., 2016), but the biomass of the pi-
cocyanobacterium, Synechococcus was negatively affected (Crawfurd
et al., 2017).

Larger-scale experimental units have a range of benefits in pro-
moting understanding of the responses of cyanobacteria to global
change, but they also have limitations, such as the timing of the ex-
perimental period, dealing with top down factors in an effective way,
e.g. grazing, wall effects, and over time, dramatic deviations from the
‘real world’ if experiments are run for too long. Moreover, it is chal-
lenging to manipulate cyanobacterial densities and nutrient con-
centrations simultaneously in larger-scale experimental units, hindering
our understanding of cyanobacterial responses to different interacting
global change stressors. To create experimental cyanoHABs in these
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units, some researchers add cyanobacteria in nutrient-rich culture
media or have added nutrients to stimulate cyanobacterial growth,
thereby conflating the effects of the cyanobacteria and nutrients (e.g.,
Rondel et al., 2008). For some large colonial cyanobacteria, it is pos-
sible to manipulate colonies individually to disentangle the effects of
cyanobacteria on nutrient cycling (e.g., Engstrom-Ost et al., 2013;
Carey et al., 2014), but this approach is not possible for smaller taxa
and picocyanobacteria.

4. Ecosystem scale observations

Whole-system observations have played an important role in un-
derstanding how global changes, such as global warming, are affecting
seasonal patterns. For example, in higher latitude regions, lakes and
reservoirs have experienced earlier “ice off” and later “ice on” times
during the year, thereby expanding the “window of opportunity” for
blooms to form and persist (Stiiken et al., 2006; Peeters et al., 2007;
Suikkanen et al., 2007). Earlier warming of surface waters can also lead
to a more rapid onset of vertical-density stratification, known to favour
buoyant surface-dwelling cyanoHABs (Johnk et al., 2008; Paerl and
Huisman, 2008, 2009). The time of year that warming occurs can also
be critical (Winder and Sommer, 2012), with studies in large peri-alpine
lakes showing that cyanobacteria did not increase in abundance in
warmer summers, but rather in warmer autumn and winter periods
(Anneville et al., 2015). In some cases, lakes and reservoirs previously
exhibiting winter ice cover are now ice-free. These changes have greatly
altered the regional scales and magnitude of cyanoHABs (Wiedner
et al., 2007; Wagner and Adrian, 2009).

The relative role of multiple drivers of cyanoHABs is more difficult
to differentiate in ecosystem-scale studies (Glibert, this issue). How-
ever, in an analysis of 1000 lakes across the U.S., Rigosi et al. (2015)
found that nutrients were a more important driver of cyanoHABs than
temperature, but that the importance of the relative effects varied with
cyanobacterial taxon and lake trophic state. Complementing Rigosi’s
et al. (2015) study, a study of 143 lakes along a latitudinal gradient in
South America showed an interplay between temperature, light and
nutrients (Kosten et al., 2012). They found that the proportion of cya-
nobacteria, relative to other phytoplankton groups, rose steeply with
increased temperature, but lakes with high rates of light absorption also
have a higher percentage of cyanobacteria. Light limitation is often
driven by high algal biomass, which, in turn, is often driven by high
nutrient levels. These effects can feed back to increased water tem-
perature and enhance stratification, reinforcing the dominance of cya-
nobacteria (Kumagai et al., 2000). In some studies, the type of seasonal
lake mixing regime (polymictic vs monomictic) may even be regulated
by the biomass of phytoplankton (Shatwell et al., 2016).

Another symptom of a changing climate is increasing variability and
more extreme precipitation events. Storm events, including tropical
cyclones, seasonal windy periods, and summer thunderstorms, are re-
gionally becoming more extreme, and have higher amounts and in-
tensities of rainfall (Webster et al., 2005; IPCC, 2007, 2012; Allan and
Soden, 2008; Bender et al., 2010). Conversely, droughts are becoming
more severe and protracted (Trenberth, 2005). These events cause large
changes in hydrologic variability, i.e., wetter wet periods and drier dry
periods. This has led to more episodic discharge periods in which large
amounts of nutrients are captured and transported in runoff events
causing nutrient enrichment of receiving waters. If such events are
followed by periods of extended drought in which freshwater flow de-
creases dramatically and residence time of receiving waters increases,
conditions are more likely to favour cyanoHABs (Paerl et al., 2011).
This is particularly evident if storms are accompanied by warming,
since cyanobacteria typically have relatively slow growth rates com-
pared with eukaryotic algae at moderate temperatures (Butterwick
et al., 2005), but relatively higher growth rates in a warmer climate
(Paul, 2008; Paerl and Paul, 2012; Lehman et al., 2017). Another im-
portant positive effect of storms on cyanoHABs is increasing mixing at
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the sediment-water interface, which can both mobilize nutrients as well
as stimulate the recruitment of cyanobacteria with dormant resting
stages (e.g., benthic cells, akinetes) (Karlsson-Elfgren et al., 2004; Carey
et al., 2014).

Strong interannual climate variability has major impacts on the
succession of phytoplankton species, as demonstrated by Wood et al.
(2017a) in a shallow lake where cyanoHAB species proliferated. These
authors found that Microcystis blooms occurred when ammonium
concentrations and water temperature increased in a wet summer,
whereas nitrogen-fixing genera (Dolichospermum, Chrysosporum)
dominated in the following dry summer when there were low con-
centrations of dissolved inorganic nitrogen. The implications of this
study are that changes in the timing and duration of droughts and
runoff events from climate change are likely to affect the succession of
cyanoHAB species.

A valuable new tool for teasing apart species level responses and
gaining insights into community-wide physiological adaptation in field
studies is meta-transcriptomics; the sequencing of transcripts directly
from environmental RNA. In Lake Erie (Ohio, USA) this approach has
been coupled with field surveys, and experiments to provide new
knowledge on niche requirements of the three key bloom forming taxa
(Microcystis, Planktothrix, and Dolichospermum; Steffen et al., 2015;
Harke et al., 2016). Their data demonstrate the utilization of different
nutrient acquisition mechanisms among taxa (e.g. nitrogen fixation,
phosphorus scavenging) and defence strategies (e.g., viral defence,
protease inhibitors) that results in portioning in the abundance of the
taxa across the western basin of the lake. Meta-transcriptomic studies in
the Baltic Sea, northern Europe and Lake Taihu (China), highlight the
integral and important role that associated heterotrophic bacteria play
in regulating cyanobacterial blooms (Teikari et al., 2018; Chen et al.,
2018).

5. Looking back to predict the future

Understanding whether lakes have always experienced cyano-
bacterial blooms, and if recently reported bloom-forming species have
always been present but are now responding to environmental change,
is hampered by a lack of long-term datasets. Increasing knowledge on
the composition of cyanobacterial communities over long periods may
enable mechanisms of ecological change to be determined, and assist in
predicting future responses. Paleolimnology provides a useful approach
to study historic shifts in biological structure and functioning. The use
of environmental DNA (eDNA) in concert with recently developed
molecular tools now provides a means of identifying soft-bodied or-
ganisms (Domaizon et al., 2017).

Recent paleolimnological studies incorporating eDNA techniques,
and in some case pigments (zeaxanthin and echinenone are commonly
used for cyanobacteria), have provided new knowledge on how and
why cyanobacterial abundance and diversity is changing, e.g. Bianchi
et al. (2000). Pal et al. (2015) combined pigment and quantitative PCR
(targeting cyanobacterial specific 16S rRNA genes) analysis of cores
collected from five lakes in western Quebec (Canada). They found that
cyanobacterial abundances increased over the past 30 years in lakes
located in both protected conservation land and non-protected areas
with no significant differences between them. Based on this observa-
tion, the authors argue that factors other than land use change, such as
a warming climate, are likely responsible. A recent large-scale collation
of data from northern temperate subarctic lakes, based on sedimentary
pigments, revealed that cyanobacterial abundance has increased over
the past 200 years relative to other phytoplankton taxa (Taranu et al.,
2015). In contrast to the study of Pal et al. (2015), the authors suggest
nutrient concentrations were the primary driver of cyanobacteria in-
creases, with temperature changes having a secondary influence.

Monchamp et al. (2016) used high-throughput sequencing to ex-
plore cyanobacterial community structure over the last 200 years in
two perialpine lakes (Greifensee and Zurich, Switzerland). Changes in
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diversity were observed, and the microcystin synthetase gene mcyA was
amplified, confirming the presence of potentially toxic cyanobacterial
taxa over recent years in Greifensee and throughout the last century in
Lake Zurich. Sedimentary DNA has also been used to investigate: the
past distribution of potentially toxic Microcystis in Lake Erie USA,
(Rinta-Kanto et al., 2009); the presence of the saxitoxin-producing R.
raciborskii and sxtU gene (involved in saxitoxin biosynthesis) in a
subtropical lagoon in Uruguay (Martinez et al., 2017); and cyano-
bacterial communities shifts, including the presence of anatoxin-pro-
ducing Cuspidothrix issatschenkoi, over the last 150 years in a tempe-
rate lake in New Zealand (Wood et al., 2008).

Zastepa et al. (2017) worked on Baptiste Lake (Alberta, Canada) and
detected microcystins in sediments pre-dating any significant alteration
to the watershed, demonstrating that the presence of toxic cyano-
bacteria may not be a recent phenomenon in eutrophic ecosystems.
After 2000, concentrations of microcystins increased and were strongly
correlated with increases in nitrogen and phosphorus concentrations,
while there was no relationship with climate-related variables. Ap-
plying eDNA, pigment and cyanotoxin analysis to sediment cores col-
lected from a wide array of lakes globally, where both natural, an-
thropogenic and climatic stressors vary, has the potential to greatly
enhance knowledge on the long-term drivers of cyanobacteria and toxin
shifts, and assist in predicting future change.

Beyond studies in sediments, there are limited long-term studies of
changes in cyanoHAB abundance, however they can provide strong
evidence for global changes in bloom drivers. The brackish Baltic Sea is
an example of an ecosystem that has been exposed to elevated levels of
nutrient loading for decades, and it is difficult to separate these effects
from climate change effects on the dominant cyanoHAB species, N.
spumigena. However, in a compilation of a 35-year time series, Kahru
and Elmgren (2014) observed that the biomass accumulation period
occurred progressively earlier by ca. 0.6 days yearly (20 days over 35
years). The reasons could be several, however the period of the year
with sea surface temperatures of 17 °C or more has almost doubled from
1982 (29 days 1982, 56 days 2014; Kahru et al., 2016).

6. Gaps in knowledge - benthic cyanoHABs

Much of the focus on cyanoHABs has been on pelagic species which
impact drinking water supplies, e.g. Microcystis, Dolichospermum,
Raphiopsis. However, toxic benthic cyanoHABs appear to be increasing,
although they have received less attention. Under certain environ-
mental conditions these benthic cyanobacterial mats can proliferate and
cover extended areas of the substrate in streams, lakes and marine
environments (Scott and Marcarelli, 2012; Villeneuve et al., 2012).
While these mats occur naturally, they are increasingly prevalent in a
range of habitats, including wadeable rivers (Fetscher et al., 2015;
McAllister et al., 2016; Bouma-Gregson et al., 2018), lakes, especially in
littoral zones (Smith et al., 2012; Belykh et al., 2017), and coastal la-
goons (Stal et al., 1996; Méjean et al., 2010). The effects of climatic
change, such as warmer water temperatures and longer drought per-
iods, are predicted to favour the proliferation of benthic species in
many habitats (Quiblier et al., 2013; Echenique-Subiabre et al., 2015).
This includes polar regions where both increased temperature and
glacier meltwater ponds/streams provide an increasingly occurring,
creating favourable habitat for benthic cyanobacteria (Zakhia et al.,
2008). This has been observed on King George Island, Antarctica
(Komarek and Komarek, 2001). An increasing number of the taxa in
these mats are now known to produce cyanotoxins. Ingestion of toxic
mats has been associated with animal deaths, and there have been
numerous human health warnings (Quiblier et al., 2013; McAllister
et al., 2016).

Ideally, studies of cyanoHABs should focus across scales, from the
molecule to the ecosystem. An example of bridging these scales has
been used to investigate drivers of growth of anatoxin-producing
Microcoleus (previously Phormidium) blooms in wadeable streams in
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New Zealand. This has included molecular studies examining microbial
communities (Brasell et al., 2015), and abundances of genotypes (Wood
and Puddick, 2017), combined with culture-based laboratory studies
(Heath et al., 2016), field studies spanning a range of temporal and
spatial scales (Wood et al., 2017b; McAllister et al., 2018a), and ma-
nipulative larger-scale experimental studies (McAllister et al., 2018b).

Laboratory studies that encompass a greater diversity of species,
field studies that span longer time periods and greater spatial scales,
and larger-scale experimental studies are needed to address the short-
fall of information on benthic cyanoHABs. Experimental work needs to
be carefully planned to ensure that there are realistic simulations of the
interactions between cyanobacteria and their substrate (i.e. bottom
sediments from which nutrients are sourced), with the water column
interface, and with co-occurring prokaryotic and eukaryotic organisms
involved in succession and nutrient cycling (Bolhuis et al., 2013).

Further studies investigating the causes of benthic cyanobacterial
proliferations may ultimately lead to the development of models that
can be used to predict times of greatest risk, and also be used to
streamline monitoring regimes. For example, simple models based on
stream flow and time of year show promise for estimating benthic cy-
anobacteria cover in real-time at specific sites in rivers in New Zealand
(e.g., Thomson-Laing et al., 2018).

7. Predictions

As Niels Bohr once noted, “prediction is difficult, especially about
the future”. This may particularly apply to ecological studies of
cyanoHABs with their high levels of phenotypic plasticity and genetic
diversity. However, studies of population dynamics of cyanoHABs using
reductionist approaches in the laboratory and in microcosms, have been
useful for studying environmental influences on cyanoHAB dynamics.
The species traits measured in these studies can be implemented in
process-based mechanistic models, and the model predictions can
subsequently be tested using controlled monoculture and competition
experiments. There are many examples where models have been very
successful in predicting phytoplankton growth under nutrient-limited
conditions (Droop, 1973, 1974; Klausmeier et al., 2004), and these
models have provided the cornerstone for resource competition theory
(Tilman, 1982; Grover, 1997; Burson et al., 2018). Models and ex-
periments have since been extended to predict cyanobacterial growth
and competition under light-limited conditions, first treating light as
single resource (Huisman and Weissing, 1994; Huisman et al., 1999;
Litchman and Klausmeier, 2001; Passarge et al., 2006), and later taking
the full light spectrum into account (Stomp et al., 2004, 2007, 2008).
Furthermore, nitrogen fixation has been included (Agawin et al., 2007;
Hellweger et al., 2016) as well as carbon-limited conditions, to account
for predicted effects of rising CO» concentrations (Van de Waal et al.,
2011; Verspagen et al., 2014; Ji et al., 2017).

The results of these process-based studies provide a sound basis for
implementation of the mathematical models as modules in larger eco-
system simulation models of cyanobacterial blooms, such as PC-Lake
(Janse, 1997; Janssen et al., 2019), DYRESM-CAEDYM (Trolle et al.,
2012; Hamilton et al., 2014b), PROTECH (Reynolds et al., 2001; Elliott,
2010) and SCOBI (Filola et al., 2009; Hieronymus et al., 2018). For
nutrient and light limitation this has already been done, but most
ecosystem models do not yet include the full underwater light spectrum
or inorganic carbon chemistry, and in the upcoming years, advances
need to be made in these areas (Hipsey et al., 2015).

Although accurate prediction under controlled laboratory condi-
tions is feasible, it is much more difficult to accurately predict the de-
velopment of cyanobacterial blooms in lakes. Harris (1994) espoused a
goal that models should be able to produce “predictions of the species
composition of the phytoplankton community including the possibility
of toxicity”. Yet this goal has remained elusive for three main reasons.
First, although laboratory experiments typically use the simplifying
assumption that the cyanobacterial population is homogeneously
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mixed, in reality, cyanobacteria in lakes are not uniformly distributed
in the water column or benthos (Puddick et al., 2016). They are
transported by a variety of processes at different spatial and temporal
scales, including directional flows generated by currents, the more
random motion generated by turbulence, and the directed movement of
cyanobacteria by sinking and buoyancy of the cells and colonies (Ndong
et al., 2017). These transport processes need to be considered, for in-
stance to predict the accumulation of a Microcystis population as a
surface bloom at the leeward side of a lake (Huisman et al., 2004;
Hunter et al., 2008), or metalimnetic accumulations of Planktothrix
(Carraro et al., 2014).

Secondly, cyanobacteria are embedded in food webs in multiple
ways, as food for other organisms, as hosts for viruses and parasites, or
through the “microbial loop” (DeMott et al., 1991; Haraldsson et al.,
2018; Huisman et al., 2018). Hence, their proliferation can be affected
by a multitude of other species. Interactions between multiple species at
multiple trophic levels within the food web can lead to alternative
stable states in species composition, and complex nonlinear dynamics.
For instance, interactions with zooplankton and viruses can lead to a
dramatic collapse of a cyanobacterial population that can be succeeded
by the re-invasion of new species that are less edible or more resistant
to viral infection (Yoshida et al., 2008; Lemaire et al., 2012;
Gerphagnon et al., 2017). These highly dynamic phenomena create
limits on the forecast horizon for accurate predictions of the species
abundances in plankton communities (Beninca et al., 2008; Petchey
et al.,, 2015). Over short time scales, some of these effects can be
modelled, including how the virus-cyanoHAB host interactions may
theoretically result in population collapses, and interactions with
phosphorus and light-limited growth (Gons et al., 2006). Theoretical
predictions repeatedly emphasize, however, that cyanobacteria—phage
interactions rapidly alter biogeochemical cycles through processes such
as cell lysis, which propagate through to succession in the planktonic
community composition (Cairns et al., 2016). Similar rapid transfor-
mations have been demonstrated in a larger-scale experimental study
with a planktonic food web isolated from the Baltic Sea, where the
species abundances fluctuated strongly over several orders of magni-
tude for more than six years. It was estimated that the population dy-
namics of these species were only predictable for up to about 15-30
days in advance (Beninca et al., 2008).

Thirdly, natural ecosystems are exposed to variable environmental
conditions, which include both deterministic components, e.g. seasonal
cycle, and more stochastic weather events, e.g. day-to-day variability
and episodic events. The weather itself has a forecast horizon for suc-
cessful prediction of only about two weeks or so. Yet, the weather may
have a tremendous impact on cyanobacterial bloom development. For
instance, a prolonged warm period with little wind action will have a
very different effect on cyanobacterial blooms than a short summer
heatwave that ends in thunderstorms (cf., Paerl et al., 2016). Similarly,
droughts and floods drive different cyanoHAB assemblages (see Section
3.2). Again, this makes it difficult to forecast cyanoHABs far in advance.
Like the weather forecast, suitable early-warning systems for Cyano-
HABs will therefore require intensive monitoring of the plankton
community, nutrients and weather conditions at a sufficient spatial and
temporal resolution to update the model forecasts on a regular basis, by
means of data assimilation techniques (Dietze, 2017; Massoud et al.,
2018).

Data assimilation has found widespread application and use in
many fields of research, including hydrology, oceanography and sa-
tellite remote sensing (e.g., Lawson et al., 1996; Vrugt et al., 2005;
Seppala et al., 2007; Xiao and Friedrichs, 2014; Gehlen et al., 2015). In
particular, remote sensing studies, coupled with on-site monitoring
stations using a combination of traditional and modern measurements
(e.g., toxin genes, Bukowska et al.,, 2017; or phycocyanin sensors,
Bertone et al., 2018), may provide excellent tools to validate early-
warning systems for ecologically and economically important lakes.
This field is evolving rapidly with the recent advent of operational
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satellites (e.g. Envisat with MERIS sensor, Sentinel-3 (A and B) with
OLCI sensor) that have sensor detection wavebands aligned with the
phycocyanin absorption waveband around 625nm. In other cases,
airborne hyperspectral sensor measurements may even allow cyano-
bacteria to be distinguished at a genus level (Chrysosporum, Micro-
cystis) (Kudela et al., 2015). These approaches can interface with a
variety of predictive modelling methods, including data-driven tech-
niques of physically based numerical simulation (Lake Geneva, France/
Switzerland, Soulignac et al., 2018), or statistical tools using artificial
neural networks or evolutionary computational methods (Lake Kin-
neret, Israel, Recknagel et al., 2014; Lake Taihu, China, Zhang et al.,
2015), to provide high temporal and spatial resolution data suitable for
validate and improve these models.

Looking ahead, even if we cannot predict the actual weather for any
specific date beyond a two-week forecast horizon, we can predict the
expected average climate for the years 2040-2100. Likewise, we can
still predict the average probability of occurrence of cyanobacterial
blooms. A rich literature now exists documenting predictions from
numerical and statistical models of more intense and prolonged
cyanoHAB events in a future warmer climate (e.g., Howard and
Easthope, 2002; Elliott, 2012 Trolle et al., 2011; Rigosi et al., 2015;
Moe et al., 2016). For instance, an advanced cyanobacterial life cycle
model was combined with a coupled biological-physical model and the
projections of a regional climate model to predict cyanobacterial
abundances in the Baltic Sea (Hense et al., 2013). The model predicts
that the 30-year average of cyanobacterial biomass and nitrogen fixa-
tion will increase more than twofold from the years 1969-1998 to the
years 2069-2098. Furthermore, a recent study used climate change
projections from five global circulation models as input for a coupled
water quantity and quality model of USA lakes (Chapra et al., 2017).
This model predicts that the mean number of days with harmful cya-
nobacterial blooms in the USA will increase from about 7 days per year
per waterbody under current conditions to 18-39 days in 2090. How-
ever, nearly all of the above-mentioned models have deficiencies,
pointing to where future work is needed.

One deficiency in cyanoHAB models is that many well-known
physiological attributes of cyanoHAB species (see reviews by Carey
et al., 2012; O’Neil et al., 2012; Oliver et al., 2012) are likely to be
differentially impacted by interacting changes in temperature and
stratification. These interactions are not included in many of the eco-
system models used to predict cyanoHABs in a changing climate. While
much progress has been made with individual-based models of nitrogen
fixation (Hellweger et al., 2008), buoyancy regulation (Wallace et al.,
2000), and aggregation and disaggregation of colonial Microcystis at
different levels of turbulence (Ndong et al., 2017; Li et al., 2018), these
sub-models are generally not included in lake ecosystem models applied
to examine climate change impacts on cyanoHABs. As a result, we lack
the species-level numerical predictions that could be used to test our
theories of the dominant cyanoHAB species and successional sequences
we might expect with a changing climate (Dokulil and Teubner, 2000;
Carey et al., 2012).

A second limitation to our ability to predict climate change impacts
on cyanoHABs, is a lack of integration with catchment models, as
changes in discharge and contaminant loads may potentially have sy-
nergistic or antagonistic interactions with internal lake processes
(Hamilton et al., 2016). Recent exceptions include integrated coupled
climate-catchment-lake models (Soulignac et al., 2018), some of which
have been used to examine climate change impacts at the lake eco-
system scale (Me et al., 2018).

In summary, we will need process-based studies to further unravel
the myriad of physiological and ecological processes that may affect
cyanobacterial bloom dynamics, and incorporate the insights from
these process-based studies in larger ecosystem models. Furthermore,
we will need to embrace data assimilation techniques to fuse inputs
from high-resolution monitoring stations into ecosystem models, with
the aim to advance early-warning systems for the short-term prediction
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of cyanobacterial blooms over time spans of weeks. Last, but not least,
we will need linkages between climate models, socio-economic sce-
narios and ecosystem models to predict expected long-term changes in
cyanoHABs phenology under different scenarios of global change.

8. Global multi-system initiatives

Given the severity of increasing cyanoHABs in many regions glob-
ally, it is critical that an “all hands on deck” approach is used to address
this problem. In particular, we advocate for increased collaboration
among different research disciplines, stakeholder groups, managers,
and policy- and decision-makers to advance cyanobacterial research,
management and long-term control. CyanoHABs provide an ideal cat-
alyst for collaboration between theoretical and applied researchers
across many different fields. For example, the knowledge that mole-
cular biologists, physiologists, and biochemists gain from studying cy-
anobacteria in the laboratory is needed to interpret the information
collected by ecologists in the field and vice versa. Similarly, the need for
modelers to simulate the effects of potential treatment measures (e.g.,
Huisman et al., 2018) can provide critical information for guiding im-
plementation by managers on the ground, thereby also driving the re-
search agenda for modelers.

In addition to engineering and the natural sciences, researchers
from the social sciences, political science, and economics provide va-
luable perspectives needed to understand and manage blooms within a
coupled natural-human system (Van Dolah et al., 2016; Cobourn et al.,
2018). For example, studying the physiology and ecology of bloom-
forming taxa can guide how utilities and managers should best extract
water for drinking. In turn, studying policy interventions and economic
incentives for catchment (= watershed) remediation to decrease cya-
noHAB blooms can help prioritize field monitoring and management
efforts.

In addition to integration of the workforce of cyanoHAB researchers
working across disciplines, changing the way cyanobacterial research is
conducted will also advance the field. The development of grassroots
efforts to collect and share data has already improved understanding of
cyanobacterial dynamics across many freshwater ecosystems. Two no-
table examples are the Global Lake Ecological Observatory Network
(GLEON) and the European Multi-Lake Survey (EMLS). GLEON is a
grassroots organization of ecologists, engineers, computer scientists and
limnologists working together to advance understanding of how lakes
respond to human activities and global change by deploying sensored
platforms in waterbodies around the world (Weathers et al., 2013;
Hamilton et al., 2014b). GLEON researchers are synthesizing datasets to
study the vertical distribution of cyanobacteria and other phyto-
plankton (Brentrup et al., 2016), identify the drivers of sub-surface
blooms (Leach et al., 2018), and use sensor data to drive phytoplankton
bloom models (e.g., Hamilton et al., 2014b; Page et al., 2017).

Similarly, the EMLS is a collaborative effort by researchers in 26
European countries to sample 369 lakes to determine the drivers of
cyanobacterial bloom formation across Europe (Mantzouki et al., 2018;
Mantzouki and Ibelings, 2018). To date, data from the EMLS suggest
that temperature is the main driver of the spatial distribution in cya-
nobacterial toxins across Europe. These grassroots efforts complement
ongoing centralized monitoring led by federal agencies and other re-
search programs.

Researchers are also trying to bridge the divide between the study of
eukaryotic HABs and cyanoHABs in marine, brackish and freshwater,
and between researchers and policymakers, with the global initiative,
GlobalHAB (www.globalhab.info/). This program is promoting inter-
national research, observations and modelling of harmful algal blooms
in aquatic systems by sharing information globally via workshops,
conferences and other communication means (GlobalHAB, 2017).

The proliferation of community-based science integrating data col-
lected by many researchers, as well as citizen scientists, has much to
promise for improving understanding of cyanobacterial blooms.
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Tapping into citizen scientist datasets, collected via mobile phone apps,
such as LakeObserver (lakeobserver.org), provides the opportunity to
collect cyanobacterial data on temporal and spatial scales previously
impossible for traditional research programs. Integrating these diverse
datasets into models using data-fusion approaches, such as those now
increasingly used by the terrestrial research community (e.g., LeBauer
et al., 2013; Thomas et al., 2017) will provide new information on the
distribution and ecology of blooms. This is critical to our ability to
predict and manage blooms into the future, as they continue to have
social, environmental and economic impacts.

9. Summary

Small and large scale experiments and observations to examine re-
sponses of cyanoHABs to globally changing environmental parameters
all have a key role to play in research on global change and cyanoHABs,
depending on the specific research question/s or hypotheses being
tested (Table 1). Additionally, all approaches have limitations, and it is
likely that the greatest insights will come from a combination of ap-
proaches, techniques, species/strains and testing of environmental
factors across the freshwater to marine continuum. Such integration
should be combined with: increased sharing of data by interdisciplinary
(e.g., from genetics to environmental policy), cross-system, (i.e. wa-
tershed to receiving waters), international teams of researchers; the
development of new mechanisms for collaboration; and the integration
of diverse datasets across different scales (e.g., from the laboratory to
the field), to advance the research agenda for improving understanding
of cyanoHABs in a future of global change.
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