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ABSTRACT

This paper proposes an automatic parameter selection framework
for optimizing the performance of parameter-dependent regularized
reconstruction algorithms. The proposed approach exploits a con-
volutional neural network for direct estimation of the regulariza-
tion parameters from the acquired imaging data. This method can
provide very reliable parameter estimates in a computationally ef-
ficient way. The effectiveness of the proposed approach is verified
on transform-learning-based magnetic resonance image reconstruc-
tions of two different publicly available datasets. This experiment
qualitatively and quantitatively measures improvement in image re-
construction quality using the proposed parameter selection strat-
egy versus both existing parameter selection solutions and a fully
deep-learning reconstruction with limited training data. Based on
the experimental results, the proposed method improves average re-
constructed image peak signal-to-noise ratio by a dB or more versus
all competing methods in both brain and knee datasets, over a range
of subsampling factors and input noise levels.

Index Terms— parameter selection, image reconstruction, mag-
netic resonance imaging, convolutional neural network

1. INTRODUCTION

Inverse problems in magnetic resonance image (MRI) reconstruc-
tion are regularized often to enhance the resulting image quality in
various aspects. For example, such reconstruction algorithms can
remove aliasing artifacts and noise in MRI data. Many of these reg-
ularized model-based solutions have one or more tuning parameters,
which make the model suitable for a wide range of variations in the
input data. But, manually adjusting such parameters is cumbersome,
limits reproducibility, and becomes more challenging the more pa-
rameters there are to tune. Automatic parameter selection can over-
come such limitations. We propose a novel data-driven approach for
automatic parameter selection that exploits a convolutional neural
network in lieu of hand-picked features. We demonstrate the effec-
tiveness of our proposed approach over existing parameter selection
algorithms for model-based MRI reconstruction.

Automatic parameter estimation techniques include empirical
methods, such as generalized cross validation, the discrepancy prin-
ciple, L-curve methods, and meta-heuristic techniques. Nonempir-
ical approaches include Stein’s unbiased risk estimator, other no-
reference image quality measures, and adaptive selection techniques.
Although these methods are widely used for automatic parameter se-
lection, many are computationally intensive. For instance, quality-
guided approaches reconstruct the same image with many different
candidate parameter values in order to select among them. The ac-
curacy of quality/risk estimates also influences the success of these
methods for parameter selection. Further, tuning multiple parame-
ters exacerbates the computational cost of such methods. Recently
proposed data-driven learning-based methods to address parameter

Fig. 1: Training and testing phases of the proposed convolutional
neural network for parameter estimation

selection in other restoration and reconstruction problems include a
regression-based framework [1] for denoising, deblurring, and de-
mosaicing, as well as a deep reinforcement learning network [2] for
X-ray computed tomography. Since regression directly estimates
the parameters, in contrast to iterative adjustments with reinforce-
ment learning or other methods, regression appears more appropriate
for real-time parameter estimation. But, this method requires hand-
selecting suitable features for learning based on domain knowledge.

The proposed method overcomes various limitations of these
existing solutions. As in regression [1], our method directly out-
puts parameter values, and is thus computationally very efficient. In
addition, instead of relying on hand-picked features, the proposed
method learns features via a convolutional layer. Further, the pro-
posed network architecture is trainable even with limited data, while
fully learning-based solutions to the high-dimensional reconstruc-
tion problem [3,4] benefit from more substantial training data, which
may not always be available, to train deeper networks. Overall, the
proposed method allows users (e.g., healthcare professionals or in-
strument operators) to produce better quality reconstructions exploit-
ing model-based algorithms through fast and reliable estimation of
regularization parameters.

2. THEORY

We begin with a noisy, aliased, blurred, or otherwise corrupted initial
image ym obtained from undersampled k-space. Then, we produce
a new image x̃m using a reconstruction algorithm R(ym;λm), with
tuning parameters λm = [λ1,m, λ2,m, . . . , λP,m]T . Parameter se-
lection aims to estimate λm using information from input ym, to
optimize the image quality of x̃m. This section describes a data-
driven convolutional neural network-based method to estimate λm.

Fig. 1 illustrates our overall approach with an image reconstruc-
tion example. The convolutional network layer convolves the mag-
nitude of the 2D aliased input image ym with N real-valued r × r



kernels, h1, . . . ,hN , to generate N feature maps,

F n,m = ReLU(|ym|⊛ hn + bn), ∀n,m. (1)

where bias matrix bn = bnU , with U as the unit matrix of the same
size as the convolved image, and the rectified linear unit (ReLU )
performs nonlinear activation. Next, max-pooling produces single
feature units from the feature maps F n,m:

fn,m = max(F n,m), ∀n,m. (2)

These pooled feature neurons, along with a bias neuron, form the
feature vector fm = [1 f1,m...fN,m]T . A dense layer connects
these to the output neurons, generating the reconstruction parameter
estimates λΘ

m (call the network parameters Θ),

λΘ
m = (λmax − λmin) ◦ S(W × fm) + λmin, ∀m. (3)

In (3), W = [w0 w1...wN ] is the weight matrix of the dense
layer, where wi = [wi1 wi2...wiP ]

T ; S is the sigmoid/logistic
activation function bounded between user-defined minimum and
maximum values λmin =

[︁
λmin
1 λmin

2 ...λmin
P

]︁T and λmax =

[λmax
1 λmax

2 ...λmax
P ]T respectively; and ◦ is the Hadamard product.

The vector of network model parameters Θ collects all biases bn,
kernels hn, and dense layer coefficients W . This bounded formula-
tion keeps the parameter estimates within a reasonable range.

Supervised learning for parameter selection is slightly differ-
ent from traditional supervised learning (e.g., image classification).
Firstly, ground truth values of λm are not directly accessible for a
given reconstruction. Instead, relatively clean image examples, such
as fully sampled reconstructions, are the target images xm. Sub-
sampling them in k-space (frequency domain) and adding noise, fol-
lowed by an inverse Fourier transform, produces the aliased input
images ym for training. Then, the learning cost function uses a full-
reference image quality measure such as mean squared error (MSE),
peak signal-to-noise ratio (PSNR), or SSIM [5]. Secondly, the re-
construction operator R can be non-differentiable with respect to the
processing parameters λΘ

m, so estimating the network model param-
eters Θ should use derivative-free optimization. For a training set
of input-target pairs {ym,xm}Mm=1, maximizing the PSNR of the
reconstruction solves

argmax
Θ

1

M

M∑︂
m=1

PSNR(xm, R(ym;λΘ
m)). (4)

We optimize Θ in (4) using the Nelder-Mead (NM) simplex
method [6]. Once network parameters Θ are learned, the network
estimates the regularization parameters, tuning the reconstruction
in one shot, in the on-line/testing phase. Unlike hand-picked fea-
tures used with logistic regression [1], the general feature set fm is
extracted through the convolutional layer of the proposed network.

3. METHODS

We demonstrate our proposed parameter tuning approach using
transform learning (TL) for MRI reconstruction [7, 8]. This chosen
model-based reconstruction algorithm is a well-established, regu-
larized iterative algorithm that simultaneously learns a sparsifying
transform and reconstructs an image from highly undersampled
k-space data. We tune the ‘error threshold’ parameter C that con-
strains reconstructed image patches in each TL iteration (see (P2c)
in [8]). Common practice monotonically decreases C in successive
iterations, since the initial input data are more degraded than the
reconstructed image in subsequent iterations. Our objective is to

estimate the initial Cu and final Cl values for C. The value of C
in intermediate iterations decreases linearly in the interval [Cl, Cu].
Our proposed network, shown in Fig. 1, estimates these parameters
{Cu, Cl} for the magnitude of any aliased input image ym (a sum-
of-squares image can be used for parallel imaging reconstructions).
We chose TL MRI partly because it permits us to demonstrate tuning
multiple parameters. The convolutional layer has N = 3 kernels,
each of size 3 × 3, and the dense layer produces P = 2 (λ1 = Cu,
λ2 = Cl) processing parameters. The user-defined maximum and
minimum values for these parameters are set in (3) as λmax

1 = 2.5,
λmin
1 = 0.25, λmax

2 = 0.20, λmin
2 = 0.01.

3.1. Dataset & Validation Experiments

We validated the proposed method on two different MRI datasets:
the NYU fastMRI Initiative database1 [9] and the OASIS brain
database [10]. From the fastMRI database, we selected 36 fully-
sampled knee MRI images including axial, coronal and sagittal
cross-sections from randomly chosen subjects and generated sepa-
rate training and testing sets. For each image in both training and
test sets, 15 different realizations were created at 5 different subsam-
pling rates {2.0, 2.5, 3.0, 3.5, 4.0}, each at 3 different input noise
levels, SNR={25, 30, 35 dB} using additive complex Gaussian noise
in k-space. Overall, we created 360 training images and 180 test
images from the fastMRI dataset. Similarly for the OASIS database,
we generated separate training and testing sets for 36 fully-sampled
randomly selected brain cross-sectional images, each producing 10
different realizations at the same 5 subsampling rates, each at 2
different input noise levels, SNR={25, 30 dB}. In total, we created
240 training images and 120 test images from the OASIS dataset.

We compare the reconstruction PSNR (dB) and SSIM using our
parameter selection method against logistic regression (LR) [1], and
image quality-based Metric-Q [11] and Deep-IQA [12]. Since the
LR method extracts hand-picked features from the corrupted input
image, we include two different versions of the LR method with
different choices. In one, we use signal processing-based features
(LR+SPF): the median high frequency quadrant coefficient of the
discrete cosine transform and the area-under-the-curve of the spatial
autocorrelation function [13], both extracted from ym. In the other,
we use local statistical features (LR+LSF): the 5 × 5 and 9 × 9 lo-
cal grey level average, standard deviation, and their ratio used for
deblurring in [1]. We train both LR and our network separately for
each dataset. Beyond LR, we compare against Metric-Q, commonly
used for quality estimation, which is based on statistical measures of
image content. Also, Deep-IQA is a recent data-driven deep learning
approach for image quality assessment, pre-trained on the TID [14]
natural image database. These approaches compute no-reference im-
age quality measurements instead of direct parameter estimates. NM
optimization finds suitable parameter values by maximizing these
quality measurements. We also study how learning-based parame-
ter selection compares against a fully-deep-learning reconstruction,
the Deep Unet [3]. In addition to presenting visual and quantitative
comparisons, we compute the statistical significance of the compar-
ative results using repeated-measures one-factor ANOVA and post-
hoc paired-sample two-sided t-tests with Bonferroni correction.

1NYU fastMRI investigators provided data but did not participate
in analysis or writing of this article. A listing of NYU fastMRI in-
vestigators, subject to updates, can be found at fastmri.med.nyu.edu.
The primary goal of fastMRI is to test whether machine learning can
aid in the reconstruction of medical images.



(a) Reference image (b) Zero-filled
PSNR: 32.23 dB,

SSIM: 0.8369

(c) Proposed
PSNR: 36.74 dB,

SSIM: 0.9074

(d) LR+SPF
PSNR: 35.04 dB,

SSIM: 0.8906

(e) LR+LSF
PSNR: 34.03 dB,

SSIM: 0.8769

(f) Deep-IQA+NM
PSNR: 33.49 dB,

SSIM: 0.8679

Fig. 2: TL MRI reconstructions with different parameter selection
methods for fastMRI [9] example image.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In Fig. 2, we portray reconstructions of one example knee image
from the fastMRI dataset. The reference/clean image has been sub-
sampled in k-space by a factor of 3 using a Gaussian variable-density
mask, with complex Gaussian noise added at SNR=30 dB. The re-
sulting zero-filled image is the input to reconstruction algorithm.
Reconstructed images using parameter values estimated by the pro-
posed and several competing methods are presented in the figure.
We observe that the reconstruction using the proposed parameter
estimation method has fewer artifacts and superior image quality
compared to the other results. These quality differences observed
in the reconstructed images are reflected both in PSNR (dB) and
SSIM values. The LR method varies based on the type of fea-
tures used in the model. The quality metric-based parameter esti-
mates are far less suitable values, so the resulting reconstructions
retain severe artifacts, shown for Deep-IQA method in the figure.
One reason may be the pre-training places the Deep-IQA method
at a disadvantage versus the other learning-based approaches. In
Fig. 4, we demonstrate the reconstruction of a OASIS brain im-
age subsampled by factor of 2.5 and at input SNR=25 dB. For this
particular test image, two reconstruction parameters {λ1, λ2} es-
timated by the proposed method, LR+SPF and Metric-Q+NM are
{0.2500, 0.0315},{0.9485, 0.1002} and {2.1017, 0.1953}, respec-
tively. From the results, we again observe that the TL MRI recon-
struction using parameter estimates from the proposed method has
superior image quality, while other comparative results retain blur
and aliasing artifacts.

The comparative results among different methods at various sub-
sampling factors and input SNR levels are shown in Figures 3 and 5
on the two datasets. We observe that the proposed method consis-
tently outperforms other methods irrespective of input subsampling
factor and SNR level. Further, the difference in average reconstruc-
tion results between the proposed method and its closest counterpart,
LR+SPF, is significant in all cases (Bonferroni-corrected p < 0.01).
Also, we observe that the average quality with the LR+LSF method
remains below that of the LR+SPF method, confirming the draw-
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(e) PSNR (SNR = 25 dB)
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Fig. 3: Comparisons of average reconstruction quality in terms of
PSNR and SSIM for various input subsampling rates and input

noise levels on the fastMRI [9] dataset.

(a) Reference image (b) Zero-filled
PSNR: 28.86 dB

SSIM: 0.7857

(c) Proposed
PSNR: 35.62 dB

SSIM: 0.9039

(d) LR+SPF
PSNR: 34.60 dB

SSIM: 0.8908

(e) Metric-Q+NM
PSNR: 33.96 dB

SSIM: 0.8798

(f) Deep Unet
PSNR: 31.26 dB

SSIM: 0.8342

Fig. 4: TL MRI reconstructions with different parameter selection
methods and a fully deep-learning reconstruction for OASIS [10]

example image.
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(a) PSNR (SNR = 30 dB)

2 2.5 3 3.5 4

subsampling rate

0.75

0.8

0.85

0.9

0.95

1

S
S

IM

(b) SSIM (SNR = 30 dB)

2 2.5 3 3.5 4

subsampling rate

30

35

40

P
S

N
R

 (
d

B
)

(c) PSNR (SNR = 25 dB)
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Fig. 5: Comparisons of average reconstruction quality in terms of
PSNR and SSIM for various input subsampling rates and input

noise levels on the OASIS [10] dataset.

Table 1: Time for TL MRI Parameter Selection

Methods Average Computation Time (seconds)
Proposed 0.0112
LR + SPF 0.0083
LR + LSF 0.2233

Metric-Q + NM 473.376
Deep-IQA + NM 790.80

back of using the LR approach with less effective hand-picked fea-
ture representations. Besides, it is evident from both Figures 3 and 5
that average reconstruction qualities using Deep Unet are unsatisfac-
tory due to limited training data. We also note the ANOVA and t-test
p-values versus our method are significant (p < 0.05) in all cases.

Moreover, we compare between different methods in terms of
running time for parameter selection. Table 1 mentions average
time (in seconds) to estimate the two TL MRI parameters given a
test image from the fastMRI dataset. Also, the average reconstruc-
tion time by the TL MRI algorithm and Deep Unet are 24.773 and
0.429 seconds, respectively. Our experiments were performed using
MATLAB (The Mathworks, Natick, MA) on a machine with Intel
Core i7-4770 CPU and Ubuntu 16.04 LTS operating system, and the
Deep-IQA and Deep Unet approaches also used an NVIDIA Titan
X Pascal GPU. We observe the proposed and LR-based methods are
both much faster computationally than the quality metric-based ap-
proaches. This difference is likely due to the first methods directly
producing parameter estimates, as the quality-metric-based methods
have to run many reconstruction instances to find a suitable parame-
ter. The much higher computation time for Metric-Q and Deep-IQA
limit comparison with these methods to relatively small testing sets.

5. CONCLUSION

We proposed a convolutional neural network architecture for auto-
matic estimation of image reconstruction regularization parameters
and demonstrated this approach for TL MRI reconstruction. Our
data-driven approach is computationally very efficient and suitable
for tuning multiple parameters. We demonstrated for image recon-

struction on two datasets that the proposed method provides sim-
pler and more reliable parameter tuning, in terms of both visual and
quantitative image quality, than existing techniques. We also demon-
strated that for limited training data, the combination of model-based
reconstruction and our automatic tuning method can outperform a
fully-deep-learning reconstruction.
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