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Abstract 

Influenza virus circulates in human, avian, and swine hosts, causing seasonal epidemic and 

occasional pandemic outbreaks. Influenza neuraminidase, a viral surface glycoprotein, has two 

sialic acid binding sites. The catalytic (primary) site, which also binds inhibitors such as 

oseltamivir carboxylate, is responsible for cleaving the sialic acid linkages that bind viral progeny 

to the host cell. In contrast, the functional annotation of the secondary site remains unclear. Here, 

we better characterize these two sites through the development of an all-atom, explicitly solvated, 

experimentally based integrative model of the pandemic influenza A H1N1 2009 viral envelope, 

containing ~160 million atoms and spanning ~115 nm in diameter. Molecular dynamics 

simulations of this crowded subcellular environment, coupled with Markov state model theory, 

provide a novel framework for studying realistic molecular systems at the mesoscale and allow us 

to quantify the kinetics of the 150-loop transition between the open and closed states. An analysis 

of chloride ion occupancy along the neuraminidase surface implies a potential new role for the 

neuraminidase secondary site, wherein the terminal sialic acid residues of the linkages may bind 

before transfer to the primary site where enzymatic cleavage occurs. Altogether, our work breaks 
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new ground for molecular simulation in terms of the size, complexity, and methodological analyses 

of the simulated components, as well as provides fundamental insights into the understanding of 

substrate recognition processes for this vital influenza drug target, suggesting a new strategy for 

the development of anti-influenza therapeutics. 

Main 

Influenza virus infection is responsible for millions of deaths worldwide each year. The Center for 

Disease Control estimates that pandemic influenza A H1N1 2009 (pH1N1) affected 60.8 million 

people, resulting in 12,468 casualties in the United States alone1,2. Along with others, this strain 

dramatically contributes to yearly epidemics, continuously fueling concerns about the emergence 

of a new pandemic strain.  In addition, the increasingly widespread resistance to antiviral 

medications is compounding this threat3, thus requiring the development of novel approaches for 

the prevention and treatment of influenza virus infection. One such strategy is to target the viral 

surface glycoprotein neuraminidase (NA), which promotes viral progeny release from the host cell 

by cleaving terminal sialic acid residues4–6. Previous work has identified the importance of 

characterizing the dynamics of the NA catalytic site for drug design7–12, understanding 

mechanisms of antiviral resistance13, and deciphering the mechanisms underlying substrate 

binding14–18.  

The catalytic (primary, 1°) site of NA is highly flexible, in part due to the adjacent 150- and 430-

loops (residues 147–152 and 429–433, respectively, N2 numbering)11,14,19. The significance of this 

flexibility is highlighted by structural comparison of the phylogenetically distinct group-1 (N1, 

N4, N5, and N8) and group-2 (N2, N3, N6, N7, and N9) NAs, which illustrates that opening of the 

150-loop in the group-1 structures leads to the formation of the so-called 150-cavity12 that can bind 

compounds with increased specificity and potency10. However, crystal structures of pH1N1 NA 
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(pN1) reveal that, unlike all other group-1 NAs, its 150-loop is closed and therefore no 150-cavity 

is present20. In contrast, previous investigations utilizing MD simulations have found that the 150-

loop of pN1 is in the open state ~60-65% of the time13,19,21.  

NA also contains a secondary (2°) sialic acid binding site adjacent to the catalytic site. This site 

was first identified as a hemadsorption site in avian-origin influenza NAs22–26 and was not initially 

believed to be present in swine-origin strains due to non-conservation of critical residues at this 

site24,27. However, more recent studies provide support for the presence of a 2° site in swine-origin 

influenza NAs, including pN116,17. The precise mechanism by which this 2° site functions remains 

unclear, however a number of studies have demonstrated its role in receptor binding28–32 and 

catalytic efficiency28,29. In addition, previous Brownian dynamics (BD) simulations of single 

glycoproteins and various ligands suggested that both endogenous substrates and the drug 

oseltamivir carboxylate bind faster to the 2° site than the 1° site (i.e., the kon rate is 2- and 7-fold 

higher for the N1 and N2 2° site, respectively, vs. the corresponding 1° site)17. Finally, the 2° site 

has recently been identified as a target for a novel influenza virus inhibitor33,34, further highlighting 

the need to understand its role in viral infectivity.  

To study the 1° and 2° sites in the context of the viral surface, we used integrative modeling to 

construct a fully atomistic model of the pH1N1 viral envelope (Figure 1A, and Figure S1 of 

Supporting Information, SI). The model was built using high-resolution crystallographic structures 

of individual glycoproteins (~1.9 – 2.6 Å resolution)20,35 that were spatially positioned according 

to a lower-resolution cryo-electron tomography (cryo-ET, ~16-20 Å resolution) map of a viral 

particle36. Our viral envelope construct includes 30 NA tetramers (120 monomers) and 236 

hemagglutinin (HA) trimers (708 monomers) embedded in a phospholipid bilayer, with realistic 

density and patterning taken from the cryo-ET. The entire pH1N1 all-atom system modeled here 
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amounts to ~160 million atoms (fully solvated) and is ~115 nm in diameter. As such, it is among 

the largest biophysical systems yet studied with all-atom molecular dynamics (MD)37,38. A 

complete description of the integrative modeling and computational approaches used to build the 

virion envelope is provided in the SI (section 1.3). Additional details can also be found in Amaro 

et al.39  

Over the past decade, studies of viruses at the molecular and coarse-grained (CG) levels have given 

unique insights into these systems, complementing and extending available experimental data by 

providing highly detailed models at never-before-seen scales, as well as suggesting testable 

biological hypotheses (predictions)40,41. Work by Schulten and coworkers established the first 

explicitly solvated atomic MD simulation of an intact virus, the satellite tobacco mosaic virus (~17 

nm diameter, ~1 million atoms, 50 ns dynamics), in 200642. Zink and Grubmuller in 2009 used 

steered MD to explore the dynamics of the explicitly solvated icosahedral shell of the southern 

bean mosaic virus (~36 nm diameter, ~4.5 million atoms, 100 ns)43. In 2010, Ayton and Voth 

developed and simulated an implicitly solvated CG representation of the immature HIV-1 virion 

(~125 nm diameter, 280,000 CG particles)44. In 2012, Larsson and coworkers simulated with 

explicitly solvated all-atom MD the satellite tobacco necrosis virus (~17 nm diameter, ~1.2 million 

atoms, ~1 us)44, and Roberts et al. developed a fully atomic poliovirus (~30 nm diameter, ~2.8-4 

million atoms, 50 ns)45. In 2013, Schulten and coworkers built and simulated a fully atomic 

representation of the HIV capsid (~70 nm diameter, ~64 million atoms, ~100 ns)46, and Andoh et 

al. in 2014 simulated an all-atom poliovirus capsid (~30 nm diameter, ~6.5 million atoms, ~200 

ns)47. Sansom and colleagues in 2015 reported an explicitly solvated CG influenza virus simulation 

(~80 nm diameter, 5 million particles)48. In two separate studies in 2016, Reddy and Sansom49, 

and Bond, Verma and coworkers50, reported coarse grained simulations of the Dengue viral 
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membrane (~50 nm diameter, ~1 million particles). Aside from the rich structural, dynamical, and 

biophysical insights that these studies each provided, the investigations have collectively pushed 

the capabilities of molecular simulation, often relying on the world’s fastest and most advanced 

computing architectures.   

As the first explicitly solvated atomic-scale simulation of a viral lipid envelope (~115 nm diameter, 

~160 million particles, ~121 ns), the work reported here breaks new ground in molecular 

simulation. To further characterize the structural dynamics of the viral envelope and its 

glycoproteins, we combined our mesoscale all-atom MD simulations with Markov state model 

(MSM) theory 51–53, thus enabling the extraction of long-timescale (e.g., microseconds) individual 

glycoprotein dynamics in a crowded environment from the short timescale MD (e.g., nanoseconds) 

of the fully intact viral surface. The accuracy and utility of MSMs have been demonstrated by 

experimental validation for many use cases including protein-protein binding, small-molecule 

binding kinetics, and protein-folding rate prediction 54–56. Correspondingly, the approach reported 

here, which relies on the many copies of single glycoproteins present within a biologically accurate 

environment, provides a novel methodological advance for extracting long time-scale dynamics 

from short simulations through the powerful MSM theoretical framework at subcellular and 

cellular scales.  

Here, we quantitatively compare how calculated protein dynamics differ when simulating many 

proteins in a single subcellular environment vs. simulating single proteins in isolation. By 

exploiting the whole pH1N1 viral envelope treated entirely with atomic resolution, this study 

provides unique insights into the two sialic acid binding sites of NA (e.g., 1° and 2°). Our 

mesoscale atomic simulations suggest that the NA 1° site is even more flexible than previously 

appreciated and provide the first rigorous kinetic characterization of the 150-loop dynamics. 
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Furthermore, our work suggests that the 2° site, which is more solvent exposed and, in some 

strains, has a higher kon rate than the 1° site17,39, may be responsible for initially capturing sialic 

acid residues, which are then electrostatically guided to the 1° site for enzymatic cleavage. Within 

this context, our mesoscale simulations unveil an unprecedented cooperative interplay between the 

two sites that further illuminates the process of sialic acid/oseltamivir carboxylate recognition and 

the 2° site functional annotation. This fundamental discovery may be used as a rationale for the 

development of novel anti-influenza small molecule therapeutics targeting NA. 
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Figure 1. Mesoscale simulations enhance conformational sampling of the viral glycoproteins.  
(A) A fully intact all-atom model of the influenza A H1N1 2009 (pH1N1) virion envelope, containing over 160 million 
atoms, shown without explicit water molecules, was simulated with all-atom molecular dynamics simulations. 
Hemagglutinin (HA) glycoproteins shown in royal (dark) blue, neuraminidase (NA) glycoproteins shown in ice (light) 
blue. (B) Top view of a single NA monomer in surface representation with the catalytic site (white), secondary site 
(yellow), 150-loop (red) and 430-loop (green) highlighted. (C-E) Principal Component Analysis (PCA) was 
performed by considering the motions of the Ca atoms of 19 1°-pocket residues. PCA histograms were independently 
normalized so the bins containing the minimum and maximum number of points were blue and red, respectively. (C) 
PCA analysis of the four monomers sampled during a single-NA-tetramer simulation (“single-glycoprotein"). (D) 
PCA analysis of the 120 monomeric trajectories extracted during the last 8.33 ns of the viral envelope simulation 
(“terminal-envelope”). (E) PCA analysis of all 120 monomeric trajectories extracted from the full simulation of the 
viral envelope (“complete-envelope”).   
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Influenza Virus All-Atom Simulations 

All-atom MD simulations of the pH1N1 viral envelope were performed using 

NAMD2.1057 and CHARMM36 all-atom additive force fields58. The system was fully solvated 

with explicit water molecules (TIP3P force field59), while ions were described using Beglov and 

Roux force fields60. To broaden conformational sampling and more efficiently use supercomputer 

resources, the initial simulation was forked twice, generating two additional shorter daughter 

simulations (schematic representation in Figure S2). Taken together, these simulations achieved 

a comprehensive simulation time of ~121 ns. The complete viral envelope simulation included 30 

NA tetramers, yielding 14.5 µs of monomeric simulation (121 ns ⨉ 30 tetramers ⨉ 4 

monomers/tetramer), and 236 HA tetramers, accounting for 85.6 µs of monomeric (121 ns ⨉ 236 

tetramers ⨉ 3 monomers/trimer). Each glycoprotein structure used to build the initial viral 

envelope system was taken from fully equilibrated single-glycoprotein MD simulations (see SI, 

sections 1.1-1.2, for computational details relative to these sets of simulations). The viral envelope 

simulations were run on the Blue Waters petascale supercomputer, using 114,688 processors, 

equivalent to 16,384 Blue Waters nodes or 4,096 physical nodes. The simulation averaged 25.57 

steps/sec. Frames were written every 10,000 steps (20 ps), ultimately occupying 11.66 terabytes 

of disk space. Data analysis drew upon conformations extracted at equally-spaced timepoints from 

these trajectories. The adopted MD protocol for the viral envelope simulations is fully described 

in the SI (section 1.4), including the NAMD input file. The physical properties of the virus (RMSD, 

RMSF analyses) and its lipid bilayer (curvature, motions) per the simulations are reported in the 

SI (sections 1.5-1.6, and Figures S3 to S9). 

To explore the flexibility of the 1° pocket (shown in Figure S10), we concatenated the MD 

trajectories of all 120 NA monomers and calculated the principal components of 19 catalytic-
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pocket-lining NA residues by considering their Ca atoms (heatmap, Figures 1C-E). We selected 

these 19 residues because they are homologous to those within 5 Å of the crystallographic 

oseltamivir carboxylate from the 2HU4 structure12. Principal component analysis (PCA) details, 

including indices of the catalytic and active site residues used in the analysis, are provided in the 

SI (section 1.7).  

To judge whether mesoscale simulations enhance conformational sampling, we compared the viral 

envelope full simulation (referred to as “complete-envelope”, Figure 1E) to five long time scale 

simulations of isolated NA tetramers embedded in small lipid-bilayer patches, described in a 

previous work (“single-glycoprotein”, Figure 1C)61. A fair comparison requires that the sampling 

of the two systems be consistent in terms of the actual simulation length. The viral envelope full 

simulation sampled 14.5 µs of monomeric dynamics, but the five simulations of isolated NA 

tetramers sampled only 1.0 µs of monomeric dynamics (5 simulations ⨉ 50 ns/simulation ⨉ 1 NA 

tetramer ⨉ 4 monomers/tetramer). Thus, to improve comparison, we considered only the final 8.33 

ns of the viral envelope simulation, which is equivalent to 1.0 µs of monomeric dynamics (1 

simulation ⨉ 8.33 ns/simulation ⨉ 30 NA tetramer ⨉ 4 monomers/tetramer) (Figure 1D). We 

refer to this truncated segment of the full simulation as the “terminal-envelope” simulation. In all 

the cases, the motions of the Ca atoms of the same 19 residues were projected onto the first two 

principal components of the viral envelope NA trajectories, and the resulting heatmaps were 

compared (Figures 1C-E). Strikingly, PCA of the NA catalytic site residues indicates that the viral 

envelope simulation more thoroughly explored the conformational landscape, even after 

controlling for total simulation time.  

To better study the 1° site conformations sampled by the viral envelope simulation, we applied k-

means clustering to the PCA points of Figure 1E. Visual inspection of cluster centroids 
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corresponding to four representative 1° site conformations (shown in Figure S10) reveals that 

R292 and R371, two key residues known to interact with the sialic acid carboxylate group, are the 

most flexible. In contrast, the carboxylate-stabilizing R152 residue moves outward in only one of 

the four representative conformations. Other pocket-lining residues such as R118 and D151, which 

previous works suggest may play a role in the molecular mechanisms of oseltamivir resistance13, 

are also relatively flexible in the apo state.  

The PCA analysis demonstrates that the viral envelope simulation more thoroughly sampled 

distinct 1° pocket states (Figures 1E) that are scarcely populated in the single-glycoprotein 

(Figure 1C). This holds true even when comparing the terminal-envelope (Figure 1D) simulation 

to the single-glycoprotein simulations (where the total sampling time is equal). The enhanced 

conformational sampling may simply be a product of the large number of NA copies blanketed 

across the viral surface; however, we do expect some effects from the viral surface environment 

including long-range electrostatic forces and glycoprotein-glycoprotein interactions that only the 

viral envelope simulation can capture. 

 

pN1 Catalytic Site Structure and Dynamics 

To explore the dynamics of the catalytic site, we analyzed the volumes of the 1° pocket and 

adjacent regions over the course of the entire viral envelope simulation (120 NA monomers, 

Figure 2)62. The volumes ranged from 450 to 4440 Å3, with an average of 1536 Å3 (Table S1 and 

section 1.8 in the SI). By comparison, the starting crystal structure pN1 (PDB ID: 3NSS20) with a 

closed 150-cavity has a volume of 800 Å3, and a structure of a non-pandemic N1 (PDB ID: 

2HTY12) with an open 150-cavity has a volume of 1088 Å3. This indicates that the volume and 

depth of the catalytic pocket and adjacent regions can increase remarkably over what has been 
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observed in crystal structures (Figure 2C). Contributing to this additional cavity volume and depth 

are two novel sub-pockets near residues G351 and E227, buried deep inside - but contiguous with 

- the 1° site (Figure 2B). Analysis with FTMap, a server for mapping ligand binding hot spots in 

macromolecules63, suggests that the G351 sub-pocket can accommodate small-molecule ligands. 

Similar to the 150-cavity and 430-cavity, the G351- and E227-adjacent sub-pockets may provide 

new ligand-binding opportunities. 

 
Figure 2. Volumetric and ligand binding “hot spot” analyses of the 1° catalytic site and adjacent regions.  
(A) NA is shown in blue ribbon, and the pocket volume is filled with semi-transparent gel. The 1° active site, 430-
loop, and 150-loop are visible. (B) NA is shown as solid diffuse, and ligand-binding hotspots are metallic. A portion 
of the surface-rendered protein was removed to facilitate visualization of internal cavities. This NA conformation has 
a notably open G351 pocket, which has a high propensity to bind ligands. (C) A histogram of the NA catalytic-site 
volumes sampled during the MD simulations. As reference, the volumes of the same active-site cavity from two crystal 
structures are indicated with black circled stars. The 3NSS20 structure (pH1N1 with a closed 150-cavity) has a volume 
of 800 Å3, and the 2HTY12 structure (H5N1 with an open 150-cavity) has a pocket volume of 1088 Å3. The simulated-
pocket volumes range from ~450 to 4440 Å3 (intervals 3500-4500 not shown) as reported in Table S1; the average 
pocket volume is 1536 Å3. 
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The volumetric and dynamical properties of the 1° site revealed in our simulations suggest that 

NA can bind many structurally distinct and complex sialoglycan receptors as part of the host-cell 

recognition process. Indeed, human glycans are vastly diverse in both their sugar composition and 

configuration (e.g., long, short, biantennary, triantennary, etc.)64. As such, transient deepening and 

broadening of the 1° NA site may allow the glycoprotein to accommodate bulkier (e.g., long, 

bi/triantennary) and longer glycan receptors. Given that our simulations model the entire viral 

envelope, it may be that full pocket opening only occurs in a crowded viral-surface environment. 

Alternatively, our simulations may capture full pocket opening because the viral coat includes 

many replicates of individual glycoproteins, enabling extensive conformational sampling.  

Using the intramolecular distance between the 150- and 430-loops as a metric for 150-cavity 

formation, we constructed a two-state MSM from the conformations sampled by the viral envelope 

simulation to estimate the timescales of 150-loop opening and closing motions. Ultimately, we 

find the stationary distribution (equilibrium probabilities) of the open and closed states to be 

similar (0.53 and 0.47, respectively). Correspondingly, the time to transition between the two states 

(i.e., the mean first-passage time, MFPT) is also roughly equal (39 ± 15 ns for open to closed, and 

29 ± 11 ns from closed to open), indicating that loop opening and closing occur at similar rates 

(Figure 3).  MSM calculations are detailed in the SI (section 1.9, and Figures S11-S14). 

To understand the impact of a crowded viral environment on loop sampling, we used the same 

protocol to construct an MSM from structures extracted from simulations of isolated NAs 

embedded in planar bilayers patches61. The 150-loop dynamics of both the viral envelope and 

single glycoprotein simulations are nearly equivalent, though the error associated with the viral-

envelope MSM is much smaller, likely due to the increased simulation time. The single-

glycoprotein equilibrium probabilities of the open and closed states were 0.61 and 0.39, 
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respectively, and the MFPT ranges (open to closed and closed to open after 50 ± 96 ns and 72 ± 

44 ns, respectively) overlap with those calculated using the viral envelope simulations. This 

comparison suggests that 150-cavity dynamics are not influenced by the crowded environment of 

the viral envelope, an expected result given that this pocket is oriented inwards (towards the 

neighboring three monomers of the same tetramer) rather than outwards (towards the 

environment). 

 
Figure 3. Two-state MSM with representative structures from the viral envelope simulation. The equilibrium 
populations of the open and closed states are approximately equal in both the viral envelope and single-glycoprotein 
simulations. Correspondingly, the mean first-passage times between the states are approximately equal. The 150-loop 
and 430-loop are represented as green and red ribbons, respectively. 
 

Secondary binding site: functional annotation 

We note that all FDA-approved NA inhibitors, as well as the endogenous ligand sialic acid, contain 

negatively charged carboxylate groups. Considering the hypothesis that the 2° site contributes to 

catalytic efficiency by recruiting and keeping substrates within close proximity to the catalytic 

site28,29, and given that prior BD simulations indicate that substrates bind faster to the 2° site than 
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the 1° site17,39, we postulate that sialic acid first binds to the more solvent exposed 2° site. 

Subsequently, the electrostatics of the NA surface guides the substrates to the 1° enzymatic site.  

Although sialic acid substrates were not included in the viral envelope simulation, we propose that 

the negatively charged chloride anions in the bulk solvent surrounding the NA monomers serve as 

a rough surrogate for negatively charged ligand moieties that may associate with the glycoprotein 

surface. To identify regions favorable to chloride occupancy, we concatenated the 120 monomeric 

NA simulations and aligned by the alpha-carbons of the 1° site. The chloride atoms were binned 

into 3,375,000 voxels (0.67 Å x 0.67 Å x 0.67 Å each). We focused on voxels containing chloride 

counts greater than three standard deviations above the mean. Notably, our simulations reveal that 

a volume of high chloride occupancy connects the 1° and 2° sialic acid binding sites (Figure 4A). 

This path is wide enough to allow negatively charged small molecules such as sialic acid or 

oseltamivir carboxylate to move from the 2° site to the 1° catalytic site. Additional regions of high 

chloride density are also depicted in Figure 4A. To further explore the role of electrostatics in the   

in this transfer mechanism, we calculated the electrostatic potential of the 120 NA monomers at 

the end of MD simulations using the adaptive Poisson-Boltzmann solver (APBS 1.4) software65. 
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Figure 4. Chlorine anion distribution within the NA binding sites. The chlorine anion distribution (A) and the 
projection of the electrostatic potential onto the NA surface (B) shows the pathway between the 1° and 2° sites. In 
panel A, NA is drawn in ice blue cartoon. Regions of high chloride occupancy are illustrated as dotted silver bubbles. 
Two sialic acids (PDB ID: 1MWE24) are superimposed in the catalytic (center) and 2° (upper right) sites for 
reference24. In panel B the NA surface is colored with a palette varying from red (negative) to royal blue (positive), 
representing electrostatic potential values of -1 kbT/ec and +1 kbT/ec, respectively. The path connecting the 2° site with 
the catalytic site is shown as a dashed arrow between circles fading from yellow (2° site) to white (catalytic site). 
 

When projected onto the NA surface, the electrostatic potential ranging from -1 kbT/ec to +1 kbT/ec 

shows a positive region connecting the two sites (Figure 4B). Positively charged residues such as 

R118, R368, R430, K432, and P431 (N2 numbering scheme) largely determine this profile. 

Interestingly, the same analysis performed on representative NA structures with open and closed 

1° pockets (extracted with MSM and shown in Figure 3) reveal that these residues are less exposed 

in the closed state (Figure S15). These results provide evidence that the two sites may act 

cooperatively, supporting the work of Lai et al.16, which confirmed that pN1 has a 2° site that can 

bind sialic acid. It also supports the work of Le et al.66, which suggested electrostatic funneling as 

being the main driving force for oseltamivir carboxylate association to the active site. Chloride 

anion and electrostatic analyses are detailed in the SI, section 1.10.  

Taken together, these results suggest a biophysical mechanism for the previously uncharacterized 

2° site. Sialic acid receptors may first bind the 2° site before being transferred to the 1° sialidase 

site (Figure 5). We propose that our chloride distribution analysis is well suited for studying these 

possible mechanisms of molecular transfer. In contrast to a simple electrostatic map, our 

simulation-based analysis accounts for both electrostatic and steric factors, as well as for the 

conformational dynamics sampled over all 14.5 µs of monomeric simulation in the context of the 

whole viral-envelope environment. In addition, the proposed “bind and transfer” mechanism is in 

good agreement with prior experimental results and proposed mechanisms28. 
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Figure 5. The predicted sialic acid “bind and transfer” mechanism. Yellow stars represent a sialic-acid-
containing glycan receptor. Blue half circles represent NA. The 1° active site and 2° site are also labeled. 
 

Conclusions 

Our work suggests a novel NA binding mechanism wherein a sialic acid containing substrate (e.g., 

a glycan receptor) first binds the 2° site, as predicted by earlier BD simulations17. After binding, 

the substrate is transferred to the catalytic site via electrostatic interactions. Finally, the catalytic 

site cleaves the terminal sialic acid substrate. In other words, a budding viral particle might use the 

2° site to first attract the sialic-acid-tipped receptors before these are cleaved within the catalytic 

site, ultimately allowing viral escape from the infected host-cell surface. MSM and volumetric 

analyses also further expand the functional annotation of the 1° site and surrounding regions, 

disclosing exceptionally deep and broad catalytic-pocket conformations. These findings can be 

exploited to design novel multi-pronged inhibitors capable of reaching the additional NA cavities 

unveiled in our multiscale simulations.  

Taken together, this information provides fundamental insights into our understanding of sialic-

acid/oseltamivir-carboxylate recognition, suggesting new strategies for the development of NA 

inhibitors. Our work also provides a novel methodological advance for extracting long time-scale 
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dynamics from short time-scale simulations by applying the powerful MSM theoretical framework 

at subcellular and cellular scales. 

 

Data availability 

A NAMD input script used for production run MD and the Jupyter notebook used to create the 

MSM are provided as Supporting Information. Additional analysis scripts are available upon 

request.  
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1.1 Building single-glycoprotein hemagglutinin (HA) and neuraminidase (NA) structural 
models 

To study the 2009 H1N1 pandemic strain, we built each component of the viral envelope. Our 
initial efforts focused on creating whole-construct glycoprotein models. Crystal structures of some 
glycoprotein components (e.g., the HA head and NA ectodomain regions) are present in the Protein 
Data Bank but other NA and HA motifs are incalcitrant to crystallography. We used protein/protein 
docking and homology modeling to model the structures of the NA stalk as well as the NA and 
HA transmembrane domains, which are typically absent from crystallographic constructs. 

We have previously described how we modeled and simulated the NA stalk and 
transmembrane regions1, but the HA modeling and simulations have not yet been published. To 
match the exact Shandong 2009 H1N1 HA sequence (accession number F2YI86), we created a 
homology model of the influenza A HA extra-virion domain using Schrödinger's Prime module. 
Prime recommended the 2WR02 structure as a template. We note that both F2YI86 and 2WR0 
correspond to group-1 HA strains, which all share high structural and sequence homology. 
Protonation states were assigned using PDB2PQR3 with PROPKA4–7 at pH 7.0. The homology 
model was subsequently energy minimized and geometry-optimized using the default parameters 
in Schrödinger's Maestro suite.  

No structures of the HA transmembrane domain have been deposited in the PDB. To create a 
homology model of this motif, we searched the Protein Data Bank for analogous extended trimeric 
alpha-helical bundles. The 2WPQ structure8 was identified as a good template candidate. Modeled 
alpha helices with the appropriate HA sequences were aligned to the helices of the 2WPQ structure. 
Inter-virion domains are likely unstructured and so were added to the modeled transmembrane 
domain as an untemplated extension. The HA extra-virion domain with appropriate disulfide bonds 
was positioned relative to the transmembrane and inter-virion domains using VMD9.  

We separately used CHARMM-GUI10,11 to construct a planar lipid bilayer containing an 
appropriate mixture of lipids per ref. 12, which describes the composition of the influenza viral 
envelope. We considered all membrane components of the inner and outer leaflets with mol % > 
1.5. To utilize only lipid molecules present in the well-tested CHARMM 36 force field13,14, we 
substituted some of the experimentally identified lipids with related, parameterized lipid molecules 
based on chemical similarity. 3-palmitoyl-2-oleoyl-d-glycero-1-phosphatidylethanolamine 
(POPE) was used for any phosphatidylethanolamine (PE) variant; 2,3-distearoyl-d-glycero-1-
phosphatidylserine (DSPS) for phosphatidylserine (PS); 3-palmitoyl-2-oleoyl-d-glycero-1-
phosphatidylglycerol (POPG) for the Forssman glycolipid hapten; and 3-palmitoyl-2-oleoyl-d-
glycero-1-phosphatidylcholine (POPC) for sphingomyelin (SM). Cholesterol and 
phosphatidylcholine, also major components of the envelope membrane, are present in the 
CHARMM 36 force field and so were not substituted13.  

We next embedded the HA models within the generated bilayer, as described in ref1. To resolve 
steric clashes, any lipid or membrane component within 3.0 Å of the protein was removed using 
PyMolecule15, an early version of the now-published Scoria Python package16 for easily 
manipulating 3D molecular data. We further resolved steric clashes using serial iterations of 
minimization and geometry optimization in Schrödinger’s Maestro, coupled with manual atomic 
and molecular manipulation in VMD9 as needed.  

We used the VMD plug-in cionize17 to position sodium and chloride ions as required to bring 
the HA/membrane system to electrical neutrality and to simulate a 20 nM solution. We manually 
adjusted the positions of some ions that were placed far from any protein or lipid molecule. We 
then used Amber’s XLEAP module18 to generate a water box extending 15 Å beyond any protein 
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or lipid atom. Excess water molecules were removed if they were not positioned directly above 
the bilayer, such that the 15 Å margin was ultimately retained only along the Z axis, perpendicular 
to the bilayer itself. The complete HA system contained 417,457 atoms. 
 
1.2 Details of the single-glycoprotein HA and NA molecular dynamics simulations 

We performed multiple independent all-atom molecular dynamics (MD) simulations of both 
the NA and HA complete-construct, single-glycoprotein, membrane-bound systems. Our goal in 
performing these simulations was to refine and fully equilibrate the modeled protein structures so 
that they could be subsequently used to populate the initial viral envelope model (described below).  

The single-glycoprotein NA simulations are described in ref. 1. We followed a similar protocol 
when simulating the single-glycoprotein HA system. In brief, we used PSFGEN to parameterize 
the protein, lipid, and water residues according to the CHARMM2213,19–21 and TIP3P force fields22. 
We then used NAMD 2.923 on the Stampede supercomputer at the Texas Advanced Computing 
Center to minimize, equilibrate, and simulate the system. Periodic boundary conditions used the 
particle mesh Ewald method to account for long-range electrostatics (smoothing cutoff: 14 Å).  

To prepare the HA system for production simulation, we first performed 1000 1-fs steps of 
unrestrained conjugate gradient minimization, with NAMD’s velocity quenching option turned on 
and maximumMove parameter set to 0.0001. We then equilibrated the system using an NPT-
ensemble protocol at 310 K. Langevin dynamics and a modified Langevin piston Nosé–Hoover 
thermostat maintained the temperature and pressure at 310 K and 1 atm, respectively. The gradual, 
constrained equilibration was performed in four phases consisting of 250,000 1-fs steps each. We 
applied harmonic-constraint force constants of 4, 3, 2, and 1 kcal/mol/Å2 to the atoms of the protein 
backbone during each phase, respectively. Finally, we subjected the HA system to further 
unconstrained equilibration (10,000,000 1-fs steps). 

Following equilibration, we performed five distinct HA productive runs of 100 ns each (~100 
million 1-fs steps). We saved 8000 frames from the last 80% of each simulation for subsequent 
analysis.  
 
1.3 Building the viral envelope model from a simplified cryoelectron-tomography “point 
model” 

Here we summarize the computational approach that we adopted to model the influenza viral 
envelope, which we have already discussed in some detail in ref. 24. The final model is shown in 
Figure 1 (main text) and Figure S1 (cross section). 

Point model of the influenza exterior. As a starting reference, experimental collaborators 
provided us with a simple point model of the influenza exterior derived from electron 
tomography25. Surface points represented the lipid-covered virion surface, and lines protruding 
from the viral surface represented the NA and HA “spikes.” This model provided both the 
morphological insights (glycoprotein distribution) and geometrical information (virion shape) 
required to model the lipid bilayer. More details can be found in ref. 24. 

Positioning the glycoprotein models. To generate the initial viral envelope model, we 
selected an ensemble of representative structures from the fully equilibrated single-glycoprotein 
HA and NA simulations described above. We aligned the MD-sampled HA and NA conformations 
and clustered on their Cα atoms using RMSD clustering26, as implemented in the GROMACS 
computer package27. We systematically and independently varied the RMSD cutoffs for HA and 
NA to identify values that grouped the respective glycoprotein conformations into five clusters 
each (see ref. 1 for details). The central member of each cluster was considered most 
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representative. These centroid glycoprotein conformations were programmatically positioned at 
the appropriate locations on the cryoelectron-tomography-derived point model using 
PyMolecule15,16. 

The point model suggested that some glycoproteins were in very close proximity, making steric 
clashes unavoidable. We used a multi-step process to resolve these clashes. First, glycoproteins 
that were sufficiently distant from their neighbors were fixed. Using a Monte-Carlo method, the 
remaining glycoproteins were allowed to randomly "jump" to adjacent regions on the virion 
surface. With every random jump, the distances between neighboring glycoproteins were again 
evaluated, and any glycoprotein sufficiently distant from its new neighbors was also fixed. 
Additionally, with each jump, each glycoprotein had a 10% chance of being returned to its original 
location, assuming that location was not occupied by another glycoprotein. This ensured that 
glycoproteins did not wander too far from their initial, experimentally determined locations.  

The ultimate goal of acceptably positioning every glycoprotein was not achievable using the 
above method alone, so we also gradually relaxed the distance cutoffs during the Monte Carlo 
procedure to keep the number of clashes to a minimum. Following the procedure, we performed a 
pairwise distance comparison between the heavy atoms of all neighboring glycoproteins to 
eliminate those occasional clashes that remained. Two glycoproteins were said to clash if the 
distance between any of their heavy atoms was less than 1.0 A. Those glycoproteins that clashed 
with the greatest number of their neighbors were removed first, followed by the less egregious 
offenders. Ultimately, it was only necessary to eliminate 10-15% of the glycoproteins to resolve 
all steric clashes. 

Inserting M2 channels. For completeness sake, we randomly positioned eleven identical 
models of the M2 transmembrane domain, derived from the 2L0J structure28, at viral-surface 
regions that were not occupied by glycoproteins. At the time of model construction, the published 
M2 structures and available structural templates based on sequence similarity did not allow us to 
create a full-sequence M2 homology model. Subsequent examination of the model (after extensive 
simulation) also revealed that the M2 channels had the incorrect orientation. However, these 
channels are sparsely distributed (i.e., only 11 throughout the entire viral envelope) and are so far 
from the glycoprotein ectodomains that their impact on the structure and dynamics of the NA and 
HA sialic-acid binding sites is expected to be negligible.  

Generating the viral envelope lipid bilayer. We next used LipidWrapper29, a PyMolecule-
based program designed for creating large-scale lipid-bilayer models of arbitrary geometry, to 
carpet the entire asymmetrical surface of the virion point model with phosphatidylcholine (POPC) 
molecules. LipidWrapper used a large planar lipid-bilayer model as input, which we generated 
using the CHARMM-GUI server10,11. Lipid residues that came within 3 Å of any protein were 
deleted.  

We modeled a pure POPC bilayer, rather than a mixed bilayer, for practical reasons. It is very 
difficult to create asymmetrical mixed-lipid models with leaflets that have identical densities. 
When modeling a small lipid patch, slight differences in leaflet densities are of little consequence. 
But these small differences are magnified many times over when modeling mesoscale structures 
such as the influenza viral envelope. Fortunately, we are primarily interested in the dynamics of 
the glycoprotein ectodomains, which are over 100 Å distant from the bilayer surface24. Regardless, 
lipid-relevant dynamics such as lateral diffusion through the bilayer occur on time scales that are 
much longer than those sampled by the viral envelope simulations described in this work (see 
below). 
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Ionization and solvation. The viral-surface model was solvated both internally and externally 
with explicit water molecules, leading to a total system that had dimensions 1,218 Å x 1,215 Å x 
1,279 Å (~1,900,000 nm3). We added Na+ and Cl- ions as required to first bring the system to 
electrical neutrality and then to model a counterion concentration of 0.15 M. The final system—
including 236 HA trimers, 30 NA tetramers, 11 M2 ion channels, the quasi-spherical POPC lipid 
bilayer, waters, and ions—was comprised of 160,653,271 atoms. 

 
1.4 Complete viral envelope, all-atom molecular dynamics simulations 

We next used all-atom MD simulations to study the dynamics of the viral envelope model. The 
complete system was parameterized using PSFGEN according to the CHARMM36 all-atom 
additive force fields for proteins and lipids13,14,21, the TIP3P force field for water molecules22, and 
the Beglov and Roux force field30 for the ions. 

Minimizing and equilibrating so large a system was challenging. As mentioned above, the NA 
and HA glycoproteins used to populate the viral surface were themselves taken from single-
glycoprotein MD simulations and so were effectively pre-equilibrated. To further equilibrate these 
glycoproteins in the context of the viral envelope bilayer, we used NAMD23 to subject the viral 
envelope model to iterative rounds of minimization and simulation. Multiple cycles of 
minimization were performed using NAMD’s default minimizer (conjugate gradient). Following 
minimization, the system was subjected to 3.2 ns (2 fs time step) of equilibration under an NPT 
ensemble. During the equilibration phases, Langevin dynamics with a damping coefficient of 
1/ps31 were used to gradually increase the temperature to 298 K, and a Nosé-Hoover Langevin 
piston32,33 was used to maintain the pressure (1.01325 bar). Between these iterative rounds of 
minimization and equilibration, it was occasionally necessary to patch holes in the lipid bilayer. 
This process eventually produced a bilayer that was reasonably stable. We note, however, that full 
equilibration was not possible because our viral envelope model does not include the virion 
interior. To maintain the overall geometry of the model in the absence of structure-supporting 
interior components, we fixed the positions of every 10th inner-leaflet lipid head group. This same 
constraint was used during all subsequent viral envelope simulations. 

We next subjected the system to productive MD simulations using a Langevin thermostat (298 
K) and a Nosé-Hoover Langevin barostat (1.01325 bar) to achieve temperature and pressure 
control, respectively. We used a 12 Å cutoff to evaluate non-bonded interactions at each time step. 
A full electrostatic evaluation was performed every 3 time steps using the particle mesh Ewald 
method34 to account for long-range electrostatic interactions. The simulations were run with a 2 fs 
integration time step. Atomic bonds involving hydrogen atoms were fixed with SHAKE35 using 
the option “rigidbonds all”.  

Simulations were run using a memory-optimized version of NAMD 2.1023 on the Blue Waters 
supercomputer (114,688 processors, equivalent to 16,384 Blue Waters nodes or 4,096 physical 
nodes). Over the course of the simulations, NAMD performed 252 benchmark calculations, which 
averaged 25.57 steps/second (i.e., 51.14 fs of simulation per second of real time). Frames were 
saved to disk every 10,000 steps (20 ps), ultimately occupying 11.66 terabytes of disk space. More 
details describing how to simulate mesoscale systems with NAMD can be found at 
https://www.ks.uiuc.edu/Research/namd/wiki/index.cgi?NamdMemoryReduction.  

After 40.14 ns, the productive simulation was forked into two daughter simulations that 
continued for 30.60 and 15.16 ns, respectively (Figure S2). The second daughter simulation was 
then also forked into simulations that lasted 20.70 and 14.44 ns, respectively. Prior to forking, a 
single hole developed in the virion bilayer after roughly 20 ns. This hole comprised roughly 0.2% 
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of the entire virion surface area and so had a minimal effect on overall viral envelope dynamics. It 
was repaired prior to launching the 14.44-ns simulation. Taken together, these simulations 
constitute 121.04 ns total. The NAMD configuration file used for the production run is provided 
as additional material in the Supporting Information. 
 
1.5 RMSD and RMSF analyses of the viral envelope MD simulations 
 As mentioned above, the NA and HA glycoproteins used to populate the viral surface were 
themselves taken from multicopy MD simulations and so were effectively pre-equilibrated. To 
verify that the NA ectodomains remained equilibrated over the course of the viral envelope 
simulation, for each simulation frame we calculated the average root mean square distance 
(RMSD) between the 3NSS crystal structure36 and each of the 120 viral envelope NA monomers. 
We similarly calculated the per-frame average RMSD between a 3LZG-based HA model and the 
708 viral envelope HA monomers. These average RMSD values did not drift substantially over 
the course of the simulation (Figure S3). 

In addition to RMSD, we provide a root mean square fluctuation (RMSF) analysis of the Cα of 
the NA (Figure S4) and HA (Figure S5) glycoproteins over the course of the viral envelope 
simulations. To calculate the RMSF values of each residue, all monomeric trajectories were 
aligned by the head-domain Cα (i.e., those residues resolved in the 3NSS structure). The atoms of 
each residue were assigned the RMSF values calculated from the corresponding Cα movements.  

To ascertain the structural variation overall, we computed the RMSD for the first frame of the 
simulation versus the last frame, over all the glycoprotein Cα. The results of this calculation are 
shown in Figure S6. 
 
1.6 Viral envelope lipid and curvature analysis 

Although this investigation focuses primarily on the dynamics of the two glycoproteins HA 
and NA, we here provide some analysis of the lipid bilayer and the overall curvature of the 
simulated envelope. These analyses serve as basic system checks and inform on the other aspects 
contained within the simulated data.  

Phospholipid curvature values were calculated by extracting the coordinates of the headgroup 
phosphorous atoms and fitting a sphere to surrounding lipids within a 200 Å radius (Figure S7). 
The inverse radius of the fitted sphere gives the curvature value. The sphere fit was calculated 
using the least squares algorithm available in NumPy21.  

The area per lipid was estimated at each lipid coordinate by dividing the number of lipids 
within the 200 Å radius by the surface area of the spherical cap as calculated from the radius of 
curvature.  

To investigate the dynamics and movement of lipids in the bilayer, we computed lipid 
streamlines for the lipids at the end of a 70 ns trajectory over a 3.4 ns timestep (Figure S8).  
Streamlines were calculated using the MDAnalysis37,38 streamplot algorithm developed and 
described by Chavent and Reddy et al.39 The calculation uses a vector field to describe the motion 
of lipid groups. A three-dimensional grid first subdivides the influenza model, followed by a 
calculation of the lipid center-of-mass coordinates corresponding to each grid box. The same 
calculation is performed for that center of mass after a timestep t, producing a vector describing 
the displacement in the x, y and z directions. We used a grid resolution of 20 Å. The vector field 
datasets were visualized and plotted using the MayaVi visualization package40.  

Others have observed that concerted lipid motion in both vesicular and planar bilayer 
simulations is often highly transient, lasting on the order of nanoseconds39,41,42. Our streamline 
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visualization of the outer leaflet revealed instances of lipid vortices around some, but not all, 
embedded glycoproteins. Though beyond the scope of this work, further investigation of lipid 
diffusion coefficients, protein diffusion, and rigorous correlation plots may reveal how vesicular 
membrane composition is likely to modulate observed nanometer-scale motions. However, the 
short duration of the simulation prohibits a thorough analysis of longer-timescale events such as 
lipid mixing and the impact of protein crowding on lateral lipid diffusion41–43. 

Finally, we plotted the glycoprotein distribution with respect to local surface curvature to 
ascertain whether the presence of glycoproteins caused a significant deformation in the viral 
envelope (Figure S9). The protein distribution was calculated by mapping the Cα, onto the 
curvature value associated with the nearest lipid. Rather than mapping a single representative 
protein to a point, the Cα were selected and mapped to their nearest lipid neighbors to account for 
the total diversity of lipid-protein interactions and curvature values. The resulting histogram, 
normalized by curvature/surface area, indicates that the protein content skews slightly toward 
higher curvature values, indicating that the glycoproteins may induce local bilayer deformation. It 
is important to note, however, that the simulation length does not account for large-scale protein 
diffusion39 and that the membrane, which contains only POPC molecules, does not accurately 
capture the full chemical complexity of the bilayer.  

 
1.7 NA catalytic site principal component analysis 

To perform the principal component analysis (PCA) shown in Figure 1E, we considered the 
Cα of the 19 NA active-site residues homologous to those that come within 5 Å of the 
crystallographic oseltamivir molecule solved in ref. 44 (PDB ID: 2HU4). In 2HU4, these residues 
are ARG:118, ARG:152, ARG:156, ARG:224, ARG:292, ARG:371, ASN:294, ASP:151, 
GLU:119, GLU:227, GLU:276, GLU:277, GLY:348, ILE:222, SER:179, SER:246, TRP:178, 
TYR:347, and TYR:406. The homologous residues from the F2YI87 sequence used to create our 
NA models are ARG:118, ARG:152, ARG:156, ARG:225, ARG:293, ARG:368, ASN:295, 
ASP:151, GLU:119, GLU:228, GLU:277, GLU:278, GLY:345, ILE:223, SER:180, SER:247, 
TRP:179, ASN:344, and TYR:402. Eighteen of these 19 residues are conserved between the two 
sequences. We used the PCA function from the sklearn.decomposition Python library45. Each PCA 
histogram in Figure 1E was independently normalized so that the bins containing the minimum 
and maximum number of 2D PCA points were blue and red, respectively. A k-means clustering 
performed PCA on 155,280 regularly spaced, active-site-aligned monomeric conformations 
extracted from the viral envelope simulation. To approximately represent each conformation, we 
assigned each to a vector comprised of the first and second principal components. We normalized 
this set of vectors by dividing each principal component by its standard deviation across all 
conformations (using scipy.cluster.vq.whiten). We then used K-means 
clustering (scipy.cluster.vq.kmeans2) to group the vectors into 15 clusters. To focus on the most 
representative conformations, we discarded all but the five largest clusters. For each of the 
remaining five clusters, we identified the conformation with the PCA vector closest the cluster 
centroid. These conformations are shown in Figure S10. 
 
1.8 Volumetric and FTMap analysis 

After aligning all 120 NA monomeric trajectories by the active-site Cα, we used POVME 2.046 
to measure the pocket shapes and volumes across all trajectories (grid spacing 2.0 Å). A volumetric 
analysis of the NA catalytic site was performed over ~150,000 frames, which were subsequently 
binned into the histogram shown in Figure 2 (main text). Table S1 reports all calculated volume 
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intervals with a resolution of 100 Å3 (starting from 0-100 Å3) as well as the number of frames 
populating each interval. Note that in Figure 2 we omitted the volume intervals larger than 3400 
Å3 for the sake of clarity. 

 
 
 
 

Volume (Å3) # FRAMES 
100 0 
200 0 
300 0 
400 0 
500 1 
600 32 
700 447 
800 2267 
900 3947 

1000 6152 
1100 7477 
1200 10730 
1300 12481 
1400 15251 
1500 14677 
1600 15292 
1700 12456 
1800 11432 
1900 9275 
2000 7904 
2100 5773 
2200 4801 
2300 3142 
2400 2473 
2500 1509 
2600 1049 
2700 643 
2800 479 
2900 263 
3000 204 
3100 137 
3200 76 
3300 52 
3400 42 
3500 24 
3600 21 
3700 6 
3800 8 
3900 3 
4000 0 
4100 2 
4200 0 
4300 0 
4400 0 
4500 1 

 
Table S1. The NA catalytic-site volumes calculated using POVME are divided into intervals with a resolution of 100 
Å3 (left column). The number of frames populating each volume interval is reported in the right column. 
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The frame with the largest G351-adjacent pocket was fed into FTMap to predict druggable 
hotspots47, as described in ref. 1. As a control, we performed the same FTMap analysis using an 
N1 crystal structure that was crystallized in complex with oseltamivir carboxylate (PDB ID: 
2HU4)44, but with the oseltamivir carboxylate molecule removed. This control showed that FTMap 
is able to identify the oseltamivir druggable hotspot (data not shown). 

 
 
1.9 Markov state models 

Markov state models (MSM) of the 150-cavity were constructed from both the viral envelope 
simulations and the isolated NA simulations with trajectory frames taken every 0.02 ns and 0.05 
ns, respectively. To describe the motion of the 150-loop, the minimum distance between I149 and 
P431 was selected as the input feature for model construction. Trajectory frames were clustered 
into 300 microstates by k-means clustering, as implemented in the PyEMMA software package48. 
Based on the implied timescale plots (Figure S11), a lag time of 10 ns was selected for model 
construction, and the resulting models were validated by the Chapman-Kolmogorov (CK) test 
(Figure S12). Both the implied timescale plots as well as the CK tests give a sense of the 
‘correctness’ and convergence of the MSM. Subsequently, the resulting MSMs were coarse 
grained using PCCA++ in conjunction with hidden Markov state models (HMMs). This procedure 
is a standard approach in the MSM field.  For these HMMs, a lag time of 2 ns was selected based 
on the implied timescale plots (Figure S13). The final models were again validated by the CK test 
(Figure S14). Confidence intervals were calculated using Bayesian hidden Markov state models 
(BHMMs) corresponding to the described HMMs. The Jupyter notebook used for model 
construction is provided as Supporting Information. 
 
1.10 Chloride anion and electrostatic analyses 

To calculate the chloride anion distributions shown in Figure 4, we concatenated all catalytic-
site-aligned NA monomers, together with nearby chloride ions, into one trajectory. A box with 
dimensions 100 Å x 100 Å x 100 Å, centered on the catalytic sialic-acid binding site, was divided 
into 3,375,000 voxels (0.67 Å x 0.67 Å x 0.67 Å each). We then tallied the number of chloride 
anions falling within each voxel, regardless of the associated monomer or frame. To identify 
regions that favor chloride occupancy, we applied a high-pass filter, retaining only voxels with 
chloride counts greater than three standard deviations above the mean (Figure 4).  

To further investigate the role of electrostatics in our proposed “bind and transfer” mechanism, 
we performed electrostatic calculations using the Adaptive Poisson-Boltzmann Solver (APBS1.4) 
software49. APBS evaluates the electrostatic properties of biomolecules by solving the Poisson-
Boltzmann electrostatic equation (PBE)49. We used APBS to evaluate the conformations of all NA 
monomers present at the end of the third daughter simulation, as well as representative “open” and 
“closed” structures identified from the MSM (Figure S15). We first used PDB2PQR3 with 
unvaried protonation states (CHARMM36 all-atom additive force field) to prepare the monomer 
structures for APBS. APBS calculations were then carried out using the Linearized Poisson-
Boltzmann Equation (LPBE) with cubic B-spline discretization to map atomic partial charges to 
grid points. Grid spacing was automatically detected according to the system and set to ~0.7 Å. 
We fixed the temperature at 298.15 K and used 150 mM ionic strength for monovalent ions. The 
external dielectric constant was set to 78.54 to mimic the aqueous medium, and the solute dielectric 
constant was tuned to 2.0.  
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Among the extracted NA monomers, one with the 150-loop in a semi-open state was selected 
to showcase the projection of the electrostatic potential (-1 kbT/ec to +1 kbT/ec) onto the protein 
surface (Figure 4B). At 300 K, 1 kbT/ec corresponds to ~25.8 mV. The projection of the 
electrostatic potential onto the “open” and “closed” NA structures is shown in Figure S15. 
Interestingly, when the 150-loop is in a closed state, fewer positively charged regions are exposed, 
possibly limiting the transferring of sialic acid moieties from the secondary site to the catalytic 
site.  
 
NOTE: As this study was entirely computational in nature, no unexpected or unusually high safety 
hazards were encountered. 
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3. Supplementary Figures 
 

 
Figure S1. Cross section of the influenza viral envelope model. The phospholipid bilayer is colored in pink, and 
the two glycoproteins HA and NA are colored in blue and light gray, respectively. 

 

 

 
Figure S2. Simulation workflow. After 40.14 ns, the productive simulation was forked into two daughter simulations 
that continued for 30.60 and 15.16 ns, respectively. The second daughter simulation was also forked into simulations 
that lasted 20.70 and 14.44 ns, respectively. A single hole developed in the virion bilayer after roughly 20 ns, at the 
approximate time marked with a black X. This hole comprised roughly 0.2% of the entire viral envelope surface area 
and is thus expected to have a minimal impact on overall envelope dynamics. The hole was repaired prior to launching 
the 14.44 ns simulation (marked with an asterisk). Taken together, these simulations constitute 121.04 ns total. 
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Figure S3. Average RMSD of HA and NA glycoproteins (whole viral envelope simulation). The average Cα 
RMSD from a reference structure to each glycoprotein monomer, per frame. The model included 120 and 708 
monomers of NA and HA, respectively. The NA and HA reference structures were the 3NSS crystal structure36 and a 
3LZG-based model50, respectively. The colors of the (sometimes overlapping) lines correspond to the branches of the 
simulations described in Figure S2 (red, blue, and green, respectively). 
 
  

 
 
Figure S4. RMSF analysis of NA (whole viral envelope simulation). RMSF values ranging from 0 (red) to ≥3 (blue) 
are visualized on a structure selected from the simulation. An oseltamivir molecule taken from 2HU444 was 
superimposed for reference, though no such molecule was present in the simulations.  
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Figure S5. RMSF analysis of HA (whole viral envelope simulation). RMSF values ranging from 0 (red) to ≥5 (blue) 
are visualized on an HA structure selected from the simulation. The “footprint” of selected HA-binding antibodies is 
shown as a black outline51–57. A) The binding site of broadly neutralizing, stem-binding antibodies. B) The binding 
site of head-binding antibodies. 
 
 
 
 

 
Figure S6. The first and last frames of the viral envelope simulation. NA and HA are shown in red and blue, 
respectively. The glycoprotein conformations of the first and last frames are shown in solid and glowing-mesh 
representations, respectively. The lipid bilayer was taken from the first frame. The first-frame/last-frame RMSD 
between all glycoprotein Cα was 13.18 Å. 
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Figure S7. 3D and Mercator projection plots of area-per-lipid and lipid-curvature values. Plots of area-per-lipid 
(A-D) and curvature (E-F) values associated with the phospholipids at time t = 70 ns. The phospholipid headgroups 
are represented via 3D plot (A-B) or Mercator projection (C-D). The left and right columns show the lipids from the 
inner and outer layers of the phospholipid bilayer, respectively. E-F) Curvature values associated with the outer layer 
are shown via 3D plot and Mercator projection, respectively.  
 
 
 
 
 
 
 

 
Figure S8. Streamlines of surface lipid motions after 70 ns of simulation. Lipid streamlines from the outer leaflet 
are plotted with (B) and without (A) embedded surface proteins, colored by displacement (Å). The magnification in 
B shows a lipid vortex around a surface protein. The streamlines were calculated using a 4 ns timestep after 70 ns of 
simulation.  
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Figure S9. Curvature and glycoprotein distribution analyses. A) Lipid headgroups of the outer leaflet colored by 
associated curvature values, after 70 ns of simulation. B) Added hemagglutinin and neuraminidase proteins (white). 
C) Grey: distribution of protein Cα across curvature values, normalized by the curvature/surface area. Cyan: protein 
distribution slightly skews towards areas of higher curvature (note scale difference). Dashed line indicates carbon 
number counts for a theoretically even protein distribution across curvature values.  
 
 
 
 
 
 
 
 
 

 
 
Figure S10. An illustration of four representative catalytic-pocket conformations taken from the viral envelope 
simulation. Key residues are shown as licorice. An oseltamivir molecule taken from 2HU4 has been superimposed 
on the structure for reference but was not included in the simulations. 
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Figure S11. Implied time scale plots with errors, for the (A) neuraminidase glycoprotein 150-loop MSM taken 
from the viral envelope simulations and (B) single-glycoprotein neuraminidase 150-loop MSMs. Each colored line 
represents the timescales of different dynamical processes (motions) identified by the decomposition of the 
transition matrix (eigenvalues). If the model is Markovian (at the chosen lag time) then the timescales will be 
constant for all longer lag times that are also short enough to resolve the process. Bayesian errors are indicated as 
similarly colored shaded areas. 

 

A 
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Figure S12. Chapman-Kolmogorov test, for the (A) viral envelope and (B) isolated-NA MSMs. Plots indicate 
convergence of the presented models. 

 
  

A 
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Figure S13. Implied time scale plots with errors, for the HMMs from the (A) viral envelope and (B) single-
glycoprotein simulations. Bayesian errors are indicated as shaded areas. Each blue line represents the timescales of 
dynamical processes (motions) identified by the decomposition of the transition matrix (eigenvalues). Bayesian 
errors are indicated as similarly colored shaded areas. 
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Figure S14. Chapman-Kolmogorov test, for the (A) viral envelope and (B) isolated-NA HMMs. Plots indicate 
convergence of the presented models. 
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Figure S15. Electrostatic potential of NA monomer with 150-loop in “open” and “closed” states. The electrostatic 
potential projected onto the NA surface with the 150-loop in an open (A) and closed (B) state. The surface is colored 
from red (negative) to blue (positive), representing electrostatic potential values of -1 kbT/ec to +1 kbT/ec. Residues 
responsible of positively charged regions connecting the two binding sites are highlighted with white dots and 
numbered using the N2 numbering scheme. The path connecting the secondary site with the catalytic site is shown 
with a dashed arrow. The sequence of circles fades from yellow (secondary site) to white (catalytic site). 
 

 


