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ABSTRACT Longitudinal phenotypes have been increasingly available in genome-wide 

association studies (GWAS) and electronic health record-based studies for identification of 

genetic variants that influence complex traits over time. For longitudinal binary data, there 

remains significant challenges in gene mapping, including misspecification of the model for the 

phenotype distribution due to ascertainment. Here, we propose L-BRAT, a retrospective, 

generalized estimating equations-based method for genetic association analysis of longitudinal 

binary outcomes. We also develop RGMMAT, a retrospective, generalized linear mixed model-

based association test. Both tests are retrospective score approaches in which genotypes are 

treated as random conditional on phenotype and covariates. They allow both static and time-

varying covariates to be included in the analysis. Through simulations, we illustrated that 

retrospective association tests are robust to ascertainment and other types of phenotype model 

misspecification, and gain power over previous association methods. We applied L-BRAT and 

RGMMAT to a genome-wide association analysis of repeated measures of cocaine use in a 

longitudinal cohort. Pathway analysis implicated association with opioid signaling and axonal 

guidance signaling pathways. Lastly, we replicated important pathways in an independent 

cocaine dependence case-control GWAS. Our results illustrate that L-BRAT is able to detect 

important loci and pathways in a genome scan and to provide insights into genetic architecture of 

cocaine use. 
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INTRODUCTION 

Genome-wide association studies (GWAS) have successfully discovered many disease 

susceptibility loci and provided insights into the genetic architecture of numerous human 

complex diseases and traits. In some genetic epidemiological studies, longitudinally collected 

phenotype data are available. This is the case for many electronic health record (EHR)-based 

studies. As many of these studies continue to follow enrolled subjects (e.g. the UK Biobank 

(UKB) and the Million Veteran Program (MVP)), longitudinal phenotypes will be increasingly 

available with the passage of time, providing new data resources that require appropriate 

analytical tools for optimal analysis. Standard association tests that consider one time point or 

collapse repeated measurements into a single value such as an average do not capture the 

trajectory of phenotypic traits over time and may result in a loss of statistical power to detect 

genetic associations. In addition, the effects of time-varying covariates cannot be easily 

incorporated in such analyses. Recently, methodological developments for GWAS have 

proliferated to make full use of the available longitudinal data. For population cohorts, methods 

that account for dependence among observations from an individual include mixed effects 

models (Furlotte et al. 2012; Sikorska et al. 2013), generalized estimating equations (GEE) 

(Sitlani et al. 2015), growth mixture models (Das et al. 2011; Londono et al. 2013), and 

empirical Bayes models (Meirelles et al. 2013). Most of these approaches are prospective 

analyses and have been successfully applied to quantitative phenotypes. 

As many diseases are rare, efficient designs, such as the case-control design, are commonly 

applied in epidemiological studies to recruit study subjects. Despite the enhanced efficiency in 

the study sample, non-random ascertainment can be a major source of model misspecification 

that may lead to inflated type I error and/or power loss in association analysis. The linear mixed 
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model and the logistic mixed model do not perform well when the case-control ratio is 

unbalanced in large-scale genetic association studies (Zhou et al. 2018). Prospective analysis in 

which a population-based model is used ignores ascertainment bias and can result in 

compromised statistical inference. Furthermore, in the ascertained sample, the prospective 

approach conditional on the genotype and covariates may lose information when the joint 

distribution of the genotype and covariates carries additional information on whether the 

phenotype is associated with the genotype (Jiang et al. 2015). In this regard, several retrospective 

association methods have been proposed for analyzing ascertained population-based case-control 

studies (Hayeck et al. 2015; Jiang et al. 2016), family-based studies of continuous traits 

(Jakobsdottir and McPeek 2013), family-based case-control studies (Zhong et al. 2016; Hayeck 

et al. 2017), and family-based longitudinal quantitative traits (Wu and McPeek 2018). Compared 

to prospective tests, retrospective tests conditional on the phenotype and covariates are more 

robust to misspecification of the trait model (Jiang et al. 2015). 

To generalize case-control sampling, outcome-dependent sampling designs have become 

popular for binary data in longitudinal cohort studies (Schildcrout and Heagerty 2008; 

Schildcrout et al. 2018a,b). However, association tests for longitudinally measured binary data 

are less well developed in GWAS. Here, we propose L-BRAT, a retrospective, GEE-based 

method for genetic association analysis of longitudinal binary outcomes. It requires specification 

of the mean of the outcome distribution and a working correlation matrix for repeated 

measurements. L-BRAT is a retrospective score approach in which genotypes are treated as 

random conditional on the phenotype and covariates. Thus, it is robust to ascertainment and trait 

model misspecification. It allows both static and time-varying covariates to be included in the 

analysis. We note that GMMAT, a recently proposed prospective test using the logistic mixed 
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model to control for population structure and cryptic relatedness in case-control studies (Chen et 

al. 2016), can be adapted for repeated binary data. For comparison, we also develop RGMMAT, 

a retrospective, generalized linear mixed model (GLMM)-based association test for longitudinal 

binary traits. 

We performed simulation studies to evaluate the type I error and power of L-BRAT and 

RGMMAT, and compared them to the existing prospective methods. The results demonstrate 

that the retrospective association tests have better control of type I error when the phenotype 

model is misspecified, and are robust to various ascertainment schemes. Moreover, they are more 

powerful than the prospective tests. Finally, we applied L-BRAT and RGMMAT to a genome-

wide association analysis of repeated measurements of cocaine use in a longitudinal cohort, the 

Veterans Aging Cohort Study (VACS), and replicated the results using data from an independent 

cocaine dependence case-control GWAS. 

 

MATERIALS AND METHODS 

Suppose a binary trait is measured over time on a study population of 𝑛𝑛 individuals. We have 

their genome-wide measures of genetic variation. A set of covariates, static or dynamic, are also 

available. Let 𝑛𝑛𝑖𝑖 be the number of repeated measures on individual 𝑖𝑖 and 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖𝑛𝑛
𝑖𝑖=1  be the 

total number of observations. For individual 𝑖𝑖, let 𝑿𝑿𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖𝑖𝑖 be the 𝑝𝑝-dimensional covariate 

vector, assumed to include an intercept, and the binary response at time 𝑡𝑡𝑖𝑖𝑖𝑖, respectively. In this 

setting, individuals are permitted to have measurements at different time points and different 

number of observations. We let 𝒀𝒀 denote the outcome vector of length 𝑁𝑁, and let 𝑿𝑿 denote the 

𝑁𝑁 × 𝑝𝑝 covariate matrix. Here, we focus on the problem of testing for association between a 

genetic variant and the longitudinal binary outcomes. Let 𝑮𝑮 denote the vector of genotypes for 
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the 𝑛𝑛 individuals at the variant to be tested, where 𝐺𝐺𝑖𝑖 = 0, 1, or 2 is the number of minor alleles 

of individual 𝑖𝑖 at the variant. 

Generalized estimating equations (GEE) model 

We consider a GEE approach in which the mean of the outcome distribution, given the 

genotype and covariates, is specified as 

𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖  � 𝑮𝑮,𝑿𝑿� = 𝜇𝜇𝑖𝑖𝑖𝑖 ,   logit �𝜇𝜇𝑖𝑖𝑖𝑖� = 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷 + 𝐺𝐺𝑖𝑖𝛾𝛾,   𝑖𝑖 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖 ,              (1) 

where 𝜷𝜷 is a 𝑝𝑝-dimensional vector of covariate effects and 𝛾𝛾 is a scalar parameter of interest 

representing the effect of the tested variant. Writing in a matrix form, we have the mean model 

𝐸𝐸(𝒀𝒀 | 𝑮𝑮,𝑿𝑿) = 𝝁𝝁,   logit (𝝁𝝁) = 𝑿𝑿𝑿𝑿 + 𝑩𝑩𝑩𝑩𝛾𝛾,                                     (2) 

where 𝑩𝑩 is an 𝑁𝑁 × 𝑛𝑛 matrix representing the measurement clustering structure, and its (𝑙𝑙, 𝑖𝑖)th 

entry 𝐵𝐵𝑙𝑙𝑙𝑙 is an indicator of the 𝑙𝑙th entry of 𝒀𝒀 being a measurement on individual 𝑖𝑖. Here, the 

vector 𝑩𝑩𝑩𝑩 is the vertically expanded genotype vector that maps the genotype data 𝑮𝑮 from the 

individual level to the measurement level. The covariance structure of 𝒀𝒀 is given by 

Var(𝒀𝒀 | 𝑮𝑮,𝑿𝑿) = 𝚪𝚪1/2𝚺𝚺𝚪𝚪1/2,                                                 (3) 

where 𝚪𝚪 = diag�𝜇𝜇1,1�1 − 𝜇𝜇1,1�, … , 𝜇𝜇1,𝑛𝑛1�1 − 𝜇𝜇1,𝑛𝑛1�, … , 𝜇𝜇𝑛𝑛,1�1 − 𝜇𝜇𝑛𝑛,1�, … , 𝜇𝜇𝑛𝑛,𝑛𝑛𝑛𝑛�1 − 𝜇𝜇𝑛𝑛,𝑛𝑛𝑛𝑛�� is 

an 𝑁𝑁-dimensional diagonal matrix and 𝚺𝚺 is an 𝑁𝑁 × 𝑁𝑁 correlation matrix. The covariance 

specification in Eq. (3) ensures that the variance of the dichotomous response 𝑌𝑌𝑖𝑖𝑖𝑖 depends on its 

mean in a way that is consistent with the Bernoulli distribution. To apply the GEE method, a 

working correlation structure such as independent, exchangeable, and first-order autoregressive 

(AR(1)) must be specified. For a given within-cluster correlation matrix 𝚺𝚺(𝜏𝜏), which may depend 

on some parameter 𝜏𝜏, the estimating equations for the unknown parameters (𝜷𝜷, 𝛾𝛾) are written as 

𝑼𝑼 = �
𝑼𝑼(𝜷𝜷)
𝑈𝑈(𝛾𝛾)� = � 𝑿𝑿𝑇𝑇𝚪𝚪1/2𝚺𝚺−1𝚪𝚪−1/2(𝒀𝒀 − 𝝁𝝁)

(𝑩𝑩𝑩𝑩)𝑇𝑇𝚪𝚪1/2𝚺𝚺−1𝚪𝚪−1/2(𝒀𝒀 − 𝝁𝝁)
�. 
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Prospective GEE test 

To detect association between the genetic variant and the phenotype, we consider a score 

approach to test 𝐻𝐻0: 𝛾𝛾 = 0 against 𝐻𝐻1: 𝛾𝛾 ≠ 0. The null estimate of 𝜷𝜷, denoted by 𝜷𝜷�0, is the 

solution to a system of estimating equations 𝑼𝑼(𝜷𝜷) = 0 under the constraint 𝛾𝛾 = 0, which can be 

computed iteratively between a Fisher scoring algorithm for 𝜷𝜷 and the method of moments for 𝜏𝜏 

until convergence. Then, the score function for 𝛾𝛾 is 

𝑈𝑈0 = 𝑈𝑈(𝛾𝛾)|𝜷𝜷�0,0,𝜏𝜏�0 = (𝑩𝑩𝑩𝑩)𝑇𝑇𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2(𝒀𝒀 − 𝝁𝝁�0),                             (4) 

where 𝝁𝝁�0, 𝚪𝚪�0 and 𝚺𝚺�0 are 𝝁𝝁, 𝚪𝚪 and 𝚺𝚺 evaluated at (𝜷𝜷,𝛾𝛾, 𝜏𝜏) = �𝜷𝜷�0, 0, 𝜏̂𝜏0�. 

In the GEE approach, the prospective score statistic for testing 𝐻𝐻0: 𝛾𝛾 = 0 takes the form 

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑈𝑈02

Var0�𝑈𝑈0 � 𝑮𝑮,𝑿𝑿� =
�(𝑩𝑩𝑩𝑩)𝑇𝑇𝚪𝚪�0

1/2𝚺𝚺�0−1𝚪𝚪�0
−1/2(𝒀𝒀−𝝁𝝁�0)�

2

(𝑩𝑩𝑩𝑩)𝑇𝑇𝑸𝑸𝑸𝑸𝑸𝑸
 ,                             (5) 

where the null variance of 𝑈𝑈0 is evaluated using a robust sandwich variance estimator, 

conditional on the genotype and covariates. Here 𝑸𝑸 = 𝑽𝑽 − 𝑽𝑽𝑽𝑽(𝑿𝑿𝑇𝑇𝑽𝑽𝑽𝑽)−1𝑿𝑿𝑇𝑇𝑽𝑽, where 𝑽𝑽 =

𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2Cov� (𝒀𝒀)𝚪𝚪�0
−1/2𝚺𝚺�0−1𝚪𝚪�0

1/2 and the sample covariance of 𝒀𝒀, Cov� (𝒀𝒀), is estimated by 

(𝒀𝒀 − 𝝁𝝁�0)(𝒀𝒀 − 𝝁𝝁�0)𝑇𝑇. Under the null hypothesis, the 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺  test statistic has an asymptotic 𝜒𝜒12 

distribution. 

L-BRAT retrospective test 

In what follows, we introduce a new GEE-based association testing method, L-BRAT 

(Longitudinal Binary-trait Retrospective Association Test). The L-BRAT test statistic is also 

based on the score function 𝑈𝑈0 in Eq. (4). In contrast to the prospective GEE score test, L-BRAT 

takes a retrospective approach in which the variance of 𝑈𝑈0 is assessed using a retrospective 

model of the genotype given the phenotype and covariates. An advantage of the retrospective 

approach is that the analysis is less dependent on the correct specification of the phenotype 
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model. We assume that under the null hypothesis of no association between the genetic variant 

and the phenotype, the quasi-likelihood model of 𝑮𝑮 conditional on 𝒀𝒀 and 𝑿𝑿 is 

𝐸𝐸0(𝑮𝑮 | 𝒀𝒀,𝑿𝑿) = 2𝑝𝑝𝟏𝟏𝑛𝑛,   Var0(𝑮𝑮 | 𝒀𝒀,𝑿𝑿) = 𝜎𝜎𝑔𝑔2𝚽𝚽,                                   (6) 

where 𝑝𝑝 is the minor allele frequency (MAF) of the tested variant, 𝟏𝟏𝑛𝑛 is a vector of length 𝑛𝑛 with 

every element equal to 1, 𝜎𝜎𝑔𝑔2 is an unknown variance parameter, and 𝚽𝚽 is an 𝑛𝑛 × 𝑛𝑛 genetic 

relationship matrix (GRM) representing the overall genetic similarity between individuals due to 

population structure. Because 𝑩𝑩𝟏𝟏𝑛𝑛 = 𝟏𝟏𝑁𝑁, which is the first column of 𝑿𝑿 that encodes an 

intercept, and 𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2(𝒀𝒀 − 𝝁𝝁�0), the 𝑁𝑁-dimensional vector of transformed null phenotypic 

residuals, is orthogonal to the column space of 𝑿𝑿, then the null mean model of 𝑮𝑮 in Eq. (6) 

ensures that 

𝐸𝐸0(𝑈𝑈0 | 𝒀𝒀,𝑿𝑿) = 𝐸𝐸0(𝑨𝑨𝑇𝑇𝑮𝑮 | 𝒀𝒀,𝑿𝑿) = 2𝑝𝑝𝑨𝑨𝑇𝑇𝟏𝟏𝑛𝑛 = 0, 

where 𝑨𝑨 = 𝑩𝑩𝑇𝑇𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2(𝒀𝒀 − 𝝁𝝁�0) is the individual-level transformed phenotypic residual 

vector of length 𝑛𝑛. 

In model (6), the GRM 𝚽𝚽 can be obtained using genome-wide data, given by 

𝚽𝚽 =
1
𝐾𝐾
�

�𝑮𝑮(𝑘𝑘) − 2𝑝̂𝑝𝑘𝑘��𝑮𝑮(𝑘𝑘) − 2𝑝̂𝑝𝑘𝑘�
𝑇𝑇

2𝑝̂𝑝𝑘𝑘(1 − 𝑝̂𝑝𝑘𝑘)

𝐾𝐾

𝑘𝑘=1

 , 

where 𝐾𝐾 is the total number of genotyped variants, 𝑮𝑮(𝑘𝑘) is the genotype vector at the 𝑘𝑘th variant, 

and 𝑝̂𝑝𝑘𝑘 is the estimated MAF, for example, 𝑝̂𝑝𝑘𝑘 = 𝐺̅𝐺𝑘𝑘/2, the sample MAF at the 𝑘𝑘th variant. For 

the variant of interest, let 𝑝̂𝑝 = 𝐺̅𝐺/2 be its sample MAF. Under Hardy-Weinberg equilibrium, the 

variance of the genotype is estimated by 𝜎𝜎�𝑔𝑔2 = 2𝑝̂𝑝(1 − 𝑝̂𝑝). Or we can use a more robust variance 

estimator (Jakobsdottir and McPeek 2013) given by 

𝜎𝜎�𝑔𝑔2 = (𝑛𝑛 − 1)−1𝑮𝑮𝑇𝑇𝑾𝑾𝑾𝑾,                                                      (7) 
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where 𝑾𝑾 = 𝚽𝚽−1 −𝚽𝚽−1𝟏𝟏𝑛𝑛(𝟏𝟏𝑛𝑛𝑇𝑇𝚽𝚽−1𝟏𝟏𝑛𝑛)−1𝟏𝟏𝑛𝑛𝑇𝑇𝚽𝚽−1. Finally, the L-BRAT test statistic can be 

defined as 

L-BRAT = 𝑈𝑈02

Var0�𝑈𝑈0 � 𝒀𝒀,𝑿𝑿� = �𝑨𝑨𝑇𝑇𝑮𝑮�
2

Var0�𝑨𝑨𝑇𝑇𝑮𝑮 � 𝒀𝒀,𝑿𝑿� = �𝑨𝑨𝑇𝑇𝑮𝑮�
2

𝜎𝜎�𝑔𝑔2𝑨𝑨𝑇𝑇𝚽𝚽𝚽𝚽
 .                         (8) 

Under regularity conditions, L-BRAT asymptotically follows a 𝜒𝜒12 distribution under the null 

hypothesis. 

Generalized linear mixed model (GLMM) 

The Generalized linear Mixed Model Association Test (GMMAT) was originally designed to 

use multiple random effects in logistic mixed models to account for complex sampling designs in 

case-control studies (Chen et al. 2016). To extend the GMMAT method for case-control analysis 

to repeated binary data, we consider the following logistic mixed model: 

logit �𝜇𝜇𝑖𝑖𝑖𝑖� = 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷 + 𝐺𝐺𝑖𝑖𝛾𝛾 + 𝑎𝑎𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖,   𝑖𝑖 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖 ,                            (9) 

where 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 = 1 � 𝐺𝐺𝑖𝑖 ,𝑿𝑿𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖� is the probability of a binary response at time 𝑡𝑡𝑖𝑖𝑖𝑖 for 

individual 𝑖𝑖, conditional on his/her genotype, covariates, and random effects 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖, 𝜷𝜷 and 𝛾𝛾 

are the same as defined in model (1), 𝑎𝑎𝑖𝑖 is the individual random effect, and 𝑟𝑟𝑖𝑖𝑖𝑖 is the individual-

specific time-dependent random effect. The two random effects were used to capture the 

correlation among repeated measures in gene-based association test for longitudinal traits (Wang 

et al. 2017). Here, 𝑎𝑎𝑖𝑖 's are assumed to be independent and 𝑎𝑎𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑎𝑎2). The vector of time-

dependent random effects 𝒓𝒓𝑖𝑖 = (𝑟𝑟𝑖𝑖1, … , 𝑟𝑟𝑖𝑖,𝑛𝑛𝑖𝑖) has a multivariate normal distribution, 𝒓𝒓𝑖𝑖 ∼

𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜎𝜎𝑟𝑟2𝑹𝑹𝑖𝑖), where an AR(1) structure is assumed for the correlation matrix 𝑹𝑹𝑖𝑖, in which 𝜏𝜏 is 

the unknown parameter. The binary responses 𝑌𝑌𝑖𝑖𝑖𝑖 are assumed to be independent given the 

random effects 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖. In model (9), population structure in the longitudinal data setting can 

be controlled for by including another random effect to account for genetic relationships (Chen et 
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al. 2016; Wu and McPeek 2018), or including top principal components (PCs) of the genotype 

data as additional covariates. 

GMMAT test 

To construct a score test for the null hypothesis 𝐻𝐻0: 𝛾𝛾 = 0 vs. the alternative 𝐻𝐻1: 𝛾𝛾 ≠ 0, we 

use the penalized quasi-likelihood method (Breslow and Clayton 1993) to fit the null logistic 

mixed model and obtain the null estimates of 𝜷𝜷,𝜎𝜎𝑎𝑎2,𝜎𝜎𝑟𝑟2 and 𝜏𝜏, denoted by 𝜷𝜷�0,𝜎𝜎�𝑎𝑎2,𝜎𝜎�𝑟𝑟2 and 𝜏̂𝜏0 

(Chen et al. 2016). Similarly, the best linear unbiased predictor (BLUP) of random effects, 𝒂𝒂� and 

𝒓𝒓�, can be obtained. Then, the resulting score function for 𝛾𝛾 is 

𝑆𝑆0 = 𝑆𝑆(𝛾𝛾)|𝜷𝜷�0,0,𝜎𝜎�𝑎𝑎2,𝜎𝜎�𝑟𝑟2,𝜏𝜏�0,𝒂𝒂�,𝒓𝒓� = (𝑩𝑩𝑩𝑩)𝑇𝑇(𝒀𝒀 − 𝝁𝝁�0),                                         (10) 

where 𝝁𝝁�0 = logit−1(𝑿𝑿𝜷𝜷�0 + 𝑩𝑩𝒂𝒂� + 𝒓𝒓�) is a vector of fitted values under 𝐻𝐻0. 

In GMMAT, the null variance of the score 𝑆𝑆0 is evaluated prospectively (Chen et al. 2016), 

i.e., Var0(𝑆𝑆0 | 𝑮𝑮,𝑿𝑿) = (𝑩𝑩𝑩𝑩)𝑇𝑇𝑷𝑷𝑷𝑷𝑷𝑷, where 𝑷𝑷 = 𝚿𝚿−1 −𝚿𝚿−1𝑿𝑿(𝑿𝑿𝑇𝑇𝚿𝚿−1𝑿𝑿)−1𝑿𝑿𝑇𝑇𝚿𝚿−1, and 𝚿𝚿 =

𝚪𝚪�0−1 + 𝜎𝜎�𝑎𝑎2𝑩𝑩𝑩𝑩𝑇𝑇 + 𝜎𝜎�𝑟𝑟2𝑹𝑹�. Here 𝚪𝚪�0 and 𝑹𝑹� are 𝚪𝚪 and 𝑹𝑹 evaluated at (𝜷𝜷,𝛾𝛾,𝜎𝜎𝑎𝑎2,𝜎𝜎𝑟𝑟2, 𝜏𝜏) =

�𝜷𝜷�0, 0,𝜎𝜎�𝑎𝑎2,𝜎𝜎�𝑟𝑟2, 𝜏̂𝜏0�, where 𝚪𝚪 is the same as defined in Eq. (3) and 𝑹𝑹 = diag{𝑹𝑹1, … ,𝑹𝑹𝑛𝑛} is a block 

diagonal matrix. The GMMAT test statistic can be written as 

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑆𝑆02

Var0�𝑆𝑆0 � 𝑮𝑮,𝑿𝑿� = �(𝑩𝑩𝑩𝑩)𝑇𝑇(𝒀𝒀−𝝁𝝁�0)�
𝟐𝟐

(𝑩𝑩𝑩𝑩)𝑇𝑇𝑷𝑷𝑷𝑷𝑷𝑷
 .                                         (11) 

RGMMAT retrospective test 

Like L-BRAT, we can construct a retrospective test to assess the significance of the GLMM 

score function of Eq. (10), which we call RGMMAT, based on the quasi-likelihood model of 𝑮𝑮 

in Eq. (6). Thus, we define the RGMMAT statistic by 

RGMMAT = 𝑆𝑆02

Var0�𝑆𝑆0 � 𝒀𝒀,𝑿𝑿� = �𝑪𝑪𝑇𝑇𝑮𝑮�
2

Var0�𝑪𝑪𝑇𝑇𝑮𝑮 � 𝒀𝒀,𝑿𝑿� = �𝑪𝑪𝑇𝑇𝑮𝑮�
2

𝜎𝜎�𝑔𝑔2𝑪𝑪𝑇𝑇𝚽𝚽𝑪𝑪
 ,                              (12) 
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where 𝑪𝑪 = 𝑩𝑩𝑇𝑇(𝒀𝒀 − 𝝁𝝁�0) is the 𝑛𝑛-dimensional vector of phenotypic residuals at the individual 

level by summing over all time points for an individual, and the phenotypic residuals are 

obtained by fitting the null logistic mixed model. Both the GMMAT and RGMMAT test 

statistics are assumed to have 𝜒𝜒12 asymptotic null distributions. 

Simulation studies 

We performed simulation studies to evaluate the type I error and power of the two 

retrospective tests, and compared them to the prospective GEE and GMMAT methods. We also 

assessed sensitivity of L-BRAT and RGMMAT in the presence of model misspecification and 

ascertainment. In the simulations, we considered two different trait models and three different 

ascertainment schemes. Because both the L-BRAT and GEE methods require specification of a 

working correlation matrix, we implemented three working correlation structures: (1) 

independent, (2) AR(1), and (3) a mixture of exchangeable and AR(1). 

To generate genotypes, we first simulated 10,000 chromosomes over a 1 Mb region using a 

coalescent model that mimics the linkage disequilibrium (LD) and recombination rates of the 

European population (Schaffner et al. 2005). We then randomly selected 1,000 non-causal single 

nucleotide polymorphisms (SNPs) with MAF > 0.05. In addition, we generated two causal SNPs 

that were assumed to influence the trait value with epistasis. In the type I error simulations, we 

tested association at the 1,000 non-causal SNPs. In each simulation setting, we generated 1,000 

sets of phenotypes at five time points. Putting together, 106 replicates were used for the type I 

error evaluation. In the power simulations, we tested the first of the two causal SNPs and 

empirical power was assessed using 1,000 simulation replicates. In all tests considered, the 

genotypes at the untested causal SNP(s) were assumed to be unobserved. 

Trait models 
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We simulated two types of binary trait models at five time points, in which the two unlinked 

causal SNPs were assumed to act on the phenotype epistatically. The first type is a logistic mixed 

model, given by 

𝑌𝑌𝑖𝑖𝑖𝑖|𝑿𝑿𝑖𝑖𝑖𝑖,𝐺𝐺𝑖𝑖(1),𝐺𝐺𝑖𝑖(2),𝑎𝑎𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖 ∼ Bernoulli �𝜇𝜇𝑖𝑖𝑖𝑖�, 

logit �𝜇𝜇𝑖𝑖𝑖𝑖� = −2.5 + 0.2(𝑗𝑗 − 1) + 0.5𝑋𝑋𝑖𝑖𝑖𝑖(1) + 0.5𝑋𝑋𝑖𝑖(2) + 𝜃𝜃1�𝐺𝐺𝑖𝑖(1)>0,𝐺𝐺𝑖𝑖(2)>0� + 𝑎𝑎𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 , 

where 𝑋𝑋𝑖𝑖𝑖𝑖(1) is a continuous, time-varying covariate generated independently from a standard 

normal distribution, 𝑋𝑋𝑖𝑖(2) is a binary, time-invariant covariate taking values 0 or 1 with a 

probability of 0.5, 𝐺𝐺𝑖𝑖(1) and 𝐺𝐺𝑖𝑖(2) are the genotypes of individual 𝑖𝑖 at the two causal SNPs, 𝜃𝜃 is a 

scalar parameter encoding the effect of the causal SNPs, 1�𝐺𝐺𝑖𝑖(1)>0,𝐺𝐺𝑖𝑖(2)>0� is an indicator function 

that takes value 1 when individual 𝑖𝑖 has at least one copy of the minor allele at both the causal 

SNPs, 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖 are the individual-level time-independent and time-dependent random effects, 

respectively. Here we assume 𝑎𝑎𝑖𝑖 ∼ 𝑁𝑁(0,  𝜎𝜎𝑎𝑎2) and 𝒓𝒓𝑖𝑖 = (𝑟𝑟𝑖𝑖1, … , 𝑟𝑟𝑖𝑖5) ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜎𝜎𝑟𝑟2𝑹𝑹), where 𝑹𝑹 is 

a 5 × 5 correlation matrix specified by the AR(1) structure with a correlation coefficient 𝜏𝜏. The 

two causal SNPs are assumed to be unlinked with MAFs 0.1 and 0.5, respectively. The variance 

components are set to 𝜎𝜎𝑎𝑎2 = 𝜎𝜎𝑟𝑟2 = 0.64 and 𝜏𝜏 = 0.7. 

The second type of trait model we considered is a liability threshold model in which an 

underlying continuous liability determines the outcome value based on a threshold. Specifically, 

the phenotype 𝑌𝑌𝑖𝑖𝑖𝑖 is given by 

𝑌𝑌𝑖𝑖𝑖𝑖 = 1 if 𝐿𝐿𝑖𝑖𝑖𝑖 > 0, 

with 𝐿𝐿𝑖𝑖𝑖𝑖 = −2.0 + 0.2(𝑗𝑗 − 1) + 0.5𝑋𝑋𝑖𝑖𝑖𝑖(1) + 0.5𝑋𝑋𝑖𝑖(2) + 𝜃𝜃1�𝐺𝐺𝑖𝑖(1)>0,𝐺𝐺𝑖𝑖(2)>0� + 𝑎𝑎𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 , 
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where 𝐿𝐿𝑖𝑖𝑖𝑖 is the underlying liability for individual 𝑖𝑖 at time 𝑡𝑡𝑖𝑖𝑖𝑖, and 𝑒𝑒𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑒𝑒2) represents 

independent noise, with 𝜎𝜎𝑒𝑒2 = 0.64. All other parameters are the same as those in the logistic 

mixed model. 

In both models, we included a time effect and assumed that the mean of the outcome 

increases with time. The effect of the causal SNPs was set to 𝜃𝜃 = 0.34 in the type I error 

simulations. For the power evaluation, we considered a range of values for 𝜃𝜃, where we set 𝜃𝜃 = 

0.3, 0.32, 0.34, 0.36, and 0.38. At the given parameter values, the prevalence of the event of 

interest ranges from 12.8% to 27.7% over time. The proportion of the phenotypic variance 

explained by the two causal SNPs ranges from 0.69% to 1.10% in the logistic mixed model, and 

from 0.49% to 0.78% in the liability threshold model. 

Sampling designs 

We considered three different sampling designs. In the “random” sampling scheme, the 

sample contains 2,000 individuals that were randomly selected from the population regardless of 

their phenotypes. Thus, ascertainment is population based. In the “baseline” sampling scheme, 

we sampled 1,000 case subjects and 1,000 control subjects according to their outcome value at 

baseline only. In the “sum” sampling scheme, individuals were stratified into three strata (1, 2, 

and 3) based on a total count that sums each subject’s response over time, where samples in 

stratum 1 never experienced the event of interest, i.e., ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑗𝑗 = 0, samples in stratum 2 

sometimes experienced the event, i.e., 0 < ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑗𝑗 < 𝑛𝑛𝑖𝑖, and samples in stratum 3 always 

experienced the event, i.e., ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑗𝑗 = 𝑛𝑛𝑖𝑖. Following the outcome-dependent sampling design for 

longitudinal binary data (Schildcrout et al. 2018b), we selected 100, 1,800, and 100 individuals 

from the three strata respectively to oversample subjects who have response variation over the 

course of the study. 
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Cocaine use data from VACS 

We illustrated the utility of our proposed methods by analyzing a GWAS dataset of cocaine 

use from VACS (Justice et al. 2006). VACS is a multi-center, longitudinal observational study of 

HIV infected and uninfected veterans whose primary objective is to understand the risk of 

alcohol and other substance abuse in individuals with HIV infection. Our use of the VACS data 

was approved by the Yale Human Research Protection Program and the Institutional Review 

Board of the Veterans Affairs Connecticut Healthcare System. We analyzed longitudinal cocaine 

use in patient surveys collected at six clinic visits on 2,470 participants. Among them, 69.8% are 

African Americans (AAs), 19.3% are European Americans (EAs), and 10.9% are of other races. 

We considered the responses at each visit as 0 if individuals had never tried cocaine or had not 

used cocaine in the last year, and as 1 if individuals had used cocaine in the last year. The 

proportion of case subjects at each visit ranges from 13.7% (𝑛𝑛 = 192) to 24.3% (𝑛𝑛 = 526), and 

the missing rate at each visit ranges from 3.0% to 44.2%. 

All samples were genotyped on the Illumina OmniExpress BeadChip. After data cleaning, 

there are 2,458 individuals available for genotype imputation. IMPUTE2 (Howie et al. 2009) was 

used for imputation using the 1000 Genomes Phase 3 data as a reference panel. We excluded 

subjects who did not meet either of the following criteria: (1) completeness (i.e., proportion of 

successfully imputed SNPs) > 95% and (2) empirical self-kinship < 0.525 (i.e., empirical 

inbreeding coefficient < 0.05). Based on the above criteria, 2,231 individuals were retained in the 

analysis, with 2,114 males and 117 females, of whom 1,557 are AAs, 431 are EAs, and 243 are 

of other races. There are 1,433 individuals who had never used cocaine during the study period, 

639 individuals who sometimes used cocaine, i.e., exhibited response variation, and 159 

individuals who had used cocaine at least once every year over the course of the study. 



15 
 

We performed a GWAS with longitudinally measured cocaine use in the entire VACS 

sample. SNPs that satisfied all of the following quality-control conditions were included in the 

analysis: (1) call rate > 95%, (2) Hardy-Weinberg 𝜒𝜒2 statistic P-value > 10-6, and (3) MAF > 1%. 

All together we analyzed 10,215,072 SNPs using L-BRAT, RGMMAT, and the prospective GEE 

and GMMAT tests. Sex, age at baseline, HIV status, and time were included as covariates in the 

analysis. Because the VACS samples include AAs, EAs and other races, the top ten PCs were 

included as covariates in the analysis to control for population structure. In addition, we analyzed 

the data separately in each population, adjusted for the top ten PCs obtained within the group, 

and then combined the results from the three groups by meta-analysis using the optimal weights 

for score statistics that have essentially the same power as the inverse variance weighting (Zhou 

et al. 2011). 

To compare the performance of longitudinal association analysis with that of univariate 

analysis on the summary metrics of cocaine use in VACS, we considered two alternative cocaine 

phenotypes: baseline and trajectories. CARAT (Jiang et al. 2016), a case-control retrospective 

association test, was used to test for association with cocaine use at baseline, adjusted for sex, 

age at baseline, and HIV status. Longitudinal cocaine use trajectories were obtained using a 

growth mixture model that clusters longitudinal data into discrete growth trajectory curves 

(Muthén 2004). We fit a logistic model with a polynomial function of time. The number of 

groups was chosen based on the Bayesian information criterion (BIC). Once each individual was 

assigned to the trajectory with the highest probability of membership, we then performed 

association tests with the ordered cocaine use trajectory groups using a cumulative logit model. 

Sex, age at baseline, HIV status, and the top ten PCs were included as covariates in the analysis. 

Pathway and enrichment analyses 
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Pathway analysis was conducted on the association results for longitudinally measured 

cocaine use using the Ingenuity Pathway Analysis (IPA) software. The top SNPs with a P-value 

< 5 × 10−5 were annotated and evaluated to identify an overrepresentation of genes within 

defined canonical pathways based on information from multiple sources. The Ingenuity database 

contains information from manually reviewed literature and large public databases. The list of 

the top SNPs was mapped to the reference set in the Ingenuity knowledge. Then Fisher’s exact 

test was used to determine whether the SNP list belongs to a gene set of a functional annotation 

more than expected by chance. Both the unadjusted P-value and adjusted P-value using the 

Benjamini-Hochberg method were reported. Pathways with the adjusted P-value less than 0.05 

were considered to be significant. Enrichment analysis was also performed to assess whether the 

top association signals identified from the VACS data are more likely to regulate brain gene 

expression. Fisher’s exact test was used to test whether the associated SNPs with cocaine use is 

overrepresented in the brain expression quantitative trait loci (eQTLs) reported from the 

Genotype-Tissue Expression (GTEx) project (GTEx Consortium 2013, 2017). 

Replication data 

We used an independent cocaine dependence case-control GWAS from the Yale-Penn study 

(Gelernter et al. 2014) to replicate the top findings in VACS. The summary statistics from the 

Yale-Penn cocaine dependence GWAS were obtained. Pathway analysis using IPA was applied 

to the summary statistics of Yale-Penn on the top SNP list identified from VACS. The Fisher’s 

exact test P-values were calculated for each pathway to evaluate if there were more associated 

SNPs than would be expected by chance. 

Data availability 
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An R package implementing the proposed methods is available at https://github.com/ZWang-

Lab/LBRAT. Additional data analysis results of cocaine use from VACS are presented as 

supporting information including 1 table and 2 figures. Supplemental material available at 

FigShare. 

 

RESULTS 

Type I error assessment 

To assess type I error, we simulated phenotype data at five time points under two trait models 

and three sampling designs, and tested for association at unlinked and unassociated SNPs. We 

compared the proportion of simulations in which the test statistic exceeded the (1 − 𝛼𝛼)th 

quantile of the 𝜒𝜒12 distribution to the nominal type I error level 𝛼𝛼, for 𝛼𝛼 = 0.05, 0.01, 0.001, and 

0.0001. Table 1 gives the empirical type I error of the L-BRAT, RGMMAT, GEE, and GMMAT 

tests, based on 106 replicates. For the GEE-based methods, three working correlation structures 

were considered: (1) independent, (2) AR(1), and (3) a mixture of exchangeable and AR(1). In 

all simulations, the type I error of the two retrospective tests, L-BRAT and RGMMAT, exhibited 

no inflation at any of the nominal levels considered. In contrast, the prospective GEE tests, 

regardless of the choice of working correlation, had inflated type I error at most of the nominal 

levels in all settings. This is likely due to the fact that the asymptotic distribution of robust 

sandwich variance estimators used in GEE are not well calibrated. The inflated type I error was 

also reported in longitudinal GWAS with quantitative traits using GEE (Sitlani et al. 2015). In 

GMMAT, the type I error was much lower than the nominal level when 𝛼𝛼 = 0.05, 0.01, 0.001, 

and 0.0001. These results demonstrate that the two retrospective tests, L-BRAT and RGMMAT, 

are robust to trait model misspecification and ascertainment, whereas GEE has type I error 

https://github.com/ZWang-Lab/LBRAT
https://github.com/ZWang-Lab/LBRAT
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inflation and GMMAT is overly conservative. Overall, the choice of the working correlation 

matrix does not have much impact on the type I error of the L-BRAT method. 

Power comparison 

To compare the power of the methods, we simulated phenotype data at five time points under 

two types of trait models and three sampling designs. In each type of trait model, we considered 

five effect sizes at the two causal SNPs, and tested association between the trait and the first 

causal SNP. Empirical power was calculated at the significance level 10-3, based on 1,000 

simulated replicates. Figure 1 demonstrates the power results for each method. In all the 

simulation settings, the retrospective tests consistently had higher power than the prospective 

tests. The L-BRAT association tests under three different working correlation structures had 

similar power. The RGMMAT method also achieved high power. In contrast, the prospective 

GEE methods had the lowest power in all settings except under the baseline sampling and the 

liability threshold model, in which GMMAT performed the worst in power. Overall, we found 

that the baseline sampling scheme generated the highest power under different trait models, 

while the sum sampling scheme had a power gain over the random sampling scheme under the 

logistic mixed model, but was less powerful under the liability threshold model. These results 

suggest that L-BRAT and RGMMAT outperform the prospective tests, and the power of L-

BRAT is not sensitive to the choice of the working correlation structure. 

Analysis of cocaine use data from VACS 

Genome-wide association testing for longitudinal cocaine use was performed on 10,215,072 

SNPs in a total of the 2,231 VACS samples including AAs, EAs and other races, using L-BRAT, 

RGMMAT, GEE, and GMMAT, with adjustment for sex, age at baseline, HIV status, and time. 

To control for population structure, the top ten PCs that explained 89.4% of the total genetic 
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variation were included as covariates in the analysis. We considered two working correlation 

structures: independent and AR(1). For the L-BRAT and RGMMAT methods, the GRM was 

calculated using the LD pruned SNPs with MAF > 0.05. 

For comparison, we created two alternative summary characterizations of cocaine use: 

baseline and trajectories. Figure 2 shows the four cocaine use trajectory groups identified in the 

VACS sample. They were labeled as mostly never (0, 𝑛𝑛 = 1,682), moderate decrease (1, 𝑛𝑛 = 

296), elevated chronic (2, 𝑛𝑛 = 86), and mostly frequent (3, 𝑛𝑛 = 167). We used CARAT for the 

analysis of cocaine use at baseline, adjusted for sex, age at baseline, and HIV status. Cumulative 

logit model was used to test for association between the four ordered cocaine use trajectory 

groups and each of the SNPs, with adjustment for sex, age at baseline, HIV status, and the top 

ten PCs. 

None of the retrospective tests exhibited evidence of inflation in the quantile-quantile (Q-Q) 

plot (Figure S1). The genomic control inflation factors were 0.993 and 0.991 for the L-BRAT 

genome scan under the independent and AR(1) working correlation, respectively, and 0.984 for 

the RGMMAT analysis. The prospective GEE tests showed some evidence of deflation in the Q-

Q plot. The genomic control factors were 0.938 and 0.937 for the GEE tests under the 

independent and AR(1) working correlation. The most conservative test was GMMAT, with a 

genomic control factor 0.802. 

Table 2 reports the results for SNPs for which at least one of the longitudinal tests gives a P-

value < 2 × 10−7. Among them, the L-BRAT tests produced the smallest P-values, RGMMAT 

and the trajectory-based analysis had comparable results, while GEE, GMMAT, and CARAT 

generated much larger P-values. The Manhattan plot of the smallest P-value from these tests in 

the VACS cocaine use data is shown in Figure S2. Among the top SNPs listed in Table 2, there 
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are two SNPs, rs551879660 and rs150191017 (P = 2.00 × 10−8 and 3.77 × 10−8), located at 

3p12 and 13q12, respectively. Each of these SNPs was reported to have MAF < 1% in the 1000 

Genomes (MAF = 0.68% and 0.98%, respectively). The MAFs of the two SNPs were 1.2% and 

1.1% in the entire VACS sample, respectively, and were slightly higher in the AA sample (MAF 

= 1.6% and 1.5%, respectively). Although both SNPs have MAF > 1%, given the small sample 

size of VACS, there is limited information on them. SNP rs150191017 is located 31.5 kb from 

the gene AL161616.2 which was reported to be associated with venlafaxine treatment response in 

a generalized anxiety disorder GWAS (Jung et al. 2017). A cluster of five SNPs in complete LD 

(r2 = 1), rs76386683, rs114386843, rs186274502, rs376616438, and rs187855416, located at 

9q33, showed association with longitudinal cocaine use (P = 1.85 × 10−7 −  1.93 × 10−7). 

They are near OR1L4, an olfactory receptor gene that was reported to be associated with major 

depressive disorder (Wong et al. 2017). A cluster of olfactory receptor genes between OR3A1 

and OR3A2 that belong to the olfactory receptor gene family were identified in a recent GWAS 

of cocaine dependence and related traits (Gelernter et al. 2014). The other three SNPs, 

rs188222191, rs1014278, rs75132056, are located at 5q21 (P = 1.28 × 10−7, 1.43 × 10−7 and 

8.92 × 10−8, respectively), close to the gene EFNA5, which was identified in several GWAS to 

be associated with bipolar disorder and schizophrenia (Wang et al. 2010). There was also 

evidence of association with rs114629793 (P = 8.65 × 10−8). This SNP is in an intron of the 

gene encoding PSD3, located at 8p22. Recently, two schizophrenia GWAS have identified 

association between PSD3 and schizophrenia (Goes et al. 2015; Li et al. 2017b), and one study 

has shown that PSD3 is associated with paliperidone treatment response in schizophrenic 

patients (Li et al. 2017a). Gene network analysis revealed that PSD3 is one of the differentially 



21 
 

expressed hub genes that involve dysfunction of brain reward circuitry in cocaine use disorder 

(Ribeiro et al. 2017). 

We further performed separate analyses by population group. Table S1 gives the results in 

the 1,557 AA samples. All the top twelve SNPs listed in Table 2 had a P-value < 5 × 10−5 in at 

least one of the longitudinal tests in AAs. L-BRAT consistently gave the smallest P-values 

among all the longitudinal tests. The results from the three groups (AAs, EAs and other races) 

were combined by meta-analysis. The meta-analysis P-values were of the same order of 

magnitude as that obtained from the entire sample adjusted for population structure for each 

longitudinal test (Table 3). All the top twelve SNPs listed in Table 2 had a meta-analysis P-value 

< 8 × 10−7 in at least one of the longitudinal tests. Among them, the L-BRAT test with either an 

independent or AR(1) working correlation gave the smallest meta-analysis P-values. 

Pathway and enrichment analysis results 

We then performed pathway analysis on the top SNPs for which at least one of the 

longitudinal tests had a P-value < 5 × 10−5 using IPA. We identified two significant canonical 

pathways that belong to the neurotransmitters and nervous system signaling. The first one is the 

opioid signaling pathway (P = 1.41 × 10−4, adjusted P = 0.010), which plays an important role 

in opioid tolerance and dependence. Studies have shown that chronic administration of cocaine 

and opioids are associated with changes in dopamine transporters and opioid receptors in various 

brain regions (Le Merrer et al. 2009; Soderman and Unterwald 2009). The second significant 

pathway is the axonal guidance signaling pathway (P = 2.54 × 10−4, adjusted P = 0.012), which 

is critical for neural development. The mRNA expression levels of axon guidance molecules 

have been found to be altered in some brain regions of cocaine-treated rats, which may 

contribute to drug abuse-associated cognitive impairment (Bahi and Dreyer 2005; Jassen 2006). 
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Each of the two pathways remained significant when we performed pathway analysis, using the 

same P-value cutoff value to select top SNPs, based on the L-BRAT results generated under the 

independence and AR(1) working correlation, respectively. In contrast, only the opioid signaling 

pathway was significant based on the results from the GEE analysis using the independent 

working correlation, and only the axonal guidance signaling pathway was significant based on 

the RGMMAT results, whereas neither of them remained significant based on the GMMAT 

results and that from the GEE analysis with an AR(1) working correlation. These results 

demonstrate that L-BRAT provides more informative association results to help identify 

biological relevant pathways. 

Lastly, we performed an enrichment analysis to see whether the top SNPs in our analysis are 

more likely to regulate brain gene expression. We considered the cis-eQTLs reported in 13 

human brain regions from the GTEx project (GTEx Consortium 2013, 2017), including 

amygdala, anterior cingulate cortex, caudate, cerebellar hemisphere, cerebellum, cortex, frontal 

cortex, hippocampus, hypothalamus, nucleus accumbens, putamen, spinal cord, and substantia 

nigra. Fisher’s exact test was used to assess the enrichment of eQTLs (FDR < 0.05) in the top 

2,778 SNPs for which at least one of the longitudinal tests had a P-value < 10−4 in the VACS 

sample. Among the 13 brain regions, amygdala is the only region in which eQTLs showed 

significant enrichment in our top SNP list (odds ratio = 2.06, P = 3.0 × 10−5). 

Replication of top findings 

We used an independent cocaine dependence case-control GWAS from the Yale-Penn study 

(Gelernter et al. 2014) to replicate the top findings from our longitudinal analysis results in 

VACS. Note that the lifetime cocaine dependence diagnosis was made using the Semi-Structured 

Assessment for Drug Dependence and Alcoholism (SSADDA) (Pierucci-Lagha et al. 2005) 



23 
 

which is different from the outcome used in VACS, and there were no longitudinal phenotype 

measures in Yale-Penn. Nevertheless, we performed pathway analysis using the SNP summary 

statistics of Yale-Penn to replicate the two pathways identified in the VACS sample. Among the 

top 2,778 SNPs for which at least one of the longitudinal tests had a P-value < 10−4, we were 

able to retrieve 2,602 SNP summary statistics from Yale-Penn. Pathway analysis was conducted 

on the top 84 SNPs that had a P-value < 0.05. Although none of the top twelve SNPs in Table 2 

had a P-value < 0.05 in the Yale-Penn AA sample, each of the two pathways remained 

significant: the opioid signaling pathways (P = 5.67 × 10−4, adjusted P = 3.77 × 10−3) and the 

axonal guidance signaling (P = 2.89 × 10−4, adjusted P = 2.97 × 10−3). 

Computation time 

We implemented all four tests in an R software called LBRAT in which the robust variance 

estimator of Eq. (7) was used in the two retrospective tests, L-BRAT and RGMMAT. The 

computational burden of the retrospective tests mainly comes from the eigendecomposition of 

the GRM in calculating the retrospective variance of the score functions. However, its impact on 

run time is minimal because the decomposition needs to be done only once per genome scan. 

When fitting the null models, the GLMM-based methods require extra time to obtain the 

estimates of random effects compared to the GEE-based methods. Once the null model is 

obtained, the transformed phenotypic residual vector, 𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2(𝒀𝒀− 𝝁𝝁�0), in L-BRAT and 

the phenotypic residual vector, 𝒀𝒀 − 𝝁𝝁�0, in RGMMAT, need to be calculated just once per 

genome scan. Thus, the computational cost of the variance in the retrospective tests is much less 

than that in the prospective tests. We reported some example run times for analysis of simulated 

and real data. For a simulated dataset of phenotypes at five time points on 2,000 individuals, the 

GEE-based methods took 0.9 s while the GLMM-based methods took 37 s to fit the null model. 
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Overall, L-BRAT took 2.4 s and GEE took 27.7 s to analyze 1,000 SNPs using a single processor 

on an Intel Xeon 2.6 GHz CPU machine. In the analysis of the VACS cocaine use data, L-BRAT 

and GEE took 1 s while RGMMAT and GMMAT took 2.5 min to fit the null model. Overall, L-

BRAT, RGMMAT, GEE, and GMMAT took 0.8 hr, 0.7 hr, 24.8 hr, and 26.2 hr, respectively, to 

analyze a total of 10,215,072 genome-wide SNPs on Intel Xeon 2.6 GHz CPU computing 

clusters with 22 nodes. These results demonstrate that L-BRAT and RGMMAT are 

computationally feasible for large-scale whole-genome association studies. 

 

DISCUSSION 

Longitudinal data can be used in GWAS to improve power for identification of genetic 

variants and environmental factors that influence complex traits over time. In this study, we have 

developed L-BRAT, a retrospective association testing method for longitudinal binary outcomes. 

L-BRAT is based on GEE, thus it requires assumptions on the mean but not the full distribution 

of the outcome. Correct specification of the covariance of repeated measurements within each 

individual is not required, instead, a working covariance matrix is assumed. The significance of 

the L-BRAT association test is assessed retrospectively by considering the conditional 

distribution of the genotype at the variant of interest, given phenotype and covariate information, 

under the null hypothesis of no association. Features of L-BRAT include the following: (1) it is 

computationally feasible for genetic studies with millions of variants, (2) it allows both static and 

time-varying covariates to be included in the analysis, (3) it allows different individuals to have 

measurements at different time points, and (4) it has correct type I error in the presence of 

ascertainment and trait model misspecification. For comparison, we also propose a retrospective, 

logistic mixed model-based association test, RGMMAT, which requires specification of the full 
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distribution of the outcome. Random effects are used to model dependence among observations 

for an individual. Like L-BRAT, RGMMAT is a retrospective analysis in which genotypes are 

treated as random conditional on the phenotype and covariates. As a result, RGMMAT is also 

robust to misspecification of the model for the phenotype distribution. 

Through simulation, we demonstrated that the type I error of L-BRAT was well calibrated 

under different trait models and ascertainment schemes, whereas the type I error of the 

prospective GEE method was inflated relative to nominal levels. In the GLMM-based methods, 

GMMAT, a prospective analysis, was overly conservative, whereas the retrospective version, 

RGMMAT, was able to maintain correct type I error. We further demonstrated that the two 

retrospective tests, L-BRAT and RGMMAT, provided higher power to detect association than 

the prospective GEE and GMMAT tests under all the trait models and ascertainment schemes 

considered in the simulations. The choice of the working correlation matrix in L-BRAT resulted 

in little loss of power. We applied L-BRAT and RGMMAT to longitudinal association analysis 

of cocaine use in the VACS data, where we identified six novel genes that are associated with 

cocaine use. Moreover, our pathway analysis identified two significant pathways associated with 

longitudinal cocaine use: the opioid signaling pathway and the axonal guidance signaling 

pathway. We were able to replicate both pathways in a cocaine dependence case-control GWAS 

from the Yale-Penn study. Lastly, we illustrated that the top SNPs identified by our methods are 

more likely to be the amygdala eQTLs in the GTEx data. The amygdala plays an important role 

in the processing of memory, decision-making, and emotional responses, and contributes to drug 

craving that leads to addiction and relapse (Hyman and Malenka 2001; Warlow et al. 2017). 

These findings verify that L-BRAT is able to detect important loci in a genome scan and to 

provide novel insights into the disease mechanism in relevant tissues. For repeated binary data, 
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L-BRAT was more robust to trait model misspecification and ascertainment, and has comparable 

or higher power than RGMMAT in all simulation settings. In the real data analysis, L-BRAT 

generated smaller P-values on the top SNPs while the QQ plot of L-BRAT did not show any 

inflation of type I error. Therefore, we recommend L-BRAT when only one test is used for 

longitudinal binary data. 

In this study, both the L-BRAT and RGMMAT methods were developed for population 

samples. When samples contain related individuals, we can extend L-BRAT and RGMMAT by 

including an extra variance component in the GEE model or an additional random effect in the 

GLMM model to account for genetic relationships. As a result, the GRM will appear in both the 

null model and the score test. The L-BRAT and RGMMAT methods are designed for single-

variant association analysis of longitudinally measured binary outcomes. However, single-

variant association tests in general have limited power to detect association for low-frequency or 

rare variants in sequencing studies. We have previously developed longitudinal burden test and 

sequence kernel association test, LBT and LSKAT, to analyze rare variants with longitudinal 

quantitative phenotypes (Wang et al. 2017). Both tests are based on a prospective approach. To 

extend L-BRAT and RGMMAT to rare variant analysis with longitudinal binary data, we could 

consider either a linear statistic or a quadratic statistic that combines the retrospective score test 

at each variant in a gene region. In addition, the genetic effect in L-BRAT and RGMMAT is 

assumed to be constant. We could consider an extension to allow for time-varying genetic effect 

so that the fluctuation of genetic contributions to the trait value over time is well calibrated. 
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TABLES AND FIGURES 

Table 1. Empirical type I error of L-BRAT, RGMMAT, GEE, and GMMAT, based on 106 replicates. 

Table 2. SNPs with P-value < 2×10−7 in at least one of the longitudinal tests in the entire VACS sample. 

Table 3. Meta-analysis results of the top twelve SNPs from Table 2 in the VACS data. 

 

Figure 1. Empirical power of L-BRAT, RGMMAT, GEE, and GMMAT. Power is based on 1,000 simulated 

replicates at five time points with 𝛼𝛼 = 10−3. In the upper panel, the trait is simulated by the logistic mixed 

model, and in the lower panel, it is by the liability threshold model. Power results are demonstrated in 

samples of 2,000 individuals according to three different ascertainment schemes: random, baseline, and 

sum. This figure appears in color in the electronic version of this article. 

Figure 2. Group-based cocaine use trajectories in VACS. Dashed lines represent the estimated 

trajectories, solid lines represent the observed mean cocaine use for each trajectory group. Time is the 

number of years since the baseline visit. 







Table 1. Empirical type I error of L-BRAT, RGMMAT, GEE, and GMMAT, based on 106 replicates. 

Analysis Type Test 
Nominal 
Level 

Logistic Mixed Model Liability Threshold Model 
Random Baseline Sum Random Baseline Sum 

Prospective 

GEE(ind) 

0.05 5.38 × 10-2 5.08 × 10-2 5.27 × 10-2 5.36 × 10-2 5.19 × 10-2 5.38 × 10-2 
0.01 1.18 × 10-2 1.04 × 10-2 1.13 × 10-2 1.17 × 10-2 1.07 × 10-2 1.17 × 10-2 
0.001 1.32 × 10-3 1.16 × 10-3 1.23 × 10-3 1.37 × 10-3 1.14 × 10-3 1.37 × 10-3 
0.0001 1.67 × 10-4 1.28 × 10-4 1.43 × 10-4 1.34 × 10-4 1.36 × 10-4 1.76 × 10-4 

GEE(AR1) 

0.05 5.36 × 10-2 5.02 × 10-2 5.26 × 10-2 5.34 × 10-2 5.17 × 10-2 5.37 × 10-2 
0.01 1.16 × 10-2 1.04 × 10-2 1.12 × 10-2 1.16 × 10-2 1.06 × 10-2 1.17 × 10-2 
0.001 1.31 × 10-3 1.13 × 10-3 1.21 × 10-3 1.36 × 10-3 1.14 × 10-3 1.36 × 10-3 
0.0001 1.73 × 10-4 1.19 × 10-4 1.37 × 10-4 1.32 × 10-4 1.35 × 10-4 1.78 × 10-4 

GEE(mix) 

0.05 5.34 × 10-2 5.07 × 10-2 5.26 × 10-2 5.34 × 10-2 5.19 × 10-2 5.37 × 10-2 
0.01 1.17 × 10-2 1.04 × 10-2 1.13 × 10-2 1.16 × 10-2 1.07 × 10-2 1.17 × 10-2 
0.001 1.29 × 10-3 1.17 × 10-3 1.22 × 10-3 1.38 × 10-3 1.14 × 10-3 1.36 × 10-3 
0.0001 1.70 × 10-4 1.29 × 10-4 1.37 × 10-4 1.31 × 10-4 1.30 × 10-4 1.70 × 10-4 

GMMAT 

0.05 3.89 × 10-2 3.53 × 10-2 4.76 × 10-2 4.80 × 10-2 4.89 × 10-2 4.91 × 10-2 
0.01 6.07 × 10-3 5.24 × 10-3 9.08 × 10-3 9.29 × 10-3 9.51 × 10-3 9.33 × 10-3 
0.001 4.29 × 10-4 3.74 × 10-4 7.84 × 10-4 8.63 × 10-4 8.96 × 10-4 8.33 × 10-4 
0.0001 2.20 × 10-5 2.20 × 10-5 6.80 × 10-5 6.30 × 10-5 9.10 × 10-5 8.80 × 10-5 

Retrospective 

L-BRAT(ind) 

0.05 4.93 × 10-2 4.91 × 10-2 4.98 × 10-2 5.01 × 10-2 4.99 × 10-2 4.98 × 10-2 
0.01 9.45 × 10-3 9.60 × 10-3 9.84 × 10-3 9.90 × 10-3 9.75 × 10-3 9.55 × 10-3 
0.001 8.30 × 10-4 9.78 × 10-4 9.24 × 10-4 9.55 × 10-4 9.45 × 10-4 8.78 × 10-4 
0.0001 7.20 × 10-5 9.50 × 10-5 8.20 × 10-5 8.20 × 10-5 9.40 × 10-5 9.20 × 10-5 

L-BRAT(AR1) 

0.05 4.93 × 10-2 4.88 × 10-2 4.97 × 10-2 4.99 × 10-2 4.98 × 10-2 4.97 × 10-2 
0.01 9.48 × 10-3 9.72 × 10-3 9.78 × 10-3 9.84 × 10-3 9.76 × 10-3 9.55 × 10-3 
0.001 8.26 × 10-4 9.62 × 10-4 9.22 × 10-4 9.17 × 10-4 9.47 × 10-4 8.48 × 10-4 
0.0001 8.80 × 10-5 9.60 × 10-5 8.20 × 10-5 7.10 × 10-5 1.02 × 10-4 8.90 × 10-5 

L-BRAT(mix) 

0.05 4.93 × 10-2 4.91 × 10-2 4.99 × 10-2 5.01 × 10-2 4.98 × 10-2 4.98 × 10-2 
0.01 9.57 × 10-3 9.61 × 10-3 9.86 × 10-3 9.88 × 10-3 9.79 × 10-3 9.54 × 10-3 
0.001 8.35 × 10-4 9.86 × 10-4 9.26 × 10-4 9.57 × 10-4 9.37 × 10-4 8.78 × 10-4 
0.0001 8.20 × 10-5 1.01 × 10-4 8.60 × 10-5 7.40 × 10-5 9.70 × 10-5 8.90 × 10-5 

RGMMAT 

0.05 4.72 × 10-2 4.91 × 10-2 4.98 × 10-2 4.93 × 10-2 4.99 × 10-2 4.98 × 10-2 
0.01 8.76 × 10-3 9.64 × 10-3 9.85 × 10-3 9.63 × 10-3 9.78 × 10-3 9.55 × 10-3 
0.001 7.20 × 10-4 9.52 × 10-4 9.09 × 10-4 9.12 × 10-4 9.43 × 10-4 8.75 × 10-4 
0.0001 6.80 × 10-5 8.90 × 10-5 8.20 × 10-5 7.70 × 10-5 9.10 × 10-5 9.30 × 10-5 

Rates that are significantly larger than the nominal levels are in bold. Texts in the brackets following test 

statistics denote the working correlation structure. Specifically, L-BRAT(ind) and GEE(ind) denote the L-

BRAT and GEE tests with an independent working correlation; L-BRAT(AR1) and GEE(AR1) denote the 



L-BRAT and GEE tests with an AR(1) working correlation; L-BRAT(mix) and GEE(mix) denote the L-

BRAT and GEE tests with a mixture of exchangeable and AR(1) working correlation structure. 



Table 2. SNPs with P-value < 2×10−7 in at least one of the longitudinal tests in the entire VACS sample. 

Chr Gene Region SNP Position MAF GEE 
(ind) 

GEE 
(AR1) GMMAT L-BRAT 

(ind) 
L-BRAT 
(AR1) RGMMAT CARATa 

(BL) 
CLb 
(traj) 

3 NIPA2P2 rs551879660 75,146,492 0.012 1.87 × 10
-4

 7.14 × 10
-4

 9.07 × 10
-4

 2.00 × 10
-8

 3.19 × 10
-6

 4.13 × 10
-5

 5.78 × 10
-4

 3.35 × 10
-5

 

5 EFNA5 rs188222191 105,411,547 0.042 6.86 × 10
-6

 1.65 × 10
-5

 8.87 × 10
-5

 1.28 × 10
-7

 4.17 × 10
-7

 2.69 × 10
-6

 8.95 × 10
-5

 2.72 × 10
-5

 

  rs1014278 105,471,506 0.057 1.02 × 10
-5

 1.10 × 10
-5

 1.24 × 10
-4

 1.50 × 10
-7

 1.43 × 10
-7

 4.88 × 10
-6

 5.94 × 10
-5

 3.00 × 10
-5

 

  rs75132056 105,480,442 0.05 1.05 × 10
-5

 2.42 × 10
-5

 1.89 × 10
-4

 8.92 × 10
-8

 2.89 × 10
-7

 8.55 × 10
-6

 2.59 × 10
-4

 2.31 × 10
-5

 

8 PSD3 rs114629793 18,403,754 0.012 3.12 × 10
-4

 4.73 ×10
-4

 1.44 × 10
-4

 8.65 × 10
-8

 3.60 × 10
-7

 2.82 × 10
-6

 5.12 × 10
-4

 3.06 × 10
-6

 

9 OR1L4 rs76386683 125,467,023 0.012 1.48 × 10
-4

 9.15 × 10
-5

 2.86 × 10
-4

 1.03 ×10
-6

 1.93 × 10
-7

 5.92 × 10
-6

 4.80 × 10
-4

 3.30 × 10
-6

 

  rs114386843 125,469,425 0.012 1.47 × 10
-4

 9.05 × 10
-5

 2.82 × 10
-4

 1.01 × 10
-6

 1.88 × 10
-7

 5.78 × 10
-6

 4.75 × 10
-4

 3.22 × 10
-6

 

  rs186274502 125,471,416 0.012 1.47 × 10
-4

 9.05 × 10
-5

 2.82 × 10
-4

 1.01 × 10
-6

 1.88 × 10
-7

 5.78 × 10
-6

 4.75 × 10
-4

 3.22 × 10
-6

 

  rs376616438 125,472,267 0.012 1.44 × 10
-4

 8.95 × 10
-5

 2.77 × 10
-4

 9.79 × 10
-7

 1.85 × 10
-7

 5.62 × 10
-6

 4.79 × 10
-4

 3.20 × 10
-6

 

  rs187855416 125,474,459 0.012 1.44 × 10
-4

 8.95 × 10
-5

 2.77 × 10
-4

 9.79 × 10
-7

 1.85 × 10
-7

 5.62 × 10
-6

 4.79 × 10
-4

 3.20 × 10
-6

 

11 AP000851.1 rs139780693 102,509,700 0.03 2.60 × 10
-5

 1.04 × 10
-5

 2.78 × 10
-4

 5.83 × 10
-7

 1.26 × 10
-7

 1.35 × 10
-5

 1.06 × 10
-4

 2.00 × 10
-6

 

13 AL161616.2 rs150191017 31,962,649 0.011 4.26 × 10
-5

 9.72 × 10
-5

 7.32 × 10
-5

 3.77 × 10
-8

 3.09 × 10
-7

 7.87 × 10
-7

 3.74 × 10
-4

 5.48 × 10
-7

 

The smallest P-value among all tests at the given SNPs are in bold. a CARAT applied to cocaine use at baseline, b Cumulative logit model applied 

to the four ordered cocaine use trajectory group. 



Table 3. Meta-analysis results of the top twelve SNPs from Table 2 in the VACS data. 

Chr Gene 
Region SNP Position GEE 

(ind) 
GEE 
(AR1) GMMAT L-BRAT 

(ind) 
L-BRAT 
(AR1) RGMMAT 

3 NIPA2P2 rs551879660 75,146,492 1.81  10-4 5.86  10-4 8.98  10-4 5.26  10-8 6.41  10-6 6.49  10-5 

5 EFNA5 rs188222191 105,411,547 7.57  10-6 1.28  10-5 1.80  10-4 2.55  10-7 5.52  10-7 1.10  10-5 

  rs1014278 105,471,506 1.26  10-5 8.44  10-6 3.15  10-4 1.03  10-6 5.59  10-7 2.44  10-5 

  rs75132056 105,480,442 1.31  10-5 2.00  10-5 4.24  10-4 7.31  10-7 1.27  10-6 3.56  10-5 

8 PSD3 rs114629793 18,403,754 2.92  10-4 4.31  10-4 1.66  10-4 1.79  10-7 7.98  10-7 6.83  10-6 

9 OR1L4 rs76386683 125,467,023 1.44  10-4 8.78  10-5 3.75  10-4 2.32  10-6 5.12  10-7 1.46  10-5 

  rs114386843 125,469,425 1.42  10-4 8.62  10-5 3.68  10-4 2.25  10-6 4.97  10-7 1.41  10-5 

  rs186274502 125,471,416 1.42  10-4 8.62  10-5 3.68  10-4 2.25  10-6 4.97  10-7 1.41  10-5 

  rs376616438 125,472,267 1.39  10-4 8.51  10-5 3.60  10-4 2.18  10-6 4.86  10-7 1.37  10-5 

  rs187855416 125,474,459 1.39  10-4 8.51  10-5 3.60  10-4 2.18  10-6 4.86  10-7 1.37  10-5 

11 AP000851.1 rs139780693 102,509,700 1.15  10-5 4.16  10-6 1.07  10-4 4.04  10-7 6.05  10-8 4.41  10-6 

13 AL161616.2 rs150191017 31,962,649 3.55  10-5 6.77  10-5 1.26  10-4 6.68  10-8 5.80  10-7 3.12  10-6 

The smallest P-value among all tests at the given SNPs are in bold. 
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