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Abstract—Following the success of deep learning in a
wide range of applications, neural network-based machine
learning techniques have received interest as a means
of accelerating magnetic resonance imaging (MRI). A
number of ideas inspired by deep learning techniques
from computer vision and image processing have been
successfully applied to non-linear image reconstruction in
the spirit of compressed sensing for both low dose com-
puted tomography and accelerated MRI. The additional
integration of multi-coil information to recover missing
k-space lines in the MRI reconstruction process, is still
studied less frequently, even though it is the de-facto stan-
dard for currently used accelerated MR acquisitions. This
manuscript provides an overview of the recent machine
learning approaches that have been proposed specifically
for improving parallel imaging. A general background
introduction to parallel MRI is given that is structured
around the classical view of image space and k-space based
methods. Both linear and non-linear methods are covered,
followed by a discussion of recent efforts to further
improve parallel imaging using machine learning, and
specifically using artificial neural networks. Image-domain
based techniques that introduce improved regularizers are
covered as well as k-space based methods, where the focus
is on better interpolation strategies using neural networks.
Issues and open problems are discussed as well as recent
efforts for producing open datasets and benchmarks for
the community.

Index Terms—Accelerated MRI, Parallel Imaging, It-
erative Image Reconstruction, Numerical Optimization,
Machine Learning, Deep learning.
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I. INTRODUCTION

During recent years, there has been a substantial
increase of research activity in the field of medical
image reconstruction. One particular application area is
the acceleration of Magnetic Resonance Imaging (MRI)
scans. This is an area of high impact, because MRI is the
leading diagnostic modality for a wide range of exams,
but the physics of its data acquisition process make it
inherently slower than modalities like X-Ray, Computed
Tomography or Ultrasound. Therefore, the shortening of
scan times has been a major driving factor for routine
clinical application of MRI.

One of the most important and successful technical
developments to decrease MRI scan time in the last 20
years was parallel imaging [1-3]. All state of the art
clinical MRI scanners from major vendors are equipped
with parallel imaging technology, and it is the default
option for a large number of scan protocols. As a conse-
quence, there is a substantial benefit of using multi-coil
data for machine learning based image reconstruction.
Not only does it provide a complementary source of
acceleration that is unavailable when operating on single
channel data, or on the level of image enhancement and
post-processing, it also is the scenario that ultimately
defines the use-case for accelerated clinical MRI, which
makes it a requirement for clinical translation of new
reconstruction approaches. The drawback is that working
with multi-coil data adds a layer of complexity that
creates a gap between cutting edge developments in deep
learning [4] and computer vision, where the default data
type are images. The goal of this manuscript is to bridge
this gap by providing both a comprehensive review of the
properties of parallel MRI, together with an introduction
how current machine learning methods can be used for
this particular application.

A. Background on multi-coil acquisitions in MRI

The original motivation behind phased array receive
coils was to increase the SNR of MR measurements.
These arrays consist of n. multiple small coil elements,
where an individual coil element covers only a part of
the imaging field of view. These individual signals are
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Fig. 1: In k-space based parallel imaging methods, missing data is recovered first in k-space, followed by an inverse discrete
Fourier transform (IDFT) and combination of the individual coil elements. In image space based parallel imaging, the IDFT
is performed as the first step, followed by coil sensitivity based removal of the aliasing artifacts from the reconstructed image

by solving an inverse problem.

then combined to form a single image of the complete
field of view. The central idea of all parallel imaging
methods is to complement spatial signal encoding of
gradient fields with information about the spatial position
of these multiple coil elements. For multiple receiver
coils, the MR signal equation can be written as follows
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In Equation (1), f; is the MR signal of coil j =

1,...,n. w is the target image to be reconstructed,

and c; is the corresponding coil sensitivity. Parallel
imaging methods use the redundancies in these multi-coil
acquisitions to reconstruct undersampled k-space data.
After discretization, this undersampling is described in
matrix-vector notation by

f; = FoCju+ nj, 2)

where u is the image to be reconstructed, f; is the
acquired k-space data in the j® coil, C, is a diagonal
matrix containing the sensitivity profile of the receiver

coil [2], Fq is a partial Fourier sampling operator that
samples locations (2, and n; is measurement noise in the
5™ coil.

Historically, parallel imaging methods were put in
two categories: Approaches that operate in image do-
main, inspired by the sensitivity encoding (SENSE)
method [2] and approaches that operated in k-space,
inspired by simultaneous acquisition of spatial harmonics
(SMASH) [1] and generalized autocalibrating partial
parallel acquisition (GRAPPA) [3]. This is conceptually
illustrated in Figure 1. While these two schools of
thought are closely related, we organized this document
according to these classic criteria for historical reasons.

II. CLASSICAL PARALLEL IMAGING IN IMAGE SPACE

Classical parallel imaging in image space follows the
SENSE method [2], which can be identified by two key
features. First, the elimination of the aliasing artifacts
is performed in image space after the application of
an inverse Fourier transform. Second, information about
receive coil sensitivities is obtained via precomputed,
explicit coil sensitivity maps from either a separate



reference scan or from a fully sampled block of data
at the center of k-space (all didactic experiments that
are shown in this manuscript follow the latter approach).
The reconstruction in image domain in Figure 1 shows
three example undersampled coil images, corresponding
coil sensitivity maps and the final reconstructed images
from a brain MRI dataset. The coil sensitivities were
estimated using ESPIRIT [5].

MRI reconstruction in general and parallel imaging
in particular can be formulated as an inverse problem.
This provides a general framework that allows easy
integration of the concepts of regularized and constrained
image reconstruction as well as machine learning that are
discussed in more detail in later sections. Equation (1)
can be discretized and then written in matrix-vector form

3)

where f contains all k-space measurement data points
and E is the forward encoding operator that includes
information about the sampling trajectory and the receive
coil sensitivities and n is measurement noise. The task of
image reconstruction is to recover the image u. In classic
parallel imaging the number of receive elements is usu-
ally larger than the acceleration factor, and Equation (3)
is solved in the least-squares-sense via the Pseudo-
Inverse (E*E)"'E, where E* denotes the conjugate
transpose of E. The reason why the acceleration factor is
smaller than the number of coils is that these individual
coil elements do not measure completely independent
information. This leads to an increase of the condition
number (E*E)~! and therefore, an ill-posed problem.
This can lead to severe noise amplification in the recon-
struction. In the original SENSE formulation [2], this
noise amplification can be described exactly via the g-
factor. In practice, Equation (3) is usually solved in an
iterative manner, which is the topic of the following
sections.

f = Eu-+n,

A. Overview of conjugate gradient SENSE (CG-SENSE)

The original SENSE approach is based on equidis-
tant or uniform Cartesian k-space sampling, where the
aliasing pattern is defined by a point spread function
that has a small number of sharp equidistant peaks.
This property leads to a small number of pixels that
are folded on top of each other, which allows a very
efficient implementation [2]. When using alternative k-
space sampling strategies like non-Cartesian acquisitions
or random undersampling, this is no longer possible
and image reconstruction requires a full inversion of
the encoding matrix in Equation (3). This operation is
demanding both in terms of compute and memory re-
quirements (the dimensions of E are the total number of

acquired k-space points times N2 where N is the size of
the image matrix that is to be reconstructed), which lead
to the development of iterative methods, in particular
the CG-SENSE method introduced by Pruessmann et
al. as a follow up of the original SENSE paper [6].
In iterative image reconstruction the goal is to find a
a that is a minimizer of the following cost function,
which corresponds to the quadratic form of the system
in Equation (3)

N 1 2

U € argmin —||Eu — f||5. 4)

u 2

In standard parallel imaging, E is linear and Equation (4)
is a convex optimization problem that can be solved with
a large number of numerical algorithms like gradient
descent, Landweber iterations or the conjugate gradient
method. However, since MR k-space data are corrupted
by noise, it is common practice to stop iterating before
theoretical convergence is reached, which can be seen
as a form of regularization. Regularization can be also
incorporated via additional constraints in Equation (4),
which will be covered in the next section.

As a didactic example for this manuscript, we will
use a single slice of a 2D coronal knee exam to illus-
trate various reconstruction approaches. This data were
acquired on a clinical 3T system (Siemens Skyra) using
a 15 channel phased array knee coil. A turbo spin
echo sequence was used with the following sequence
parameters: TR=2750ms, TE=27ms, echo train length=4,
field of view 160mm? in-plane resolution 0.5mm?, slice
thickness 3mm. Readout oversampling with a factor of
2 was used, and all images were cropped in the fre-
quency encoding direction (superior-inferior) for display
purposes. In the spirit of reproducible research, data,
sampling masks and coil sensitivity estimations that
were used for the numerical results in this manuscript
are available online!. Figure 3 shows an example of a
retrospectively undersampled CG-SENSE reconstruction
with an acceleration factor of 4. The numeric tolerance
with respect to the norm of the normalized residual was
set to 5 - 1072, which resulted in 10 CG iterations.

B. Nonlinear regularization and compressed sensing

As mentioned in Section II, the acceleration factor
in classic parallel imaging is limited by the number
of independent channels of the receive coil array. To
push the boundaries of this limit, additional a-priori

"https://app.globus.org/file-manager?origin_id=
15¢7de28-a76b-11€9-821c-02b7a92d8e58&origin_path=\ %2Fknee\
9%2F/: coronal proton density (pd) weighted data, subject 17, slice
25.



knowledge can be introduced. This is achieved by ex-
tending Equation (4) via additional penalty terms, which
results in a constrained optimization problem defined in
Equation (5), which forms the cornerstone of almost all
modern MRI reconstruction methods

i € argmin = [Bu— £3+ 3 Miw).  5)
w2 @-

Here, W, are dedicated regularization terms and \;
are regularization parameters that balance the trade-off
between data fidelity and prior. Since the introduction
of compressed sensing and its adoption for MRI [7, 8],
nonlinear regularization terms, in particular ¢;-norm
based ones, are popular in image reconstruction and are
commonly used in parallel imaging [8-14]. The goal
of these regularization terms is to provide a separation
between the target image that is to be reconstructed
from the aliasing artifacts that are introduced due to
an undersampled acquisition. Therefore, they are usually
designed in conjunction with a particular data sampling
strategy. The classic formulation of compressed sensing
in MRI [7] is based on sparsity of the images in a
transform domain in combination with pseudo-random
sampling, which introduces aliasing artifacts that are
incoherent in the respective domain. While wavelets
are a popular choice for static imaging, sparsity in the
Fourier domain is commonly used for dynamic appli-
cations, where periodic motion is encountered. Total
variation based methods have been used successfully
in combination with radial and spiral acquisitions as
well as in dynamic imaging. More advanced regularizers
based on low-rank properties have also been utilized. In
contrast to linear reconstructions, where the quality of
a reconstruction can be assessed via SNR and g-factor
maps, the evaluation of image quality is not trivial in the
context of nonlinear reconstructions. Noise is suppressed
at the cost of introducing a bias from the nonlinear
regularizer. Therefore, it is generally not recommended
to use SNR-based metrics as a measure of image quality.
Image quality is therefore usually estimated with met-
rics like NRMSE, SSIM or PSNR, which compare a
reconstruction with a reference gold standard, ideally a
fully sampled reconstruction. However, this is generally
only possible in a research setting, and image quality
evaluation of nonlinear reconstruction methods without
a reference is still an open research problem in the field.
Figure 3 shows an example of a nonlinear combined
parallel imaging and compressed sensing reconstruction
with a Total Generalized Variation [10] constraint. The
raw data was scaled such that the maximum magnitude
value in k-space is 1 and the regularization parameter
A was set to 2.5 - 1075 and the reconstruction was

using 1000 primal-dual iterations. While it is usually
recommended to use a pseudo-random acquisition when
combining parallel imaging with compressed sensing, we
chose equidistant sampling for our experiments here for
consistency with classic parallel imaging reconstruction
methods. A more detailed discussion of this is provided
in Section IV and in [15]. The nonlinear regularization
still provides a superior reduction of aliasing artifacts
and noise suppression in comparison to the CG-SENSE
reconstruction from the last section.

ITII. CLASSICAL PARALLEL IMAGING IN K-SPACE

Parallel imaging reconstruction can also be formulated
in k-space as an interpolation procedure. The initial con-
nections between the SENSE-type image-domain inverse
problem approach and k-space interpolation has been
made more than a decade ago [16], where it was noted
that the forward model in Equation (3) can be restated
in terms of the Fourier transform, x of the combined
image, u as

f = EF*k £ Gk, (6)

where E is the forward encoding operator and F is the
discrete Fourier transform (DFT) matrix as before, f
corresponds to the acquired k-space lines across all coils,
and Gyq 1s a linear operator. Similarly, the unacquired
k-space lines across all coils can be formulated using

funacq = Gunacqn- (7)
Combining these two equations yield
funacq = Gunachlcqf (8)

Thus, the unacquired k-space lines across all coils can be
interpolated based on the acquired lines across all coils,
assuming the pseudo-inverse, ijq, of Gyeq exists [16].
Thus, the main difference between the k-space parallel
imaging methods and the aforementioned image domain
parallel imaging techniques is that the former produces
k-space data across all coils at the output, whereas the
latter typically produces one image that combines the
information from all coils.

A. Linear k-space interpolation in GRAPPA

The most clinically used k-space reconstruction
method for parallel imaging is GRAPPA, which uses
linear shift-invariant convolutional kernels to interpolate
missing k-space lines using uniformly-spaced acquired
k-space lines [3]. For the jth coil k-space data, x;, we
have
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where R is the acceleration rate of the uniformly under-
samped acquisition; m € {1,..., R — 1}; gjm(bs, by, c)
are the linear convolutional kernels for estimating the

th spacing location in the j™ coil; n, is the number of
coils; and B,, B, are parameters determined from the
convolutional kernel size. A high-level overview of such
interpolation is shown in the reconstruction in k-space
section of Figure 1.

Similar to the coil sensitivity estimation in
SENSE-type reconstruction, the convolutional kernels
Gj.m(bz, by, c) are estimated for each subject, from either
a separate reference scan or from a fully-sampled block
of data at the center of k-space, called autocalibrating
signal (ACS) [3]. A sliding window approach is used
in this calibration region to identify the fully-sampled
acquisition locations specified by the kernel size and
the corresponding missing entries. The former, taken
across all coils, is used as rows of a calibration matrix,
A; while the latter, for a specific coil, yields a single
entry in the target vector, b. Thus for each coil j and
missing location m € {1,...,R — 1}, a set of linear
equations are formed, from which the vectorized kernel
weights g m(bz, by, c), denoted gj,,, are estimated
via least squares, as g;,, € argming|/b— Ag||3.
GRAPPA has been shown to have several favorable
properties compared to SENSE, including lower g-
factors, sometimes even less than unity in parts of the
image, and more smoothly varying g-factor maps [17].

B. Advances in k-space interpolation methods

Though GRAPPA is widely used in clinical practice, it
is a linear method that suffers from noise amplification
based on the coil geometry and acceleration rate [2].
Therefore, several strategies have been proposed in the
literature to reduce the noise in reconstruction.

Iterative self-consistent parallel imaging reconstruc-
tion (SPIRIT) is a strategy for enforcing self-consistency
among the k-space data in multiple receiver coils by ex-
ploiting correlations between neighboring k-space points
[9]. Similar to GRAPPA, SPIRIT also estimates a linear
shift-invariant convolutional kernel from ACS data. In
GRAPPA, this convolutional kernel used information
from acquired lines in a neighborhood to estimate a
missing k-space point. In SPIRIT, the kernel includes

contributions from all points, both acquired and missing,
across all coils for a neighborhood around a given k-
space point. The self-consistency idea suggests that the
full k-space data should remain unchanged under this
convolution operation. The SPIRIT objective function
also includes a term that enforces consistency with the
acquired data, where the undersampling can be per-
formed with arbitrary patterns, including random patterns
that are typically employed in compressed sensing [7, 8].
Additionally, this formulation allows for incorporation
of regularizers, for instance based on transform-domain
sparsity, in the objective function to reduce reconstruc-
tion noise via non-linear processing in a method called
#1-SPIRIT [9]. Furthermore, SPIRIT has facilitated the
connection between coil sensitivities used in image-
domain parallel imaging methods and the convolutional
kernels used in k-space methods via a subspace analysis
in a method called ESPIRIT [5]. It was shown that the
k-space based ¢1-SPIRIT and coil sensitivity-based ¢;-
ESPIRIT perform similarly.

An alternative line of work utilizes non-linear k-space
interpolation for estimating missing k-space points for
uniformly undersampled parallel imaging acquisitions
[18]. It was noted that during GRAPPA calibration,
both the regressand and the regressor have errors in
them due to measurement noise in the acquisition of
calibration data, which leads to a non-linear relation-
ship in the estimation. Thus, the reconstruction method,
called non-linear GRAPPA (NL-GRAPPA), uses a ker-
nel approach to map the data to a higher-dimensional
feature space, where linear interpolation is performed,
which also corresponds to a non-linear interpolation in
the original data space. The interpolation function is
estimated from the ACS data, although this approach
typically required more ACS data than GRAPPA [18].
This method was shown to reduce reconstruction noise
compared to GRAPPA. Note that NL-GRAPPA, through
its use of the kernel approach, is a type of machine
learning approach, though the non-linear kernel functions
were empirically fixed a-priori and not learned from data.
In another line of work, GRAPPA regularization during
calibration was explored using a sparsity-promoting [19]
approach. These approaches use regularization in calibra-
tion followed by a one-step reconstruction. However, we
note that this way is different than than the regulariza-
tion in £1-SPIRIT, which uses the regularization during
reconstruction in an iterative manner.

C. Low-rank matrix completion for k-space reconstruc-
tion

While k-space interpolation methods remain the preva-
lent method for k-space parallel imaging reconstruction,



there has been recent efforts on recasting this type of
reconstruction as a matrix completion problem. Simul-
taneous autocalibrating and k-space estimation (SAKE)
is an early work in this direction, where local neigh-
borhoods in k-space across all coils are restructured
into a matrix with block Hankel form [20]. Then low-
rank matrix completion is performed on this matrix,
subject to consistency with acquired data, enabling k-
space parallel imaging reconstruction without additional
calibration data acquisition. Low-rank matrix modeling
of local k-space neighborhoods (LORAKS) is another
method exploiting similar ideas, where the motivation
is based on utilizing finite image support and image
phase constraints instead of correlations across multiple
coils, and which was also extended to parallel imaging to
further include the similarities between image supports
and phase constraints across coils [21]. A further gen-
eralization to LORAKS is annihilating filter-based low
rank Hankel matrix approach (ALOHA), which extends
the finite support constraint to transform domains [22].
By relating transform domain sparsity to the existence
of annihilating filters in a weighted k-space, where the
weighting is determined by the choice of transform
domain, ALOHA recasts the reconstruction problem as
the low-rank recovery of the associated Hankel matrix.

IV. MACHINE LEARNING METHODS FOR PARALLEL
IMAGING IN IMAGE SPACE

The use of machine learning for image-based par-
allel MR imaging evolves naturally from Equation (5)
based on the following key insights. First, in classic
compressed sensing, WU are a general regularizers like
the image gradient or wavelet transforms, which were
not designed specifically with undersampled parallel
MRI acquisitions in mind. These regularizers can be
generalized to models that have a higher computational
complexity. ¥ can be formulated as a convolutional
neural network (CNN), where the model parameters can
be learned from training data inspired by the concepts
of deep learning [4], as illustrated in Figure 2. This was
already demonstrated earlier in the context of computer
vision with a non-convex regularizer of the following

form
Ny

U(w) = Y (pi(Kiu), 1),

i=1

(10)

The regularizer in Equation (10) consists of Ny terms of
non-linear potential functions p;, and K; are convolution
operators. 1 indicates a vector of ones. The parameters of
the convolution operators and the parametrization of the
non-linear potential functions form the free parameters
of the model, which are learned from training data.
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Fig. 2: Illustration of machine learning-based image recon-
struction. The network architecture consists of S stages that
perform the equivalent of gradient descent steps in a classic
iterative algorithm. Each stage consists of a regularizer and
a data consistency layer. Training the network parameters ©
is performed by retrospectively undersampling fully sampled
multi-coil raw k-space data and comparing the output of
the network uj(©) to a target reference reconstruction usf
obtained from the fully sampled data for the current training
example d.

The second insight is that the iterative algorithm that is
used to solve Equation (5) naturally maps to the structure
of a neural network, where every layer in the network
represents an iteration step of a classic algorithm. This
follows naturally from gradient descent for the least
squares problem in Equation (4) that leads to the iterative
Landweber method. After choosing an initial u’, the
iteration scheme is given by Equation (11)

w=u"!-oE*(Eu! —f), s>0. (1)

E* is the adjoint of the encoding operator and o is the
step size of iteration s. Using this iteration scheme to
solve the reconstruction problem in Equation (5) with
the regularizer defined in Equation (10) leads to the
update scheme defined in Equation (12), which forms the
basis of recently proposed image space based machine
learning methods for parallel MRI

Ny
u® = us—l o aS<Z(Ki)TP;'(KiUS_1>
=1

+ ME*(Eu®! — f)> : (12)
This update scheme can then be represented as a neural
network with .S stages corresponding to S iteration steps
in Equation (12). p) are the first derivatives of the non-
linear potential functions p;, which are represented as ac-
tivation functions in the neural network. The transposed
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Fig. 3: Comparison of image-domain based parallel imaging reconstructions of a retrospectively accelerated coronal knee
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experiments.

convolution operations K;r correspond to convolutions
with filter kernels rotated by 180 degrees. The idea of the
variational network [15] follows the structure of classic
variational methods and gradient-based optimization, and
the network architecture is designed to mimic a classic
iterative image reconstruction. Since this convolutional
steps in this architecture are shallow, the network has
a small receptive field (11 x 11 convolution kernels
were used in [15, 23]) and the network cannot cap-
ture global image information. The regularizer can be
modified by including elements like pooling layers, up-
convolutions and skip-connections, following the popu-
lar U-Net model [24]. This extends the computational
capacity of the regularizer and given sufficient training
data samples, will generally improve the performance of
the model. However, it comes at the cost of loosing the
direct connection to gradient based optimization, which
makes the approach less interpretable. It can also lead to
overfitting in situations where only a small set of training
data is available. The method from Aggarwal et al. [25]
is an example for such an approach. It follows a similar
design concept as the VN, but uses a deeper and more
complex regularizer. In order to limit the total number of
model parameters, the same set of weights is used for all
stages of the network. The other major difference is that
in contrast to the gradient in the VN (see Equation (11)),
it realizes the data term via a proximal mapping that is
implemented as an unrolled conjugate-gradient scheme.

An experiment that compares the properties of image
space based machine learning for parallel MRI to CG-

SENSE and constrained reconstructions from the previ-
ous sections is shown in Figure 3. The architecture and
training of the VN exactly follows the description in [15]
and the model consists of 131,050 model parameters that
are different for all 10 stages in the network architecture.
The MoDL formulation and training is a modification of
the approach in [25]. The same learned deep learning
regularizer was repeated across all 10 stages. In contrast
to the approach described in the paper, the regularizer
was modified to a U-Net [24] with a total of 694,021
model parameters. The publicly available multi-channel
knee data that was described in Section II was used to
train the networks. The source for the approaches that
are used in these experiments is available online?-*#. The
figure shows a single slice of a test case that was not
used during training. The normalized root mean sum of
squares error (NRMSE) and structural similarity index
(SSIM) to the fully sampled reference is shown next to
each reconstruction. The experiments illustrates the im-
proved performance as the complexity of the regularizer
model is increased. Equidistant Cartesian sampling from
traditional parallel imaging was used in all experiments
because this type of sampling is predominantly used
in clinical practice. For combined parallel imaging and
compressed sensing, pseudo-random sampling is gener-
ally recommended to improve performance in the liter-

*https://cai2r.net/resources/software
*https://github.com/VLOGroup/mri- variationalnetwork
“https://github.com/hkaggarwal/modl



ature [7]. An analysis of the influence of the sampling
scheme is not included here due to space constraints.
Such a study was performed in [15] and showed that
the improvement in image quality with the learning
approach was independent of the used sampling scheme.
To determine the model parameters of the network that
will perform the parallel imaging reconstruction task, an
optimization problem needs to be defined that minimizes
a training objective. In general, this can be formulated
in a supervised or unsupervised manner. Supervised
approaches are predominantly used while unsupervised
approaches are still a topic of ongoing research. There-
fore, we will focus on supervised approaches for the
remainder of this section. We define the number of
stages, corresponding to gradient steps in the network, as
S. d is the current training image out of the complete set
of training data D. The variable © contains all trainable
parameters of the reconstruction model. The training
objective then takes the following form

D
. . 1 S ref |12
L(©) = min o ; [ug (©) — ug'[[3. (13)

As it is common in deep learning, Equation (13) is
a non-convex optimization problem that is solved with
standard numerical optimizers like stochastic gradient
descent. This requires the computation of the gradient
of the training objective with respect to the model
parameters ©. This gradient can be computed via back-
propagation

OL(©)  Oust! oust? ou®  OL(O)

90s — 90° Qustl T guS-1 gud

The basis of supervised approaches is the availability
of a target reference reconstruction u™'. This requires the
availability of a fully-sampled set of raw phased array
coil k-space data. This data is then retrospectively under-
sampled by removing k-space data points as defined by
the sampling trajectory in the forward operator E and
serves as the input of the reconstruction network. For
training example d, the current output of the network
ug (©) is then compared to the reference ufff via an
error metric. The choice of this error metric has an
influence on the properties of the trained network, which
is a topic of currently ongoing work. A popular choice
is the mean squared error (MSE), which was also used
in Equation (13). Other choices are the ¢; norm of the
difference and the SSIM.

The focus of this section was machine learning based
extensions of combined parallel imaging and compressed
sensing, where the machine learning was mainly used
to learn a model that serves as a more complex reg-
ularizer. Another set of developments in image space

(14)

based parallel imaging is focused on the improvement
of the estimation of the coil sensitivity maps via joint
estimation of image content and coil sensitivities. The
first in a recent set developments in that direction
was proposed in [26]. This approach first performs the
IDFT of the undersampled multi-channel k-space (see
the illustration in the left column of Figure 1). The
neural network is then trained to learn the mapping of
the aliased individual coil images to the combined un-
aliased image. The network thus learns how to use the
sensitivity information to perform the de-aliasing without
using explicit coil sensitivity maps. The authors used
a classic fully connected multi-layer-perceptron for this
task. The use of fully connected networks is usually
challenging for clinically relevant image sizes due to
memory requirements, for this particular application it
was possible by performing de-aliasing separately for
each 1D line in image space in the phase encoding
direction. A more general version of this approach was
recently proposed in [27]. The authors use a CNN, which
eliminates the memory issue and allows them to use the
proposed approach for 3D time-of-flight angiography.

V. MACHINE LEARNING METHODS FOR PARALLEL
IMAGING IN K-SPACE

There has been a recent interest in using neural
network to improve the k-space interpolation techniques
using non-linear approaches in a data-driven manner.
These newer approaches can be divided into two groups
based on how the interpolation functions are trained.
The first group uses scan-specific ACS lines to train
neural networks for interpolation, similar to existing
interpolation approaches, such as GRAPPA or non-linear
GRAPPA. The second group uses training databases,
similar to the machine learning methods discussed in
image domain parallel imaging.

Robust artificial-neural-networks for k-space interpo-
lation (RAKI) is a scan-specific machine learning ap-
proach for improved k-space interpolation [28]. This
approach trains CNNs on ACS data, and uses these for
interpolating missing k-space points from acquired ones.
The interpolation function can be represented by

Kj(ke, ky —mAky) = fim{ke(ke — b,

ky — RbyAy) b, e(=B,,B.]b,€[—B, Byl celln.])s
(15)

where f;,, is the interpolation rule implemented via
a multi-layer CNN for outputting the k-space of the
m™M set of uniformly spaced missing lines in the ;"
coil, R is the undersampling rate, B,., B, are parameters

specified by the receptive field of the CNN, and n,. is the
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Fig. 4: A slice from a high-resolution (0.6 mm isotropic)
7T brain acquisition, where all acquisitions were performed
with prospective acceleration. It is difficult to acquire fully-
sampled reference datasets for training for such acquisitions,
thus two scan-specific k-space methods were compared. The
CNN-based RAKI method visibly reduced noise amplification
compared to the linear GRAPPA reconstruction. NL-GRAPPA
and RAKI have similar noise properties, while RAKI produces
a slightly sharper image at R = 6.

number of coils. Thus, the premise of RAKI is similar
to GRAPPA, while the interpolation function is imple-
mented using CNNs, whose parameters are learned from
ACS data with an MSE loss function. The scan-specific
nature of this method is attractive since it requires
no training databases, and can be applied to scenarios
where a fully-sampled gold reference cannot be acquired,
for instance in perfusion or real-time cardiac MRI,
or high-resolution brain imaging. Example RAKI, NL-
GRAPPA and GRAPPA reconstructions for such high-
resolution brain imaging datasets, which were acquired
with prospective undersampling are shown in Figure 4.
These data were acquired on a 7T system (Siemens
Magnex Scientific) with 0.6 mm isotropic resolution.
R = 5,6 data were acquired with two averages for
improved SNR to facilitate visualization of any residual
artifacts. Other imaging parameters are available in [28].
For these datasets, RAKI leads to a reduction in noise
amplification compared to GRAPPA. Note the noise re-
duction here is based on exploiting properties of the coil
geometry, and not on assumptions about image structure,
as in traditional regularized inverse problem approaches,

GRAPPA

SPIRIT RAKI

Fig. 5: Comparison of k-space parallel imaging reconstruc-
tions of a retrospectively accelerated coronal knee acquisition,
as in Figure 3. Due to the small size of the ACS data relative
to the acceleration rate, the methods, none of which utilizes
training databases, exhibit artifacts. GRAPPA has residual
aliasing, whereas SPIRIiT shows noise amplification. These
are reduced in RAKI, though the residual artifacts remain.
Respective NRMSE and SSIM values reflect these visual
assessment.

as in Section II-B. However, the scan-specificity also
comes with downsides, such as the computational burden
of training for each scan, as well as the requirement for
typically more calibration data. In this dataset, RAKI and
NL-GRAPPA have similar performance for R = 4,5.
At R = 6, RAKI preserves sharper details compared
to NL-GRAPPA, although the differences are subtle.
In Figure 5, reconstructions of the knee dataset from
Figure 3 are shown, where all methods, which rely
on subject-specific calibration data, exhibit a degree of
artifacts, due to the small size of the ACS region, while
RAKI has the highest SSIM and lowest NRMSE.
While originally designed for uniform undersampling
patterns, this method has been extended to arbitrary
sampling, building on the self-consistency approach of
SPIRIT [29]. Additionally, recent work has also refor-
mulated this interpolation procedure as a residual CNN,
with residual defined based on a GRAPPA interpolation
kernel [30]. Thus, in this approach called residual RAKI
(rRAKI), the CNN effectively learns to remove the noise
amplification and artifacts associated with GRAPPA,
giving a physical interpretation to the CNN output, which
is similar to the use of residual networks in image de-
noising. An example application of the rRAKI approach
in simultaneous multi-slice (SMS) imaging [31] with an
SMS factor of 16, i.e. a 16-fold acceleration in coverage
is shown in Figure 6, showing improvement over both
GRAPPA and NL-GRAPPA in reducing residual aliasing
and noise amplification. We note that for all experiments
shown in this section, the same number of ACS lines
were used for all methods. Thus, the differences between
methods are not due to the size of the calibration data.
A different line of work, called DeepSPIRiT, explores
using CNNs trained on large databases for k-space
interpolation with a SPIRiT-type approach [32]. Since
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Fig. 6: Reconstruction results of simultaneous multi-slice
imaging of 16 slices in fMRI (i.e. 16-fold acceleration in
coverage), where a sample of 3 slices are shown. GRAPPA
method exhibits noise amplification at this high acceleration
rate. NL-GRAPPA reduces noise amplification but suffers
from residual aliasing and leakage. The rRAKI method, which
consists of a linear convolutional component G, in parallel
with a non-linear CNN component F' that learns the artifacts
arising from G, exhibits exhibits reduced noise and reduced
aliasing. Due to imperfections in the ACS data for this applica-
tion, the residual component includes both noise amplification
and residual artifacts.

sensitivity profiles and number of coils vary for different
anatomies and hardware configurations, k-space data in
the database were normalized using coil compression
to yield the same number of channels [33]. Coil com-
pression methods effectively capture most of the energy
across coils in a few virtual channels, with the first
virtual channel containing most of the energy, the second
being the second most dominant, and so on, in a manner
reminiscent of principal component analysis. Following
this normalization of the k-space database, CNNs are
trained for interpolating different regions of k-space. The
method was shown to remove aliasing artifacts, though
difficulty with high-resolution content was noted. Since
DeepSPIRIT trains interpolation kernels on a database,

it does not require calibration data for a given scan,
potentially reducing acquisition time further.

Neural networks have also been applied to the Hankel
matrix based approaches in k-space [34]. Specifically, the
completion of the weighted k-space in ALOHA method
has been replaced with a CNN, trained with an MSE loss
function. The method was shown to not only improve the
computational time, but also the reconstruction quality
compared to original ALOHA by exploiting structures
beyond low-rankness of Hankel matrices. In another line
of work, neural networks have been applied to a Hankel
matrix based approach that models signals as piecewise
smooth [35]. These methods are described in more detail
in another article in this issue [36].

VI1. DISCUSSION
A. Issues and open problems

Several advantages of neural network based machine
learning approaches over classic constrained reconstruc-
tion using predefined regularizers have been proposed in
the literature. First, the regularizer is tailored to a specific
image reconstruction task, which improves the removal
of residual artifacts. This becomes particularly relevant
in situations where the used sampling trajectory does
not fulfill the incoherence requirements of compressed
sensing, which is often the case for clinical parallel
imaging protocols. Second, machine learning approaches
decouple the compute-heavy training step from a lean
inference step. In medical image reconstruction, it is
critical to have images of diagnostic quality available
immediately after the scan so that technologists and
radiologists can decide immediately whether a certain
sequence needs to be repeated or acquisition parameters
need to be changed. In contrast, prolonged training
procedures that can be done on specialized computing
hardware, are generally acceptable. For example, the
training of the VN reconstruction in the experiment in
Figure 3 took 40 hours for 150 epochs with 200 slices of
training data on a single NVIDIA M40 GPU with 12GB
of memory. Training data, model and training parameters
exactly follow the training from [23]. Reconstruction of
one slice then took 200ms, which is compatible with
current image reconstruction times of algorithms like
SENSE and GRAPPA on clinical scanners, and therefore
compatible with clinical workflow. In comparison, the
computation times were 10ms for zero filling, 150ms
for CG-SENSE and 10000ms for the PI-CS TGV con-
strained reconstructions on the same GPU hardware.

The focus in Section IV and Section V were on
methods that were developed specifically in the con-
text of parallel imaging. Some architectures for image



domain machine learning have been designed specifi-
cally towards a target application, for example dynamic
imaging [37]. Another approach was recently developed
that combines k-space and image space CNN data pro-
cessing [38]. In their current form, these methods were
not yet demonstrated in the context of multi-coil data.
The approach recently proposed by Zhu et al. learns
the complete mapping from k-space raw data to the
reconstructed image [39]. The proposed advantage is that
since no information about the acquisition is included
in the forward operator E, it is more robust against
systematic calibration errors during the acquisition. This
comes at the price of a significantly higher number of
model parameters. The corresponding memory require-
ments make it challenging to use this model for matrix
sizes that are currently used in clinical applications.
A systematic comparison of these recent approaches
from the literature is still an open question in the field.
However, a fair comparison is challenging because their
performance also depends on the quality the training
data. Most approaches are also designed with a particular
set of target applications in mind, and different research
groups usually build their own data sets as part of their
developments. Thus, it can be a non-trivial task to modify
a particular approach so that the performance is optimal
for a new type of data. For example, in approaches
that are designed either for dynamic or static imag-
ing, the regularizer models are tailored to the specific
properties of these data. We also note that there are
fewer works in k-space machine learning methods for
MRI reconstruction. This may be due to the different
nature of k-space signal that usually has very different
intensity characteristics in the center versus the outer k-
space, which makes it difficult to generalize the plethora
of techniques developed in computer vision and image
processing that exploit properties of natural images.
Machine learning reconstruction approaches also
come with a number of drawbacks when compared to
classic constrained parallel imaging. First, they require
the availability of a curated training data set that is
representative so that the trained model generalizes to
new unseen test data. While recent approaches from
the literature [15, 25, 37] have either been trained with
hundreds of examples rather than millions of examples
as it is common in deep learning for computer vision,
or trained on synthetic non-medical data that is publicly
available from existing databases. However, this is still
a challenge that will potentially limit the use of machine
learning to certain applications. Several applications in
imaging of moving organs, such as the heart, or in
imaging of the brain connectivity, such as diffusion
MRI, cannot be acquired with fully-sampled data due to
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constraints on spatio-temporal resolutions. This hinders
the use of fully-sampled training labels for such datasets,
highlighting applications for scan-specific approaches or
unsupervised training strategies.

These reconstruction methods also require the avail-
ability of computing resources during the training stage.
This is a less critical issue due to the increased avail-
ability and reduced prices of GPUs. The experiments
in this paper were made with computing resources that
are available for less than 10,000 USD, which are
usually available in academic institutions. In addition, the
availability of on-demand cloud-based machine learning
solutions is constantly increasing.

A more severe issue is that in contrast to conven-
tional parallel imaging and compressed sensing, machine
learning models are mostly non-convex. Their properties,
especially regarding their failure modes and generaliza-
tion potential for daily clinical use, are understood less
well than conventional iterative approaches based on
convex optimization. For example, it was recently shown
that while reconstructions generalize well with respect
to changes in image contrast between training and test
data, they are susceptible towards systematic deviations
in SNR [23]. It is also still an open question how specific
trained models have to be. Is it sufficient to train a
single model for all types of MR exams, or are separate
models required for scans of different anatomical areas,
pulse sequences, acquisition trajectories and acceleration
factors as well as scanner manufacturers, field strengths
and receive coils? While pre-training a large number of
separate models for different exams would be feasible
in clinical practice, if certain models do not generalize
with respect to scan parameter settings that are usually
tailored to the specific anatomy of an individual patient
by the MR technologist, this will severely impact their
translational potential and ultimately their clinical use.
More generally speaking, an improved understanding
of neural network training and architecture design to
optimization theory is a very active research topic in the
field of machine learning. We expect that future research
in similar directions will further bridge the gap between
current experimental results and the underlying theory
and lead to a better understanding of generalization
properties, failure modes in worst case scenarios and
architecture design for specific types of problems.

B. Availability of training databases and community
challenges

As mentioned in the previous section, one open issue
in the field of machine learning reconstruction for paral-
lel imaging is the lack of publicly available databases of
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multi-channel raw k-space data. This restricts the number
of researchers who can work in this field to those who
are based at large academic medical centers where this
data is available, and for the most part excludes the
core machine learning community that has the necessary
theoretical and algorithmic background to advance the
field. In addition, since the used training data becomes an
essential part of the performance of a certain model, it is
currently almost impossible to compare new approaches
that are proposed in the literature with each other if
the training data is not shared when publishing the
manuscript. While the momentum in initiatives for public
releases of raw k-space data is growing [40], the number
of available data sets is still on the order of hundreds
and limited to very specific types of exams. Examples
of publicly available rawdata sets are mridata.org® and
the fastMRI dataset®.

VII. CONCLUSION

Machine learning methods have recently been pro-
posed to improve the reconstruction quality in parallel
imaging MRI. These techniques include both image
domain approaches for better image regularization and
k-space approaches for better k-space completion. While
the field is still in its development, there are many
open problems and high-impact applications, which are
likely to be of interest to the broader signal processing
community.
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