
1

Tensor Completion from Regular Sub-Nyquist
Samples

Charilaos I. Kanatsoulis, Student Member, IEEE, Xiao Fu, Member, IEEE,
Nicholas D. Sidiropoulos, Fellow, IEEE, and Mehmet Akçakaya, Member, IEEE

Abstract—Signal sampling and reconstruction is a fundamen-
tal engineering task at the heart of signal processing. The
celebrated Shannon-Nyquist theorem guarantees perfect signal
reconstruction from uniform samples, obtained at a rate twice
the maximum frequency present in the signal. Unfortunately a
large number of signals of interest are far from being band-
limited. This motivated research on reconstruction from sub-
Nyquist samples, which mainly hinges on the use of random /
incoherent sampling procedures. However, uniform or regular
sampling is more appealing in practice and from the system
design point of view, as it is far simpler to implement, and
often necessary due to system constraints. In this work, we
study regular sampling and reconstruction of three- or higher-
dimensional signals (tensors). We show that reconstructing a
tensor signal from regular samples is feasible. Under the proposed
framework, the sample complexity is determined by the tensor
rank—rather than the signal bandwidth. This result offers new
perspectives for designing practical regular sampling patterns
and systems for signals that are naturally tensors, e.g., images
and video. For a concrete application, we show that functional
magnetic resonance imaging (fMRI) acceleration is a tensor
sampling problem, and design practical sampling schemes and
an algorithmic framework to handle it. Numerical results show
that our tensor sampling strategy accelerates the fMRI sampling
process significantly without sacrificing reconstruction accuracy.

Index Terms—sampling, reconstruction, tensor completion,
MRI acceleration, functional MRI

I. INTRODUCTION

SAMPLING and reconstruction of signals is a fundamental
problem in signal processing. In the first half of the 20th

century, Whittaker, Nyquist, Kotelnikov and Shannon [1]–[4]
laid the foundation of sampling theory. It guarantees perfect
reconstruction of a signal from uniformly spaced samples, if
sampling is performed at a rate of at least twice the maximum
frequency present in the signal. The Shannon-Nyquist theorem
applies to both continuous and discrete signals. It capitalizes
on the band-limitedness property and is the first, and one of the
very few results, that allow perfect reconstruction of a signal
under a uniform, or more generally, regular sampling process.
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The challenge is that applying Shannon-Nyquist sampling to
wideband signals requires very high sampling rates—which
entail high prohibitive complexity, size, and power consump-
tion. Sub-Nyquist sampling and reconstruction strategies were
studied as early as the late 60’s for multiband signals [5], and
the interest continued [6] until more recently, when sparsity
came into play [7]–[10].

In the late 2000’s compressive sensing (CS) [7]–[9]
emerged, enabling reconstruction from a set of measurements
sampled or compressed below the Nyquist rate. CS works
under two basic premises: the signal of interest must have
a sparse representation in a known transform domain; and the
sampling pattern should be ‘incoherent’. Under these assump-
tions, tractable algorithms are shown to recover the signal of
interest. Compared to the Shannon-Nyquist sampling theorem,
CS leverages signal sparsity, rather than bandlimitedness. This
result is significant, since some wideband signals of practical
interest are sparse in certain domains [11], [12]. On the
downside, CS entails higher reconstrunction complexity than
sinc function interpolation, and relies on incoherent/random
sampling thus losing the simplicity of regular/uniform sam-
pling. A few exceptions exist, e.g., [13], [14], but the results
are quite restrictive in practice.

Following the ideas of CS, low-rank matrix completion
(LRMC) techniques were proposed for reconstructing matrix
signals from a set of samples [15], [16]. This line of research
utilizes the rank of the matrix as complexity measure for sam-
pling and has attracted significant attention, since it is related
to a number of important applications such as recommender
systems [17]. However, similar to CS, LRMC is based on
incoherent sampling. Furthermore the reconstruction guaran-
tees in both CS and LRMC are probabilistic, contrary to the
Shannon-Nyquist theorem which deterministically guarantees
signal reconstruction.

Our work is motivated by the following question. Is there
a sub-Nyquist sampling mechanism that works under regular
sampling for certain signals of interest? This research question
is very intriguing: regular sampling is efficient, friendly to im-
plementation and often mandatory, and sub-Nyquist sampling
is desired since numerous real-world signals are far from being
bandlimitted.

In this work, we offer an affirmative answer to the above
research question for a large variety of multidimensional sig-
nals. The proposed approach guarantees identifiability under
realistic conditions, both generic and deterministic. Specifi-
cally, we focus on the problem of sampling tensor signals, i.e.,
signals whose entries are indexed by three or more coordinates
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[18], [19]. Tensor signals naturally arise in a large number of
areas such as machine learning and data analytics [20], signal
processing and communications [21], image processing and
remote sensing [22]–[24], medical imaging [25], genomics
[26], chemometrics [27], just to name a few. Hence, con-
sidering sampling and reconstruction of tensor signals is of
broad interest. The problem is challenging, since various tensor
signals are neither bandlimited nor sparse or low-rank matrices
(via ‘unfolding’)—and thus existing sampling techniques are
not always applicable.

The reconstruction of sampled tensor signals, known in the
literature as tensor completion, has been studied in machine
learning and computer vision [28], [29]. The majority of exist-
ing works [29]–[33] focus on the algorithmic aspects of tensor
completion. There are a few that provide recovery guarantees
[34], [35] but are based on random sampling schemes and/or
LRMC ideas, which are not tailored to the tensor specifics. A
recent work [36], studies identifiability conditions of low-rank
tensor completion with generic matrix factors. The sampling
procedure is not constrained to be random, unlike [34], [35],
but checking the conditions is a combinatorial problem. The
work that is closest to ours is [37], which offers reconstruction
conditions when the tensor ‘fibers’ are sampled. However,
the conditions are restrictive, since the rank is constrained
to be lower than the fiber dimension, and a variety of other
interesting types of regular tensor sampling have not been
considered.
Contributions: In this work, we study the task of sampling
and reconstruction of signals that are tensors—or tensor
sampling in short. We propose a tensor sampling framework
that is flexible and easy to implement. Generic as well as
deterministic theoretical conditions are derived, under which
identifiability is guaranteed. Similar to matrix completion, the
sample complexity for tensor signal reconstruction is mainly
affected by the tensor rank and the tensor size—instead of sig-
nal bandwidth or sparsity. Unlike CS and LRMC, the proposed
approach does not require incoherent sampling. Therefore,
regular, equispaced and highly structured sampling strategies
can be adopted—which has a much broader spectrum of
applications in practice.

Our second major contribution lies in designing accelerated
acquisition schemes for functional magnetic resonance imag-
ing (fMRI) utilizing the proposed tensor sampling principles.
Note that traditional fMRI acquisition is considered an “ag-
onizingly slow” scanning process, which strongly motivates
exploring appropriate sampling techniques for acceleration.
However, due to hardware limitations, random or incoherent
sampling strategies are considered impractical for this task
[38]. Nevertheless, the proposed tensor sampling framework
fits this task very well as fMRI signals are naturally tensors.
Extensive simulations using synthetically generated data show
that the proposed tensor sampling schemes are promising.
More importantly, experiments using real fMRI data demon-
strate remarkable acceleration compared to traditional fMRI
scanning approaches, without sacrificing reconstruction accu-
racy.

An early version of part of this work appears in conference

Fig. 1: The columns (X(i, :, k)), rows (X(:, j, k)), and fibers
(X(i, j, :)) of a third-order tensor, respectively. Figure taken
from [22], c© IEEE, 2019. Permission will be sought for
reuse.

Fig. 2: The vertical (X(:, j, :)), horizontal (X(i, :, :)), and
frontal slabs (X(:, :, k)) of a third-order tensor, respectively.

form in Proc. ICASSP 2019 [39]. In this journal version, we
consider additional sampling schemes, include deterministic
reconstruction conditions along with thorough model analysis
and proofs. We also design multi-slice fMRI acceleration
schemes and conduct detailed experiments.

II. TENSOR ALGEBRA PRELIMINARIES

In this work we heavily use tensor algebra. To facilitate the
upcoming discussion we briefly present some essential tensor
algebra concepts. The reader is referred to [18], [19] for further
details.

A third-order tensor X ∈ FI×J×K is a three-way array
indexed by i, j, k with elements X(i, j, k), where F is used to
denote either the real field R or complex field C. It consists
of three modes: columns X(i, :, k), rows X(:, j, k), fibers
X(i, j, :); and three types of slabs: horizontal X(i, :, :), verti-
cal X(:, j, :) and frontal X(:, :, k) – see Fig. 1, 2, respectively.
A rank-one tensor Z ∈ FI×J×K is the outer product of three
vectors, a ∈ FI , b ∈ FJ , c ∈ FK , denoted as Z = a ◦ b ◦ c,
where ◦ is the outer product operator. Any tensor can be
realized as a sum of three way outer products (rank one
tensors), i.e.

X =

F∑
f=1

af ◦ bf ◦ cf . (1)

The above expression is known as the polyadic decomposition
(PD) of a third-order tensor. If F denotes the minimum number
of outer products needed to synthesize X , then F is called ten-
sor rank or CP rank and the decomposition is known as canon-
ical polyadic decomposition (CPD) or parallel factor analysis
(PARAFAC) [40]. The CPD elementwise representation can be
written as X(i, j, k) =

∑F
f=1 A(i, f)B(j, f)C(k, f), where

A = [a1, . . . ,aF ] ∈ FI×F , B = [b1, . . . , bF ] ∈ FJ×F , C =
[c1, . . . , cF ] ∈ FK×F are called the low rank factors of the
tensor. A third-order tensor can be fully characterized by its
latent factors, thus we adopt the notation X = JA,B,CK to
represent the tensor. A striking property of tensors is that the
CPD is essentially unique under mild conditions. A generic
result on the uniqueness of the CPD follows.
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Theorem 1 [41, p. 1019-1021] Let X = JA,B,CK with
A : I × F , B : J × F , and C : K × F . Assume
that A, B and C are drawn from some joint absolutely
continuous distribution with respect to the Lebesgue measure
in F(I+J+K)F . Also assume I ≥ J ≥ K without loss of
generality. If F ≤ 2blog2 Jc+blog2Kc−2, then the decomposition
of X in terms of A,B, and C is essentially unique, almost
surely. The notation bxc is used for the largest integer that is
less than or equal to x.

Here, essential uniqueness means that if Ã, B̃, C̃ also satisfy
X = JÃ, B̃, C̃K, then A = ÃΠΛ1, B = B̃ΠΛ2, and
C = C̃ΠΛ3, where Π is a permutation matrix and Λi is a full
rank diagonal matrix such that Λ1Λ2Λ3 = I . In Theorem 1
A,B,C are drawn from some joint absolutely continuous dis-
tribution with respect to the Lebesgue measure in F(I+J+K)F .
For example, [A,B,C] drawn from an i.i.d. Gaussian distri-
bution over F(I+J+K)F is absolutely continuous with respect
to the respective Lebesgue measure, and so is any correlated
Gaussian distribution with a non-singular covariance matrix.
However, a Gaussian with a singular covariance does not fit
this bill. As a more concrete example, consider two real zero-
mean Gaussian random variables, X1 and X2. If X2 = cX1,
and X1 ∼ N (0, 1), then their covariance matrix is [1, c; c, c2],
which is singular, and the support of the joint distribution is
a line, which has measure zero in R2.

As far as deterministic identifiability is concerned, we have:

Theorem 2 [42] Let X = JA,B,CK with A : I × F , B :
J×F , and C : K×F . The decomposition X = JA,B,CK is
essentially unique with CP rank F if kA+kB +kC ≥ 2F +2.

Here kA denotes the Kruskal rank of a matrix, i.e., the largest
integer kA such that any kA columns of A are linearly
independent. In Theorems 1, 2 and for the rest of the paper
I, J,K > 1

Note that all theorems presented in this paper can be
applied to real and complex tensors, i.e., X ∈ RI×J×K or
X ∈ CI×J×K , without any change. Whereas tensor rank
generally depends on the field over which the decomposition
is computed [18], our results apply to tensors in the real or
complex field without any change. The reason is that Theorem
1 remains the same for tensors with generic factors in real or
complex field as stated in [41, p. 1021] and Kruskal’s condition
/ proof, used in Theorem 2, is valid for both real and complex
tensors.

A tensor can be represented in a matrix form using the
matricization operation. There are three common ways to
matricize (or unfold) a third-order tensor, by stacking columns,
rows, or fibers of the tensor to form a matrix. For example the
following operation stacks the columns of tensor X as rows
of matrix X(1):

X(1) := [vec(X(1, :, :)), vec(X(2, :, :)), . . . , vec(X(K, :, :))],

where ‘vec(·)’ is the vectorization operator. One can see that:

X(1) = (C �B)AT ∈ FJK×I , (2)

where � denotes the Khatri-Rao (column-wise Kronecker)
product. The superscript (1) denotes that the unfolding is

performed on the first mode of the tensor, i.e. columns are
stacked together.

Finally we will need the mode product operation in tensor
analytics. The mode product operator multiplies a matrix to a
tensor in a single mode. A third order tensor has three modes
(rows, columns, fibers), thus three different mode products are
defined. A joint mode-1, mode-2, and mode-3 product of a
third-order tensor is represented by the following notation:

X̃ = X ×1 P1 ×2 P2 ×3 P3 (3)

where “×1” denotes the operation that multiplies each column
of X with P1, “×2” denotes multiplying each row of X with
P2, and “×3” denotes multiplying each fiber of X with P3.
The mode product is reflected in the polyadic decomposition
of the tensor, i.e., the outcome of (3) results in a tensor X̃
with polyadic decomposition:

X̃ = JP1A,P2B,P3CK,

The above decomposition is essentially unique under some
conditions—this point will turn out to be crucial in the
upcoming discussion.

III. TENSOR SAMPLING MECHANISMS

The core of this work discusses the sampling and recon-
struction of third-order tensors. The main claim is funda-
mental: roughly speaking, any third-order tensor that does
not have very high rank can always be identified from a
sufficient number of regular samples. The sampling is not
constrained to follow a randomized or incoherent process.
On the contrary, we focus on regular and highly structured
schemes. Various regular sampling strategies are considered.
They involve sampling whole slabs in different modes (slab
sampling), certain fibers in a single or multiple modes (fiber
sampling) and entries in a systematic manner (entry sampling).
Exposition and development use third-order tensors, but all
the techniques can be naturally extended to higher-order
tensors in a conceptually straightforward way. Similar to the
case of matrices, even if a tensor is high-rank in the strict
mathematical sense, it can often be approximated using low
rank, in which case it can be approximately recovered using
the proposed sampling and reconstruction schemes, as we will
see.

A. General Strategy and Insight

Let us consider the following general form of tensor sam-
pling:

y = Sample(X),

where Sample(·) : RI×J×K → RL is a down-sampling
operator with L � IJK. Our goal is to study under what
conditions and sampling strategies, identifying X from y is
possible. This is an inverse problem like in CS [7]–[9] and
LRMC [15], [16]. However, unlike in [7]–[9], [15], [16],
[30], we do not consider random/incoherent down-sampling
operators but highly structured ones—which model a plethora
of engineering applications, are easier for practical system
implementation and computationally more efficient.
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Our work rests upon two basic ideas. The first utilizes
the uniqueness property of the CPD. Recall that every tensor
admits a CPD, and the CPD is essentially unique if the CP
rank is not very large. The second exploits the relation between
a sampled sub-tensor and the original tensor X = JA,B,CK.
If we sample Sr ⊆ {1, . . . , I} rows, Sc ⊆ {1, . . . , J}
columns and Sf ⊆ {1, . . . ,K} fibers and form a sub-tensor
X(Sr,Sc,Sf ), then:

X(Sr,Sc,Sf ) = JA(Sr, :),B(Sc, :),C(Sf , :)K.

One key observation is that the above sub-tensor can be
decomposed to a sum of rank-one terms of number equal to
the rank of the original tensor. Furthermore, the latent factors
share certain rows with the original latent factors. Intuitively,
if rank(X) is not huge, there is a good chance that the sub-
tensor admits a unique CPD, and part of the information of
A, B, and C can be extracted from the sub-tensor. Hence,
by judiciously sampling and constructing sub-tensors, it seems
viable to recover the entire A, B, and C, and thus reconstruct
X . This is the main idea.

Despite this conceptual simplicity, however, fleshing out
this task is nontrivial. First, when factoring the sub-tensors
there are always permutation and scaling ambiguities—even
if every sub-tensor admits unique CPD, identifiability of the
whole tensor is not guaranteed. Thus the sampling mechanisms
need to be carefully designed to address this issue. Second,
balancing the sampling ratio with the ability to identify the
original tensor is a key consideration and needs attentive
thinking and design. In the remaining section, we propose a
series of sampling mechanisms that take into consideration
both design challenges. The considered sampling schemes
are practical and motivated by real engineering applications,
particularly in the field of medical imaging.

B. Slab sampling

First, we study the task of reconstructing a third-order tensor
from slab samples, taken from two different modes. Recov-
ering tensor signals from sampled slabs finds applications
in fMRI acceleration [43]–[45] and image/video inpainting
[46], [47]. However, there is no unified characterization for
recoverability under regular sampling patterns, to our best
knowledge. Let X ∈ FI×J×K be the original full tensor,

Fig. 3: Tensor slab sampling paradigm.

which is not fully accessible or is subject to sampling. Instead
we sample/observe a subset of slabs in one mode, e.g.,
horizontal slabs, Sr ⊆ {1, . . . , I}, and a subset of slabs in
a different mode, e.g. frontal slabs, Sf ⊆ {1, . . . ,K}. If
|Sr| = I1 ≥ 2 and |Sf | = K2 ≥ 2, two separate sampled

tensors are formed, i.e., Y 1 ∈ FI1×J×K and Y 2 ∈ FI×J×K2 ,
which represent the subset of observable horizontal and frontal
slabs of X respectively. Apparently, Y 1 can be written as
the mode 1 multiplication of tensor X with selection matrix
P

(1)
1 ∈ RI1×I , i.e.

Y 1 = X (Sh, :, :) = X ×1 P
(1)
1 (4)

and Y 2 as a mode 3 multiplication with matrix P
(2)
3 ∈

RK2×K , i.e.

Y 2 = X (:, :,Sf ) = X ×3 P
(2)
3 (5)

The sampling matrices P (1)
1 , P

(2)
3 perform slab selection in a

single mode of X , thus I1 < I, K2 < K (they are ‘fat’) and
also have full row rank. A schematic illustration of the tensor
slab sampling model is given in Fig. 3. Note that, P (1)

1 , P
(2)
3

are not constrained to be randomly drawn in our framework.
On the contrary, the sampling process is allowed to be regular
or highly structured, see Fig. 3. Assuming X = JA,B,CK,
following (4), (5), the sub-tensors Y 1, Y 2 can be expressed
in a PD form:

Y 1 =
r
P

(1)
1 A,B,C

z
(6a)

Y 2 =
r
A,B,P

(2)
3 C

z
(6b)

Using (6) identifiability of X from (Y1,Y2) can be estab-
lished:

Theorem 3 Let X ∈ FI×J×K be the original tensor signal
to recover, with CPD X = JA,B,CK of rank F . Assume
that A, B and C are drawn from some joint absolutely
continuous distribution with respect to the Lebesgue measure
in F(I+J+K)F , and that A?,B?,C? satisfy the equations
in (6). Then, X̂(i, j, k) =

∑F
f=1 A

?(i, f)B?(j, f)C?(k, f)
recovers the ground-truth X almost surely if one of the
following conditions hold:

1) min
{

2blog2 I1c+blog2 Jc, 2blog2 Jc+blog2Kc,
2blog2 I1c+blog2Kc, 4JK2

}
≥ 4F

2) min
{

2blog2 Ic+blog2 Jc, 2blog2 Jc+blog2K2c,
2blog2 Ic+blog2K2c, 4I1J

}
≥ 4F ,

where I1,K2 > 1.

The proof is presented in Appendix A. The intuition is that
if Y 1 or Y 2 admit a unique CPD, under Theorem 1, the
factors B, C or A, B respectively can be identified. Then
A or C are recovered from the other tensor, where A or
C have been left uncompressed. Note that in slab sampling
only one sub-tensor is required to admit a unique CPD.
The reason is that identifying the latent factors of one sub-
tensor, directly estimates two original latent factors. Then,
the remaining factor can be obtained via solving a linear
system of equations. Furthermore, permutation and scaling
ambiguities are automatically resolved, since Y 1, Y 2 sample
common rows of X . Overall reconstruction is performed as
X̂(i, j, k) =

∑F
f=1 A

?(i, f)B?(j, f)C?(k, f). Deterministic
conditions can also be derived, and this discussion is post-
poned to section IV.

The previous analysis can be easily extended to the case
where slab sampling is performed in all 3 modes of the tensor.
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C. Fiber sampling

Next, we consider the reconstruction of tensor X from a
subset of fibers, sampled along a single mode of the tensor.
Fiber sampling is also of interest to a number of applications
in chemometrics [32], [48] nuclear magnetic resonance spec-
troscopy [49] and fMRI acceleration (see Sec. VI). To make
the discussion concrete, consider the scenario illustrated in Fig.
4, where D = 3 fiber patterns appear in the tensor sampling
scheme. A pattern will be defined as a subset of rows S(d)r ⊆

Fig. 4: Tensor fiber sampling paradigm.

{1, . . . , I} and columns S(d)c ⊆ {1, . . . , J} for which every
point X(i, j, k), i ∈ Sr, j ∈ Sc, k ∈ {1, . . . ,K} belongs to
the pattern. In the illustrated scenario, each pattern (blue, d=1;
red, d=2; green, d=3) samples fibers defined by the following
subset of rows and columns: S(1)r = {1, 4, 7, 10}, S(1)c =

{1, 4, 7}, S(2)r = {2, 5, 8, 11},S(2)c = {2, 5, 7, 8}, S(3)r =

{3, 6, 9, 12},S(3)c = {3, 6, 8}. Rearranging the order of the
columns results in the model shown in Fig. 5.

Fig. 5: Fiber sampling model in a single mode
In the general case, the proposed fiber sampling frame-

work entails each pattern forming a third-order tensor, i.e.,
|S(d)r |, |S(d)c | ≥ 2 and that samples are taken from every
row and column of the tensor. The latter is a necessary
condition for every factorization based completion approach,
since completely unobserved slabs are impossible to recover.
Furthermore, each pattern is required to sample from a com-
mon row or column with at least one more, thus creating an
overlapping chain between patterns. The reason is that for
pairwise mutually exclusive patterns, there exists a non-trivial
scaling ambiguity, which cannot be determined. Formally the
necessary sampling rules, for the proposed fiber sampling
framework, are expressed as:

|S(d)
r |, |S(d)

c | ≥ 2 (7a)
D⋃

d=1

S(d)
r = {1, . . . , I},

D⋃
d=1

S(d)
c = {1, . . . , J} (7b)⋃

d′

{
S(d)
c ∩ S(d′)

c

⋃
S(d)
r ∩ S(d′)

r

}
6= ∅, ∀ d ∈ {1, . . . , D} , (7c)

where d ∈ {1, . . . , D}, d′ ∈ {1, . . . , D} \ d. The rules in
7 handle a plethora of sampling schemes. Specifically, each
pattern is allowed to be equispaced, regular, random etc.
This shows that reconstruction from regular samples is indeed

doable. The sampling in Fig. 4, 5, for example, is regular and
each pattern consists of equispaced rows and deterministically
spaced columns.

Following similar analysis as in slab sampling, let Y d ∈
FId×Jd×K be the sampled subtensor, formed by pattern d.
Also let P

(d)
1 ∈ RId×I , P

(d)
2 ∈ RJd×J be the row and

column selection matrices determining the d pattern. Then Y d

is written as follows.

Y d =X
(
S(d)r ,S(d)c , :

)
= X ×1 P

(d)
1 ×2 P

(d)
2

=
r
P

(d)
1 A,P

(d)
2 B,C

z
d = 1, . . . , D (8)

Using the equation in (8) we can establish generic identifi-
ability of fiber sampling as:

Theorem 4 Let X ∈ FI×J×K be the original tensor
signal, fiber sampled according to (7), with CPD X =
JA,B,CK of rank F . Assume that A, B and C are drawn
from some joint absolutely continuous distribution with re-
spect to the Lebesgue measure in F(I+J+K)F , and that
A?,B?,C? satisfy the equations in (8). Then, X̂(i, j, k) =∑F
f=1 A

?(i, f)B?(j, f)C?(k, f) recovers the ground-truth
X almost surely if:

2mind{blog2 Idc+blog2 Jdc,blog2 Jdc+blog2 Kc,blog2 Idc+blog2 Kc} ≥ 4F

The proof is relegated to Appendix B. In contrast to the
previous case of slab sampling, where identifiability of one
sampled tensor Y i is enough, fiber sampling requires all Y i’s
to admit a unique CPD model—otherwise certain rows of
A, B would be impossible to identify. The claim is simple
and intuitive: The number of samples required to identify a
fiber sampled tensor is proportional to the rank of the tensor.

Remark 1 Theorem 4 studies general tensors where factor
C is not required to have full column rank, and thus K < F
can be easily handled. Fiber sampling and recovery of tensors
with C having full column rank, is extensively studied in
[37]. Compared to our work, the sampling strategy therein
has to follow rules (7b), (7c), whereas (7a) can be relaxed.
On the other hand, the results of this paper are tailored to
cases where the sampling process exhibits some regularity
and K < F is allowed. Note that C being full column rank,
which is mandatory in [37], is a quite restrictive condition and
prohibitive for several applications, e.g., fMRI acceleration as
we will see next.

D. Entry sampling

So far we have discussed slab, fiber sampling of third-order
tensors and provided conditions under which identifiability is
guaranteed. In this subsection, we move a step further and
study the more general problem of tensor reconstruction from a
subset of entries, sampled in a regular fashion along the tensor.
Entry sampling is another important sampling mechanism,
which along with fiber sampling will prove very useful in
accelerating the fMRI scan acquisition (see Sec. VI).

We are interested in cases where the sampling process can
be viewed as a series of patterns. A pattern is defined, similarly
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to fiber sampling, as a subset of rows S(d)r ⊆ {1, . . . , I},
columns S(d)c ⊆ {1, . . . , J} and fibers S(d)f ⊆ {1, . . . ,K}, for
which every point X(i, j, k), i ∈ Sr, j ∈ Sc, k ∈ Sf belongs
to the pattern. For example consider the scenario illustrated in
Fig. 6. The number of patterns is D = 3 and S(1)r = S(1)c =

Fig. 6: Tensor entry sampling paradigm. (Colored boxes rep-
resent sampled entries)

{1, 3, 5, 7}, S(1)f = {1, 4}, S(2)r = S(2)c = {2, 4, 6, 8},S(2)f =

{2, 5}, S(3)r = S(3)c = {3, 4, 5, 6},S(3)f = {3, 6}. In general,
the proposed framework requires samples to be taken from
all rows, columns and fibers of the tensor, thus D ≥ 2 and
each pattern should include 2 rows, 2 columns and 2 fibers
at minimum. Furthermore, the patterns need to overlap like a
domino, i.e. any pattern d should sample from some common
rows, columns or fibers with another. The overlap between
two patterns is required to involve at least 2 elements in one
mode and 1 element in a different mode. For example, a pair
of patterns should sample 2 common rows and 1 common
column. The latter is a necessary condition resulting from
the inherent permutation and scaling ambiguity of the CPD.
Formally the rules of entry sampling are:

|S(d)r |, |S(d)c |, |S
(d)
f | ≥ 2 (9a)

D⋃
d=1

S(d)r = {1, . . . , I},
D⋃
d=1

S(d)c = {1, . . . , J},

D⋃
d=1

S(d)f = {1, . . . ,K} (9b)

∀ d ∈ {1, . . . , D} , ∃ a pair of m, m′ such that⋃
d′

{
S(d)m ∩ S(d

′)
m

⋂
S(d)m′ ∩ S

(d′)
m′

}
6= ∅ and

|S(d)m ∩ S(d
′)

m | ≥ 2, (9c)

where d ∈ {1, . . . , D}, d′ ∈ {1, . . . , D} \ d, m ∈
{c, r, f} , m′ ∈ {c, r, f} \m.

Following similar analysis as in fiber sampling, let Y d ∈
FId×Jd×Kd be the sampled subtensor representation of pattern
d. Also let P (d)

1 ∈ RId×I , P
(d)
2 ∈ RJd×J , P

(d)
3 ∈ RKd×K

be the row, column and fiber selection matrices determining
pattern d. Then Y d is written as:

Y d =X
(
S(d)r ,S(d)c ,S(d)f

)
= X ×1 P

(d)
1 ×2 P

(d)
2 ×3 P

(d)
3

=
r
P

(d)
1 A,P

(d)
2 B,P

(d)
3 C

z
d = 1, . . . , D (10)

The model in (10) is identifiable, under generic conditions
presented in the following theorem.

Theorem 5 Let X ∈ FI×J×K be the original ten-
sor signal, sampled according to (9), with CPD X =
JA,B,CK of rank F . Assume that A, B and C are drawn
from some joint absolutely continuous distribution with re-
spect to the Lebesgue measure in F(I+J+K)F , and that
A?,B?,C? satisfy the equations in (10). Then, X̂(i, j, k) =∑F
f=1 A

?(i, f)B?(j, f)C?(k, f) recovers the ground-truth
X almost surely if:

2mind{blog2 Idc+blog2 Jdc,blog2 Jdc+blog2 Kdc,blog2 Idc+blog2 Kdc} ≥ 4F

The proof is presented in Appendix B. Similar to fiber
sampling, identifiability of a tensor from entries, sampled as
described in (9), is guaranteed, if all the sub-sampled tensors
formed by the emerging patterns admit a unique CPD.

IV. DETERMINISTIC IDENTIFIABILITY

The sampling mechanisms, discussed so far, can be real-
ized as separate, yet coupled, sub-sampled versions of the
original third-order tensor X . Identifiability of X , under
various sampling mechanisms, was established by applying
generic identifiability results on the CPD of the sub-tensors.
However, the original tensor is also identifiable under a purely
deterministic setting, i.e., the CPD factors of the tensor can be
systematic (not necessarily drawn from an absolutely continu-
ous distribution, which excludes measure-zero outcomes with
probability one) and the conditions are deterministic. In the
case of slab sampling we have the following theorem.

Theorem 6 Let X ∈ FI×J×K be the original tensor signal
to recover, with CPD X = JA,B,CK of rank F . Assume that
A?,B?,C? satisfy the equations in (6). Then, X̂(i, j, k) =∑F
f=1 A

?(i, f)B?(j, f)C?(k, f) recovers the ground-truth
X if 2F + 2 ≤ k

P
(1)
1 A? + kB? + kC? and B? � P

(2)
3 C?

has full column rank, or if 2F + 2 ≤ kA? + kB? + k
P

(2)
3 C?

and B? � P
(1)
1 A? has full column rank.

When fiber or entry sampling is employed, we have:

Theorem 7 Let X ∈ FI×J×K be the original tensor sig-
nal, fiber or entry sampled according to (7) or (9) re-
spectively. Also let X = JA,B,CK denote the rank-
F CPD of X . Assume that A?,B?,C? have no re-
peated entries and satisfy the equations in (8), (10), ac-
cording to the sampling mechanism. Then, X̂(i, j, k) =∑F
f=1 A

?(i, f)B?(j, f)C?(k, f) recovers the ground-truth

X if 2F+2 ≤ mind

{
k
P

(d)
1 A? + k

P
(d)
2 B? + k

P
(d)
3 C?

}
, where

P
(d)
3 = I for fiber sampling.

Proof of both theorems is presented in Appendix C.

Remark 2 Theorems 3-7 establish identifiability of third or-
der tensors from a number of regular samples, in the sense that
there is a single low-rank tensor completion that is consistent
with the given samples. In simple words, factors A, B, C
that solve equations (6), (8), (10), for slab, fiber and entry
sampling respectively, and satisfy the conditions of Theorems
3-7 recover the original tensor. The caveat is that solving
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equations (6), (8), (10) to optimality is not an easy task. It in-
volves computing the CPD of full sub-tensors, formed from the
regular samples, which is NP-hard in general. However, there
exist algebraic algorithms that solve the CPD of a tensor with
known rank in polynomial time [50], [51], under conditions
that are stricter than those for uniqueness [51]. Therefore, com-
bining our conditions with those on algebraic computation of
the CPD in equations (6), (8), (10) yields guaranteed recovery
of tensor X in polynomial time. Furthermore, there is a variety
of advanced optimization algorithms, which are empirically
effective in computing the CPD of a tensor. To summarize,
although the discussed conditions focus on identifiability of the
tensor signal and actual recovery is NP-hard in general, there
exist algorithms that perform the recovery task in polynomial
time under more restrictive conditions, and experience has
shown that the more advanced optimization-based algorithms
usually work well enough in practice. Computational and
algorithmic aspects of the proposed framework are thoroughly
discussed in section VII.

V. FURTHER DISCUSSION AND INSIGHTS

The implication of Theorems 3- 7 is significant and intuitive.
Identifiability of X is based on two basic principles: identi-
fiability of the factors of the sub-sampled tensors and ability
to reconcile for the permutation and scaling ambiguities. The
first is a property of both the signal of interest and the
sampling mechanism. In particular the rank of the tensor
signal, along with Kruskal or generic conditions on the factors
determine the number of samples required to identify the
original tensor. Hence, there is a clear correlation between the
rank of the tensor and the number of samples needed—higher
ranks require higher number of samples. Note that the number
and structure of samples varies according to the applied
sampling mechanism. The second principle is a necessary
property of the sampling mechanism. Although slab sampling
automatically handles permutation and scaling ambiguities,
fiber and entry sampling schemes have to be carefully designed
to satisfy (7) or (9) and eliminate permutation and scaling
mismatches.

In a nutshell, one can learn the rows of factors A, B, C
from the sub-tensors, up to column permutation and scal-
ing and resolve the mismatches using common information
between the sub-tensors. Then reconstruction of the original
tensor is attained as X = JA,B,CK.

To build some further intuition on the theoretical conditions,
consider the following example. Let X ∈ F512×512×512 be the
tensor with CP rank F = 1000 which is subject to sampling.
First we sample the I1 equispaced horizontal slabs and K2

equispaced frontal slabs. Following Theorem 3, identifiability
of X is guaranteed if we sample at least I1 = 8 horizontal
slabs and K2 = 2 frontal slabs and vise versa. This results
in sampling ratio r = #observed entries

#total entries = 0.019. Next we
sample fibers of the tensor in a regular fashion, similarly to
Fig. 4. According to Theorem 4, 33, 216 fibers are sufficient
to identify the original tensor, which gives sampling ratio
r = 0.13. Finally, entries are sampled in a regular fashion,
as shown in Fig. 6. The total number of entries required

to identify the original tensor is 2, 870, 336, according to
Theorem 5, which results in sampling ratio r = 0.021. Note
that for smaller rank, e.g, F = 250 the total number of
samples can be significantly reduced, giving sampling ratio
rslab = 0.008, rfiber = 0.064, rentry = 0.0097.

Another important question is how tight our conditions are,
with respect to the degrees of freedom of the low rank CPD
model. To facilitate the analysis we will assume that I is a
power of 2, I = J = K and the sampling is symmetric in
the sampled modes, i.e., Y d, d = 1 . . . D, are of same size.
Then the degrees of freedom, due to the low rank CPD model
are 3IF − 2F and the number of equations is equal to rI3,
where r is the previously defined sampling ratio. Therefore,
the necessary (is not sufficient to guarantee identifiability)
equations versus degrees of freedom bound yields:

3IF − 2F ≤ rI3 ⇔ r ≥ 3F

I2
− 2F

I3
(11)

We study each sampling mechanism separately:
• Slab sampling: The number of observed entries is I1I2 +

(I − I1)I1I , so r = I1I
2+(I−I1)I1I

I3 . The conditions of
Theorem 3 yield I1I ≥ 4F and is easy to show that this
condition is equivalent to:

r ≥ 8F

I2
− 16F 2

I4
,

which is same order of magnitude with (11).
• Fiber sampling: The number of observed entries is ap-

proximately I1I2 + I2, so r = I1+1
I . Then the conditions

of Theorem 4 boil down to I21 ≥ 4F which is equivalent
to:

r ≥ 2
√
F + 1

I
.

This bound is stricter compared to (11).
• Entry sampling: The number of observed entries is ap-

proximately I21I + 3I2, so r =
I21+3I
I2 . The conditions of

Theorem 5 yield I21 ≥ 4F , which is equivalent to:

r ≥ 4F

I2
+

3

I
.

In that case the necessary and the sufficient bounds are
relatively close.

The previous analysis demonstrated that in the case of slab and
entry sampling the sufficient condition for tensor identifiability
from regular samples is relatively close to the necessary
condition given by the degrees of freedom. In case of fiber
sampling there is a non-negligible gap between the sufficient
and naive necessary condition.

VI. APPLICATION TO PARALLEL FMRI ACCELERATION

Interestingly, the previously described sampling mecha-
nisms find application in accelerating fMRI scan acquisition.
fMRI is used to measure brain activity associated with changes
in blood oxygen levels. MRI acquisitions typically use a set
of coils (sensors), that in parallel collect a series of frames
focusing on different parts of the brain. In fMRI, the three-
dimensional (3D) volume covering the whole brain is typically
acquired using multiple two-dimensional (2D) slices. These
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are discrete-space signals, sampled along a particular trajectory
in the k-space, which is a 2-D frequency domain (kx, ky), for
each brain slice. Therefore an fMRI scan, can be represented
by a five-way array with coil, kx, ky , slice and time (frame)
dimensions.

Acquiring high spatial resolution fMRI is challenging due
to time restrictions. On the one hand, the k-space sampling
has to follow the Shannon-Nyquist theorem to avoid artifacts,
when inverse Fourier transform is used for reconstruction. On
the other hand sampling at a Nyquist rate leads to prolonged
scan acquisition time for each frame, which is prohibitive for
high temporal resolution, required in fMRI and neuroscience
research. The objective is therefore two-fold: Accelerate the
scanning process and capture fast brain activity changes. Since
the scan acquisition time is proportional to the number of k-
space samples, ongoing efforts focus on sampling part of the
k-space (ky frequencies) of each slice and/or measuring the k-
space of only a subset of slices. The majority of work is mainly
proposed for MRI scans. Classic methods use learning and
calibration type techniques [52]–[54], while others employ the
CS framework [53], [55], [56] or LRMC [56]–[59] to perform
the reconstruction.

While MRI offers significant freedom in designing the k-
space sampling trajectories for each frame, fMRI acquisition
is more restrictive. Specifically, fMRI is performed using a
special fast imaging acquisition, called echo planar imaging,
that is practically only used with equispaced sub-sampling
patterns due to restrictions associated with magnetic field in-
homogenities and Eddy currents [38]. In simple words, the ky
frequencies sampled for each frame have to be equispaced and
all coils need to measure the same frequencies. For example
the sampling scheme illustrated in Fig. 7 is typical in fMRI and
performs 3-fold acceleration. In general, a fully sampled scan

Fig. 7: Single-slice fMRI sampling at each coil.

is acquired first, which is beneficial for calibration purposes.
Then n-fold acceleration is achieved by sampling 1/n of
equispaced ky frequencies. The frequencies to sample for each
frame can be the same for the whole procedure or can be
circularly shifted as in Fig. 7. For the benefit of our method
we propose to circularly shift between n equispaced set of
frequencies in order to capture the temporal behavior of the
brain accurately. Note that this circular shift between the
equispaced frequencies along with the first fully sampled scan
guarantee that the rules in (7) are satisfied.

Sampling the ky dimension is one way to accelerate the
fMRI scanning process. Another idea that is being used is to
observe the k-space of only a subset of slices at each time slot.
In this work we propose to combine these two ideas to further

reduce scanning time. Specifically at each time instance sub-
sampled k-space measurements are acquired for only a subset
of slices, instead of the complete set. To design a sampling
mechanism that fits our tensor models and fMRI constraints,
we first need to acquire a fully sampled scan for every slice.
Then for each frame 1/ρ of equispaced ky frequencies is
observed for 1/s of the brain slices in a circular fashion, so
that at the (ρs)-th frame we have measured every frequency
for every slice. This results in (ρs)-fold acceleration. Fig. 8
illustrates an fMRI acceleration technique, where ρ, s = 2.
Again, the first fully sampled scan and the circular sampling
procedure guarantee that the rules in (9) are satisfied.

Fig. 8: Multi-slice fMRI sampling at each coil.

Note that the two aforementioned sampling procedures can
be tricky for classic techniques. On the one hand, calibration-
based techniques such as GRAPPA [52] are linear and suffer
from noise amplification at high acceleration rates. On the
other hand, CS and LRMC schemes have difficulties in op-
erating with regular samples, since their success rests upon
incoherent sampling.

On the contrary, the proposed tensor sampling and re-
construction framework is exactly designed to handle these
highly structured and constrained sampling schemes used
in fMRI acquisitions. In particular, the single-slice fMRI
acceleration task, as illustrated in Fig. 7, can be cast as
a tensor fiber sampling mechanism, analyzed in subsection
III-C. As mentioned earlier the raw fMRI scan is originally
a five-way array and thus each slice is a four-way array.
Although the previous analysis could be easily extended to
tensors of order higher than three, we choose to work with
third-order ones. Specifically the k-space is processed in a
single dimension (mode) by concatenating kx and ky . The
reason is that the relation between kx and ky is often hard
to be captured by a multilinear tensor model. As a result one
fMRI slice is modeled as a third-order tensor X ∈ CI×J×K ,
where I = mxmy with mx, my representing the number
of frequencies in kx, ky space respectively, J represents the
total number of frames (time slots) and K the number of
coils. Following the analysis of subsection III-C we have the
following result.

Proposition 1 Let X ∈ CI×J×K be the a single-slice fMRI
tensor with rank F , modeled as previously explained. Under
the assumptions of Theorem 4, n-fold acceleration can be
achieved if n ≤ min

{√
IJ
16F ,

JK
16F ,

IK
16F

}
.

Similarly, the proposed multi-slice fMRI acceleration
scheme, which performs joint k-space and slice sampling, is
cast as an entry tensor sampling procedure, introduced in III-D.
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To do so, the k-space is considered as a single mode, as before,
and we also concatenate coils and slices in one dimension. The
resulting third-order tensor X ∈ CI×J×K has the k-space in
the first mode, i.e, I = mxmy , J represents the total number
of frames and the third mode includes the concatenation of
coils and slices, i.e., K = msmc with ms, mc being the
number of slices and coils respectively. Following the analysis
of subsection III-D we have:

Proposition 2 Let X ∈ CI×J×K be the a multi-slice fMRI
tensor with rank F , modeled as previously explained. Under
the assumptions of Theorem 5, (ρs)-fold acceleration can be
achieved if ρs ≤ 1

16F min
{
IK, JKs ,

IJ
ρ

}
.

We should mention that tensor approaches have also been
proposed in medical imaging [60]–[65]. The work in [60], for
example, uses a tensor model to approach the MRI sampling
and reconstruction problem in an on-line fashion. However,
[60] works under different sampling schemes, which are not
regular and appropriate for fMRI, and identifiability guarantees
are not discussed. Moreover, a tensor model is also used in
[61], in the context of MRI denoising, which is different from
MRI acceleration problem. The works in [62]–[64] adopt a
Tucker model [18], and also require auxiliary acquisition data
to estimate the bases in non-spatial modes prior to recon-
struction, which are not available in most fMRI acquisitions.
Finally, the work in [65], adopts a random sampling t-SVD
algorithm to handle a single coil MRI acceleration process,
which is not applicable to multi-coil acquisitions used in
practice.

VII. GENERAL ALGORITHMIC FRAMEWORK FOR TENSOR
SAMPLING

Previously we studied the identifiability of third-order ten-
sors under different sampling mechanisms. In the current sec-
tion, the algorithmic component of our approach is discussed.
In general, reconstruction of a tensor from a subset of entries
falls under the framework of tensor completion. A plethora of
algorithms have been proposed, e.g. [32], [48]. The idea is to
use the CPD factors, computed from the incomplete tensor,
and reconstruct the original one. Popular methods approach
the problem as a system of non-linear equations and handle it
using descent direction approaches, such as gradient descent,
alternating optimization, or the Gauss-Newton method.

Existing tensor completion works could be employed to
approach the recovery task of a regularly sampled tensor.
However, the unique characteristics of our models would be
ignored. To put it in context, the special structure of regular
sampling allows tensor completion by computing the factors
of complete tensors. Note that CPD computation of a complete
tensor is a considerably easier task than that of an incomplete
one. Several polynomial time algebraic algorithms [50], [51]
have been shown to retrieve the original factors, under certain
conditions, or effectively initialize optimization approaches
with significant success.

We propose a three step approach to tackle the completion
task, which follows the insights of Theorems 3-7. The first
step solves the CPD of the sub-sampled tensors independently,

the second reconciles for permutation/scaling ambiguities and
gets an initial estimate of the factors, and the third solves the
coupled CPD problem. Detailed analysis follows.

A. Step 1: Computing the CPD of sub-tensors

First, the CPD of the sub-sampled tensors Y i is computed.
This step is guided from the requirements of each sampling
mechanism. To be more precise, CPD of Y i is computed if the
reconstruction conditions require Y i to admit an essentially
unique CPD. The slab sampling model, for instance, requires
only Y 1 or Y 2 to admit unique CPD. Therefore the CPD of
only one sub-tensor is needed. On the other hand when fiber or
entry sampling is considered, the CPD computation of every
sub-tensor is performed, following the previous identifiability
analysis.

B. Step 2: Initializing the factors

After computing the CPD of the sub-tensors, step 2 com-
putes an initial estimate of the A,B,C factors, after resolving
possible permutation and scaling mismatches. We distinguish
between 2 different cases:
Case 1, slab sampling: As mentioned earlier slab sampling
automatically reconciles for permutation and scaling ambi-
guities. Furthermore, two of the factors have been already
computed from step 1 (e.g., B,C ← CPD(Y 1)). What
remains to be obtained is the third factor (e.g., A), which
is revealed by the other sub-tensor (Y 2), via solving a linear
system of equations:

Y
(1)
2 = (P

(2)
3 C �B)AT .

Case 2, fiber and entry sampling: Contrary to slab sampling,
the permutation and scaling ambiguity is an important issue
when fiber or entry sampling is applied. To be more precise,
let Y d = JAd,Bd,CdK , d ∈ {1, . . . D}, be the sub-tensors
formed after fiber or entry sampling. Then:

Ad = P
(d)
1 AΠ(d)Λ

(d)
1 = A(S(d)r , :)Π(d)Λ

(d)
1 , (12a)

Bd = P
(d)
2 BΠ(d)Λ

(d)
2 = B(S(d)c , :)Π(d)Λ

(d)
2 , (12b)

Cd = P
(d)
3 CΠ(d)Λ

(d)
3 = C(S(d)f , :)Π(d)Λ

(d)
3 , (12c)

where Π(d) 6= Π(d′) are permutation matrices and
Λ

(d)
i 6= Λ

(d′)
i are full rank diagonal matrices such that

Λ
(d)
1 Λ

(d)
2 Λ

(d)
3 = I , d, d′ ∈ {1, . . . , D}, d′ 6= d. Clearly, in

order to synthesize A,B,C from Ad,Bd,Cd and reconstruct
X , the permutation and scaling mismatch should be resolved,
i.e., Π(d) = Π(d′), Λ(d)

i = Λ
(d′)
i for every d, d′.

To overcome this issue, the common information between
sub-tensors is utilized. In simple words, (7) or (9) require Cd−
Cd′ (or Ad−Ad′ , or Bd−Bd′ ) to share some common rows,
i.e., |S(d)f ∩ S(d

′)
f := S(d−d

′)
f | ≥ 2. Now let:

C
(d−d′)
d = C(S(d−d

′)
f , :)Π(d)Λ

(d)
3 (13a)

C
(d−d′)
d′ = C(S(d−d

′)
f , :)Π(d′)Λ

(d′)
3 (13b)
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and normalize C
(d−d′)
d , C

(d−d′)
d′ , such that they share a

common row with same scaling, but permutation mismatch,
e.g.:

C̄
(d−d′)
d = C

(d−d′)
d G−1d , C̄

(d−d′)
d′ = C

(d−d′)
d′ G−1d′ ,

where Gd = diag
(
C

(d−d′)
d (1, :)

)
, Gd′ =

diag
(
C

(d−d′)
d′ (1, :)

)
and diag(x) is the diagonal matrix

of row vector x. Then:

C̄
(d−d′)
d = C̄

(d−d′)
d′ Π(d′)−1

Π(d) = C̄
(d−d′)
d′ Π̄ (14)

and we can solve for Π̄ using the Hungarian algorithm [66].
This procedure resolves the permutation mismatch between the
factors, i.e., Π(d) = Π(d′). Note that in case of fiber sampling
S(d)f = S(d

′)
f = S(d−d

′)
f = {1 . . .K}.

To reconcile for the scaling ambiguity we require extra
information coming from the factors that were not involved in
permutation match, i.e., Ad−Ad′ or B−Bd′ in our example.
The necessary rules (7c), (9c) enforce that there is at least one
common row between Ad−Ad′ or B−Bd′ . Then the scaling
mismatch can be solved by the following set of equations:

A
(d−d′)
d = A

(d−d′)
d′ Λ

(d′)−1

1 Λ
(d)
1 (15a)

B
(d−d′)
d = B

(d−d′)
d′ Λ

(d′)−1

2 Λ
(d)
2 (15b)

C
(d−d′)
d = C

(d−d′)
d′ Λ

(d′)−1

3 Λ
(d)
3 (15c)

Λ
(d)
1 Λ

(d)
2 Λ

(d)
3 = I, Λ

(d′)
1 Λ

(d′)
2 Λ

(d′)
3 = I (15d)

A
(d−d′)
d , A

(d−d′)
d′ and B

(d−d′)
d , B

(d−d′)
d′ represent the com-

mon rows between Ad−Ad′ and B−Bd′ respectively. Next,
an initial estimate of the factors is extracted by reading out
the appropriate rows from the sub-tensor factors to synthesize
A, B, C i.e.,

A(S(d)r , :)← Ad, B(S(d)c , :)← Bd, C(S(d)f , :)← Cd, ∀d.

C. Step 3: Coupled CPD

Finally, A, B, C are jointly computed as a classic tensor
factorization problem with missing entries, which is equivalent
to the following coupled CPD estimator:

minimize
A,B,C

D∑
d=1

∥∥∥Y d −
r
P

(d)
1 A,P

(d)
2 B,P

(d)
3 C

z∥∥∥2
F
.

(16)
In slab sampling, P (1)

2 ,P
(1)
3 ,P

(2)
1 ,P

(2)
2 are identity matrices

and in fiber sampling P
(d)
3 is always the identity. There are

several ways to handle the above non-convex problem. We
choose to employ the tensorlab [67] toolbox, which uses a
Gauss Newton approach to solve this nonlinear least squares
(NLS) problem. After obtaining the estimates of A,B and C,
X can be reconstructed by:
X̂(i, j, k) =

∑F
f=1 Â(i, f)B̂(j, f)Ĉ(k, f).

D. REgular Tensor Sampling and INterpolation Algorithm
(RETSINA)

As mentioned earlier the accelerated fMRI acquisition can
be cast as a tensor sampling and reconstruction task. There-
fore it falls under the class of problems that the previously

Algorithm 1: RETSINA
Input: n, F, X̃, W .
step 1: Initialization;

Xn(:, j, :) =
jn+1∑

l=(j−1)n+2

(W ∗ X̃)(:, l, :).

A,C ← CPD(Xn).

Form {Y d,S
(d)
r ,S(d)c }Dd=1 from X̃ .

B(S(d)c , :) = arg minZ‖Y i − JA(S(d)r , :),Z,CK‖2F .
step 2: Refinement;
A(S(1)r , :),B(S(1)c , :),C ← CPD(Y 1).
A(S(d)r , :),B(S(d)c , :),∼← CPD(Y d), d 6= 1.
step 3: Solve (16) using Gauss-Newton.
Reconstruct the missing entries of X using X̂ = JA,B,CK.

Algorithm 2: MS-RETSINA
Input: ρ, s, F, X̃, W .
step 1: Initialization;

Xn(:, j, :) =
jn+1∑

l=(j−1)n+2

(W ∗ X̃)(:, l, :), n = ρs.

A,C ← CPD(Xn).

Form {Y d,S
(d)
r ,S(d)c ,S(d)f }Dd=1 from X̃ .

B(S(d)c , :) = arg minZ‖Y i − JA(S(d)r , :),Z,CK‖2F .
step 2: Solve (16) using Gauss-Newton.
Reconstruct the missing entries of X using X̂ = JA,B,CK.

described framework can handle. However we choose to
follow a different initialization approach tailored to the specific
application. We design two algorithms, one for single-slice
fMRI and one for multi-slice fMRI. In both algorithms, W
denotes the sampling mask, i.e., W (i, j, k) = 1, if X(i, j, k)
is sampled / observed and W (i, j, k) = 0 otherwise. X̃ is the
incomplete tensor from which we form Y d for d = 1, . . . D
and ∗ denotes the Hadamard product.

Single slice acceleration: The REgular Tensor Sampling
and INterpolation Algorithm (RETSINA) is presented in Algo-
rithm 1. We follow a 3 step procedure. In step 1 (initialization),
for n-fold acceleration we sum every n vertical slabs (frames),
where the missing k-space measurements are considered zeros,
and obtain a tensor Xn ∈ CI×J/n×K without missing entries.
Then we compute the CPD of Xn to get a rough estimate
of A, C factors and solve d linear systems of equations to
approximate B. In step 2 (refinement), we compute the CPD
of Y 1 (initialized by step 1) and the CPD of {Y d}d6=1 with
known C. The number of iterations in step 2 should remain
low (e.g., 2), to maintain the permutation and scaling matching
between the factors of sub-tensors {Y d}. Finally, in step 3,
we compute the final factors by solving (16) with tensor-
lab’s Gauss-Newton algorithm. Compared to the previously
presented general framework, RETSINA empirically yields
enhanced reconstruction accuracy and reduces the operational
time.

Multi slice acceleration: The Multi-Slice RETSINA
(MS-RETSINA) is presented in Algorithm 2. Compared to
RETSINA the initialization step has been modified to this spe-
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cific case and the refinement step is skipped, since it has been
observed that it does not improve the overall performance.

VIII. SIMULATIONS

In this section, we showcase the effectiveness of the pro-
posed tensor sampling framework using numerical experi-
ments. The experiments involve synthetically generated data
as well as fMRI scans in the k-space. All simulations are
performed in MATLAB on a Linux server with 3.6GHz cores
and 32GB RAM, except part C which is performed on a Linux
server with 2GHz cores and 128GB RAM. All CPD com-
putations required in our proposed algorithms are performed
using Tensorlab’s non-linear least squares algorithm, which
combines algebraic initialization and Gauss-Newton iterations.

A. Synthetic Experiments

First synthetically generated experiments are conducted
to examine the validity of our claims and the performance
of the proposed framework. In particular, a tensor X ∈
R512×512×512 is generated as X = JA,B,CK. The elements
of the factor matrices are drawn from an independent iden-
tically distributed (i.i.d.) zero mean, unit variance Gaussian
distribution. We regularly sample X according to the pre-
viously presented sampling mechanisms, i.e,. slab sampling,
fiber sampling, and entry sampling, as shown in Figs. 3- 6.
Specifically, for slab sampling we sample equispaced frontal
and horizontal slabs. Regarding fiber sampling, each tensor Y i

is a set of fibers, defined by equispaced rows and columns of
X . Note that one vertical slab is fully observed to reconcile
for permutation and scaling ambiguities. Equivalently entry
sampling is designed to observe different sets of equispaced
entries plus a fully sampled vertical slab.

For the experiments, we vary the sampling ratio, i.e.,
r = #of sampled entries

IJK , from 0.75 to 0.001. We also vary the
tensor rank F from 5 to 1000. To evaluate the performance of
tensor reconstruction, we measure the normalized reconstruc-
tion error, i.e.

NRE =

∑K
k=1‖X̂(:, :, k)−X(:, :, k)‖F∑K

k=1‖X(:, :, k)‖F
When NRE > 1 we set NRE = 1, so that our 2-dimensional
plot clearly shows the regions where completion is successful
and regions where completion fails. Figs. 9-11 present the
results for the three sampling schemes. The left column of
each figure illustrates the NRE of reconstruction. The right
column shows the identifiability threshold, for each experi-
ment, derived by Theorem 3, 4 or 5, according to the ap-
plied sampling mechanism. Identifiability is guaranteed almost
surely in white regions and in black regions our sufficient
conditions are not satisfied. As expected the reconstruction
accuracy is deteriorating as the rank F increases or the
sampling ratio r decreases. For reasonably small ranks and
high number of samples the reconstruction is perfect. As
far as identifiability is concerned we observe that for slab
and entry sampling the identifiability threshold follows an
analogous trend to that of NRE, whereas for fiber sampling
the transitions in the identifiability trend are not as smooth as
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Fig. 9: rank F vs sampling ratio r for slab sampling.
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Fig. 10: rank F vs sampling ratio r for fiber sampling.
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Fig. 11: rank F vs sampling ratio r for entry sampling.

the transitions in the reconstruction trend. Furthermore, in the
vast majority of considered cases, reconstruction is successful
when the identifiability conditions are satisfied. There exist
cases, however, where the proposed identifiability conditions
are not satisfied, but reconstruction is successful, especially
when fiber or entry sampling is applied. This is expected,
since our conditions are sufficient and not necessary. We also
observe that it appears to be a sudden transition between
NRE ≈ 0 and NRE ≈ 1. This happens due to the fact that the
proposed framework initially solves the CPD of the subtensors
Y d. When the combination of rank and number of samples
is close to the identifiability threshold, we observed that some
of the subtensors Y d yield CPD solutions that are not unique
and thus permutation and scaling matching fails, which leads
to bad estimates of A, B, C and high values of NRE.

Next, we compare the reconstruction performance of our
proposed framework with a classic tensor completion approach
for general sampling patterns, and a matrix completion ap-
proach that operates on each vertical slab separately. To this
end, we generate a tensor X ∈ R200×200×200 with rank F =
20, where the elements of factors A, B, C are drawn inde-
pendently from a zero mean, unit variance Gaussian distribu-
tion. We apply the previously described sampling mechanisms
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for different levels of downsampling. The algorithm employed
for general tensor completion is Tensorlab’s CPD algorithm
with missing elements. For matrix completion of each slab
we use a nuclear norm minimization algorithm (referred to
as Matrix completion) implemented in TFOCS [68], which
is a powerful and flexible first order framework for convex
optimization problems. Note that when regular fiber and entry
sampling is applied to a third order tensor, entire columns or
rows of each slab are likely to remain unobserved; see Figs.
3-6 to better appreciate this point. As a result any nuclear
norm minimization or matrix factorization based approach is
guaranteed to fail. Therefore we limit our comparison with
matrix completion only to the case of slab sampling. Fig.
12 illustrates the performance of the competing algorithms.
From Fig. 12, it is clear that although the considered scenarios
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Fig. 12: Completing a tensor with different methods.

are effectively handled by our proposed framework, classic
methods fail in producing satisfactory results in the majority
of the cases. Tensor completion via Tensorlab’s CPD with
missing elements is only successful for high sampling ratios
of slab sampling, while both matrix and Tensorlab completion
fail in the rest.

B. Accelerated parallel fMRI

Next, the tensor sampling and reconstruction framework is
tested in a real and important problem, that of parallel fMRI
acceleration. First, we test the performance of the proposed
RETSINA with fMRI scans, fully sampled in the k-space,
obtained from the Center for Magnetic Resonance Research
(CMRR) at the University of Minnesota.

The single slice raw scan is originally a fourth-order tensor
of size 104×104×32×490 and we unfold it as a third-order
tensor X ∈ C10816×32×490. We apply 3-fold acceleration by
observing 1/3 of the ky frequencies, as shown in Fig. 7. We
choose F = 100 and run step 1, 2, 3 of Algorithm 1 for
50, 2 and 5 iterations respectively. The baseline algorithms
used for comparison are k-t Focuss [56], which is a CS

type algorithm, k-t SLR [58] which combines ideas from
both LRMC and CS, and the zero padding inverse discrete
Fourier transform (IDFT). We also compare with general
tensor completion algorithms, i.e., Tensorlab’s CPD with miss-
ing elements (T-CPD with miss.), Tensorlab’s Tucker with
missing elements (T-Tucker with miss.) and t-SVD [35].
For T-CPD, we choose F = 100 and T-Tucker the core
dimensions are set to (50, 50, 10). The maximum number
of iterations for the three general-purpose tensor completion
algorithms is set to 100. Note that the performance of IDFT
is an indicator on how difficult the reconstruction is. It is also
worth noticing that k-t SLR directly reconstructs the fMRI
signal in the absolute (x − y)-time-coil space. To be more
precise it reconstructs signal H = |Q(X)|, where Q denotes
the inverse Fourier transform from the kx − ky to the x − y
space and | · | is the absolute value. Thus we also measure the
NRE of signal H , denoted as NRE2, for fair comparisons. For
k-t Focuss, k-t SLR and t-SVD the publicly available
code was used. Note that k-t Focuss and k-t SLR are
single coil algorithms in their original implementation, thus
we treated each coil separately. k-t SLR requires parameter
tuning and so we used a validation step to tune effectively.

The results are presented in Table I, which includes the NRE
in k-space and absolute x − y space as well as runtime. The
proposed RETSINA achieves highest reconstruction quality in
the k-space and works comparably well (but markedly faster)
with k-t SLR in reconstructing the signal magnitude in the
x − y space. This is expected, since RETSINA reconstructs
both the magnitude and phase (which is very important in
images) in the k-space, whereas k-t SLR reconstructs the
magnitude in the x− y space. In terms of runtime RETSINA
works faster than k-t SLR and k-t Focuss, but slower
than IDFT. However IDFT exhibits very poor reconstruction
performance. It is worth noting, that k-t Focuss and k-t
SLR are amenable to parallel implementation, which could
speed up their computation at the cost of additional hardware.
Regarding the general-purpose tensor completion algorithms,
it is clear that all of them fail to produce satisfactory re-
construction results and also require significant computation
time. This result highlights the challenging nature of regular
sampling and the need for a customized framework to tackle
it. Note that for all algorithms we used a 32GB RAM server
to perform these experiments, except t-SVD which exhausted
all the memory resources and required the use of the 128 GB
RAM server.

TABLE I: Reconstruction performance of the competing algo-
rithms.

Algorithm NRE NRE2 runtime
RETSINA 0.124 0.081 8min
k-t Focuss 0.339 0.286 25.6min (48sec/coil)
k-t SLR 1.41 0.073 480min (15min/coil)
IDFT 0.8156 0.7376 14sec
T-CPD with miss. 0.7570 0.6812 118min
T-Tucker with miss. 0.7150 0.6397 65min
t-SVD 0.7630 0.6818 627min

Fig. 13 shows the reconstructed fMRI scans at different
time frames produced by RETSINA along with the fully
sampled data. The quality of the reconstruction is significantly
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high, rendering the proposed RETSINA a good alternative
for fMRI acceleration. Finally, in Fig. 14 we illustrate the

(a) fully sampled scan (b) RETSINA

Fig. 13: fMRI reconstruction with 3-fold acceleration

reconstruction performance at a single frame for the competing
algorithms. IDFT gives an illustration of the downsampled
image, RETSINA works the best and k-t SLR work com-
parably well, although being slightly off in contrast.

(a) original (b) RETSINA (c) IDFT (d) k-t SLR (e) k-t Focuss

Fig. 14: Reconstruction at a single frame

C. Accelerated multi-slice parallel fMRI

Finally, the proposed framework is tested in the task of
accelarated multi-slice fMRI acquisition. Recall that accel-
eration is performed at 2 levels, since at each time slot we
measure the sampled k-space of only a subset of slices.
The multi-slice fMRI raw scan is a fifth-order tensor of size
104 × 104 × 32 × 490 × 8, where the number of slices is
8. We unfold it as a third-order tensor X ∈ C10816×490×256

and observe 1/ρ of the ky frequencies and 1/s of slices, which
leads to ρs-fold acceleration, as illustrated in Fig. 8. The tensor
rank used in MS-RETSINA is F = 100 and the maximum
number of iterations in step 1 and step 2 are set to 50 and 20
respectively. Table II shows the performance of the proposed
MS-RETSINA in terms of NRE for various values of ρ and
s. An illustrative example of the reconstruction performance
when ρ = s = 2 is presented in Fig. 15.

TABLE II: NRE performance of MS-RETSINA.

s\ρ 2 3 4 5 6 7 8 9 10
2 0.14 0.15 0.17 0.19 0.18 0.18 0.18 0.18 0.20
3 0.17 0.18 0.19 0.19 0.19 0.21 0.20 0.19 0.21
4 0.19 0.20 0.20 0.22 0.21 0.21 0.23 0.21 0.23

IX. CONCLUSION

In this paper we studied the sampling and reconstruction of
tensors under various schemes. Compared to CS, LRMC, as
well as other tensor works, we provide concrete conditions,
deterministic and generic, under which tensor completion
from regular samples is identifiable. Furthermore, we cast the

fMRI acceleration task as regular tensor sampling process and
provided an efficient algorithmic framework to approach the
problem. Simulations with synthetic data as well as fMRI
scans in the k-space show the validity and effectiveness of
our approach.

APPENDIX A
PROOF OF THEOREM 3

First, we adjust lemma 1 from [22] for complex numbers
and selection matrices, which is essential for the proofs.

Lemma 1 [22] Let Z̃ = QZ, where the elements of Z are
drawn from an absolutely continuous joint distribution with
respect to the Lebesgue measure in FIF and Q ∈ RI′×I
is a row selection matrix with full row rank. Then the joint
distribution of the elements in Z̃ is absolutely continuous with
respect to the Lebesgue measure in FI′F

It follows that P
(1)
1 A,P

(2)
3 C are drawn from non-singular

absolutely continuous joint distributions. Then Theorem 1
determines the conditions under which the factors of Y 1 or Y 2

can be identified. Let’s consider the case where Y 1 is identifi-
able. Under the conditions of Theorem 3, Y 1 = JA1,B1,C1K
is essentially unique and from (4) holds that:

A1 = P
(1)
1 AΠΛ1, B1 = BΠΛ2, C1 = CΠΛ3,

where Π is a permutation matrix and Λi is a full rank diagonal
matrix such that Λ1Λ2Λ3 = I . Recall that Y 2 admits a
(possibly non-unique) PD Y 2 =

r
A,B,P

(2)
3 C

z
. Matricizing

Y 2 and plugging in B1 and C1 leads to:

Y
(1)
2 = (P

(2)
3 C1 �B1)AT

2 = (17a)

(P
(2)
3 CΠΛ3 �BΠΛ2)AT

2 = (17b)

(P
(2)
3 CΛ′3Π�BΛ′2Π)AT

2 = (17c)

(P
(2)
3 C �B)Λ′2Λ

′
3ΠAT

2 = (17d)

(P
(2)
3 C �B)ΠΛ2Λ3A

T
2 (17e)

In equation (17c), (17e) we have used the property that
ΠΛ3 = Λ′3Π, where Λ′3 is a diagonal matrix whose diagonal
entries have been permuted according to Π and equation
(17e) is due to the definition of the Khatri-Rao product. Since
JK2 ≥ F , then (P

(2)
3 C) � B has full column rank almost

surely [69], and A2 = AΠΛ1 can be identified from (17).
Therefore X̂ = JA2,B1,C1K reconstructs signal X .

The proof shares insights with that of Theorem 2 [22]. The
basic difference lies in the fact that P (1)

1 , P
(2)
3 are full row

rank selection matrices instead of full rank dense matrices.

APPENDIX B
PROOF OF THEOREMS 4,5

To begin, we use Lemma 1 and observe that P
(d)
1 A,

P
(d)
2 B,P

(d)
3 C are drawn from non-singular absolutely con-

tinuous distributions. Note that P
(d)
1 ,P

(d)
2 ,P

(d)
3 have full

row rank by construction. Then we use Theorem 1 to claim
identifiability of the factors of each sub-tensor Y d. Under
the conditions of Theorems 4, 5, P (d)

1 A,P
(d)
2 B,P

(d)
3 C can
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(a) fully sampled scan (b) MS-RETSINA (c) fully sampled scan (d) MS-RETSINA

(e) fully sampled scan (f) MS-RETSINA (g) fully sampled scan (h) MS-RETSINA

(i) fully sampled scan (j) MS-RETSINA (k) fully sampled scan (l) MS-RETSINA

(m) fully sampled scan (n) MS-RETSINA (o) fully sampled scan (p) MS-RETSINA

Fig. 15: fMRI reconstruction with 4-fold acceleration

be identified, which corresponds to identifying all the rows
of A,B,C, up to column permutation and scaling. The
caveat is that the rows of the factors are subject to column
permutation and scaling mismatch, since they are obtained by
the CPD of independent sub-sampled tensors. For example,
let Y d = JAd,Bd,CdK and Y d′ = JAd′ ,Bd′ ,Cd′K. Then,
from equations (12), it becomes clear that in order to obtain
A,B,C from Ad,Bd,Cd, d = 1, . . . , D and complete X ,
the permutation and scaling mismatch should be resolved, i.e.,
Π(d) = Π(d′), Λ(d)

i = Λ
(d′)
i for every d, d′. To do so the

following lemma is being used:

Lemma 2 Assume the entries of C ∈ FK×F are jointly drawn
from an absolutely continuous distribution over FKF . Then
C(i, f) 6= C(i′, f ′) almost surely.

Proof: The proof is similar to the proof of Corollary 1
in [69] and uses the fact that C(i, f) − C(i′, f ′) is a non-
trivial analytic function of the entries of C and thus C(i, f)−
C(i′, f ′) 6= 0 almost surely.

Finally, to resolve the mismatch, we utilize the rules in
(7), (9). Particularly, when the original tensor is fiber sampled
Cd = Cd′ = C, ∀d, d′ up to column permutation and scaling.
Then, column permutation can be fixed to be the same for all
Y ds, since the entries of C are not equal almost surely. In
order to reconcile for scaling mismatch, (7c), guarantees that
there exist at least one row of A or B that is identified (up to
permutation and scaling) from 2 different sub-sampled tensors
Y d. This is sufficient to resolve the CPD scaling mismatch
between every Y d-Y d′ couple, due to Lemma 1. The entry
sampling mechanism, differs to the fiber sampling one, in the
fact that C can only be partially identified from each sub-
sampled version Y d. Following same principles as before,
permutation and scaling mismatch on the CPD of different
Y ds is resolved by (9c) along with Lemma 1.

APPENDIX C
PROOF OF THEOREMS 6,7

The proof is similar to that of Theorem 3, 4, 5. The main
difference lies in the fact that Theorem 2 is now employed, to
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establish identifiability on the CPD of each sub-sampled tensor
and therefore recoverability of the original tensor. Further-
more, permutation and scaling alignment is performed using
the rows of the latent factors which are common among the
sub-tensors. This is accomplished, since factors with repeated
entries are not allowed.
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