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Abstract—Multi-dimensional, multi-contrast magnetic reso-
nance imaging (MRI) has become increasingly available for com-
prehensive and time-efficient evaluation of various pathologies,
providing large amounts of data and offering new opportunities
for improved image reconstructions. Recently, a cardiac phase-
resolved myocardial T1 mapping method has been introduced
to provide dynamic information on tissue viability. Improved
spatio-temporal resolution in clinically acceptable scan times is
highly desirable but requires high acceleration factors. Tensors
are well-suited to describe inter-dimensional hidden structures
in such multi-dimensional datasets. In this study, we sought
to utilize and compare different tensor decomposition methods,
without the use of auxiliary navigator data. We explored multiple
processing approaches in order to enable high-resolution cardiac
phase-resolved myocardial T1 mapping. Eight different low-rank
tensor approximation and processing approaches were evaluated
using quantitative analysis of accuracy and precision in T1

maps acquired in six healthy volunteers. All methods provided
comparable T1 values. However, the precision was significantly
improved using local processing, as well as a direct tensor
rank approximation. Low-rank tensor approximation approaches
are well-suited to enable dynamic T1 mapping at high spatio-
temporal resolutions.

Index Terms—Accelerated imaging, multi-dimensional MRI,
myocardial T1 mapping, tensor processing, low-rank tensors,
PARAFAC, Tucker

I. INTRODUCTION

Recent advances in magnetic resonance imaging (MRI)
facilitated the acquisition of large amounts of imaging data
with various properties in single acquisitions, enabling multi-
dimensional MRI [1–4]. In cardiac MRI, these techniques
have demonstrated promise by acquiring two or three spa-
tial dimensions in the presence of cardiac and/or respiratory
motion [5–11]. Additionally, varying contrast weightings can
be acquired for myocardial parametric mapping, including
cardiac phase-resolved T1 mapping [7] and a recent approach
called CMR multitasking [5, 11]. Such datasets are naturally
n-dimensional, with n ≥ 4, and have ≥ 2 non-spatial
(e.g., motion, contrast) dimensions. High acceleration factors
are required to maintain clinically acceptable scan times for
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such multi-dimensional datasets, as the number of k-space
encodings at the Nyquist rate grows exponentially with di-
mensionality [1].

A number of methods are available for accelerated MRI.
Parallel imaging with uniform undersampling remains the
most commonly used accelerated imaging approach [12, 13],
even though it suffers from noise amplification at high acceler-
ation rates. Compressed sensing, which exploits compressibil-
ity of data in transform domains and requires random under-
sampling, has been extensively used with various transforms
[14–20]. For MRI data consisting of an image series, low-
rank matrix regularization has also been commonly utilized
[21–25]. These methods exploit the correlations in the image
series, by vectorizing each image in the series and utilizing
the low-rank property of the resulting Casorati matrix [26–28].
The low-rank structure can be imposed either in a data-driven
manner through nuclear norm minimization [21, 29] or through
explicit estimation of subspace structures using an auxiliary,
typically navigator-based, dataset [24, 26]. Low-rank matrix
structure has also been used in conjunction with sparsity
and other regularizers [21, 22]. Furthermore, these have been
applied in a local manner, where patches extracted from the
dataset were used to form local Casorati matrices, in order
to reduce residual artifacts [28, 30]. Additionally, low-rank
matrix methods have been used subsequent to parallel imaging
as post processing in order to mitigate noise amplification,
with the advantage of being easily compatible with clinical
scan protocols [31–33].

While compressed sensing and low-rank matrix methods
can also be applied to multi-dimensional MRI described
earlier, such datasets may be better described with low-rank
tensors [1, 34]. Tensors are able to describe multi-linear
latent structures beyond the pairwise interactions captured by
matrices [35]. So far, most of the tensor methods in multi-
dimensional MRI have been based on a higher-order singular
value decomposition for which subspaces have been explicitly
estimated using auxiliary data [1, 5, 11, 36]. Furthermore,
most tensor regularization methods used in MRI so far have
relied on global processing of the whole multi-dimensional
array [1, 5, 37–39] and the few works that have used local
processing of tensors did not report advantages with respect
to global processing [34]. However, as with low-rank matrix
methods, global processing treats multiple tissues of different
types jointly, which may lead to residual artifacts that can be
ameliorated with local processing [28, 30].

In this work, we sought to utilize and compare different
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tensor decomposition methods, without the use of auxiliary
navigator data, as well as multiple processing approaches in
order to enable high-resolution cardiac phase-resolved myocar-
dial T1 mapping. Myocardial T1 mapping has shown great
clinical utility in numerous cardiomyopathies [40], but con-
ventional sequences [41–44] have limited temporal resolution.
A recently proposed technique, called temporally resolved
parametric assessment of Z-magnetization recovery (TOPAZ),
enables T1 mapping at high-temporal resolution [7], poten-
tially facilitating quantification of mobile structures. However,
this technique is performed in a single breath-hold which
consequently brings about several limitations. The intrinsically
limited scan duration requires a trade-off between signal-
to-noise ratio and spatial resolution [45]. However, higher
resolutions are highly desirable in order to better delineate the
tissue borders and detect highly mobile structures. This can be
achieved by further sub-sampling the acquisition, which can
still be reconstructed by parallel imaging techniques, albeit at
a higher noise amplification. Our aim is to use low-rank tensor
methods for denoising such reconstructions in order to improve
the precision of T1 maps. To this end, this paper presents the
TOPAZ data model, an overview of low-rank tensor approxi-
mation (LRTA) methods for these acquisitions, followed by the
different processing approaches that were studied, in Section
II. Section III describes the imaging protocol, experiments, and
quantitative analysis used in this study. Results are detailed in
Section IV. Section V and VI provide a discussion and the
conclusion.

II. LOW-RANK TENSORS FOR DYNAMIC T1 MAPPING

A. Data Model in TOPAZ

In this study, a recently proposed MRI sequence [7] was
used for cardiac phase-resolved quantification of the myocar-
dial T1 time. The underlying imaging datasets, m(x, y, t, c),
acquired with this sequence are 4-dimensional, where (x, y)
are the spatial dimensions, t is the cardiac phase and c
represents different T1 contrasts. The corresponding k-space
acquisition is given as

y(t, c) = Et,c

(
m(x, y, t, c)

)
+ n(t, c),

t = 1, . . . , T ; c = 1, . . . , C (1)

where Et,c : CM×N → CP is the encoding operator, including
a partial Fourier matrix and the sensitivities of the receiver
coil array, n(t, c) ∈ CP is measurement noise, and x, y, t, c
are as described above. Data was acquired with uniform
undersampling since our clinical workflow uses this type of
undersampling with GRAPPA reconstructions. Subsequently,
y(t, c) was used to generate m̂(x, y, t, c) via GRAPPA [13]
and SENSE-1 combination of the reconstructed coil images
[12, 46]. SENSE-1 combination is advantageous, as it is a
linear operation, and it has been shown to reduce issues related
to background noise in root-sum-squares images [46]. We
note that the reconstruction noise in m̂(x, y, t, c) is typically
modeled as Gaussian, since the GRAPPA reconstruction is also
commonly modeled as a linear operation [47]. However, there
may be factors, such as noise in the ACS data, which might
introduce nonlinearities during reconstruction, although these

effects are typically observed only at low SNR regimes [48].
In this study, the nonlinearities in the GRAPPA reconstruction
were not considered, and the reconstruction noise was modeled
as Gaussian, as is conventionally done [47]. Various tensor
decompositions were applied to these image series to reduce
noise amplification arising from GRAPPA.

B. PARAFAC Decomposition

PARAFAC tensor decomposition, as illustrated in Figure
1a, is a direct rank decomposition method that uniquely
factorizes a tensor into a sum of rank-one tensors. Low-rank
approximation based on PARAFAC in this context is given as

min
{ar,br,cr,dr}Rr=1

‖m̂−
R∑
r=1

ar } br } cr } dr‖2F , (2)

where || · ||F is the Frobenius norm, R is the rank of the
low-rank tensor and } is the outer product given as

m(x, y, t, c) =
R∑
r=1

ar(x)br(y)cr(t)dr(c). (3)

We note that while the formulation in Equation (2) is a
denoising formulation, it does not have a maximum likelihood
interpretation, as the covariance matrix of the reconstructed
noise in individual images is not proportional to the identity
matrix. The characteristics of the covariance matrix are further
discussed in Section V.

Factor matrices of rank-one components of the ten-
sor [49] are represented as A = [a1,a2, . . . , aR],
B = [b1,b2, . . . ,bR], C = [c1, c2, . . . , cR], and D =
[d1,d2, . . . ,dR].

The tensor, m can be unfolded into a matrix representation
along mode k ∈ {1, 2, 3, 4} by considering the kth mode as
one dimension of a matrix and combining the other modes
into the other dimension of that matrix. For the jth element in
the kth mode, the corresponding elements in the tensor forms
a “slab,” which is vectorized and treated as the jth column
of the unfolded matrix along mode k. Applying this to the
representation in Equation (3), we obtain the matrix unfolding
along the first mode as

X1 = (C�B�A)DT , (4)

as well as X2 = (D�B�A)CT , X3 = (D�C�A)BT ,
and X4 = (D�C�B)AT as unfoldings along modes 2, 3
and 4 respectively. Here � represents the Khatri-Rao product,
which corresponds to column-wise Kronecker products for two
matrices with the same number of columns [49] and T denotes
the transpose opearation. The use of matrix unfoldings allows
restating Equation (2) as

min
{A,B,C,D}

‖X1 − (C�B�A)DT ‖2F (5)

This problem is a non-linear and non-convex least squares
problem. However, an approximate solution can be obtained
using an alternating least squares (ALS) method [49, 50].
ALS approaches the non-convex least squares problem using a
sequence of linear least squares problems by fixing all matrices
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Fig. 1: a) PARAFAC decomposes a tensor into sum of rank one tensors. b)
Tucker decomposes a tensor into a core tensor multiplied with factor matrices
along each mode. Note a 3D tensor is shown for illustration purposes.

except one of them at every iteration. At iteration t, this leads
to the following updates for each of the factor matrices

A(t) = arg min
A
‖X4 − (D(t−1) �C(t−1) �B(t−1))AT ‖2F

B(t) = arg min
B
‖X3 − (D(t−1) �C(t−1) �A(t))BT ‖2F

C(t) = arg min
C
‖X2 − (D(t−1) �B(t) �A(t))CT ‖2F

D(t) = arg min
D
‖X1 − (C(t) �B(t) �A(t))DT ‖2F

where the superscript (t) denotes the estimate at iteration t. The
procedure is repeated until a stopping criterion is satisfied.

C. Tucker Decomposition

Tucker decomposition is a form of higher order singular
value decomposition (SVD) method [49]. It decomposes a
tensor into a core tensor with a matrix multiplied along each
mode which is similar to SVD of matrices, as depicted in
Figure 1b. For our problem, low-rank approximation based on
Tucker decomposition for the 4-D tensor, m̂ is given as

min
{U,V,W,Z,G}

‖m̂−
r1∑
i=1

r2∑
j=1

r3∑
k=1

r4∑
l=1

G(i, j, k, l)

U(:, i) } V(:, j) } W(:, k) } Z(:, l)‖2F , (6)

where U ∈ CM×r1 , V ∈ CN×r2 , W ∈ CT×r3 , Z ∈ CC×r4
are unitary factor matrices obtained through principal compo-
nents along corresponding modes and G ∈ Cr1×r2×r3×r4 is
the core tensor whose elements show the level of interaction
among modes. The above optimization can be posed in terms
of matrix unfoldings similar to the PARAFAC case by using
unfolding along any chosen mode. Without loss of generality,
one can unfold the matrix along mode 1, yielding

min
{U,V,W,Z,G1}

‖X1 − (V ⊗W ⊗ Z)G1U
T ‖2F (7)

where ⊗ is the Kronecker product and G1 is a matrix
unfolding of the core tensor along mode 1. The above non-
convex problem is solved using ALS approach which fixes all
components except the one to be updated as in PARAFAC.
U,V,W,Z are initialized by r1, r2, r3, r4 principal right
singular vectors of the matrix unfoldings X1,X2,X3,X4,

respectively. Afterwards, the ALS update is performed for each
factor matrices as follows [49]

U = Pr1((V ⊗W ⊗ Z)TX1
∗),

V = Pr2((U⊗W ⊗ Z)TX2
∗),

W = Pr3((U⊗V ⊗ Z)TX3
∗),

Z = Pr4((U⊗V ⊗W)TX4
∗),

G1 = (V ⊗W ⊗ Z)HX1U∗

where ∗ is the conjugate operation, H is the conjugate trans-
pose, and Pk(·) keeps the k principal right singular vectors of
its argument. The procedure is repeated until a convergence
criterion is satisfied. As in Section II-B, the formulation in
Equation (6) does not have a maximum likelihood interpreta-
tion, which is further discussed in Section V.

D. LRTA Processing Approaches

For both tensor decompositions, there are several options of
processing the multi-dimensional MRI data. The processing
approaches considered in this study are detailed next.

1) Global and Local LRTA: LRTA for MRI has been
studied from a global perspective, where the dataset is pro-
cessed in a volumetric manner [1, 34, 37–39]. This approach
processes various tissues and structures with distinct functional
and T1 properties. For instance, the chest wall and back
contain stationary tissue with short T1 (< 250 ms), while the
myocardium moves substantially through the cardiac cycle and
has a longer T1 (∼ 1400−1500 ms at 3T) [51]. Such variation
impedes capturing all the information in the volume by LRTA.
Thus, as in the low-rank matrix regularization setting, it may
be beneficial to process the data locally, which was explored
in our earlier work for PARAFAC decomposition [52]. Local
processing allows processing of small areas, which are likely
to contain similar tissue types and functional properties, al-
lowing for efficient low-rank representations. In this work, we
implement this strategy for both decompositions, and perform
LRTA over small patches in the spatial x-y domain. Locally
low-rank processing for noisy tensor m̂ ∈ CM×N×T×C was
implemented by extracting 8×8×T×C patches from imaging
dataset which were processed as a 4-dimensional tensor. This
operation is performed by applying a patch extractor operator,
Γ on the noisy tensor m̂, i.e. pφ = Γφ(m̂), where pφ is the
extracted patch, φ ∈ {1, . . . ,Φ} and Φ is the total number
of patches. Then for each extracted patch pφ, the following
objective function was solved for PARAFAC decomposition
via previously described ALS

min
{aφ,r,bφ,r,cφ,r,dφ,r}Rr=1

‖pφ −
R∑
r=1

aφ,r } bφ,r } cφ,r } dφ,r‖2F ,

while for Tucker decomposition, the objective function was

min
{Uφ,Vφ,Wφ,Zφ,Gφ}

‖pφ −
r1∑
i=1

r2∑
j=1

r3∑
k=1

r4∑
l=1

Gφ(i, j, k, l)

Uφ(:, i) } Vφ(:, j) } Wφ(:, k) } Zφ(:, l)‖2F , (8)

Overlapping patches were used with a stride of four, which
were combined via averaging after processing.
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2) 3D and 4D LRTA: TOPAZ data is inherently 4D in
nature, as described in Section II-A. Two of these dimensions
correspond to spatial x-y coordinates. These spatial dimen-
sions contain structures such as tissue borders, which include
features such as edges and curves, which are not necessarily
amenable to low-rank tensor decompositions [53]. Thus, as
an alternative processing approach, we also investigated the
use of vectorizing the spatial dimensions of the whole volume
and patches. This approach is in-line with previous low-
rank matrix regularization literature [26–28]. Vectorization
yields 3D tensors, with one dimension capturing the spatial
dimensions, and the other two representing cardiac phase and
T1 weights. Additionally, this 3D approach was combined with
global and local processing, by vectorizing the corresponding
spatial dimensions. In local processing, this vectorization of
the 4D 8 × 8 × T × C patches yields 64 × T × C 3D
patches. More formally, following objective functions were
solved using ALS for each vectorized extracted patch, p̃φ for
PARAFAC decomposition as

min
{aφ,r,bφ,r,cφ,r}Rr=1

‖p̃φ −
R∑
r=1

aφ,r } bφ,r } cφ,r‖2F ,

and for Tucker decomposition as

min
{Uφ,Vφ,Wφ,Gφ}

‖p̃φ −
r1∑
i=1

r2∑
j=1

r3∑
k=1

Gφ(i, j, k)Uφ(:, i)

} Vφ(:, j) } Wφ(:, k)‖2F . (9)

As in local LRTA approach, overlapping patches were com-
bined via averaging after processing.

E. Rank Selection
Rank is an important hyperparameter for LRTA ap-

proaches. While insufficient tensor rank may bias the T1
measurements or lead to blurring artifacts, high values
lead to limited noise reduction. Furthermore, the rank
needs to be pre-specified before running the ALS algo-
rithm. To date there is no standard way of selecting ap-
propriate tensor rank. In fact, even determining the rank
of the noisy tensor, m̂, is an NP-hard problem [49]. In
this study, we perform empirical rank selection for global,
global-3D, local and local-3D PARAFAC LRTA. Tensor
ranks of {100, 200, 300, 400, 500, 600}, {5, 10, 15, 20, 25, 30},
{10, 20, 30, 40, 50, 100} and {7, 10, 15, 20, 25, 30} were used
in Equation (2), for the four methods, respectively. Evaluation
was performed both visually and quantitatively on T1 maps.
These empirically selected ranks were fixed for the remainder
of the study for the respective processing approaches.

For Tucker decomposition, empirical selection of the multi-
linear rank (r1, r2, r3, r4) or (r1, r2, r3) is challenging due
to the high degrees of freedom arising from its multi-linear
nature. Hence, in this case instead of optimizing the rank of
each mode, we optimized the proportion of the sum of singular
values retained by keeping the rk principal singular values of
the corresponding matrix unfoldings and truncating the rest.
Thus, the following ratio was used for thresholding

Ψ(l) =
σ1 + · · ·+ σl

σ1 + · · ·+ σl + · · ·+ σd
, (10)

where σi is the ith largest singular value of the relevant matrix
unfolding, d is the total number of singular values, and l is
the rank choice. We note that the ranks for each unfolding are
allowed to differ, i.e l varies with the corresponding mode.
A threshold 0 < ρ < 1 was used to select the largest l such
that Ψ(l) was < ρ for all matrix unfoldings. Thresholds of
ρ ∈ {.60, .70, .80, .90} for local, local-3D, global and global-
3D LRTA methods were empirically evaluated. Visual and
quantitative evaluations of the T1 time in a sub-cohort were
employed to determine ranks, which were then fixed for the
remainder of the study.

III. METHODS

A. In Vivo Imaging

The imaging protocol was approved by the local institutional
review board, and written informed consent was obtained
from all participants before each examination for this HIPAA-
compliant study. Cardiac phase-resolved T1 maps were ob-
tained from six healthy subjects (three males, 39±18 years).
All imaging was performed at a 3T Siemens Magnetom
Prisma (Siemens Healthineers, Erlangen, Germany) using a
30-channel receiver coil-array. Imaging sequence parameters
used in this study were as follows: TR/TE /flip angle =
5/2.5 ms/3°, bandwidth = 350 Hz/Px, field of view (FOV)
= 300 × 225 mm2, spatial resolution = 1.3 × 1.3 mm2, slice
thickness = 10mm, partial Fourier=6/8, GRAPPA factor = 3,
reference lines = 24 (in plane), time between inversion pules
= 5 to 6 R-R intervals (heart-rate dependent [7]), temporal
resolution = 60 ms, breath-hold duration = 17-20 s. Here,
temporal resolution refers to the duration of a cardiac phase.
Across all subjects, on average, the sequence had 13.33 cardiac
phases and 5.16 inversion times per acquisition leading to a
total of 64.83 images. Images were also acquired at a lower
spatial resolution of 1.9× 1.9 mm2 and GRAPPA factor = 2,
with the rest of the other acquisition parameters unchanged,
to serve as the reference for estimated T1 values. All images
were acquired in a single mid-ventricular short-axis slice.

B. Comparison of LRTA Approaches

,
Three sets of comparisons were performed in this study:
1) Effect of tensor decomposition (PARAFAC and Tucker)
2) Effect of global and local LRTA processing
3) Effect of 3D and 4D LRTA processing

A total of eight LRTA approaches were evaluated, namely
PARAFAC and Tucker decompositions, each with global,
global-3D, local and local-3D processing. All methods were
implemented in MATLAB (MathWorks, Natick, MA) on a
conventional desktop workstation with a 3.4-GHz central
processing and 16 GB random-access memory.

C. Quantitative T1 Mapping and Statistical Analysis

Quantitative T1 maps were used to evaluate the performance
of the LRTA methods. The magnetization during TOPAZ T1
mapping sequence is described with a three-parameter model,

S(t
(j)
k ) = A

(
1−B · exp(−t(j)k /T ∗1 )

)
, (11)
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where t
(j)
k is the inversion time of the kth T1- weighted

image of the jth cardiac phase, S(t
(j)
k ) is the correspond-

ing signal for a given pixel location, A is the steady-state
gradient echo magnetization, B is the inversion efficiency,

and T ∗1 =
(

1
T1
− 1

TR log (cos(α))
)−1

is the apparent T1,
which is a function of the T1, flip angle α, and TR [54].
Due to B+

1 inhomogeneities, α varies across the imaging
FOV. Thus, in order to accurately derive T1 from T ∗1 , a
B+

1 correction strategy was proposed in [7], which was also
used in this study. Following this three-parameter fitting with
B+

1 correction, myocardial T1 times were assessed throughout
the R-R interval. Regions of interest (ROIs) were manually
drawn, delineating endocardial and epicardial contours for
each cardiac phase. For a given cardiac phase, the estimated
T1 value and T1 precision were respectively defined as the
mean and standard deviation of the T1 values within the ROI.
For a given subject, the overall T1 and precision were reported
as the respective quantities averaged across all cardiac phases,
as mean ± standard deviation.

Several statistical comparisons were performed to identify
differences between the LRTA methods. Average T1 times
were compared among the LRTA methods using analysis
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Fig. 2: a) T1 maps of a representative end-diastolic cardiac phase for global,
global-3D, local and local-3D PARAFAC approximation for various ranks
together with reference mean low-resolution data T1 value (dashed line).
Global PARAFAC exhibits blurring artifacts for low ranks, whereas global-
3D and local PARAFAC approaches do not suffer from these artifacts at low
ranks. The amount of noise increases as rank increases in all approaches. b)
The quantitative metrics confirm the visual observations in (a), where precision
degrades with increasing rank (bottom). Local PARAFAC approaches yield
similar T1 values to the reference across observed ranks (top), but global
PARAFAC approaches misestimate the T1 value with respect to low-resolution
data for low tensor ranks.

of variance (ANOVA). The lower 1.9 × 1.9 mm2 resolution
acquisition as in [7] was used as the reference for the estimated
T1 times. Precision values were statistically evaluated using
Kruskal-Wallis tests, which was followed by pair-wise Mann-
Whitney U tests in case of significant differences between
the LRTA methods. Additionally intraclass correlation coef-
ficient (ICC) was measured based on a mean rating, absolute-
agreement and 2-way mixed effects model. ICC values ≥0.75
were considered to show good agreement between methods,
while those <0.75 were deemed as an indication of significant
statistical difference between compared pairs [55]. Group tests
were considered significant for p-values < 0.05. Bonferroni
correction was performed to account for multiple comparisons
for the pairwise testing. Thus, Mann-Whitney U tests had a
Bonferroni-corrected type-I error of 0.001 (0.05 divided by 36
comparisons).

IV. RESULTS

A. Effect of Tensor Rank Selection

Figure 2a depicts example T1 maps used for empirical
choice of the tensor rank hyperparameter for PARAFAC
approximation. A representative end-diastolic phase is shown.
Spatial blurring in the blood-myocardium border was visible
for the global approach for tensor ranks below 300. Higher
rank reduced visual apparent blurring, albeit at an increased
noise level. On the other hand, global-3D processing was
robust to spatial blurring at the observed ranks. Similarly,
no spatial blurring was apparent among the studied ranks
for either of the local processing approaches, as the small
patches contained features with similar functional or contrast
properties, which were well represented by low-rank tensors.
The quantitative data for T1 values and T1 precision are
depicted in Figure 2b, and are in good agreement with the
visual assessment. Average T1 values closely matched the
reference T1 value of 1357±22 ms from the low resolution
reference, at ranks for which there were no apparent blurring
artifacts. A mismatch between the T1 estimates was apparent
for rank values in the range of 100 to 500 and 5 to 15 in
the global and global-3D PARAFAC approaches, respectively.
On the other hand, local and local-3D processing approaches
are in good agreement with the reference across all ranks. For
all processing approaches, precision degraded with increasing
rank. Based on this data, ranks of 600 and 20 were chosen as
optimal for the global and global-3D PARAFAC approaches
respectively, whereas ranks of 10 and 7 were chosen for the
local and local-3D PARAFAC approaches respectively, which
were used for the remainder of the experiments.

Figure 3 illustrates the empirical rank selection for Tucker
approximation for the same subject in Figure 2. The global
and local Tucker LRTA approaches were adversely affected by
spatial blurring for thresholds ≤.80 as apparent in the quan-
titative T1 maps depicted in Figure 3a. Global-3D and local-
3D Tucker LRTA approaches suffered from spatial blurring
for thresholds of ≤.70. Higher thresholds ameliorated these
blurring artifacts, albeit at a trade-off in noise amplification,
similar to the PARAFAC decomposition. Figure 3b depicts
the quantitative data for average T1 times and precision. Both
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Fig. 3: a) T1 maps of a representative end-diastolic cardiac phase for global,
global-3D, local and local-3D Tucker approximation for various thresholds.
Global and local Tucker techniques display blurring artifacts for thresholds
≤.80, while global-3D and local-3D Tucker approaches also exhibit blurring
artifacts at thresholds ≤.70. Blurring artifacts are eliminated for higher
threshold in all approaches, albeit at a trade-off in noise in the T1 maps.
b) The quantitative metrics for Tucker approximations are in agreement with
the visual observations from (a). Global, global-3D and local Tucker LRTA
misestimate the T1 values for thresholds≤.80, while local-3D Tucker methods
show bias for threshold ≤.70 with respect to low-resolution data. As threshold
increases, average T1 estimates of Tucker LRTA methods reaches a good
agreement with low-resolution data, while the precision values generally
degrade.

global Tucker approaches showed considerably increased T1
times for thresholds ≤.80 compared with the average T1 value
of the low resolution data. For local and local-3D Tucker
LRTA approaches, mismatch in T1 values were observed
at thresholds ≤ 80 and ≤.70, respectively. Accordingly, a
threshold of .90 was chosen for global, global-3D and local
Tucker LRTA approaches, respectively, and a threshold of .80
was chosen for local-3D Tucker approach based on the visual
and quantitative assessments.

B. Comparison of LRTA Approaches

Figure 4 depicts representative dynamic quantitative T1
maps from a healthy subject using global LRTA approaches.
The GRAPPA reconstruction shows major noise variations
at this high resolution, due to lower signal-to-noise in the
imaging data. The average T1 and precision values assessed
accross the cardiac phases were 1460±39 ms and 310±27

ms for GRAPPA, while the corresponding values for the
low-resolution reference were 1452±20 ms and 126±35
ms, respectively. All global LRTA approaches achieved T1
times that are in good agreement with the low-resolution
data (1461±32 ms and 1466±37 ms for global and global-
3D PARAFAC; 1465±40 ms, 1463±36 ms for global and
global-3D Tucker), while visibly reducing noise observed in
GRAPPA. Global and global-3D PARAFAC LRTA method
achieved improved precision of 191±21 ms and 198±23 ms
compared with GRAPPA. However, residual artifacts remained
visible, including signal contamination from blood pools in
the earlier phases, mostly in the inferior and lateral segments,
as well as residual inhomogeneity in the myocardium in the
later cardiac phases. Comparable trends were observed for
global and global-3D Tucker LRTA approaches, which led to
precisions of 205±20 ms and 229±32 ms respectively, with
some residual artifacts, such as visible signal inhomogeneity
in later cardiac phases.

Figure 5 depicts representative dynamic quantitative T1
maps for the same subject using local LRTA approaches.
As in global LRTA approaches, all local LRTA methods
achieved T1 times that were in good agreement with baseline
low-resolution images. These local LRTA techniques further
suppressed the residual artifacts in global LRTA approaches
and improved the quality of the T1 maps compared to their
global LRTA counterparts. The local LRTA improvements
over GRAPPA and global LRTA methods were also observed
quantitatively. The precision values were 122±20 ms and
127±19 ms for local and local-3D PARAFAC LRTA and were
147±23 ms and 179±27 ms for local and local-3D Tucker
LRTA approaches, respectively.

Compared with PARAFAC LRTA, Tucker LRTA resulted in
slightly increased noise variation, especially in the later cardiac
phases. We also note that the noise performance degraded
in the later cardiac phases for all methods, because of the
smaller amount of magnetization changes for the T1 parameter
estimation in these phases, as a result of the corresponding
long effective inversion times [7].

Figure 6 depicts representative systolic cardiac phase T1
maps for all subjects, using all the LRTA techniques. In
all subjects, global LRTA methods alleviated the noise am-
plification in GRAPPA, but residual artifacts such as blood
contamination were observed. These were further ameliorated
with the local LRTA approaches. Comparable trends were
observed in each method among all subjects.
T1 values through the cardiac phases for a cross-section of

the heart are depicted in Figure 7 for a representative subject.
In both PARAFAC and Tucker LRTA methods, functional
representation of cardiac motion did not suffer from apparent
temporal blurring, indicating that functional information is
preserved through the cardiac cycle. There was visible im-
provement in delineation of the tissue borders using the LRTA
approaches over GRAPPA, which suffered from high noise
amplification.

Table I lists the average T1 time and precision across all
six subjects and all cardiac phases for the reference low-
resolution acquisition and the LRTA methods applied on the
higher resolution data. Group analysis of the mean T1 values
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Fig. 4: Dynamic quantitative T1 maps from a healthy subject using GRAPPA, and the global PARAFAC and Tucker LRTA processing approaches. T1 maps
of six cardiac phases equally spaced across the R-R interval are shown. Global and global-3D PARAFAC and Tucker approaches mitigate noise amplification
compared to GRAPPA, but residual artifacts such as signal inhomogeneity in later cardiac phases remained visible. Overall precision of the myocardial T1

values for this subject across all cardiac phases were 191±21 ms and 198±23 ms for global and global-3D PARAFAC, and were 205±20 ms and 229±32
ms for global and global-3D Tucker LRTA approaches respectively.

from LRTA methods and low-resolution reference showed no
statistical difference (p = 0.62).

Kruskal-Wallis test confirmed statistical differences in pre-
cision among the methods (p < 10−10). A box-plot showing
the median and spread of the precision data is shown in Figure
8a. This visualization suggests that local and local-3D LRTA
methods have similar performance for each of the PARAFAC
and Tucker decompositions, while they outperform their global
counterparts.

The results of the pairwise Mann-Whitney U tests and
ICC for each possible processing pair are depicted in Figure
8b using a graph representation. Edges in red indicate non-
significant differences, while gray edges show statistically
significant differences (p < 0.001 and ICC < 0.75). The
ICC and p-values are also depicted next to the edge for
non-significant differences, while they are not shown for

significant differences for increased readability. Thus, the
best precision performance was achieved by local PARAFAC
method, which was statistically similar to local-3D PARAFAC,
but statistically improved compared to global and global-
3D PARAFAC methods which also showed similar statistical
manner with each other. PARAFAC global-3D showed similar
statistical behavior with Tucker global, global-3D and local-
3D LRTA approaches, while global and local-3D Tucker
approaches were the only pair within Tucker methods showing
similar statistical behaviour. The remaining approaches were
statistically different. In both PARAFAC and Tucker LRTA
methods, local processing outperforms local-3D, while global
processing outperforms global-3D. All methods improved pre-
cision compared to the GRAPPA reconstruction of the high-
resolution data in a statistically significant manner.

PARAFAC Tucker
Low-resolution
Reference GRAPPA(R3) Global Global-3D Local Local-3D Global Global-3D Local Local-3D

Average T1 time 1420 ± 60 ms 1428 ±60 ms 1434 ± 60 ms 1435 ± 54 ms 1424 ± 51ms 1428 ± 53 ms 1428 ± 55 ms 1431 ± 55 ms 1430 ± 58 ms 1436 ± 53 ms
Precision 137 ± 57 ms 331 ± 69 ms 193 ± 34 ms 218 ± 53 ms 124± 24 ms 132 ± 25 ms 204 ± 51 ms 256 ± 73 ms 162 ± 41 ms 195 ± 40 ms

TABLE I: The average T1 time and precision values across all six subjects and all cardiac phases.
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Fig. 5: Dynamic quantitative T1 maps for the same subject in Figure 4, reconstructed using GRAPPA, and the local PARAFAC and Tucker LRTA processing
approaches. T1 maps of six cardiac phases equally spaced across the R-R interval are shown. For both PARAFAC and Tucker decompositions, local LRTA
methods significantly mitigate noise amplification, while eliminating residual artifacts that affect the inferior segment, especially in end diastolic phases, when
using the global LRTA approaches. Overall precision of the myocardial T1 values for this subject across all cardiac phases were 122±20 ms and 127±19
ms for local and local-3D PARAFAC LRTA and were 147±23 ms and 179±27 ms for local and local-3D Tucker LRTA approaches, respectively..

V. DISCUSSION

In this study, we investigated PARAFAC and Tucker low-
rank tensor approximation techniques for multi-dimensional
MRI datasets. These techniques were applied to high-
resolution dynamic cardiac T1 mapping acquisitions [7]. For
both PARAFAC and Tucker decompositions, global, global-
3D, local and local-3D LRTA processing approaches were
studied. To the best of our knowledge, this is the first multi-
dimensional MRI study that quantitatively evaluates different
tensor decompositions and processing approaches for a total
of 8 comparisons. Thus, as multi-dimensional MRI continues
to grow rapidly, such a detailed and thorough evaluation may
provide guidelines for designing low-rank tensor reconstruc-
tion and denoising algorithms for these datasets. Furthermore,
the proposed tensor approximation in conjunction with the
accelerated acquisition of rate 3 considered here enables
dynamic myocardial T1 mapping with a spatial resolution of
1.3× 1.3 mm2 and temporal resolution of 60 ms. Previously
reported resolutions for this approach were confined to spatial
resolutions of 1.9× 1.9 mm2 [7]. Additionally, most conven-
tional myocardial T1 methods exhibit a temporal resolution
of 200-250 ms [40] for a single cardiac phase. These im-
provements in resolutions may facilitate better delineation of

blood-myocardium border, reducing partial voluming artifacts
and characterize highly mobile structures such as the papillary
muscles. Thus, further clinical studies to understand additional
benefits of the improved resolution are warranted.

All LRTA approaches showed significant noise reduction
compared with the GRAPPA reconstruction in the high-
resolution low-SNR regime. For both tensor decompositions,
the local processing approaches outperformed global ap-
proaches, both visually and quantitatively. Thus, global tensor
processing may not be an optimal approximation strategy
for multi-dimensional MRI data, since the imaging field-of-
view contains multiple structures with disparate functional and
contrast properties. Local processing considers small patches
that are likely to have structures with similar functional and
contrast properties. This was shown to be a better fit in
improving both the visual image quality and the quantitative
metrics. Local processing also allows using smaller tensor
ranks, since maximal rank grows proportionally with the
product of the three smallest tensor dimensions. Besides the
imaging improvement, local processing may have a computa-
tional advantage over global processing since the patches can
be processed independently. This facilitates parallelization on
multi-cores or GPU, although such gains were not explored.
For the ranks used in this study, the runtimes per iteration for
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Fig. 6: Representative systolic cardiac phase T1 maps for all subjects, reconstructed using GRAPPA, and PARAFAC and Tucker LRTA processing approaches.
Similar improvements to those in Figures 4 and 5 were observed in each LRTA method for all subjects.

PARAFAC and Tucker were similar, with global processing
taking approximately 30 seconds, global-3D taking approxi-
mately 1 second, and local and local-3D methods taking 10
seconds per iteration. We note that the runtimes are rank-
dependent and increase with the rank, for instance as observed
between global and global-3D LRTA approaches.

In local processing approaches for PARAFAC difference in

terms of the visual quality and quantitative metric of local
and local-3D LRTA approaches is small, and the differences
were not statistically significant. This difference between local
and local-3D LRTA was higher in Tucker, where results
showed significant statistical differences. In both PARAFAC
and Tucker approaches, local LRTA with 4D patches per-
formed better than local LRTA with 3D patches in terms of

GRAPPA Global Local Local-3D Global Local Local-3D

PARAFAC LRTA Tucker LRTA 

Global-3D Global-3D

t

x

Fig. 7: T1 times throughout cardiac phases across a cross-section of the heart for one of the subjects. GRAPPA suffers from substantial noise amplification,
making it difficult to identify tissue borders. The T1 maps generated using the LRTA methods significantly decrease these noise artifacts, while not hindering
identification of tissue borders.
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precision. However, local-3D LRTA methods showed visu-
ally enhanced improvement in myocardium-blood boundary
delineation compared to local approaches. Thus they may be
preferable in cases where border sharpness is more important.

In terms of the comparisons posed in Section III-B, our
findings on precision and quality of dynamic myocardial T1
maps can be summarized as follows: i) PARAFAC LRTA
methods outperformed their Tucker counterparts both visu-
ally and quantitatively. Although for global-3D, the improve-
ment was not statistically significant. ii) Local processing
approaches outperformed their global processing counterparts
in all cases. iii) Local (4D) approaches outperformed their
local-3D counterparts in terms of quantification of precision,
with a significant improvement for Tucker decomposition.
However, local-3D approaches offered sharper delineation of
myocardium-blood boundary in some subjects.

In this study, PARAFAC approximation methods outper-
formed the Tucker decomposition in terms of visual quality
and quantitative metrics. One possible explanation for this
difference in performance is related to the difference in the
degrees of freedom. PARAFAC method is less susceptible to
over-fitting issues since there is only one tensor rank parameter
to be estimated. On the other hand, Tucker decomposition is a

form of higher-order SVD. In SVD of matrices, the best low-
rank approximation achieved with the Eckart-Young theorem
is obtained by keeping few large eigenvalues and discarding
the rest. Tucker decomposition follows a similar procedure
with SVD by gathering slabs with highest energy from each
mode and keeping them in a part of the core tensor, then
truncating the rest. However, unlike SVD, Tucker does not
end up with best low-rank tensor approximation since there is
no equivalent form of the Eckart-Young theorem for tensors.
Hence, the higher degrees of freedom in Tucker decomposition
makes it susceptible to over-fitting. These differences between
the two tensor decompositions are also appreciated in other
fields. For instance, PARAFAC decomposition is used in
latent signal estimation [56], whereas Tucker is often used
for compression purposes such as face recognition [57].

Spatial variability of the myocardial T1 maps in an ROI,
and the reproducibility of the mean T1 values in an ROI
across multiple repeated experiments are commonly used as
surrogates for precision in myocardial T1 mapping [58]. In this
study, we used the spatial variability to characterize precision.
The values reported here, even after the use of LRTA methods,
are seemingly higher than the previously reported variation of
T1 times across the cardiac cycle when using TOPAZ [7].
However, this is not a contradiction, since in clinical studies,
it is common to perform analysis based on the estimated T1
values over an ROI [40]. After averaging, the differences of
mean values across regions are generally smaller than the
changes that needs to be detected. Lower spatial variability
enables regions to be defined with fewer number of pixels,
while allowing regional differences to be detected. This is
important in disease populations, where different parts of the
myocardium may have different T1 properties. Thus regional
analysis with fewer number of pixels is often desirable, leading
to our goal of improving spatial variability.

Many of the existing works that employed LRTA in MRI
have focused on Tucker decomposition [1, 5, 36]. These works
have so far utilized a subspace learning approach, where com-
plementary navigator data is acquired to estimate the subspaces
and their ranks for the non-spatial data dimensions. Hence, the
implementation of these approaches require changes in the
pulse sequence and acquisition. Therefore, these approaches
were not investigated in our study, and instead a data-driven
approach was used for Tucker decomposition. The use of
navigator data as in [1, 5, 36] may further benefit the LRTA ap-
proaches considered here. Furthermore, these aforementioned
previous works relied on global processing of the datasets.
However, in our data-driven approach, significant improvement
was shown using local LRTA processing. While our work
focused on PARAFAC and Tucker decompositions, there are
also other methods for LRTA [59, 60]. In these works, the sum-
mation of the ranks of the matrix unfoldings along each mode
is considered as the objective function to minimize subject to
data consistency terms, and was applied to tensor completion.
However, the number of variables grows by the product of
all dimensions, making it computationally expensive for large
datasets. Additionally, regularizers on the tensor coefficients
can be incorporated into the main objective function in order to
penalize misrepresentations that may occur in some areas, such
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as background air region with no signal, where any non-zero
tensor rank would lead to incorrect representations. As multi-
dimensional MRI increasingly becomes utilized with novel
acquisition approaches [1, 5, 7], a quantitative comparison
of LRTA methods as in this study, may be instrumental in
designing better reconstruction algorithms.

A limitation of LRTA methods relates to rank selection.
Since determining the rank of a tensor is an NP-hard problem
[50], empirical rank selection was used both in previous
studies [1, 5, 36] and in this study. However, it is desir-
able to have a metric that unifies hyperparameter selection
across decompositions. To this end, we have explored the
normalized root-mean-square error (NRMSE) of reconstruc-
tions as a possible candidate. While this provided similar
ranges of thresholds across decompositions, it still required
separate fine-tuning for using either local or global processing.
Additionally, a threshold for this NRMSE metric still needs
to be translated to rank hyperparameters in order to run
the LRTA algorithms. A further complication for the Tucker
model is that an NRMSE value can be achieved with different
selection of ranks across modes, leading to non-uniqueness.
Thus, we utilized rank-related hyperparameters for ease of
algorithmic translation, even though it requires fine-tuning
across different decompositions and processing techniques.
In the data-driven approach considered here, a single tensor
rank parameter was used for PARAFAC, whereas a single
proportion involving the magnitude of the singular values of
the matrix unfoldings was used for Tucker decompositions,
leading to an adaptive selection of ranks. Due to the high
number of degrees of freedom in Tucker decompositions,
the same threshold parameter was utilized across all modes.
Further gains may be possible by fine-tuning this parameter
for individual modes. However, this was not explored due to
the exhaustive search requirements, which would make such
a selection difficult in practical scenarios.

As discussed in Sections II-B and II-C, the denoising
formulations in Equations (2) and (6) do not have a maximum
likelihood interpretation. While the noise in the reconstructed
SENSE-1 images are Gaussian, they are not independent and
identically distributed (i.i.d.), i.e. the covariance matrix is not
proportional to the identity matrix. While the computation
of the covariance matrix is difficult, a better approximation
may be possible via g-factor analysis [12, 47]. We further
detail this formulation and related experiments in Appendix
I, while noting that it did not lead to an improvement over
the formulations stated in Equations (2) and (6) in our study.
Another alternative for avoiding the non-i.i.d. Gaussian noise
after GRAPPA reconstruction is to run an end-to-end inverse
problem from k-space to image space. However, this comes
at the cost of additional computational complexity of an
iterative method and parameter tuning. This alternative is
further detailed in Appendix II, although we note that this
approach also did not lead to an improvement over the original
formulation.

VI. CONCLUSION

We utilized and compared different tensor decomposition
methods and multiple processing approaches to enable high-

resolution cardiac phase-resolved myocardial T1 mapping.
Tensor approximations were performed in a data-driven man-
ner without auxiliary navigator data. Local tensor process-
ing showed significant improvement over global processing,
and PARAFAC decomposition led to improvements in pre-
cision over Tucker decomposition. The proposed techniques
for LRTA enabled cardiac-phase resolved T1 mapping at
1.3 × 1.3 mm2 spatial and 60 ms temporal resolution, while
maintaining clinical image quality and scan time.
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APPENDIX

A. Appendix I

Let G be the GRAPPA operator and E∗ be the SENSE-
1 coil combination operator. For i.i.d. acquisition noise, the
noise in each of the reconstructed images in Equations (2) and
(6) have covariance matrix proportional to K = E∗GG∗E.
Calculation of this covariance matrix is not computationally
straightforward. However, the square root of its diagonal
entries can be approximated via g-factor analysis [12]. For
the GRAPPA reconstruction used here, which involves a fully-
sampled central k-space, pseudo-replica method [47] provides
a method for approximating the g-factor maps.

To this end, 1000 runs of the pseudo-replica method were
used to generate g-factor maps, G(x, y, t, c). The g-factor maps
were incorporated into objective function in Equation (2) as

min
{ar,br,cr,dr}

∑
x,y,t,c

∣∣∣∣∣ 1

G(x, y, t, c)

(
m̂(x, y, t, c)

−
R∑
r=1

ar(x)br(y)cr(t)dr(c)

)∣∣∣∣∣
2

, (12)

and in Equation (6) as

min
{U,V,W,Z,G}

∑
x,y,t,c

∣∣∣∣∣ 1

G(x, y, t, c)

(
m̂(x, y, t, c)

−
r1∑
i=1

r2∑
j=1

r3∑
k=1

r4∑
l=1

G(i, j, k, l)U(x, i)}

V(y, j) } W(t, k) } Z(c, l)

)∣∣∣∣∣
2

, (13)
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Fig. S1: A representative cardiac phase is shown across different methods for original formulation and g-factor approach for approximating the reconstructed
noise covariance matrices. Similar visual and quantitative improvement were observed in both approaches across the methods.

These problems were solved for the same ranks as in the
original formulations of Equations (2) and (6). The results are
depicted in Figure S1, showing visually comparable results.
Furthermore, there were only minor differences in T1 values
and spatial variability (less than 1.5% for all methods). Due
to the additional computational complexity associated with the
calculation of the g-factor maps that yields minor changes,
this approach was not preferred over the original denoising
formulations. We also note that the g-factor approximation
may further benefit from different rank choices, however this
was not investigated in detail as it is beyond the scope of this
study.

B. Appendix II

For the data acquisition model in Equation (1), an end-to-
end inverse problem can be setup for reconstruction from k-
space to image space. The objective function for the end-to-
end inverse problem in the PARAFAC case can be written as

min
{m(x,y,t,c)}t,c

∑
t,c

‖y(t, c)−Et,c

(
m(x, y, t, c)

)
‖2F ,

subject to rank(m(x, y, t, c)) = R (14)

and in the Tucker case as

min
{m(x,y,t,c)}t,c

∑
t,c

‖y(t, c)−Et,c

(
m(x, y, t, c)

)
‖2F ,

subject to n-rank(m(x, y, t, c)) = (R1, R2, R3, R4) (15)
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Fig. S2: Representative cardiac phases from one of the subjects used in this
study for the PARAFAC LRTA formulation used in this study, as well as an
end-to-end k-space-to-image inversion. Two approaches yield similar results
both visually and quantitatively.

where Et,c : CM×N → CP is as defined in Section II-A and
n-rank of an N -dimensional tensor is the tuple of the rank of
the matrix unfoldings along each mode, Ri =rank(Xi). This
problem was solved by means of proximal gradient descent
method in an iterative manner

z(x, y, t, c) = m(x, y, t, c)

+ µEH
t,c

(
y(t, c)−Et,c

(
m(x, y, t, c)

))
m(x, y, t, c) = prox(z(x, y, t, c))

where the proximal operator was implemented using the
PARAFAC or Tucker ALS methods described in Section II.
This iterative procedure was repeated until a convergence
criterion was met. Figure S2 shows GRAPPA reconstruction,
and PARAFAC global-3D and local-3D used in our work
which are marked as PARAFAC LRTA, as well as the direct
end-to-end inverse problem for PARAFAC global-3D and
local-3D methods that are labeled as End-to-End Inversion.
Our results indicate that both the LRTA approach used in
our study and the end-to-end inverse problem solution yield
similar improvement, while outperforming GRAPPA. The av-
erage precision for GRAPPA was 245±18 ms in this subject.
The average T1 times were 1347±19 ms and 1349±26 ms,
and precision values were 176±21 ms and 121±10 ms for
PARAFAC global-3D and local-3D LRTA used in our work. In
the end-to-end inversion setting, these values were 1342±17
ms and 1338±31 ms, and 187±19 ms and 124±10 ms for
average T1 times and precision for PARAFAC Global-3D and
local-3D, respectively. We note that end-to-end inversion may
further benefit from different rank choices, however this was
not investigated in detail due to the computational complexity
of these methods.
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