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We show that a momentum-space meron spin texture for electromagnetic fields in free space can be
generated by controlling the interaction of light with a photonic crystal slab having a nonzero Berry
curvature. These spin textures in momentum space have not been previously noted either in electronic or
photonic systems. Breaking the inversion symmetry of a honeycomb photonic crystal gaps out the Dirac
cones at the corners of Brillouin zone. The pseudospin textures of photonic bands near the gaps exhibit a
meron or antimeron. Unlike the electronic systems, the pseudospin texture of the photonic modes manifests
directly in the spin (polarization) texture of the leakage radiation, as the Dirac points can be above the light
line. Such a spin texture provides a direct approach to visualize the local Berry curvature. Our work
highlights the significant opportunities of using photonic structures for the exploration of topological spin
textures, with potential applications towards topologically robust ways to manipulate polarizations and

other modal characteristics of light.
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Spin textures, the spin configuration in either real or
momentum space, are of great interest in several subfields
of physics. Skyrmion-related objects, including skyrmions,
anti-skyrmions, merons, and antimerons are topologically
nontrivial spin textures. These textures have been exten-
sively studied in various atomic and electronic systems
such as Quantum Hall 2D electron gas, Bose-Einstein
condensates, nematic liquid crystals, and chiral magnets
[1-7]. Antiskymions were discovered in tetragonal Heusler
materials [8], while merons and antimerons in real space
were discovered in chiral magnet thin film [9].

Since photons are massless spin-1 particles, skyrmion-
related objects can also emerge as spin textures of photons
[10,11]. Real space skyrmions have been observed recently
in surface plasmon polariton systems [11]. But there has
not been any report of anti-skyrmions, merons, and anti-
merons in optics. In this Letter, using the honeycomb
photonic crystal slab structure as shown in Fig. 1(a), we
report meron and antimeron in momentum space. The
existence of such objects has not been previously noted
either in electronic or photonic systems. The observation of
such spin textures may point to topologically robust ways
to manipulate polarizations of light.

Skyrmion-related objects correspond to topologically
nontrivial configurations of a three-component unit
vector field n = n X +n,9 + n 2 distributed over a disk
in a two-dimensional space with coordinates (x, y) [12,13].
They are all characterized by the topological skyrmion
number
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The unit vector fields form a two-sphere S. For skyrmions
and antiskyrmions, one considers configurations where
n = Z at the center of the disk, and n = —Z at its edge.
(This is referred to as the “core-up” configuration.) Since
the fields n are the same at the edge, one can compactify the
edge to a single point to form a sphere. These field
configurations thus correspond to maps of §> — S2, which
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FIG. 1. (a) A photonic crystal slab with a honeycomb lattice of
circular air holes. The dielectric constant of the slab € = 4. The
thickness of the slab is d = 0.25a, where «a is the lattice constant.
The lower right shows the Brillouin zone. The wave vector ¢ =
(g qy) measured from K and K’ are defined individually so that
g, axis points towards I'. (b) The band structure near K (K’). The
two bands form a Dirac cone when d, = dg = 0.22a (black
dotted lines), while the degeneracy is lifted when d, = 0.184,
dp = 0.26a (red). The blue dashed lines plot the fit from the
effective Hamiltonian. (c) Pseudospin textures: core-up (down)
meron for the lower (upper) band near K, and core-down (up)
meron for the lower (upper) band near K'.
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are characterized by the second homotopy group of the
sphere 7,(S?) = Z, with an integer topological number Q
characterizing topologically distinct ways that the unit
vectors wrap around the sphere. Q = +1 and —1 for
skyrmions and antiskyrmions, respectively, for core-up
configurations as discussed above. For core-down configu-
rations, the signs are flipped, i.e., Q = —1 and +1 for
skyrmions and antiskyrmions, respectively.

For merons and antimerons, one considers configura-
tions where n = 7 at the disk center, n_LZ at its edge, and
n, > 0 over the whole disk. These field configurations
correspond to maps of the disk to the upper hemisphere,
with the disk edge imaged to the equator. With the
following map:

n = (n,, ny, n.) = (sin@cos ¢, sin O sin ¢, cos 0) —,

m = (2n,n,,2n,n,,2n? — 1) = (sin 26 cos ¢, sin 20 sin ¢, cos 26), (2)

which maps a hemisphere to a sphere with 0 <8 < z/2,
0 < ¢ < 2x, all the points on the equator of the hemisphere
are mapped to the south pole of the sphere. Applying this
map to the meron or antimeron configuration results in a
field configuration with m = —Z on the edge of the disk.
One can then repeat the same compactification process as
the skyrmion case, and obtain an integer Q,, as the
topological number for m. Since the continuous map from
the n field to the m field doubles the solid angle subtended,
we have Q,, = 2Q. Therefore, merons and antimerons are
characterized by half-integer skyrmion numbers: Q =
+1/2 and —1/2 for core-up merons and antimerons,
respectively; the signs are flipped for core-down merons
and antimerons [14].

In addition to the topological number Q, skyrmion-
related objects are further characterized by their polarity p
and vorticity w. p = 1 form = Zand p = —1 forn = —Z at
the center [15]. The vorticity w indicates the rotation
direction of the in-plane components of n. Along a
counterclockwise loop around the center, for a given w,
the in-plane components rotate an angle of 2zw counter-
clockwise. Skyrmions and merons have w = 1; antiskyr-
mions and antimerons have w = —1.

Skyrmion-related objects can also emerge as spin tex-
tures of photons which are massless spin-1 particles
[10,11]. Consider a polarization state as characterized by
a 2 x 2 density matrix p, with the basis being the right and
left circularly polarized states |RCP) and |LCP). The
Stokes parameters are defined as S; = Tr(po;) where
oy=1;, 6y =0,, 06,=0, o03=o0, are the Pauli spin
matrices [16,17]. For a pure polarization state |y),
§3 =82+ 83+ 52, thus its polarization is completely
characterized by a three-component unit vector, also
denoted as n:

n= (nxvnwnz) = (81/50,82/80:53/50)- 3)

All ns form a unit two-sphere known as Poincaré sphere.
The Poincaré sphere of massless spin-1 photon is identical
to the Bloch sphere of spin—% electron [18].

|

Here using photonic systems we show meron and
antimeron spin textures in momentum space. We consider
a photonic crystal slab consisting of a honeycomb lattice of
circular air holes, where the holes at the two inequivalent
sublattice sites are of different sizes [Fig. 1(a)]. For
concreteness, the dielectric constant of the slab is ¢ = 4,
which approximates the dielectric constant of SiN at visible
wavelengths.

The photonic band structure of the system exhibits a
Dirac cone at K and K’ when d4 = djp [black in Fig. 1(b)].
Breaking the inversion symmetry (d, # dp) gaps out the
Dirac cone, resulting in two valleys at K and K’ [19,20] [red
in Fig. 1(b)]. The system thus exhibits valley-contrasting
physics similar to that in several two-dimensional semi-
conductors [21,22].

Breaking inversion symmetry induces meron pseudospin
texture around K and K’'. In the vicinity of K and K’, the
system is described by an effective Hamiltonian as obtained

using the k - p method [23-25]:

I:I(%n qy) = UD<_('Iy%x + Qx%y) + A%z + Wo70, (4)

where the plus (minus) sign corresponds to K (K’). In this
Letter, ¢ = (g, q,) measures the difference of the wave
vector from K or K’, with g, axis pointing towards I, and
dx = Z X gy, where Z is the unit vector perpendicular to the
slab [Fig. 1(a)]. 7 = (%,.%,.%,) are the Pauli matrices of the
pseudospin. z(q) = (¥(q)|2[¥(q)) = [7.(q).7,(q). 7.(q)]
defines the pseudospin texture with |¥(q)) being an
eigenstate at q. The basis of 7 is chosen such that
|z, = £1) correspond to the even or odd states with respect
to the ¢, axis, and |z, = £1) correspond to the clockwise-
or anticlockwise-rotating states with respect to Z [20,25].
Below, we refer to the states |z, = +1) and |z, = —1) as the
“up” and “down” pseudospin states, respectively. v, is the
group velocity. The term with A breaks inversion symmetry
and induces a band gap of size 2|A|.

Figure 1(b) plots the eigenvalues E(q) of the
Hamiltonian in Eq. (4) (blue dashed lines) with fitt-
ing parameters vy, = 0.26¢, A = —0.0056 x 2zc/a, wy =
0.8646 x 2zc/a, where c is the speed of light in vacuum.
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E(q) agrees well with the numerically determined photonic
bands near K and K’ for the physical structure.

Figure 1(c) depicts the pseudospin textures as obtained
using Eq. (4). At K point (q = 0), the pseudospin is up for
the lower band and down for the upper band. Far away from
K point (|q| > |A|/vp), the pseudospins lie in the equa-
torial plane with vorticity w = 1. The pseudospin textures
around K are thus identified as core-up (core-down) meron
for the lower (upper) band. Moreover, the in-plane pseu-
dospin components (z,,7,) are locked at right angles with
wave vector (gy.qy). T(q) around K’ and K are related:
suppose a state in the lower band at ¢ around K has a
pseudospin (z,, 7y, 7.), the corresponding state in the lower
band at the same ¢ around K" has a pseudospin (z,, 7y, —7).
The same mapping applies for the upper band. Therefore,
the pseudospin textures around K’ are core-down (core-up)
meron for the lower (upper) band. The meron pseudospin
textures manifest the localized Berry curvature and the +xz
Berry phase around K and K’ [21].

We proceed to show that the meron pseudospin textures,
and hence the local Berry curvature of the photonic bands,
can be directly observed as the meron or antimeron spin
texture of radiated photons. (Throughout the Letter, the
word “pseudospin” refers to the property of the modes in
the photonic crystal slab, and the word ““spin” refers to the
polarization state of the outgoing radiation in free space.) In
our system, the valleys are above the light line since
® > 4rc/3a. Consequently, unlike electronic systems,
here the excited photonic modes will radiate out, and the
leakage radiation carries information of the eigenmodes.
Specifically, with respect to Fig. 1(a), suppose light is
incident from the z < 0 side with the propagation direction
indicated by a unit vector k. We define the S and P
polarizations as having their electric field along the
directions § = 2 x k and p=35x lAc, respectively, and the
right or left circular polarization (RCP or LCP) as having
their electric fields along the directions 7 = p + i§ and
1= p — i8, respectively, where we adopt the convention of
exp(—iwt). The conventions of the Poincaré sphere are
chosen so that n, = 1 correspond to RCP or LCP, and
n, = £1 correspond to P or S polarizations. Now we
consider the map between pseudo-spin 7 of the eigenmode
and spin n of the radiated photons. The radiation process
can be described by a linear map F : |¥') — |¥™), where
|P?) are the internal states in the slab and |¥™9) are the
corresponding leakage radiation. |¥/) can be expanded on
the eigenbasis of |z, = £1), which corresponds to even or
odd states with respect to the g, axis. The even and odd
states radiate into P and S polarized states only, i.e.,
|z, = 1) > |P), |z, = —1) > |S), where the relative phase
between [P) and |S) are fixed such that |z, =1) —
[RCP), |z, = —1) > |LCP) at the transmission side; con-
sequently, |z, = 1) — |[LCP), |z, = —1) — |[RCP) at the
reflection side. This map then induces a map between the

pseudo-spin of photons in the slab and the spin of radiated
photons as F*: (¥|z|¥)) — (P™|a|¥™d). For transmis-
sion, (7,.7,,7,)> (n,.ny,.n,); for reflection, (z,,7,,7,)
(ny,—ny,—n). As a result, the meron pseudospin textures
around K and K’ can be directly observed as meron spin
textures at the transmission side and antimeron spin
textures at the reflection side.

In a typical optical experiment, the modes are excited by
an externally incident beam. In order to use the measured
polarization properties to infer the pseudospin properties of
the photonic modes, it is important that the light being
measured contains only the radiated photons from the
modes, without any interference from direct reflection or
transmission of the incident bream. Therefore, we propose
the setup in Fig. 2(a), where we measure the polarization
of light in high-order diffraction channels. Light with a
specific frequency and polarization is incident on the
sample at a specific angle to excite a desired photonic
mode around one Brillouin zone corner (K;). Due to the
periodicity of the lattice, the excited mode radiates out to
both zeroth-order (K ;) and first-order (K, and K3) channels
on both the transmission and reflection sides. Figures 2(b)—
2(e) show the calculated zeroth-order (first-order) reflection
spectra for the RCP (LCP) incident light with fixed parallel
wave vector K. The zeroth-order spectra in Figs. 2(b) and
2(c) exhibit Fano resonance line shapes, superimposed
upon a smoothly varying background corresponding to
direct reflection [26]. This indicates strong interference
between the directly reflected incident light and leakage
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FIG. 2. (a) Diffraction scheme. Light with a specific frequency

and polarization is incident at a specific angle to excite desired
photonic modes around one Brillouin zone corner (K;). The
excited mode radiates out to both zeroth-order (K;) and first-
order (K, and K3) diffraction channels on both the transmission
and reflection sides. Inset: first Brillouin zone with corners K,
K, and K; indicated. (b)—(e) Calculated reflection spectra for
incident light with fixed parallel wave vector K. The shaded
regions include the spectral range of the photonic band gap at K.
(b) and (c) zeroth-order reflection for right (b) and left (c) circu-
larly polarized incident light. (d) and (e) first-order reflection for
right (d) and left (e) circularly polarized incident light. The
dashed lines show the fit with Lorentzian line shapes.
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radiation from the modes in the slab. In contrast, the first-
order spectra in Figs. 2(d) and 2(e) exhibit resonances with
Lorentzian line shapes with negligible background, indi-
cating a negligible contribution from the direct reflection of
the incident light. The wave amplitudes in these diffraction
orders therefore arise entirely from the leakage radiation
from the photonic mode in the slab. We emphasize that, in
this case, as long as the mode is excited, the polarization of
the leakage radiation is independent of the polarization of
the incident light. In general we can selectively excite either
the upper or the lower band with the use of different
frequencies. Near the K point, where the difference in
frequencies between the two bands is relatively small,
we note that incident light with RCP (LCP) selectively
excites the lower (upper) state [20] at K point, as shown in
Figs. 2(d) and 2(e). In this case therefore we can in addition
use different polarizations of the incident light to selec-
tively excite the upper and lower band.

We now numerically study the polarization states of the
photons in the first-order diffraction channel. The direc-
tions, frequencies, and polarization of the incident light are
chosen so that we probe the lower valley near K point. At
each frequency, we scan the incident parallel wave vectors
(kyoky)= (K1 + K1y +4,) around Ky = (1/v/3,1/3)x
2x/a, and calculate the four Stokes parameters from the
electric fields of the first-order reflected light around K5 =
(=1/4/3,1/3) x 2z/a [Fig. 3(a)]. Figures 3(b)-3(e) plot
the simulation results at the frequency w = 0.855 x 2zc/a.
Figure 3(b) shows the intensity distribution Sy(q,,q,) of
first-order reflected light in momentum space, where the
bright peaks match the isofrequency contour of the lower
band. Figures 3(c)-3(e) show normalized Stokes para-
meters S1/So(qxqy), S2/S0(qx: qy), and S3/S0(4x. qy)s
respectively. Since the Stoke parameters are not well
defined for S, = 0, we only show results for Sy > 0.04.
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FIG. 3. (a) Isofrequency contours of the lower band near K
point are studied frequency by frequency. (b)—(e) Stokes param-
eters as functions of (g,.q,) at frequency @ = 0.855 x 2zc/a
which is in the lower band. (b) S, is the intensity of first-order
reflected light. (c)—(e) Normalized Stokes parameters S,/S,,
S2/S0, and S3/S0.

The polarizations show significant variation in the direction
along the isofrequency contour, but far less variation in the
direction perpendicular to the contour. This is consistent
with the fact that the spin texture of the leakage radiation
manifests the pseudospin texture of the underlying pho-
tonic modes in this setup.

In Fig. 4, we plot the spin textures of the leakage
radiation on the iso-frequency contours of the photonic
band structure. Near the K valley, for the reflected light in
the first-order channel, the texture corresponds to a core-
down antimeron with skymion number Q = 1/2, polarity
p = —1 and vorticity w = —1 [Fig. 4(a)]. At the K point,
the spin points down [r = (0,0,—1)], corresponding to
LCP. Away from the K point the spin gradually rotates to
the equatorial plane, corresponding to linearly polarized
light. Notice that the in-plane spin components on the circle
around the K point have a winding number of —1. At the K’
valley, the spin texture of the reflected light corresponds to
a core-up antimeron with Q =-1/2, p=1, w=-1
[Fig. 4(b)]. This texture has the same winding character-
istics as the texture shown in Fig. 4(a), but with spin up at
the core of K'. For the transmitted light in the first-order
channel, the texture corresponds to a core-up meron at K
with Q = 1/2, p = 1, w = 1 [Fig. 4(c)], and a core-down
meron at K with Q = -1/2, p = -1, w =1 [Fig. 4(d)].
Notice the in-plane spin components have a winding
number of +1. The relation of spin textures between the
transmitted and reflected lights can be explained by
the mirror symmetry of the modes in the slab, whereas
the relation of the textures between the K and K’ valley can

(a) K Reflection

(b) K' Reflection

FIG. 4. In the main figure of each panel, the arrow tail positions
indicate the band dispersion @(q,.q,). The arrow direction
indicates the spin n at that point. The inset plots the in-plane
spin component (S /Sy, S2/80)(¢x. ¢y). (a) K valley, reflection.
The spin texture is a core-down antimeron (Skyrmion number
0 =1/2, polarity p = —1, vorticity w = —1). (b) K’ valley,
reflection. The spin texture is a core-up antimeron (Q = —1/2,
p =1, w = —1). (c) K valley, transmission. The spin texture is a
core-up meron (Q = 1/2, p =1, w=1). This spin texture is
identically mapped from the pseudospin texture near K [Fig. 1(c)].
(d) K’ valley, transmission. The spin texture is a core-down meron
(Q=-1/2, p=—1, w=1). This spin texture is identically
mapped from the pseudospin texture near K’ [Fig. 1(c)].

106103-4



PHYSICAL REVIEW LETTERS 124, 106103 (2020)

be explained by time-reversal symmetry and the adopted
coordinate system. The observed spin texture of the leakage
radiation corresponds well to the pseudospin texture of the
photonic modes in the slab as described by Eq. (4). The
analysis of the leakage radiation provides a direct visuali-
zation of the intriguing connection of spin, pseudospin,
valley, and band topology in the photonic valleytronic
systems. In particular, our setup directly maps out the Berry
curvature, which has only been probed indirectly by wave
packet transport [27]. The spin texture for the leakage
radiation as we observe here can manifest in a single
electromagnetic pulse (and hence a single photon wave
function) [28].

In conclusion, we reveal the intrinsic meron pseudospin
texture in momentum space in a photonic crystal slab,
which can be directly observed as meron and antimeron
spin texture by polarimetric study of high-order diffracted
light from the system. Such spin texture in momentum
space has not been previously observed in either electronic
or photonic systems. Our work indicates significant oppor-
tunities of using photonic structures to explore topologi-
cally nontrivial spin textures. Our result may also be
important for arbitrary polarization generation [32-34].
For example, in this system, by changing the angle of
incidence near the K point by a small amount, a wide
variety of different polarizations can be generated.

This work is supported by the National Science
Foundation (CBET-1641069).
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