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A P P L I E D  P H Y S I C S

Experimental demonstration of acoustic semimetal 
with topologically charged nodal surface
Meng Xiao1,2*, Liping Ye2*, Chunyin Qiu2†, Hailong He2, Zhengyou Liu2,3†, Shanhui Fan1†

Weyl points are zero-dimensional band degeneracy in three-dimensional momentum space that has nonzero topo-
logical charges. The presence of the topological charges protects the degeneracy points against perturbations 
and enables a variety of fascinating phenomena. It is so far unclear whether such charged objects can occur in 
higher dimensions. Here, we introduce the concept of charged nodal surface, a two-dimensional band degeneracy 
surface in momentum space that is topologically charged. We provide an effective Hamiltonian for this charged 
nodal surface and show that such a Hamiltonian can be implemented in a tight-binding model. This is followed by 
an experimental realization in a phononic crystal. The measured topologically protected surface arc state of such 
an acoustic semimetal reproduces excellently the full-wave simulations. Creating high-dimensional charged geo-
metric objects in momentum space promises a broad range of unexplored topological physics.

INTRODUCTION
The study of topologically nontrivial states of matter has been at-
tracting intensive interest in condensed matter physics as well as in 
optics and acoustics. Notable accomplishments include the discovery 
of the two-dimensional (2D) quantum spin Hall effect (1, 2) and, 
more recently, topological gapless semimetals (3). For 3D topological 
semimetals, the band degeneracy can occur at a point, line, or sur-
face, as in Weyl semimetals and Dirac semimetals (4–21), nodal line 
semimetals (22–24), and nodal surface semimetals (25, 26), respec-
tively. While a Weyl point is topologically charged in that it carries 
a nonzero quantized total Berry flux, nodal lines and surfaces them-
selves do not carry nonzero ℤ charge of Berry flux in all previous 
works (22–26). Exploring higher-dimensional topologically charged 
band degeneracy not only enriches the family of topological semi-
metals but may also enable the controlling of topological charges 
in a more flexible way and, hence, change the manifestations of 
associated phenomena, such as the chiral anomaly and negative 
magnetoresistance (27).

Here, we report the existence of a topologically charged nodal 
surface—a 2D band degeneracy in momentum space that carries 
nonzero total Berry flux. We first show that such a charged nodal 
surface exists in a tight-binding model. Motivated by the tight-binding 
model, we have designed a 3D airborne phononic crystal exhibiting 
twofold screw symmetry and experimentally revealed the existence 
of charged nodal surfaces through measuring the topological sur-
face states. Substantial different from Weyl semimetals where the 
Fermi arcs (i.e., cut of the topological surface states at the Fermi 
energy) are pinned to Weyl points, here the ends of the surface state 
arcs depend sensitively on the surface truncation of the acoustic 
semimetal and thus provide a unique way to engineer the surface 
state arcs. Our result indicates that in the band theory, topologically 
charged objects are not restricted to zero dimension like Weyl 

points, and thus pointing to previously unexplored opportunities 
for the design of topological materials.

RESULTS
Model Hamiltonian of the charged nodal surface
In a 3D system, the total Berry flux through any closed surface is 
quantized and defines the first Chern number of the closed surface. 
When the Chern number is nonzero, there must be band degeneracy 
that carries the charge of Berry flux for a system with time reversal 
symmetry. Weyl points (4) are one class of such band degeneracy 
points with nonzero Berry charges. A simple Hamiltonian of the 
Weyl point with charge +1 can be written as

	​​ H ̂ ​  = ​ q​ x​​ ​σ​ x​​ + ​q​ y​​ ​σ​ y​​ + ​q​ z​​ ​σ​ z​​​	 (1)

where qx, qy, and qz are three wave vector components measured 
from the Weyl point, and x, y, and z are Pauli matrices. Figure 1A 
illustrates the Berry flux density emitted by the Weyl point, with a 
total Berry flux of 2.

However, Weyl points are not the only kind of topologically 
charged geometric objects in momentum space. Here, we introduce 
a nodal surface that also carries a nonzero charge. A simple Hamil-
tonian of the charged nodal surface (with charge +1) is given by

	​​ H ̂ ​  = ​ q​ z​​(​q​ x​​ ​σ​ x​​ + ​q​ y​​ ​σ​ y​​ ) + ​q​ z​​ ​σ​ z​​​	 (2)

The eigenvalues of the effective Hamiltonian, ​​E​ ±​​  =  ± ​q​ z​​ ​√ 
_

 1 + ​q​​ 2 ​ ​​ 
(with ​​q​ ​​  = ​ √ 

_
 ​q​x​ 2​ + ​q​y​ 2​ ​​), are degenerate at qz = 0 and change linearly 

with qz when away from the nodal surface, indicating the presence 
of a nodal surface (25, 26). The subscripts “+” and “−” correspond 
to the upper and lower bands, respectively. Analytically, the Hamil-
tonian in Eq. 2 gives rise to the Berry flux distribution of the nodal 
surface

	​​ B​ ±​​ = ∓ ​  1 ─ 
2 ​(1 + ​q​ρ​ 2​)​​ 

3/2
​
 ​ ​   z ​​	 (3)

which emits a Berry flux of 2 in total. As illustrated in Fig. 1B, now 
the Berry flux concentrates around q = 0 and decays quickly away 
from it. In contrast, the Berry flux of a Weyl point originates from a 
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singular point (the Weyl point) (Fig. 1A), even though they both 
have the same charge of Berry flux. Nodal surfaces can also have 
other integer charges of Berry flux, i.e., they belong to ℤ classifica-
tion, as discussed in detail in section S1. Note that for a general form 
of the charged nodal surface, the Berry flux is no longer limited to 
the z direction as in Eq. 3.

Tight-binding model
The Hamiltonian of Eq. 2 can be embedded in a simple tight-binding 
model. The realizations of nodal surfaces protected by different 
symmetries have been theoretically discussed in very recent works 
(24–26). None of these works, however, showed a nodal surface that 
carries a nonzero ℤ charge of Berry flux. Here, we consider a system 
exhibiting both time reversal symmetry ​T​ and a twofold screw 
symmetry along the z direction ​​​C ˜ ​​ 2z​​​. We define a compound anti-
unitary symmetry operator ​​G​ 2z​​  ≡  T ​​C ˜ ​​ 2z​​​, which, in real space, 
acts as

	​​ G​ 2z​​ : (x, y, z, t) ↦ (− x, − y, z + h / 2, − t)​	 (4)

Here, h represents the lattice constant along the z direction. It is 
easy to check that ​​G​2z​ 

2 ​  =  − 1​ for a Bloch wave function on the kz = /h 
plane with arbitrary kx and ky, where kx, ky, and kz are the wave vec-
tors along the x, y, and z directions, respectively. Therefore, kz = /h 
forms a nodal surface due to a Kramers degeneracy on this surface 
(26). We emphasize here that nodal surface being protected by G2z 

is a symmetry argument only and does not depend on the detailed 
form of the Hamiltonian. To further construct a charged nodal surface, 
one has to break either the inversion symmetry or time reversal 
symmetry or both to achieve a nonzero Berry flux (28). Therefore, 
the idea to construct a charged nodal surface is to consider a system 
with G2z symmetry and properly break inversion or time reversal 
symmetry to get the nodal surface charged. In this work, we imple-
ment inversion symmetry breaking.

Figure 1C shows a simple tight-binding model with G2z symme-
try. Two sublattices (red and blue spheres) are located on the z = 0 
and z = h/2 planes. When projected to the x-y plane, the two sublat-
tices are respectively projected to the A and B sites of a hexagonal 
lattice with a lattice constant a. There is a coupling tc (cyan bond) 
between neighboring A (or B) sites and a coupling t0 (black bond) 
between neighboring A and B sites. Both tc and t0 are real, as re-
quired by time reversal symmetry. In addition, this system exhibits 
G2z symmetry and breaks inversion symmetry. According to the 
above analysis, this tight-binding model should have a nodal sur-
face at kz = /h. This is confirmed by the calculated band structure 
(see section S2).

In addition to the nodal surface, we also note the existence of 
Weyl points at the K and K′ points of the bulk Brillouin zone. The 
charges of these two Weyl points are identical due to time reversal 
symmetry. Since the total charges inside the Brillouin zone must 
vanish (29), the charges of Weyl points must be compensated by the 
charge of the nodal surface, as these points and the nodal surface are 
the only band-degenerate features in the Brillouin zone. Hence, we 
conclude that the nodal surface here should also be charged. This has 
been directly verified by calculating the Chern number (see section S2). 
The charge distribution of this tight-binding model with tc = −0.1 
and t0 = −0.6 is shown schematically in Fig. 1D, where the orange 
spheres and the cyan surface label the Weyl points and nodal 
surface with charges +1 and −2, respectively. As mentioned above, 
the Berry flux of a nodal surface actually concentrates around 
some special points in the momentum space (Fig. 1B). In this 
tight-binding model, the Berry flux of the nodal surface can be 
well captured by two charge −1 nodal surface Hamiltonians located 
at H ≡ (4/3a,0, /h) and H′ ≡ (−4/3a,0, /h), respectively. To see 
this point, we expand the Hamiltonian near H and H′ with respect 
to qx, qy, and qz, and keeping to the lowest order, the Hamiltonian 
becomes

	​​ H ̂ ​  =  3​t​ c​​ I + ​ ​√ 
_

 3 ​ ─ 2 ​  [ ​aht​ 0​​ ​q​ z​​ (± ​q​ x​​ ​σ​ x​​ − ​q​ y​​ ​σ​ y​​ ) ∓ 6​ht​ c​​ ​q​ z​​ ​σ​ z​​]​	 (5)

where (qx, qy, qz) represent the wave vector measured from H or 
H′, I is the 2 × 2 identity matrix, and the upper and lower signs 
represent the Hamiltonian near H and H′ points, respectively. 
Equations 5 and 2 share a similar form up to some constants and a 
unit matrix. We, hence, conclude that the total charge of the nodal 
surface is 2 sgn (tc), which is independent of t0. It is worth pointing 
out that for a more general system beyond the above tight-binding 
model, G2z symmetry only protects the presence of a nodal surface 
at kzh =  and does not guarantee the existence of nonzero charge. 
In section S3, we demonstrate a topological phase transition, where 
a nodal surface changes its charge by emitting or absorbing an integer 
number of Weyl points, through controlling the strength of the next 
nearest layer couplings. We also note that the nodal surface is stably 
charged before this topological transition, provided that G2z sym-
metry is preserved.

x

z

y

B

DC

A

kz

ky kx
Fig. 1. Charged nodal surface and a tight-binding model realization. (A) Berry 
flux density distributions of a Weyl point. (B) The same as (A) but for a charged 
nodal surface. The orange sphere and transparent red plane indicate the Weyl 
point and nodal surface, respectively. The arrows represent the orientation and 
amplitude of the Berry flux density. (C) Sketch of the tight-binding model. Each unit 
cell consists of two sublattices (color spheres). Their projections onto the x-y plane 
form a hexagonal lattice with a lattice constant a. The lattice constant along the 
z direction is h, and the red and blue spheres are located on the planes z = nh and 
z = (n + 1/2)h, respectively, with n being an integer. The cyan and black bonds 
represent hopping between different sites, associated with hopping strengths tc and t0, 
respectively. This model exhibits ​​​C ˜ ​​ 2z​​​ symmetry with broken inversion symmetry. 
(D) The first Brillouin zone and its projection onto the kx-kz plane. The orange 
spheres represent Weyl points with topological charges +1, and the cyan surfaces 
at kz = ± /h represent the nodal surfaces with charges −2.
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Acoustic semimetal with a charged nodal surface
The tight-binding model can be implemented directly in a physical 
structure, as we have shown in (30). We note that the charged nodal 
surface is not limited to the tight-binding model. To simplify the 
experimental demonstration, below we show that a suitably de-
signed 3D phononic crystal can host a charged nodal surface. 
Figure 2A shows the unit cell geometry of this phononic crystal, in 
which the solid ingredient (colored) is designed fully connected for 
the convenience of practical sample fabrication. The phononic crystal 
is arranged by a hexagonal lattice in the x-y plane and has a spatial 
symmetry ​​​C ˜ ​​ 2z​​​ as required. In particular, the slanted cyan cylinders 
are used to break the inversion symmetry. Figure 2B presents the 
bulk band structure of the crystal along several high symmetry di-
rections of the reciprocal space (see Fig. 1D). We focus on the lowest 
two bands. As expected, double degeneracy emerges in the whole 
momentum surface kz = /h, of which the degenerate bands split 
linearly (e.g., see ‐A direction). The degenerate bands are very 
flat, which spans from 9.75 to 9.79 kHz. Similar to the tight-binding 
model, in addition to the nodal surface, a node point of frequency 
9.43 kHz is observed at K (K′) point, around which the dispersion 
curves are linear in all directions. Our further calculations confirm 
that the charge distributions of the Weyl points and the nodal sur-
face are the same as the above tight-binding model (as labeled in 
Fig. 1D). The lowest two bands are isolated from higher ones, which 
facilitate the experimental detection of the topologically nontrivial 
surface states. To further confirm the topological nature of the nod-
al surface, we consider a phononic crystal slab of finite thickness 
along the y direction and calculate the in-plane dispersions for the 
slab surfaces XZ1 and XZ2 imposed with rigid boundary conditions. 
The detailed surface truncations are specified in Fig. 2C (right panel). 
As exemplified by the momentum kz = 0.5/h, the in-plane disper-
sion of the slab (Fig. 2C, left panel) exhibits one gapless one-way 
edge mode for each of the XZ1 and XZ2 surfaces. As there is no 
other band degeneracy except for the Weyl point and the nodal sur-
face, the existence of topological edge states justifies the nontrivial 
topology of the nodal surface.

Experimental demonstrations
The topologically nontrivial surface states are confirmed in our air-
borne sound experiments. Figure 3A shows the experimental setup. 

The phononic crystal slab has been fabricated precisely by 3D print-
ing technique. Additional hard cover plates are integrated on the 
XZ1 and XZ2 surfaces to emulate the rigid boundary conditions 
involved in our full-wave simulations. Note that the XZ1 and XZ2 
surfaces cannot be related by the spatial symmetry and thus offer 
two comparative surface dispersions measured from a single sample. 
To excite and detect the pressure distribution on a given surface, a 
rectangular lattice of circular holes has been perforated through the 
cover plate. A point-like sound source is positioned at the bottom 
left corner of the sample surface (see Materials and Methods), which 
excite mostly the states propagating toward the top and right. This 
treatment gives a relatively long distance of sound propagation and 
relaxes the finite size effect to some extent. During our measure-
ment, all the holes on the substrate are sealed except for the one re-
served for the sound probe. By Fourier transforming the measured 
surface field, we can map out the in-plane dispersion at any desired 
frequency. Figure 3B shows the dispersions for the XZ1 surface, 
measured at the frequencies of Weyl point (9.43 kHz, left panel) and 
nodal surface (9.75 kHz, right panel). In addition to the projected 
bulk bands (gray regions), the measured surface arcs (bright color), 
on which the surface acoustic states carry specific propagation 
directions (labeled by arrows), agree well with those simulation 
results (white curves) for both frequencies. The band broadening 
comes from the finite size effect. Similar agreements are also ob-
served in Fig. 3C for the XZ2 surface. Note that this new surface 
allows the presence of some additional topologically trivial surface 
states (black curves) near the surface Brillouin zone boundary kz = /h. 
Comparing Fig. 3B with Fig. 3C, both the topological surface arcs 
start from the projection of Weyl point at 9.43 kHz but end by 
apparently different momenta at the nodal surface frequency 9.75 kHz. 
This points out a major difference from Weyl semimetals, wherein 
the Fermi arcs are always pinned at the projection of the Weyl 
points independent of the boundary condition. In contrast, the Fermi 
arcs in our system connect the projections of the Weyl points and 
the nodal surface. The end point of the Fermi arc on the nodal 
surface can shift depending on the boundary condition. Last, in 
Fig. 3D, we present the measured frequency dispersions for kz = 0.5/h 
in the bulk gap, which reproduce well the numerical data for both 
surfaces again and demonstrate the one-way property of these chiral 
edge states (10, 14).
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Fig. 2. A 3D phononic crystal designed with a charged nodal surface. (A) Unit cell geometry of the phononic crystal. The solid ingredient (colored) is acoustically rigid 
for airborne sound. The structure parameters are a = 16.0  mm, h = 2u = 9.6  mm, r = 5.0  mm, d = 4.8 mm, and w = 2.2  mm. (B) Bulk band structure simulated along several 
high symmetry directions of the first Brillouin zone. (C) Left: Gapless surface dispersions (color lines) for a phononic slab periodic in the x-z plane but finite along the 
y direction (see the right), simulated at a fixed kz = 0.5/h. The shadow regions are projected from the bulk bands. Right: Schematic view of the phononic crystal slab 
specified with truncation details for both the surfaces XZ1 and XZ2, where l1 = (d + w)/2 and ​​l​ 3​​  =  a / 2 ​√ 

_
 3 ​​. Note that ​​l​ 2​​  =  5 ​√ 

_
 3 ​ a​, and thus, the slab has a thickness more than 

five structural periods along the y direction.
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DISCUSSION
In summary, this work has introduced the concept of charged nodal 
surface, a new type of geometric object in momentum space that 
carries ℤ charge of Berry flux. The consequent topologically pro-
tected surface states have been experimentally demonstrated by a 
3D acoustic semimetal that works for audible airborne sound. Con-
nected but distinct from our work, previous works have shown the 
existence of ℤ2 (22, 31, 32), ℤ2 ⊕ 2ℤ, or ℤ2 ⊕ ℤ2 (24) charges for 
nodal line or nodal surface, but these charges are different from 
the ℤ charge of Berry flux we report here. The charged nodal sur-
face discussed in our acoustic semimetal can also be realized in 
electronic and electromagnetic systems as well. Moreover, our work 
also indicates the possibility of a charged nodal line and points 
to abundant unexplored features of phenomena associated with 
the topological charges such as chiral anomaly and negative magneto
resistance (27).

Note added: When this work is under review, we become aware 
of a few interesting works discussing nodal surface in the electronic 
systems (33–35).

MATERIALS AND METHODS
Simulations
All simulations were implemented by a commercial solver package 
(COMSOL Multiphysics). The photosensitive resin used for 3D 
printing was modeled as acoustically rigid, considering its huge im-
pedance contrast to the air background. The sound speed in air was 
taken as 340 m/s for room temperature 15°C. The 3D bulk band 
structure (Fig. 2B) was simulated by imposing Bloch boundary con-
ditions in all directions. To calculate the kz-fixed surface dispersions 
for a phononic crystal slab of finite thickness (Fig. 2C), rigid bound-
ary conditions were used for its XZ1 and XZ2 surfaces, whereas 
Bloch boundary condition was applied to the x and z directions. 
The thickness of the phononic crystal slab and its detailed surface 
truncations were specified in Fig. 2C. In addition to the projected 
bulk bands, surface bands were attained for both the surfaces simul-
taneously, which can be distinguished from bulk bands by examining 
the field distributions. Similarly, the equifrequency contours of the 
surface acoustic states (Fig. 3, B and C) were extracted by scanning 
the whole surface Brillouin zone.
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Fig. 3. Experimental detection of the topological surface states. (A) An image of the experimental setup. The insets give the details for the cover plate with holes 
opened (top) or sealed (bottom). The plugs that seal the holes will be removed one by one during the measurement. Photo credit: Liping Ye, Key Laboratory of Artificial 
Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University. (B) The measured in-plane dispersions (bright color) for the 
XZ1 surface, in good agreement with the simulated surface arcs (white curves) and bulk band projections (gray regions). The orange spheres label the projected Weyl 
points K and K′, and the arrows indicate the main propagating directions of the surface acoustic waves. Note that 9.43 kHz corresponds to the Weyl point frequency, and 
9.75 kHz falls into the frequency range of the nodal surface. Since the (bulk) nodal surface bands are flat, their projections are narrow for 9.75 kHz. (C) The same as (B) but 
measured for the XZ2 surface. Trivial surface states (black curves) appear in this case. (D) Experimentally measured surface dispersions (bright color) at kz = 0.5/h for the 
sample surfaces XZ1 and XZ2, which reproduce excellently the simulation results (white curves).
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Experiments
Our experiment was performed for airborne sound at audible fre-
quency. The controllable structure design and the less demanding 
signal detection enabled our macroscopic system to be an excep-
tional platform to probe the topological effect. The experimental 
sample, fabricated precisely by 3D printing technique, had sizes of 
416.0, 146.7, and 240.0 mm along the x, y, and z directions, respec-
tively. The covering substrate had a thickness of 2.0 mm. To excite 
the surface arc states, a broadband point–like sound source, launched 
from a tube with radius ~3.5 mm, was inserted inside a hole near the 
bottom left of the sample (Fig. 3A). (The sound source was posi-
tioned according to the group velocity information through calcu-
lating the equifrequency contours of the topologically nontrivial 
surface acoustic states. It was confirmed that if the source was located 
at the top right of the sample, the surface arc states propagating 
toward the lower left direction would be excited, which serves as a 
measurement of the complementary surface arcs exhibited in Fig. 3.) 
The localized surface field was detected hole by hole through a 
portable microphone with radius ~3.5 mm (B&K Type 4187). The 
scanning steps were 8.0 and 9.6 mm along the x and z directions, 
respectively. The amplitude and phase information of the pressure 
field was recorded by a multi-analyzer system (B&K Type 3560B). The 
2D Fourier transformation was performed for the measured pressure 
field to map out the surface dispersions (Fig. 3, B and C) at a given 
frequency. This further gave the experimental frequency spectra for 
any fixed kz (Fig. 3D).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
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