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ABSTRACT Longitudinal phenotypes have been increasingly available in genome-wide
association studies (GWAS) and electronic health record-based studies for identification of
genetic variants that influence complex traits over time. For longitudinal binary data, there
remains significant challenges in gene mapping, including misspecification of the model for the
phenotype distribution due to ascertainment. Here, we propose L-BRAT, a retrospective,
generalized estimating equations-based method for genetic association analysis of longitudinal
binary outcomes. We also develop RGMMAT, a retrospective, generalized linear mixed model-
based association test. Both tests are retrospective score approaches in which genotypes are
treated as random conditional on phenotype and covariates. They allow both static and time-
varying covariates to be included in the analysis. Through simulations, we illustrated that
retrospective association tests are robust to ascertainment and other types of phenotype model
misspecification, and gain power over previous association methods. We applied L-BRAT and
RGMMAT to a genome-wide association analysis of repeated measures of cocaine use in a
longitudinal cohort. Pathway analysis implicated association with opioid signaling and axonal
guidance signaling pathways. Lastly, we replicated important pathways in an independent
cocaine dependence case-control GWAS. Our results illustrate that L-BRAT is able to detect
important loci and pathways in a genome scan and to provide insights into genetic architecture of

cocaine use.



INTRODUCTION

Genome-wide association studies (GWAS) have successfully discovered many disease
susceptibility loci and provided insights into the genetic architecture of numerous human
complex diseases and traits. In some genetic epidemiological studies, longitudinally collected
phenotype data are available. This is the case for many electronic health record (EHR)-based
studies. As many of these studies continue to follow enrolled subjects (e.g. the UK Biobank
(UKB) and the Million Veteran Program (MVP)), longitudinal phenotypes will be increasingly
available with the passage of time, providing new data resources that require appropriate
analytical tools for optimal analysis. Standard association tests that consider one time point or
collapse repeated measurements into a single value such as an average do not capture the
trajectory of phenotypic traits over time and may result in a loss of statistical power to detect
genetic associations. In addition, the effects of time-varying covariates cannot be easily
incorporated in such analyses. Recently, methodological developments for GWAS have
proliferated to make full use of the available longitudinal data. For population cohorts, methods
that account for dependence among observations from an individual include mixed effects
models (Furlotte et al. 2012; Sikorska et al. 2013), generalized estimating equations (GEE)
(Sitlani et al. 2015), growth mixture models (Das et al. 2011; Londono et al. 2013), and
empirical Bayes models (Meirelles et al. 2013). Most of these approaches are prospective
analyses and have been successfully applied to quantitative phenotypes.

As many diseases are rare, efficient designs, such as the case-control design, are commonly
applied in epidemiological studies to recruit study subjects. Despite the enhanced efficiency in
the study sample, non-random ascertainment can be a major source of model misspecification

that may lead to inflated type I error and/or power loss in association analysis. The linear mixed



model and the logistic mixed model do not perform well when the case-control ratio is
unbalanced in large-scale genetic association studies (Zhou et al. 2018). Prospective analysis in
which a population-based model is used ignores ascertainment bias and can result in
compromised statistical inference. Furthermore, in the ascertained sample, the prospective
approach conditional on the genotype and covariates may lose information when the joint
distribution of the genotype and covariates carries additional information on whether the
phenotype is associated with the genotype (Jiang et al. 2015). In this regard, several retrospective
association methods have been proposed for analyzing ascertained population-based case-control
studies (Hayeck et al. 2015; Jiang et al. 2016), family-based studies of continuous traits
(Jakobsdottir and McPeek 2013), family-based case-control studies (Zhong et al. 2016; Hayeck
et al. 2017), and family-based longitudinal quantitative traits (Wu and McPeek 2018). Compared
to prospective tests, retrospective tests conditional on the phenotype and covariates are more
robust to misspecification of the trait model (Jiang et al. 2015).

To generalize case-control sampling, outcome-dependent sampling designs have become
popular for binary data in longitudinal cohort studies (Schildcrout and Heagerty 2008;
Schildcrout et al. 2018a,b). However, association tests for longitudinally measured binary data
are less well developed in GWAS. Here, we propose L-BRAT, a retrospective, GEE-based
method for genetic association analysis of longitudinal binary outcomes. It requires specification
of the mean of the outcome distribution and a working correlation matrix for repeated
measurements. L-BRAT is a retrospective score approach in which genotypes are treated as
random conditional on the phenotype and covariates. Thus, it is robust to ascertainment and trait
model misspecification. It allows both static and time-varying covariates to be included in the

analysis. We note that GMMAT, a recently proposed prospective test using the logistic mixed



model to control for population structure and cryptic relatedness in case-control studies (Chen et
al. 2016), can be adapted for repeated binary data. For comparison, we also develop RGMMAT,
a retrospective, generalized linear mixed model (GLMM)-based association test for longitudinal
binary traits.

We performed simulation studies to evaluate the type I error and power of L-BRAT and
RGMMAT, and compared them to the existing prospective methods. The results demonstrate
that the retrospective association tests have better control of type I error when the phenotype
model is misspecified, and are robust to various ascertainment schemes. Moreover, they are more
powerful than the prospective tests. Finally, we applied L-BRAT and RGMMAT to a genome-
wide association analysis of repeated measurements of cocaine use in a longitudinal cohort, the
Veterans Aging Cohort Study (VACS), and replicated the results using data from an independent

cocaine dependence case-control GWAS.

MATERIALS AND METHODS

Suppose a binary trait is measured over time on a study population of n individuals. We have
their genome-wide measures of genetic variation. A set of covariates, static or dynamic, are also
available. Let n; be the number of repeated measures on individual i and N = Y n; be the
total number of observations. For individual i, let X;; and Y;; be the p-dimensional covariate
vector, assumed to include an intercept, and the binary response at time t;;, respectively. In this
setting, individuals are permitted to have measurements at different time points and different
number of observations. We let ¥ denote the outcome vector of length N, and let X denote the
N X p covariate matrix. Here, we focus on the problem of testing for association between a

genetic variant and the longitudinal binary outcomes. Let G denote the vector of genotypes for



the n individuals at the variant to be tested, where G; = 0, 1, or 2 is the number of minor alleles
of individual i at the variant.
Generalized estimating equations (GEE) model
We consider a GEE approach in which the mean of the outcome distribution, given the
genotype and covariates, is specified as
E(Y:j | G X) = wj, logit (u;) =XGB+ Gy, i=1,..,n j=1,..,n, (1)
where B is a p-dimensional vector of covariate effects and y is a scalar parameter of interest
representing the effect of the tested variant. Writing in a matrix form, we have the mean model
E(Y |G X)=pu, logit(u) = XB + BGy, (2)
where B is an N X n matrix representing the measurement clustering structure, and its ([, i)th
entry By; is an indicator of the [th entry of ¥ being a measurement on individual i. Here, the
vector BG is the vertically expanded genotype vector that maps the genotype data G from the
individual level to the measurement level. The covariance structure of Y is given by
Var(Y | G, X) = I''/2xr/?, (3)
where T' = diag{lh,l(l - 111,1)' '111,n1(1 - Il1,n1)' ) #n,l(l - Iln,1)' ) #n,nn(1 - Hn,nn)} is
an N-dimensional diagonal matrix and X is an N X N correlation matrix. The covariance
specification in Eq. (3) ensures that the variance of the dichotomous response Y;; depends on its
mean in a way that is consistent with the Bernoulli distribution. To apply the GEE method, a
working correlation structure such as independent, exchangeable, and first-order autoregressive
(AR(1)) must be specified. For a given within-cluster correlation matrix X(7), which may depend
on some parameter T, the estimating equations for the unknown parameters (f,y) are written as

U=[U(ﬂ) _[ XTT/2ET 2 (Y — )

Ul [(BG)TTY2E1r-1/2(y — )|



Prospective GEE test

To detect association between the genetic variant and the phenotype, we consider a score
approach to test Hy:y = 0 against H;: y # 0. The null estimate of 8, denoted by B, is the
solution to a system of estimating equations U(f) = 0 under the constraint y = 0, which can be
computed iteratively between a Fisher scoring algorithm for # and the method of moments for T
until convergence. Then, the score function for y is

Up =U() 3,05, = BEOTT 2S5, /2 (Y — y), 4)

where fiy, Ty and Z, are p, T and Z evaluated at (8,y,7) = (BO, 0, fo).

In the GEE approach, the prospective score statistic for testing Hy: y = 0 takes the form

o U2 B [(BG)Tf‘Ol/Zfalfo_l/Z(Y—ﬁo)]z 5
GEE ™ vary(Uy | G, X) — (B6)TQBG ’ )

where the null variance of U, is evaluated using a robust sandwich variance estimator,
conditional on the genotype and covariates. Here Q = V — VX(XTVX)"1XTV, where V =
I, 25 T, 1/2 Cov(NT, 125 L Vs /2 and the sample covariance of ¥, Cov(Y), is estimated by
(Y — i) (Y — fip)T. Under the null hypothesis, the Tggg test statistic has an asymptotic y7
distribution.
L-BRAT retrospective test

In what follows, we introduce a new GEE-based association testing method, L-BRAT
(Longitudinal Binary-trait Retrospective Association Test). The L-BRAT test statistic is also
based on the score function U, in Eq. (4). In contrast to the prospective GEE score test, L-BRAT
takes a retrospective approach in which the variance of U, is assessed using a retrospective
model of the genotype given the phenotype and covariates. An advantage of the retrospective

approach is that the analysis is less dependent on the correct specification of the phenotype



model. We assume that under the null hypothesis of no association between the genetic variant
and the phenotype, the quasi-likelihood model of G conditional on ¥ and X is

Eo(G|Y,X) =2p1,, Varg(G|Y,X) = 0P, (6)
where p is the minor allele frequency (MAF) of the tested variant, 1,, is a vector of length n with
every element equal to 1, o/ is an unknown variance parameter, and @ is an n X n genetic
relationship matrix (GRM) representing the overall genetic similarity between individuals due to
population structure. Because B1,, = 1, which is the first column of X that encodes an

intercept, and f‘01 /2

1T, Y2y — o), the N-dimensional vector of transformed null phenotypic
residuals, is orthogonal to the column space of X, then the null mean model of G in Eq. (6)
ensures that

Ey(Uy | Y,X) = Eo(ATG | Y, X) = 2pAT1,, = 0,
where A = BTT,/*S518, (Y — i) is the individual-level transformed phenotypic residual

vector of length n.

In model (6), the GRM @ can be obtained using genome-wide data, given by

K
@ = lz (69 — 20) (G — 25)
K & 2P (1 — Py) ’

where K is the total number of genotyped variants, Gy is the genotype vector at the kth variant,
and Py, is the estimated MAF, for example, p, = G, /2, the sample MAF at the kth variant. For
the variant of interest, let p = G /2 be its sample MAF. Under Hardy-Weinberg equilibrium, the
variance of the genotype is estimated by 6g2 = 2p(1 — p). Or we can use a more robust variance
estimator (Jakobsdottir and McPeek 2013) given by

62 = (n—1)"'6"WG, (7)



where W = &1 — 11, (17d~11,) 117 d 1. Finally, the L-BRAT test statistic can be
defined as

% _ (e’ (Te)
VarO(UO | Y; X) - VarO(ATG | Y, X) - 6§AT¢A ’

L-BRAT = ()

Under regularity conditions, L-BRAT asymptotically follows a y? distribution under the null
hypothesis.
Generalized linear mixed model (GLMM)

The Generalized linear Mixed Model Association Test (GMMAT) was originally designed to
use multiple random effects in logistic mixed models to account for complex sampling designs in
case-control studies (Chen et al. 2016). To extend the GMMAT method for case-control analysis
to repeated binary data, we consider the following logistic mixed model:

logit (1) = XiTjﬂ +Gy+a+r;, i=1.,mj=1..,n, 9)
where p;; = P(Yij =1 | Gi, Xij, a;, rl-j) is the probability of a binary response at time t;; for
individual i, conditional on his/her genotype, covariates, and random effects a; and r;;, g and y
are the same as defined in model (1), a; is the individual random effect, and 7;; is the individual-
specific time-dependent random effect. The two random effects were used to capture the
correlation among repeated measures in gene-based association test for longitudinal traits (Wang
et al. 2017). Here, a;'s are assumed to be independent and a; ~ N (0, 52). The vector of time-
dependent random effects r; = (7y4, ..., 7jn,) has a multivariate normal distribution, r; ~
MVN (0, 02R;), where an AR(1) structure is assumed for the correlation matrix R;, in which 7 is
the unknown parameter. The binary responses Y;; are assumed to be independent given the

random effects a; and 7;;. In model (9), population structure in the longitudinal data setting can

be controlled for by including another random effect to account for genetic relationships (Chen et



al. 2016; Wu and McPeek 2018), or including top principal components (PCs) of the genotype
data as additional covariates.
GMMAT test

To construct a score test for the null hypothesis Hy: y = 0 vs. the alternative Hy: y # 0, we
use the penalized quasi-likelihood method (Breslow and Clayton 1993) to fit the null logistic
mixed model and obtain the null estimates of 8, 62, 62 and T, denoted by B,, 62, 52 and T,
(Chen et al. 2016). Similarly, the best linear unbiased predictor (BLUP) of random effects, @ and
7, can be obtained. Then, the resulting score function for y is

So = S(y)mo,oﬁé,”‘ﬁ,%o,aj- = (BG)"(Y - Ho), (10)
where fi, = logit=*(XB, + Ba + #) is a vector of fitted values under Hy.

In GMMAT, the null variance of the score S, is evaluated prospectively (Chen et al. 2016),
i.e., Varg(Sy | G, X) = (BG)TPBG, where P = W1 — W iIX(XT@-1x)"1XTP~1 and ¥ =
It + 62BBT + 6?R. Here T, and R are T and R evaluated at (B,y, 62, 02,7) =
(B0, 0,62,62,%,), where T is the same as defined in Eq. (3) and R = diag{Ry, ..., R} is a block

diagonal matrix. The GMMAT test statistic can be written as

_ s _ [BOT -0
Temmar = vare(So | G,X) ~ (BGTPBG (11)

RGMMAT retrospective test

Like L-BRAT, we can construct a retrospective test to assess the significance of the GLMM
score function of Eq. (10), which we call RGMMAT, based on the quasi-likelihood model of G
in Eq. (6). Thus, we define the RGMMAT statistic by

i N () R (0§ 12
varg(So | ¥, X) " varo(CTG|Y,X) ~ g5cTec’ (12)

RGMMAT =

10



where C = BT (Y — fi,) is the n-dimensional vector of phenotypic residuals at the individual
level by summing over all time points for an individual, and the phenotypic residuals are
obtained by fitting the null logistic mixed model. Both the GMMAT and RGMMAT test
statistics are assumed to have y? asymptotic null distributions.

Simulation studies

We performed simulation studies to evaluate the type I error and power of the two
retrospective tests, and compared them to the prospective GEE and GMMAT methods. We also
assessed sensitivity of L-BRAT and RGMMAT in the presence of model misspecification and
ascertainment. In the simulations, we considered two different trait models and three different
ascertainment schemes. Because both the L-BRAT and GEE methods require specification of a
working correlation matrix, we implemented three working correlation structures: (1)
independent, (2) AR(1), and (3) a mixture of exchangeable and AR(1).

To generate genotypes, we first simulated 10,000 chromosomes over a 1 Mb region using a
coalescent model that mimics the linkage disequilibrium (LD) and recombination rates of the
European population (Schaffner et al. 2005). We then randomly selected 1,000 non-causal single
nucleotide polymorphisms (SNPs) with MAF > 0.05. In addition, we generated two causal SNPs
that were assumed to influence the trait value with epistasis. In the type I error simulations, we
tested association at the 1,000 non-causal SNPs. In each simulation setting, we generated 1,000
sets of phenotypes at five time points. Putting together, 10° replicates were used for the type I
error evaluation. In the power simulations, we tested the first of the two causal SNPs and
empirical power was assessed using 1,000 simulation replicates. In all tests considered, the
genotypes at the untested causal SNP(s) were assumed to be unobserved.

Trait models

11



We simulated two types of binary trait models at five time points, in which the two unlinked
causal SNPs were assumed to act on the phenotype epistatically. The first type is a logistic mixed
model, given by

Yl-j|Xl-j, Gi1), Gizy, Ay Tij ~ Bernoulli (ul-j),
logit (u;j) = =25+ 0.2(j — 1) + 0.5X;¢1) + 0.5X;(2) + 61, >06iz>0) T @i+ i),
where X;j(1y 1s a continuous, time-varying covariate generated independently from a standard
normal distribution, X;(y) is a binary, time-invariant covariate taking values 0 or 1 with a
probability of 0.5, G;(1) and G;(,) are the genotypes of individual i at the two causal SNPs, 6 is a

scalar parameter encoding the effect of the causal SNPs, 1 {G1(1y>0,Gi2y>0) is an indicator function

that takes value 1 when individual i has at least one copy of the minor allele at both the causal
SNPs, a; and 7;; are the individual-level time-independent and time-dependent random effects,
respectively. Here we assume a; ~ N(0, 62) and r; = (1;y, ..., T;5) ~ MVN(0,02R), where R is
a 5 X 5 correlation matrix specified by the AR(1) structure with a correlation coefficient 7. The
two causal SNPs are assumed to be unlinked with MAFs 0.1 and 0.5, respectively. The variance
components are set to 62 = 07 = 0.64 and T = 0.7.

The second type of trait model we considered is a liability threshold model in which an
underlying continuous liability determines the outcome value based on a threshold. Specifically,
the phenotype Y;; is given by

Y;j = 1ifL;; >0,

with LU =—-2.0+ 02(] - 1) + 05Xl](1) + OSXL(Z) + Hl{Gi(1)>0'Gi(2)>0} +a; + Tij + €ij,

12



where L;; is the underlying liability for individual i at time t;;, and e;; ~ N (0, 02) represents
independent noise, with 62 = 0.64. All other parameters are the same as those in the logistic
mixed model.

In both models, we included a time effect and assumed that the mean of the outcome
increases with time. The effect of the causal SNPs was set to 8 = 0.34 in the type I error
simulations. For the power evaluation, we considered a range of values for 8, where we set 6 =
0.3, 0.32, 0.34, 0.36, and 0.38. At the given parameter values, the prevalence of the event of
interest ranges from 12.8% to 27.7% over time. The proportion of the phenotypic variance
explained by the two causal SNPs ranges from 0.69% to 1.10% in the logistic mixed model, and
from 0.49% to 0.78% in the liability threshold model.

Sampling designs

We considered three different sampling designs. In the “random” sampling scheme, the
sample contains 2,000 individuals that were randomly selected from the population regardless of
their phenotypes. Thus, ascertainment is population based. In the “baseline” sampling scheme,
we sampled 1,000 case subjects and 1,000 control subjects according to their outcome value at
baseline only. In the “sum” sampling scheme, individuals were stratified into three strata (1, 2,
and 3) based on a total count that sums each subject’s response over time, where samples in

stratum 1 never experienced the event of interest, i.e., }.; ¥;; = 0, samples in stratum 2
sometimes experienced the event, i.e., 0 < };Y;; < n;, and samples in stratum 3 always
experienced the event, i.e., 3.; ¥;; = n;. Following the outcome-dependent sampling design for

longitudinal binary data (Schildcrout et al. 2018b), we selected 100, 1,800, and 100 individuals
from the three strata respectively to oversample subjects who have response variation over the

course of the study.
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Cocaine use data from VACS

We illustrated the utility of our proposed methods by analyzing a GWAS dataset of cocaine
use from VACS (Justice et al. 2006). VACS is a multi-center, longitudinal observational study of
HIV infected and uninfected veterans whose primary objective is to understand the risk of
alcohol and other substance abuse in individuals with HIV infection. Our use of the VACS data
was approved by the Yale Human Research Protection Program and the Institutional Review
Board of the Veterans Affairs Connecticut Healthcare System. We analyzed longitudinal cocaine
use in patient surveys collected at six clinic visits on 2,470 participants. Among them, 69.8% are
African Americans (AAs), 19.3% are European Americans (EAs), and 10.9% are of other races.
We considered the responses at each visit as 0 if individuals had never tried cocaine or had not
used cocaine in the last year, and as 1 if individuals had used cocaine in the last year. The
proportion of case subjects at each visit ranges from 13.7% (n = 192) to 24.3% (n = 526), and
the missing rate at each visit ranges from 3.0% to 44.2%.

All samples were genotyped on the Illumina OmniExpress BeadChip. After data cleaning,
there are 2,458 individuals available for genotype imputation. IMPUTE2 (Howie et al. 2009) was
used for imputation using the 1000 Genomes Phase 3 data as a reference panel. We excluded
subjects who did not meet either of the following criteria: (1) completeness (i.e., proportion of
successfully imputed SNPs) > 95% and (2) empirical self-kinship < 0.525 (i.e., empirical
inbreeding coefficient < 0.05). Based on the above criteria, 2,231 individuals were retained in the
analysis, with 2,114 males and 117 females, of whom 1,557 are AAs, 431 are EAs, and 243 are
of other races. There are 1,433 individuals who had never used cocaine during the study period,
639 individuals who sometimes used cocaine, i.e., exhibited response variation, and 159

individuals who had used cocaine at least once every year over the course of the study.
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We performed a GWAS with longitudinally measured cocaine use in the entire VACS
sample. SNPs that satisfied all of the following quality-control conditions were included in the
analysis: (1) call rate > 95%, (2) Hardy-Weinberg y? statistic P-value > 106, and (3) MAF > 1%.
All together we analyzed 10,215,072 SNPs using L-BRAT, RGMMAT, and the prospective GEE
and GMMAT tests. Sex, age at baseline, HIV status, and time were included as covariates in the
analysis. Because the VACS samples include AAs, EAs and other races, the top ten PCs were
included as covariates in the analysis to control for population structure. In addition, we analyzed
the data separately in each population, adjusted for the top ten PCs obtained within the group,
and then combined the results from the three groups by meta-analysis using the optimal weights
for score statistics that have essentially the same power as the inverse variance weighting (Zhou
etal. 2011).

To compare the performance of longitudinal association analysis with that of univariate
analysis on the summary metrics of cocaine use in VACS, we considered two alternative cocaine
phenotypes: baseline and trajectories. CARAT (Jiang et al. 2016), a case-control retrospective
association test, was used to test for association with cocaine use at baseline, adjusted for sex,
age at baseline, and HIV status. Longitudinal cocaine use trajectories were obtained using a
growth mixture model that clusters longitudinal data into discrete growth trajectory curves
(Muthén 2004). We fit a logistic model with a polynomial function of time. The number of
groups was chosen based on the Bayesian information criterion (BIC). Once each individual was
assigned to the trajectory with the highest probability of membership, we then performed
association tests with the ordered cocaine use trajectory groups using a cumulative logit model.
Sex, age at baseline, HIV status, and the top ten PCs were included as covariates in the analysis.

Pathway and enrichment analyses
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Pathway analysis was conducted on the association results for longitudinally measured
cocaine use using the Ingenuity Pathway Analysis (IPA) software. The top SNPs with a P-value
< 5 X 107> were annotated and evaluated to identify an overrepresentation of genes within
defined canonical pathways based on information from multiple sources. The Ingenuity database
contains information from manually reviewed literature and large public databases. The list of
the top SNPs was mapped to the reference set in the Ingenuity knowledge. Then Fisher’s exact
test was used to determine whether the SNP list belongs to a gene set of a functional annotation
more than expected by chance. Both the unadjusted P-value and adjusted P-value using the
Benjamini-Hochberg method were reported. Pathways with the adjusted P-value less than 0.05
were considered to be significant. Enrichment analysis was also performed to assess whether the
top association signals identified from the VACS data are more likely to regulate brain gene
expression. Fisher’s exact test was used to test whether the associated SNPs with cocaine use is
overrepresented in the brain expression quantitative trait loci (eQTLs) reported from the
Genotype-Tissue Expression (GTEx) project (GTEx Consortium 2013, 2017).

Replication data

We used an independent cocaine dependence case-control GWAS from the Yale-Penn study
(Gelernter et al. 2014) to replicate the top findings in VACS. The summary statistics from the
Yale-Penn cocaine dependence GWAS were obtained. Pathway analysis using IPA was applied
to the summary statistics of Yale-Penn on the top SNP list identified from VACS. The Fisher’s
exact test P-values were calculated for each pathway to evaluate if there were more associated
SNPs than would be expected by chance.

Data availability
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An R package implementing the proposed methods is available at https://github.com/ZWang-
Lab/LBRAT. Additional data analysis results of cocaine use from VACS are presented as
supporting information including 1 table and 2 figures. Supplemental material available at

FigShare.

RESULTS

Type I error assessment

To assess type I error, we simulated phenotype data at five time points under two trait models
and three sampling designs, and tested for association at unlinked and unassociated SNPs. We
compared the proportion of simulations in which the test statistic exceeded the (1 — a)th
quantile of the y? distribution to the nominal type I error level a, for @ = 0.05, 0.01, 0.001, and
0.0001. Table 1 gives the empirical type I error of the L-BRAT, RGMMAT, GEE, and GMMAT
tests, based on 10° replicates. For the GEE-based methods, three working correlation structures
were considered: (1) independent, (2) AR(1), and (3) a mixture of exchangeable and AR(1). In
all simulations, the type I error of the two retrospective tests, L-BRAT and RGMMAT, exhibited
no inflation at any of the nominal levels considered. In contrast, the prospective GEE tests,
regardless of the choice of working correlation, had inflated type I error at most of the nominal
levels in all settings. This is likely due to the fact that the asymptotic distribution of robust
sandwich variance estimators used in GEE are not well calibrated. The inflated type I error was
also reported in longitudinal GWAS with quantitative traits using GEE (Sitlani et al. 2015). In
GMMAT, the type I error was much lower than the nominal level when o = 0.05, 0.01, 0.001,
and 0.0001. These results demonstrate that the two retrospective tests, L-BRAT and RGMMAT,

are robust to trait model misspecification and ascertainment, whereas GEE has type I error
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inflation and GMMAT is overly conservative. Overall, the choice of the working correlation
matrix does not have much impact on the type I error of the L-BRAT method.
Power comparison

To compare the power of the methods, we simulated phenotype data at five time points under
two types of trait models and three sampling designs. In each type of trait model, we considered
five effect sizes at the two causal SNPs, and tested association between the trait and the first
causal SNP. Empirical power was calculated at the significance level 103, based on 1,000
simulated replicates. Figure 1 demonstrates the power results for each method. In all the
simulation settings, the retrospective tests consistently had higher power than the prospective
tests. The L-BRAT association tests under three different working correlation structures had
similar power. The RGMMAT method also achieved high power. In contrast, the prospective
GEE methods had the lowest power in all settings except under the baseline sampling and the
liability threshold model, in which GMMAT performed the worst in power. Overall, we found
that the baseline sampling scheme generated the highest power under different trait models,
while the sum sampling scheme had a power gain over the random sampling scheme under the
logistic mixed model, but was less powerful under the liability threshold model. These results
suggest that L-BRAT and RGMMAT outperform the prospective tests, and the power of L-
BRAT is not sensitive to the choice of the working correlation structure.
Analysis of cocaine use data from VACS

Genome-wide association testing for longitudinal cocaine use was performed on 10,215,072
SNPs in a total of the 2,231 VACS samples including AAs, EAs and other races, using L-BRAT,
RGMMAT, GEE, and GMMAT, with adjustment for sex, age at baseline, HIV status, and time.

To control for population structure, the top ten PCs that explained 89.4% of the total genetic
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variation were included as covariates in the analysis. We considered two working correlation
structures: independent and AR(1). For the L-BRAT and RGMMAT methods, the GRM was
calculated using the LD pruned SNPs with MAF > 0.05.

For comparison, we created two alternative summary characterizations of cocaine use:
baseline and trajectories. Figure 2 shows the four cocaine use trajectory groups identified in the
VACS sample. They were labeled as mostly never (0, n = 1,682), moderate decrease (1, n =
296), elevated chronic (2, n = 86), and mostly frequent (3, n = 167). We used CARAT for the
analysis of cocaine use at baseline, adjusted for sex, age at baseline, and HIV status. Cumulative
logit model was used to test for association between the four ordered cocaine use trajectory
groups and each of the SNPs, with adjustment for sex, age at baseline, HIV status, and the top
ten PCs.

None of the retrospective tests exhibited evidence of inflation in the quantile-quantile (Q-Q)
plot (Figure S1). The genomic control inflation factors were 0.993 and 0.991 for the L-BRAT
genome scan under the independent and AR(1) working correlation, respectively, and 0.984 for
the RGMMAT analysis. The prospective GEE tests showed some evidence of deflation in the Q-
Q plot. The genomic control factors were 0.938 and 0.937 for the GEE tests under the
independent and AR(1) working correlation. The most conservative test was GMMAT, with a
genomic control factor 0.802.

Table 2 reports the results for SNPs for which at least one of the longitudinal tests gives a P-
value < 2 X 1077. Among them, the L-BRAT tests produced the smallest P-values, RGMMAT
and the trajectory-based analysis had comparable results, while GEE, GMMAT, and CARAT
generated much larger P-values. The Manhattan plot of the smallest P-value from these tests in

the VACS cocaine use data is shown in Figure S2. Among the top SNPs listed in Table 2, there
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are two SNPs, 15551879660 and 15150191017 (P = 2.00 X 1078 and 3.77 x 1078), located at
3pl12 and 13q12, respectively. Each of these SNPs was reported to have MAF < 1% in the 1000
Genomes (MAF = 0.68% and 0.98%, respectively). The MAFs of the two SNPs were 1.2% and
1.1% in the entire VACS sample, respectively, and were slightly higher in the AA sample (MAF
= 1.6% and 1.5%, respectively). Although both SNPs have MAF > 1%, given the small sample
size of VACS, there is limited information on them. SNP rs150191017 is located 31.5 kb from
the gene AL161616.2 which was reported to be associated with venlafaxine treatment response in
a generalized anxiety disorder GWAS (Jung et al. 2017). A cluster of five SNPs in complete LD
(> =1), 1576386683, rs114386843, 5186274502, 1s376616438, and rs187855416, located at
933, showed association with longitudinal cocaine use (P = 1.85 X 1077 — 1.93 x 1077).
They are near OR1L4, an olfactory receptor gene that was reported to be associated with major
depressive disorder (Wong et al. 2017). A cluster of olfactory receptor genes between OR3A41
and OR3A2 that belong to the olfactory receptor gene family were identified in a recent GWAS
of cocaine dependence and related traits (Gelernter et al. 2014). The other three SNPs,
rs188222191, rs1014278, rs75132056, are located at 5q21 (P = 1.28 X 1077, 1.43 X 1077 and
8.92 x 1078, respectively), close to the gene EFNAS5, which was identified in several GWAS to
be associated with bipolar disorder and schizophrenia (Wang et al. 2010). There was also
evidence of association with rs114629793 (P = 8.65 x 1078). This SNP is in an intron of the
gene encoding PSD3, located at 8p22. Recently, two schizophrenia GWAS have identified
association between PSD3 and schizophrenia (Goes et al. 2015; Li et al. 2017b), and one study
has shown that PSD3 is associated with paliperidone treatment response in schizophrenic

patients (Li et al. 2017a). Gene network analysis revealed that PSD3 is one of the differentially
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expressed hub genes that involve dysfunction of brain reward circuitry in cocaine use disorder
(Ribeiro et al. 2017).

We further performed separate analyses by population group. Table S1 gives the results in
the 1,557 AA samples. All the top twelve SNPs listed in Table 2 had a P-value < 5 X 1075 in at
least one of the longitudinal tests in AAs. L-BRAT consistently gave the smallest P-values
among all the longitudinal tests. The results from the three groups (AAs, EAs and other races)
were combined by meta-analysis. The meta-analysis P-values were of the same order of
magnitude as that obtained from the entire sample adjusted for population structure for each
longitudinal test (Table 3). All the top twelve SNPs listed in Table 2 had a meta-analysis P-value
< 8 X 1077 in at least one of the longitudinal tests. Among them, the L-BRAT test with either an
independent or AR(1) working correlation gave the smallest meta-analysis P-values.

Pathway and enrichment analysis results

We then performed pathway analysis on the top SNPs for which at least one of the
longitudinal tests had a P-value < 5 x 1075 using IPA. We identified two significant canonical
pathways that belong to the neurotransmitters and nervous system signaling. The first one is the
opioid signaling pathway (P = 1.41 x 10™*, adjusted P = 0.010), which plays an important role
in opioid tolerance and dependence. Studies have shown that chronic administration of cocaine
and opioids are associated with changes in dopamine transporters and opioid receptors in various
brain regions (Le Merrer et al. 2009; Soderman and Unterwald 2009). The second significant
pathway is the axonal guidance signaling pathway (P = 2.54 x 107%, adjusted P = 0.012), which
is critical for neural development. The mRNA expression levels of axon guidance molecules
have been found to be altered in some brain regions of cocaine-treated rats, which may

contribute to drug abuse-associated cognitive impairment (Bahi and Dreyer 2005; Jassen 2006).
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Each of the two pathways remained significant when we performed pathway analysis, using the
same P-value cutoff value to select top SNPs, based on the L-BRAT results generated under the
independence and AR(1) working correlation, respectively. In contrast, only the opioid signaling
pathway was significant based on the results from the GEE analysis using the independent
working correlation, and only the axonal guidance signaling pathway was significant based on
the RGMMAT results, whereas neither of them remained significant based on the GMMAT
results and that from the GEE analysis with an AR(1) working correlation. These results
demonstrate that L-BRAT provides more informative association results to help identify
biological relevant pathways.

Lastly, we performed an enrichment analysis to see whether the top SNPs in our analysis are
more likely to regulate brain gene expression. We considered the cis-eQTLs reported in 13
human brain regions from the GTEx project (GTEx Consortium 2013, 2017), including
amygdala, anterior cingulate cortex, caudate, cerebellar hemisphere, cerebellum, cortex, frontal
cortex, hippocampus, hypothalamus, nucleus accumbens, putamen, spinal cord, and substantia
nigra. Fisher’s exact test was used to assess the enrichment of eQTLs (FDR < 0.05) in the top
2,778 SNPs for which at least one of the longitudinal tests had a P-value < 10™* in the VACS
sample. Among the 13 brain regions, amygdala is the only region in which eQTLs showed
significant enrichment in our top SNP list (odds ratio = 2.06, P = 3.0 X 107°).

Replication of top findings

We used an independent cocaine dependence case-control GWAS from the Yale-Penn study
(Gelernter et al. 2014) to replicate the top findings from our longitudinal analysis results in
VACS. Note that the lifetime cocaine dependence diagnosis was made using the Semi-Structured

Assessment for Drug Dependence and Alcoholism (SSADDA) (Pierucci-Lagha et al. 2005)
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which is different from the outcome used in VACS, and there were no longitudinal phenotype
measures in Yale-Penn. Nevertheless, we performed pathway analysis using the SNP summary
statistics of Yale-Penn to replicate the two pathways identified in the VACS sample. Among the
top 2,778 SNPs for which at least one of the longitudinal tests had a P-value < 10™*, we were
able to retrieve 2,602 SNP summary statistics from Yale-Penn. Pathway analysis was conducted
on the top 84 SNPs that had a P-value < 0.05. Although none of the top twelve SNPs in Table 2
had a P-value < 0.05 in the Yale-Penn AA sample, each of the two pathways remained
significant: the opioid signaling pathways (P = 5.67 X 10™*, adjusted P = 3.77 X 1073) and the
axonal guidance signaling (P = 2.89 X 10™*, adjusted P = 2.97 x 1073).
Computation time

We implemented all four tests in an R software called LBRAT in which the robust variance
estimator of Eq. (7) was used in the two retrospective tests, L-BRAT and RGMMAT. The
computational burden of the retrospective tests mainly comes from the eigendecomposition of
the GRM in calculating the retrospective variance of the score functions. However, its impact on
run time is minimal because the decomposition needs to be done only once per genome scan.
When fitting the null models, the GLMM-based methods require extra time to obtain the
estimates of random effects compared to the GEE-based methods. Once the null model is
obtained, the transformed phenotypic residual vector, [y /25 T, Y2y — @i,), in L-BRAT and
the phenotypic residual vector, ¥ — fiy, in RGMMAT, need to be calculated just once per
genome scan. Thus, the computational cost of the variance in the retrospective tests is much less
than that in the prospective tests. We reported some example run times for analysis of simulated

and real data. For a simulated dataset of phenotypes at five time points on 2,000 individuals, the

GEE-based methods took 0.9 s while the GLMM-based methods took 37 s to fit the null model.
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Overall, L-BRAT took 2.4 s and GEE took 27.7 s to analyze 1,000 SNPs using a single processor
on an Intel Xeon 2.6 GHz CPU machine. In the analysis of the VACS cocaine use data, L-BRAT
and GEE took 1 s while RGMMAT and GMMAT took 2.5 min to fit the null model. Overall, L-
BRAT, RGMMAT, GEE, and GMMAT took 0.8 hr, 0.7 hr, 24.8 hr, and 26.2 hr, respectively, to
analyze a total of 10,215,072 genome-wide SNPs on Intel Xeon 2.6 GHz CPU computing
clusters with 22 nodes. These results demonstrate that L-BRAT and RGMMAT are

computationally feasible for large-scale whole-genome association studies.

DISCUSSION

Longitudinal data can be used in GWAS to improve power for identification of genetic
variants and environmental factors that influence complex traits over time. In this study, we have
developed L-BRAT, a retrospective association testing method for longitudinal binary outcomes.
L-BRAT is based on GEE, thus it requires assumptions on the mean but not the full distribution
of the outcome. Correct specification of the covariance of repeated measurements within each
individual is not required, instead, a working covariance matrix is assumed. The significance of
the L-BRAT association test is assessed retrospectively by considering the conditional
distribution of the genotype at the variant of interest, given phenotype and covariate information,
under the null hypothesis of no association. Features of L-BRAT include the following: (1) it is
computationally feasible for genetic studies with millions of variants, (2) it allows both static and
time-varying covariates to be included in the analysis, (3) it allows different individuals to have
measurements at different time points, and (4) it has correct type I error in the presence of
ascertainment and trait model misspecification. For comparison, we also propose a retrospective,

logistic mixed model-based association test, RGMMAT, which requires specification of the full
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distribution of the outcome. Random effects are used to model dependence among observations
for an individual. Like L-BRAT, RGMMAT is a retrospective analysis in which genotypes are
treated as random conditional on the phenotype and covariates. As a result, RGMMAT is also
robust to misspecification of the model for the phenotype distribution.

Through simulation, we demonstrated that the type I error of L-BRAT was well calibrated
under different trait models and ascertainment schemes, whereas the type I error of the
prospective GEE method was inflated relative to nominal levels. In the GLMM-based methods,
GMMAT, a prospective analysis, was overly conservative, whereas the retrospective version,
RGMMAT, was able to maintain correct type I error. We further demonstrated that the two
retrospective tests, L-BRAT and RGMMAT, provided higher power to detect association than
the prospective GEE and GMMAT tests under all the trait models and ascertainment schemes
considered in the simulations. The choice of the working correlation matrix in L-BRAT resulted
in little loss of power. We applied L-BRAT and RGMMAT to longitudinal association analysis
of cocaine use in the VACS data, where we identified six novel genes that are associated with
cocaine use. Moreover, our pathway analysis identified two significant pathways associated with
longitudinal cocaine use: the opioid signaling pathway and the axonal guidance signaling
pathway. We were able to replicate both pathways in a cocaine dependence case-control GWAS
from the Yale-Penn study. Lastly, we illustrated that the top SNPs identified by our methods are
more likely to be the amygdala eQTLs in the GTEx data. The amygdala plays an important role
in the processing of memory, decision-making, and emotional responses, and contributes to drug
craving that leads to addiction and relapse (Hyman and Malenka 2001; Warlow et al. 2017).
These findings verify that L-BRAT is able to detect important loci in a genome scan and to

provide novel insights into the disease mechanism in relevant tissues. For repeated binary data,
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L-BRAT was more robust to trait model misspecification and ascertainment, and has comparable
or higher power than RGMMAT in all simulation settings. In the real data analysis, L-BRAT
generated smaller P-values on the top SNPs while the QQ plot of L-BRAT did not show any
inflation of type I error. Therefore, we recommend L-BRAT when only one test is used for
longitudinal binary data.

In this study, both the L-BRAT and RGMMAT methods were developed for population
samples. When samples contain related individuals, we can extend L-BRAT and RGMMAT by
including an extra variance component in the GEE model or an additional random effect in the
GLMM model to account for genetic relationships. As a result, the GRM will appear in both the
null model and the score test. The L-BRAT and RGMMAT methods are designed for single-
variant association analysis of longitudinally measured binary outcomes. However, single-
variant association tests in general have limited power to detect association for low-frequency or
rare variants in sequencing studies. We have previously developed longitudinal burden test and
sequence kernel association test, LBT and LSKAT, to analyze rare variants with longitudinal
quantitative phenotypes (Wang et al. 2017). Both tests are based on a prospective approach. To
extend L-BRAT and RGMMAT to rare variant analysis with longitudinal binary data, we could
consider either a linear statistic or a quadratic statistic that combines the retrospective score test
at each variant in a gene region. In addition, the genetic effect in L-BRAT and RGMMAT is
assumed to be constant. We could consider an extension to allow for time-varying genetic effect

so that the fluctuation of genetic contributions to the trait value over time is well calibrated.
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TABLES AND FIGURES

Table 1. Empirical type | error of L-BRAT, RGMMAT, GEE, and GMMAT, based on 10° replicates.
Table 2. SNPs with P-value < 2x1077 in at least one of the longitudinal tests in the entire VACS sample.

Table 3. Meta-analysis results of the top twelve SNPs from Table 2 in the VACS data.

Figure 1. Empirical power of L-BRAT, RGMMAT, GEE, and GMMAT. Power is based on 1,000 simulated
replicates at five time points with « = 1073. In the upper panel, the trait is simulated by the logistic mixed
model, and in the lower panel, it is by the liability threshold model. Power results are demonstrated in
samples of 2,000 individuals according to three different ascertainment schemes: random, baseline, and
sum. This figure appears in color in the electronic version of this article.

Figure 2. Group-based cocaine use trajectories in VACS. Dashed lines represent the estimated
trajectories, solid lines represent the observed mean cocaine use for each trajectory group. Time is the

number of years since the baseline visit.
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Table 1. Empirical type | error of L-BRAT, RGMMAT, GEE, and GMMAT, based on 10° replicates.

Analysis Type Test E::;ilnal Logistic Mixed Model Liability Threshold Model
Random Baseline Sum Random Baseline Sum
0.05 5.38 x 102 5.08 x 10? 5.27 x10? 5.36 x 102 519 x 10% 5.38 x 102
GEE(ind) 0.01 1.18 x 102 1.04 x 102 1.13x10% 1.17 x 102 1.07 x10? 1.17 x 102
0.001 1.32x10° 1.16x10° 1.23x10° 1.37x10° 1.14x10° 1.37x10°
0.0001 1.67x10* 1.28 x10™* 1.43x10* 1.34x10* 1.36x 10" 1.76 x 10*
0.05 5.36 x 102 5.02 x 10° 5.26 x 10? 5.34 x 102 5.17 x 10? 5.37 x 102
GEE(ARY) 0.01 1.16 x 102 1.04 x 102 1.12x10% 1.16 x 102 1.06 x 10% 1.17 x 102
0.001 1.31x10° 1.13x10° 1.21x10° 1.36x10° 1.14x10° 1.36 x 10
_ 0.0001  1,73x10* 1.19x10* 1.37x10* 1.32x10* 1.35x10* 1.78 x 10™
Prospective 0.05 5.34 x 10? 507 x 10% 5.26 x10? 5.34 x 102 519 x10% 5.37 x 102
GEE(mix) 0.01 117 x 102 1.04 x 102 1.13x10% 1.16 x 102 1.07 x 10% 1.17 x 102
0.001 129 x10° 1.17x10° 1.22x10° 1.38x10° 1.14x10° 1.36 x 10
0.0001 1.70x10* 1.29x10™* 1.37x10* 1.31x10* 1.30x 10" 1.70 x 10*
0.05 3.89x 10? 3.53x 102 4.76 x 102 4.80 x 10° 4.89 x 102 4.91 x 107
0.01 6.07 x 10° 524 x10° 9.08 x 10° 9.29x 10° 9.51 x 10° 9.33 x 10°
GMMAT " 0.001 429 x10* 3.74x10" 7.84x10* 8.63x10* 8.96x 10" 8.33x 10"
0.0001 2.20x10° 2.20x 10° 6.80 x 10° 6.30 x 10° 9.10 x 10° 8.80 x 10°
0.05 493 x10% 4.91x107% 4.98x 102 5.01x10% 4.99 x 10° 4.98 x 107
0.01 9.45x 10° 9.60 x 10° 9.84 x 10° 9.90 x 10® 9.75x 10° 9.55 x 10
L-BRATIN) 5 001 8.30 x 10* 9.78 x 10* 9.24 x 10* 9.55x 10* 9.45x 10" 8.78 x 10
0.0001 720 x 10° 9.50 x 10° 8.20 x 10° 8.20 x 10° 9.40 x 10° 9.20 x 10
0.05 4.93x 107 4.88x 102 4.97 x10% 4.99x 102 4.98 x 10% 4.97 x 107
0.01 9.48 x 10° 9.72x10° 9.78x 10° 9.84 x 10° 9.76 x 10° 9.55 x 10°
LBRATIART 6,001 8.26 x 10* 9.62 x 10" 9.22x 10* 9.17 x 10* 9.47 x 10* 8.48 x 10™
, 0.0001 8.80x 10° 9.60 x 10° 8.20 x 10° 7.10 x 10° 1.02 x 10* 8.90 x 10°
Retrospective 0.05 493 x10% 4.91x10° 4.99x10? 5.01x10% 4.98x10° 4.98 x 107
~0.01 9.57 x 10° 9.61x10° 9.86x 10° 9.88x10° 9.79 x 10° 9.54 x 10°
L-BRAT(M) 5 001 8.35x10* 9.86 x 10* 9.26 x 10* 9.57 x 10* 9.37 x 10* 8.78 x 10™
0.0001 8.20x 10° 1.01 x10™* 8.60 x 10° 7.40 x 10° 9.70 x 10° 8.90 x 10°
0.05 4.72x10% 4.91x107% 4.98x 102 4.93x10% 4.99 x 10° 4.98 x 107
0.01 8.76 x 10° 9.64 x 10° 9.85x 10° 9.63 x 10° 9.78 x 10° 9.55 x 10
RGMMAT " 6.001 7.20x 10" 9.52x10* 9.09x 10" 9.12x 10" 9.43 x10* 8.75x 10™
0.0001  6.80 x 10° 8.90 x 10° 8.20 x 10° 7.70 x 10° 9.10 x 10° 9.30 x 10

Rates that are significantly larger than the nominal levels are in bold. Texts in the brackets following test

statistics denote the working correlation structure. Specifically, L-BRAT(ind) and GEE(ind) denote the L-

BRAT and GEE tests with an independent working correlation; L-BRAT(AR1) and GEE(AR1) denote the



L-BRAT and GEE tests with an AR(1) working correlation; L-BRAT(mix) and GEE(mix) denote the L-

BRAT and GEE tests with a mixture of exchangeable and AR(1) working correlation structure.



Table 2. SNPs with P-value < 2x107" in at least one of the longitudinal tests in the entire VACS sample.

. " GEE GEE L-BRAT L-BRAT CARAT® cL’
Chr Gene Region SNP Position = MAF (ind) (AR1) GMMAT (ind) (AR1) RGMMAT (BL) (traj)

-4 -4 -4 -8 -6 -5 -4 -5

3 NIPA2P2 rs551879660 75,146,492 0.012 187 x10 7.14x10 9.07x10 2.00x10 3.19x10 4.13x10 578 x10 3.35x 10
-6 -5 -5 7 -7 -6 -5 -5

5 EFNAS  rs188222191 105,411,547 0.042 686 x10 165x10 887 x10 1.28x10 4.17x10 2.69x10 895x 10 2.72x 10
-5 -5 -4 -7 -7 -6 -5 -5

rs1014278 105,471,506 0.057 102x10 1.10x10 1.24x10 150x10 1.43x10 4.88x10 594 x10 3.00x 10
-5 -5 -4 -8 -7 6 -4 -5

rs75132056 105,480,442 0.05 1.05x10 242x10 1.89x10 892x10 289x10 855x10 259x10 2.31x 10
-4 -4 -4 8 -7 -6 -4 -6

8 PSD3  rs114629793 18,403,754 0.012 312x10 4.73x10 144 x10 8.65x10 3.60x10 2.82x10 512x10 3.06 x 10
-4 -5 -4 -6 -7 -6 -4 -6

9 OR1L4  rs76386683 125,467,023 0.012 148 x10 9.15x10 2.86x 10 1.03x10 1.93x10 592x10 4.80x10 3.30 x 10
-4 -5 -4 -6 -7 -6 -4 -6

rs114386843 125,469,425 0.012 147 x10 9.05x10 2.82x10 1.01x10 1.88x10 578x10 4.75x10 3.22x 10
-4 -5 -4 -6 -7 -6 -4 -6

rs186274502 125,471,416 0.012 147 x10 9.05x10 2.82x10 1.01x10 1.88x10 578x10 4.75x10 3.22x10
-4 -5 -4 -7 -7 -6 -4 -6

rs376616438 125,472,267 0.012 144 x10 8.95x10 2.77x10 9.79x10 1.85x10 562x10 4.79x10 3.20 x 10
-4 -5 -4 -7 -7 -6 -4 -6

rs187855416 125,474,459 0.012 144 x10 8.95x10 2.77x10 9.79x10 1.85x10 562x10 4.79x10 3.20 x 10
11 AP000851.1 rs139780693 102,509,700 0.03 260 x 10" 1.04 x 10" 2.78 x 10 5.83 x 10 1.26 x 10 1.35x 10" 1.06 x 10" 2.00 x 10"

13 AL161616.2 rs150191017 31,962,649 0.011

5 5 5 -8 7 7 4 7
426x10 9.72x10 7.32x10 3.77x10 3.09x10 7.87x10 3.74x10 5.48 x 10

The smallest P-value among all tests at the given SNPs are in bold. * CARAT applied to cocaine use at baseline, > Cumulative logit model applied

to the four ordered cocaine use trajectory group.



Table 3. Meta-analysis results of the top twelve SNPs from Table 2 in the VACS data.

Chr R(Z;'i‘:n SNP Position ((i;de) (ﬁgf) GMMAT L'(?n%?T "('EE:\)T RGMMAT
3 NIPA2P2 rs551879660 75,146,492 1.81 x 10 5.86 x 10* 8.98 x 10* 5.26 x 10° 6.41 x 10° 6.49 x 107
5  EFNA5 rs188222191 105,411,547 7.57 x 10° 1.28 x 10° 1.80 x 10* 2.55x 107 552 x 107 1.10 x 107

rs1014278 105,471,506 1.26 x 10° 8.44 x 10° 3.15x 10* 1.03x 10° 5.59 x 10”7 2.44 x 107
rs75132056 105,480,442 1.31 x 10° 2.00 x 10° 4.24 x 10* 7.31 x107 1.27 x 10° 3.56 x 10°

8 PSD3  rs114629793 18,403,754 2.92 x 10™ 4.31 x 10™ 1.66 x 10* 1.79 x 107 7.98 x 107 6.83 x 10®
9  OR1L4 rs76386683 125,467,023 1.44 x 10* 8.78 x 10° 3.75x 10” 2.32x10° 5.12x 107 1.46 x 10°

rs114386843 125,469,425 1.42 x 10 8.62 x 10° 3.68 x 10* 2.25x 10° 4.97 x 107 1.41 x 10°
rs186274502 125,471,416 1.42 x 10 8.62 x 10° 3.68 x 10* 2.25x 10° 4.97 x 107 1.41 x 10°
rs376616438 125,472,267 1.39 x 10* 8.51 x 10° 3.60 x 10 2.18 x 10° 4.86 x 107 1.37 x 10°
rs187855416 125,474,459 1.39 x 10 8.51 x 10° 3.60 x 10* 2.18 x 10° 4.86 x 107 1.37 x 10°

11 AP000851.1 rs139780693 102,509,700 1.15 x 10° 4.16 x 10° 1.07 x 10 4.04 x 107 6.05 x 10® 4.41 x 10°®

13 AL161616.2 rs150191017 31,962,649 3.55x 10° 6.77 x 10° 1.26 x 10 6.68 x 10® 5.80 x 107 3.12x 10°

The smallest P-value among all tests at the given SNPs are in bold.
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