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We show that a momentum-space meron spin texture for electromagnetic fields in free space can be

generated by controlling the interaction of light with a photonic crystal slab having a nonzero Berry

curvature. These spin textures in momentum space have not been previously noted either in electronic or

photonic systems. Breaking the inversion symmetry of a honeycomb photonic crystal gaps out the Dirac

cones at the corners of Brillouin zone. The pseudospin textures of photonic bands near the gaps exhibit a

meron or antimeron. Unlike the electronic systems, the pseudospin texture of the photonic modes manifests

directly in the spin (polarization) texture of the leakage radiation, as the Dirac points can be above the light

line. Such a spin texture provides a direct approach to visualize the local Berry curvature. Our work

highlights the significant opportunities of using photonic structures for the exploration of topological spin

textures, with potential applications towards topologically robust ways to manipulate polarizations and

other modal characteristics of light.

DOI: 10.1103/PhysRevLett.124.106103

Spin textures, the spin configuration in either real or

momentum space, are of great interest in several subfields

of physics. Skyrmion-related objects, including skyrmions,

anti-skyrmions, merons, and antimerons are topologically

nontrivial spin textures. These textures have been exten-

sively studied in various atomic and electronic systems

such as Quantum Hall 2D electron gas, Bose-Einstein

condensates, nematic liquid crystals, and chiral magnets

[1–7]. Antiskymions were discovered in tetragonal Heusler

materials [8], while merons and antimerons in real space

were discovered in chiral magnet thin film [9].

Since photons are massless spin-1 particles, skyrmion-

related objects can also emerge as spin textures of photons

[10,11]. Real space skyrmions have been observed recently

in surface plasmon polariton systems [11]. But there has

not been any report of anti-skyrmions, merons, and anti-

merons in optics. In this Letter, using the honeycomb

photonic crystal slab structure as shown in Fig. 1(a), we

report meron and antimeron in momentum space. The

existence of such objects has not been previously noted

either in electronic or photonic systems. The observation of

such spin textures may point to topologically robust ways

to manipulate polarizations of light.

Skyrmion-related objects correspond to topologically

nontrivial configurations of a three-component unit

vector field n ¼ nxx̂þ nyŷþ nzẑ distributed over a disk

in a two-dimensional space with coordinates ðx; yÞ [12,13].
They are all characterized by the topological skyrmion

number

Q ¼ 1

4π

Z

nð∂xn × ∂ynÞdxdy: ð1Þ

The unit vector fields form a two-sphere S2. For skyrmions
and antiskyrmions, one considers configurations where
n ¼ ẑ at the center of the disk, and n ¼ −ẑ at its edge.
(This is referred to as the “core-up” configuration.) Since
the fields n are the same at the edge, one can compactify the
edge to a single point to form a sphere. These field

configurations thus correspond to maps of S2 → S2, which

(a) (b) (c)

FIG. 1. (a) A photonic crystal slab with a honeycomb lattice of

circular air holes. The dielectric constant of the slab ϵ ¼ 4. The

thickness of the slab is d ¼ 0.25a, where a is the lattice constant.

The lower right shows the Brillouin zone. The wave vector q ¼
ðqx; qyÞ measured from K and K0 are defined individually so that

qy axis points towards Γ. (b) The band structure near KðK0Þ. The
two bands form a Dirac cone when dA ¼ dB ¼ 0.22a (black

dotted lines), while the degeneracy is lifted when dA ¼ 0.18a,
dB ¼ 0.26a (red). The blue dashed lines plot the fit from the

effective Hamiltonian. (c) Pseudospin textures: core-up (down)

meron for the lower (upper) band near K, and core-down (up)

meron for the lower (upper) band near K0.

PHYSICAL REVIEW LETTERS 124, 106103 (2020)

0031-9007=20=124(10)=106103(6) 106103-1 © 2020 American Physical Society



are characterized by the second homotopy group of the

sphere π2ðS2Þ ¼ Z, with an integer topological number Q
characterizing topologically distinct ways that the unit
vectors wrap around the sphere. Q ¼ þ1 and −1 for
skyrmions and antiskyrmions, respectively, for core-up
configurations as discussed above. For core-down configu-
rations, the signs are flipped, i.e., Q ¼ −1 and þ1 for
skyrmions and antiskyrmions, respectively.

For merons and antimerons, one considers configura-

tions where n ¼ ẑ at the disk center, n⊥ẑ at its edge, and

nz ≥ 0 over the whole disk. These field configurations

correspond to maps of the disk to the upper hemisphere,

with the disk edge imaged to the equator. With the

following map:

n ¼ ðnx; ny; nzÞ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ →;

m ¼ ð2nxnz; 2nynz; 2n2z − 1Þ ¼ ðsin 2θ cosϕ; sin 2θ sinϕ; cos 2θÞ; ð2Þ

which maps a hemisphere to a sphere with 0 ≤ θ ≤ π=2,
0 ≤ ϕ ≤ 2π, all the points on the equator of the hemisphere

are mapped to the south pole of the sphere. Applying this

map to the meron or antimeron configuration results in a

field configuration with m ¼ −ẑ on the edge of the disk.

One can then repeat the same compactification process as

the skyrmion case, and obtain an integer Qm as the

topological number for m. Since the continuous map from

the n field to them field doubles the solid angle subtended,

we have Qm ¼ 2Q. Therefore, merons and antimerons are

characterized by half-integer skyrmion numbers: Q ¼
þ1=2 and −1=2 for core-up merons and antimerons,

respectively; the signs are flipped for core-down merons

and antimerons [14].

In addition to the topological number Q, skyrmion-

related objects are further characterized by their polarity p
and vorticity w. p ¼ 1 for n ¼ ẑ and p ¼ −1 for n ¼ −ẑ at
the center [15]. The vorticity w indicates the rotation

direction of the in-plane components of n. Along a

counterclockwise loop around the center, for a given w,
the in-plane components rotate an angle of 2πw counter-

clockwise. Skyrmions and merons have w ¼ 1; antiskyr-

mions and antimerons have w ¼ −1.

Skyrmion-related objects can also emerge as spin tex-

tures of photons which are massless spin-1 particles

[10,11]. Consider a polarization state as characterized by

a 2 × 2 density matrix ρ, with the basis being the right and

left circularly polarized states jRCPi and jLCPi. The

Stokes parameters are defined as Si ¼ TrðρσiÞ where

σ0 ¼ I; σ1 ¼ σx, σ2 ¼ σy, σ3 ¼ σz are the Pauli spin

matrices [16,17]. For a pure polarization state jψi,
S2
0
¼ S2

1
þ S2

2
þ S2

3
, thus its polarization is completely

characterized by a three-component unit vector, also

denoted as n:

n ¼ ðnx; ny; nzÞ≡ ðS1=S0; S2=S0; S3=S0Þ: ð3Þ

All ns form a unit two-sphere known as Poincaré sphere.

The Poincaré sphere of massless spin-1 photon is identical

to the Bloch sphere of spin-1
2
electron [18].

Here using photonic systems we show meron and

antimeron spin textures in momentum space. We consider

a photonic crystal slab consisting of a honeycomb lattice of

circular air holes, where the holes at the two inequivalent

sublattice sites are of different sizes [Fig. 1(a)]. For

concreteness, the dielectric constant of the slab is ϵ ¼ 4,

which approximates the dielectric constant of SiN at visible

wavelengths.

The photonic band structure of the system exhibits a

Dirac cone at K and K0 when dA ¼ dB [black in Fig. 1(b)].

Breaking the inversion symmetry (dA ≠ dB) gaps out the

Dirac cone, resulting in two valleys atK andK0 [19,20] [red
in Fig. 1(b)]. The system thus exhibits valley-contrasting

physics similar to that in several two-dimensional semi-

conductors [21,22].
Breaking inversion symmetry induces meron pseudospin

texture around K and K0. In the vicinity of K and K0, the
system is described by an effective Hamiltonian as obtained

using the k⃗ · p⃗ method [23–25]:

Ĥðqx; qyÞ ¼ vDð−qyτ̂x þ qxτ̂yÞ � Δτ̂z þ ω0τ0; ð4Þ

where the plus (minus) sign corresponds to K (K0). In this
Letter, q ¼ ðqx; qyÞ measures the difference of the wave

vector from K or K0, with q̂y axis pointing towards Γ, and

q̂x ¼ ẑ × q̂y, where ẑ is the unit vector perpendicular to the

slab [Fig. 1(a)]. τ̂ ¼ ðτ̂x; τ̂y; τ̂zÞ are the Pauli matrices of the

pseudospin. τðqÞ≡ hΨðqÞjτ̂jΨðqÞi ¼ ½τxðqÞ; τyðqÞ; τzðqÞ�
defines the pseudospin texture with jΨðqÞi being an
eigenstate at q. The basis of τ̂ is chosen such that
jτx ¼ �1i correspond to the even or odd states with respect
to the qy axis, and jτz ¼ �1i correspond to the clockwise-

or anticlockwise-rotating states with respect to ẑ [20,25].
Below, we refer to the states jτz ¼ þ1i and jτz ¼ −1i as the
“up” and “down” pseudospin states, respectively. vD is the
group velocity. The term withΔ breaks inversion symmetry
and induces a band gap of size 2jΔj.
Figure 1(b) plots the eigenvalues EðqÞ of the

Hamiltonian in Eq. (4) (blue dashed lines) with fitt-

ing parameters vD ¼ 0.26c, Δ ¼ −0.0056 × 2πc=a, ω0 ¼
0.8646 × 2πc=a, where c is the speed of light in vacuum.
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EðqÞ agrees well with the numerically determined photonic

bands near K and K0 for the physical structure.

Figure 1(c) depicts the pseudospin textures as obtained

using Eq. (4). At K point (q ¼ 0), the pseudospin is up for

the lower band and down for the upper band. Far away from

K point (jqj ≫ jΔj=vD), the pseudospins lie in the equa-

torial plane with vorticity w ¼ 1. The pseudospin textures

around K are thus identified as core-up (core-down) meron

for the lower (upper) band. Moreover, the in-plane pseu-

dospin components ðτx; τyÞ are locked at right angles with

wave vector ðqx; qyÞ. τðqÞ around K0 and K are related:

suppose a state in the lower band at q around K has a

pseudospin ðτx; τy; τzÞ, the corresponding state in the lower
band at the same q aroundK0 has a pseudospin ðτx; τy;−τzÞ.
The same mapping applies for the upper band. Therefore,

the pseudospin textures around K0 are core-down (core-up)

meron for the lower (upper) band. The meron pseudospin

textures manifest the localized Berry curvature and the �π

Berry phase around K and K0 [21].
We proceed to show that the meron pseudospin textures,

and hence the local Berry curvature of the photonic bands,

can be directly observed as the meron or antimeron spin

texture of radiated photons. (Throughout the Letter, the

word “pseudospin” refers to the property of the modes in

the photonic crystal slab, and the word “spin” refers to the

polarization state of the outgoing radiation in free space.) In

our system, the valleys are above the light line since

ω > 4πc=3a. Consequently, unlike electronic systems,

here the excited photonic modes will radiate out, and the

leakage radiation carries information of the eigenmodes.

Specifically, with respect to Fig. 1(a), suppose light is

incident from the z < 0 side with the propagation direction

indicated by a unit vector k̂. We define the S and P

polarizations as having their electric field along the

directions ŝ ¼ ẑ × k̂ and p̂ ¼ ŝ × k̂, respectively, and the

right or left circular polarization (RCP or LCP) as having

their electric fields along the directions r̂ ¼ p̂þ iŝ and

l̂ ¼ p̂ − iŝ, respectively, where we adopt the convention of

expð−iωtÞ. The conventions of the Poincaré sphere are

chosen so that nz ¼ �1 correspond to RCP or LCP, and

nx ¼ �1 correspond to P or S polarizations. Now we

consider the map between pseudo-spin τ of the eigenmode

and spin n of the radiated photons. The radiation process

can be described by a linear map F∶jΨii ↦ jΨradi, where
jΨii are the internal states in the slab and jΨradi are the

corresponding leakage radiation. jΨii can be expanded on

the eigenbasis of jτx ¼ �1i, which corresponds to even or

odd states with respect to the qy axis. The even and odd

states radiate into P and S polarized states only, i.e.,

jτx ¼ 1i ↦ jPi, jτx ¼ −1i ↦ jSi, where the relative phase
between jPi and jSi are fixed such that jτz ¼ 1i ↦
jRCPi; jτz ¼ −1i ↦ jLCPi at the transmission side; con-

sequently, jτz ¼ 1i ↦ jLCPi; jτz ¼ −1i ↦ jRCPi at the

reflection side. This map then induces a map between the

pseudo-spin of photons in the slab and the spin of radiated

photons as F �∶hΨijτ̂jΨii ↦ hΨradjn̂jΨradi. For transmis-

sion, ðτx;τy;τzÞ↦ðnx;ny;nzÞ; for reflection, ðτx; τy; τzÞ ↦
ðnx;−ny;−nzÞ. As a result, the meron pseudospin textures

around K and K0 can be directly observed as meron spin

textures at the transmission side and antimeron spin

textures at the reflection side.

In a typical optical experiment, the modes are excited by

an externally incident beam. In order to use the measured

polarization properties to infer the pseudospin properties of

the photonic modes, it is important that the light being

measured contains only the radiated photons from the

modes, without any interference from direct reflection or

transmission of the incident bream. Therefore, we propose

the setup in Fig. 2(a), where we measure the polarization

of light in high-order diffraction channels. Light with a

specific frequency and polarization is incident on the

sample at a specific angle to excite a desired photonic

mode around one Brillouin zone corner (K1). Due to the

periodicity of the lattice, the excited mode radiates out to

both zeroth-order (K1) and first-order (K2 andK3) channels

on both the transmission and reflection sides. Figures 2(b)–

2(e) show the calculated zeroth-order (first-order) reflection

spectra for the RCP (LCP) incident light with fixed parallel

wave vector K1. The zeroth-order spectra in Figs. 2(b) and

2(c) exhibit Fano resonance line shapes, superimposed

upon a smoothly varying background corresponding to

direct reflection [26]. This indicates strong interference

between the directly reflected incident light and leakage

(a) (b) (c)

(d) (e)

FIG. 2. (a) Diffraction scheme. Light with a specific frequency

and polarization is incident at a specific angle to excite desired

photonic modes around one Brillouin zone corner (K1). The

excited mode radiates out to both zeroth-order (K1) and first-

order (K2 and K3) diffraction channels on both the transmission

and reflection sides. Inset: first Brillouin zone with corners K1,

K2 and K3 indicated. (b)–(e) Calculated reflection spectra for

incident light with fixed parallel wave vector K1. The shaded

regions include the spectral range of the photonic band gap at K.
(b) and (c) zeroth-order reflection for right (b) and left (c) circu-

larly polarized incident light. (d) and (e) first-order reflection for

right (d) and left (e) circularly polarized incident light. The

dashed lines show the fit with Lorentzian line shapes.
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radiation from the modes in the slab. In contrast, the first-

order spectra in Figs. 2(d) and 2(e) exhibit resonances with

Lorentzian line shapes with negligible background, indi-

cating a negligible contribution from the direct reflection of

the incident light. The wave amplitudes in these diffraction

orders therefore arise entirely from the leakage radiation

from the photonic mode in the slab. We emphasize that, in

this case, as long as the mode is excited, the polarization of

the leakage radiation is independent of the polarization of

the incident light. In general we can selectively excite either

the upper or the lower band with the use of different

frequencies. Near the K point, where the difference in

frequencies between the two bands is relatively small,

we note that incident light with RCP (LCP) selectively

excites the lower (upper) state [20] at K point, as shown in

Figs. 2(d) and 2(e). In this case therefore we can in addition

use different polarizations of the incident light to selec-

tively excite the upper and lower band.

We now numerically study the polarization states of the

photons in the first-order diffraction channel. The direc-

tions, frequencies, and polarization of the incident light are

chosen so that we probe the lower valley near K point. At

each frequency, we scan the incident parallel wave vectors

ðkx;kyÞ¼ðK1xþqx;K1yþqyÞ around K1 ¼ ð1=
ffiffiffi

3
p

; 1=3Þ×
2π=a, and calculate the four Stokes parameters from the

electric fields of the first-order reflected light around K3 ¼
ð−1=

ffiffiffi

3
p

; 1=3Þ × 2π=a [Fig. 3(a)]. Figures 3(b)–3(e) plot

the simulation results at the frequency ω ¼ 0.855 × 2πc=a.
Figure 3(b) shows the intensity distribution S0ðqx; qyÞ of

first-order reflected light in momentum space, where the

bright peaks match the isofrequency contour of the lower

band. Figures 3(c)–3(e) show normalized Stokes para-

meters S1=S0ðqx; qyÞ, S2=S0ðqx; qyÞ, and S3=S0ðqx; qyÞ,
respectively. Since the Stoke parameters are not well

defined for S0 ¼ 0, we only show results for S0 > 0.04.

The polarizations show significant variation in the direction

along the isofrequency contour, but far less variation in the

direction perpendicular to the contour. This is consistent

with the fact that the spin texture of the leakage radiation

manifests the pseudospin texture of the underlying pho-

tonic modes in this setup.

In Fig. 4, we plot the spin textures of the leakage

radiation on the iso-frequency contours of the photonic

band structure. Near the K valley, for the reflected light in

the first-order channel, the texture corresponds to a core-

down antimeron with skymion number Q ¼ 1=2, polarity
p ¼ −1 and vorticity w ¼ −1 [Fig. 4(a)]. At the K point,

the spin points down [n ¼ ð0; 0;−1Þ], corresponding to

LCP. Away from the K point the spin gradually rotates to

the equatorial plane, corresponding to linearly polarized

light. Notice that the in-plane spin components on the circle

around the K point have a winding number of −1. At the K0

valley, the spin texture of the reflected light corresponds to

a core-up antimeron with Q ¼ −1=2, p ¼ 1, w ¼ −1

[Fig. 4(b)]. This texture has the same winding character-

istics as the texture shown in Fig. 4(a), but with spin up at

the core of K0. For the transmitted light in the first-order

channel, the texture corresponds to a core-up meron at K
with Q ¼ 1=2, p ¼ 1, w ¼ 1 [Fig. 4(c)], and a core-down

meron at K with Q ¼ −1=2, p ¼ −1, w ¼ 1 [Fig. 4(d)].

Notice the in-plane spin components have a winding

number of þ1. The relation of spin textures between the

transmitted and reflected lights can be explained by

the mirror symmetry of the modes in the slab, whereas

the relation of the textures between the K and K0 valley can

(a)

(b) (c)

(d) (e)

FIG. 3. (a) Isofrequency contours of the lower band near K
point are studied frequency by frequency. (b)–(e) Stokes param-

eters as functions of ðqx; qyÞ at frequency ω ¼ 0.855 × 2πc=a

which is in the lower band. (b) S0 is the intensity of first-order

reflected light. (c)–(e) Normalized Stokes parameters S1=S0,
S2=S0, and S3=S0.

K Reflection(a) K ' Reflection(b)

K ' Transmission(d)K Transmission(c)

FIG. 4. In the main figure of each panel, the arrow tail positions

indicate the band dispersion ωðqx; qyÞ. The arrow direction

indicates the spin n at that point. The inset plots the in-plane

spin component ðS1=S0; S2=S0Þðqx; qyÞ. (a) K valley, reflection.

The spin texture is a core-down antimeron (Skyrmion number

Q ¼ 1=2, polarity p ¼ −1, vorticity w ¼ −1). (b) K0 valley,

reflection. The spin texture is a core-up antimeron (Q ¼ −1=2,
p ¼ 1, w ¼ −1). (c) K valley, transmission. The spin texture is a

core-up meron (Q ¼ 1=2, p ¼ 1, w ¼ 1). This spin texture is

identically mapped from the pseudospin texture nearK [Fig. 1(c)].

(d)K0 valley, transmission. The spin texture is a core-down meron

(Q ¼ −1=2, p ¼ −1, w ¼ 1). This spin texture is identically

mapped from the pseudospin texture near K0 [Fig. 1(c)].
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be explained by time-reversal symmetry and the adopted

coordinate system. The observed spin texture of the leakage

radiation corresponds well to the pseudospin texture of the

photonic modes in the slab as described by Eq. (4). The

analysis of the leakage radiation provides a direct visuali-

zation of the intriguing connection of spin, pseudospin,

valley, and band topology in the photonic valleytronic

systems. In particular, our setup directly maps out the Berry

curvature, which has only been probed indirectly by wave

packet transport [27]. The spin texture for the leakage

radiation as we observe here can manifest in a single

electromagnetic pulse (and hence a single photon wave

function) [28].

In conclusion, we reveal the intrinsic meron pseudospin

texture in momentum space in a photonic crystal slab,

which can be directly observed as meron and antimeron

spin texture by polarimetric study of high-order diffracted

light from the system. Such spin texture in momentum

space has not been previously observed in either electronic

or photonic systems. Our work indicates significant oppor-

tunities of using photonic structures to explore topologi-

cally nontrivial spin textures. Our result may also be

important for arbitrary polarization generation [32–34].

For example, in this system, by changing the angle of

incidence near the K point by a small amount, a wide

variety of different polarizations can be generated.
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