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ABSTRACT

Non-parallel many-to-many voice conversion remains an interesting
but challenging speech processing task. Many style-transfer-inspired
methods such as generative adversarial networks (GANSs) and vari-
ational autoencoders (VAEs) have been proposed. Recently, AU-
TOVC, a conditional autoencoders (CAEs) based method achieved
state-of-the-art results by disentangling the speaker identity and
speech content using information-constraining bottlenecks, and it
achieves zero-shot conversion by swapping in a different speaker’s
identity embedding to synthesize a new voice. However, we found
that while speaker identity is disentangled from speech content, a
significant amount of prosodic information, such as source F0, leaks
through the bottleneck, causing target FO to fluctuate unnaturally.
Furthermore, AUTOVC has no control of the converted FO and
thus unsuitable for many applications. In the paper, we modified
and improved autoencoder-based voice conversion to disentangle
content, FO, and speaker identity at the same time. Therefore, we
can control the FO contour, generate speech with FO consistent with
the target speaker, and significantly improve quality and similarity.
We support our improvement through quantitative and qualitative
analysis.

Index Terms— voice-conversion, FO-conversion, autoencoder,
WaveNet-vocoder

1. INTRODUCTION

Voice conversion is the process that transforms the speech of a
speaker (source) to sound like a different speaker (target) without
altering the linguistic content. It is a key component to many appli-
cations such as speech synthesis, animation production, and identity
protection. Conventional methods explicitly express a conversion
function using a statistical model that transforms the acoustic feature
(such as MFCC) of the source speaker to that of a target speaker
[1, 2, 3]. Constrained by the simplicity of the model and the vocod-
ing algorithm that converts acoustic features to a waveform, such
methods tend to produce robotic-sounding results. Recent work uses
deep neural networks to address these constraints: feed-forward neu-
ral networks (DNN) [4, 5] and recurrent neural networks (RNNs)
such as long-short-term memory (LSTM) have been employed to
replace the conversion function [6, 7]. With the introduction of
WaveNet [8], a host of new methods [9, 10, 11] employed it as
vocoder and vastly improved synthesis quality. However, most ad-
vances are in the parallel voice conversion paradigm, where parallel
data (source and target speakers reading the same sentences) is re-
quired. It is in recent years that non-parallel voice conversion started

This work was partially performed while interning at Adobe Research.
This work was funded by NSF IIS 19-10319.

978-1-5090-6631-5/20/$31.00 ©2020 IEEE

6284

gaining attention [12, 13, 14]. In this paradigm, voice samples of
multiple speakers are supplied, but the samples are not of the same
sentences. It is also desirable that the voice conversion can general-
ize to many voices in the dataset, or even outside the dataset. Such
voice conversion methods are referred to as one-to-many or many-
to-many voice conversion [15, 16]. The most challenging form
of this problem is called zero-shot voice conversion [17], which
converts on-the-fly from and to unseen speakers based on only a
descriptor vector for each target speaker, and possibly without any
unprocessed audio examples.

Inspired by the ideas of image style transfer in computer vision,
methods such as VAEs [18, 19, 12], GANSs [13, 20, 21] and their vari-
ants have gained popularity in voice conversion [22, 23]. However,
VAEs suffers from over-smoothing. GAN-based methods address
this problem by using a discriminator that amplifies this artifact in
the loss function. However, such methods are very hard to train,
and the discriminator’s discernment may not correspond well to hu-
man auditory perception. Moreover, the sound quality degrades as
more speakers are trained simultaneously. There is another track of
research [24, 14] that uses automatic speech recognition (ASR) sys-
tems to extract the linguistic contents of the source speech and then
synthesizes the target speech using the target speaker’s voice. This
type of method produces relatively high-quality speech but they rely
on the performance of pre-trained ASRs, which again require tran-
scribed data.

Recently, AUTOVC, a conditional autoencoder (CAE) based
method [17], applies a simple vanilla autoencoder with a properly
tuned information-constraining bottleneck to force disentanglement
between the linguistic content and the speaker identity by train-
ing only on self-reconstruction. The AUTOVC is conditioned on a
learned speaker identity embedding of the source and target speak-
ers, making it generalizable to unseen speakers. This method also
assumes that the prosodic information is properly disentangled,
meaning it is either part of the speaker identity or part of the speech
content. However, we found that the prosodic information appears
to be partially contained in both parts, causing the FO to flip be-
tween the source FO contour and the FO contour following the target
voice’s prosody. It is especially noticeable in cross-gender conver-
sion where FO changes suddenly between different genders. We
hypothesize two causes for this problem: first, modeling prosody
requires a substantial amount of data but the speaker embedding
learned from speaker identification only observes a limited amount
of samples. With insufficient information about the target speaker’s
prosodic pattern from the speaker embedding, the decoder is unable
to generate natural-sounding FO. Second, because prosodic infor-
mation is incomplete, to optimize self-reconstruction, a substantial
amount of FO information will be encoded in the bottleneck and
carried over to the decoder. During voice conversion, this informa-
tion conflicts with the speaker embedding resulting in FO flipping
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between the source and the target.

Therefore, we address these problems by disentangling both the
speaker identity and the prosodic pattern (FO) from the speech by
conditioning the decoder on per-frame FO contour extracted from
the source speaker. This modification not only ensures no source
speaker FO information leaks through the bottleneck but also makes
FO controllable via modification of the conditioned FO, which could
open a new path towards deep-learning based FO modification. Our
quantitative study shows that our proposed method effectively dis-
entangles the FO information from the input speech signal by train-
ing on self-reconstruction with a properly-tuned bottleneck. We also
compare our method to AUTOVC in which our converted speech
has FOs significantly more consistent with the FO distribution of the
target speaker, than that of AUTOVC . Finally, we conducted a hu-
man listening study that shows our method improves not only FO
consistency but also sound quality and similarity from AUTOVC in
MOS and pair-comparison studies. The remainder of the paper is
organized as follows. Section 2 reviews the framework and the con-
version process of our system. Section 3 presents and discusses the
experimental results. Section 4 concludes the paper.

2. METHODS
2.1. AuTtoVC

AUTOVC is a zero-shot non-parallel many-to-many voice conver-
sion model using vanilla autoencoder [17]. According to Fig.1, Au-
TOVC consists of an encoder and a decoder. The encoder downsam-
ples the input mel-spectrogram and passes it through a bottleneck to
produce a content code f[n] conditioned on source speaker embed-
ding e:

c[n’] = E(fs[n], es) (1
where c[n’] denotes the content code. Because sample rate changes,
we use n’ for the indices of the code instead of n. Then, the decoder
takes the content code ¢[n] and synthesize the mel-spectrogram ac-
cording to the target speaker’s embedding e; at the original sample
rate:

fooriln] = D(c[n], 1) @
As described in [17], AUTOVC is trained on self-reconstruction
only. More specifically, during training, instead of feeding the target
speaker embedding e; to the decoder, we feed the source speaker
embedding e, leading to the self-reconstruction result, which we
denote as fs—s[n]. The training loss measures the ¢2 norm of the
reconstruction error in both the reconstructed speech feature and the
content code, i.e.

L=\ fessln] = F[)l13 + A E(fomssln], e0) — elnlll (3)

where ) is a tunable hyperparameter. As shown in [17], if ¢[n’] has
a proper dimension and is properly downsampled, and given some
other assumptions, AUTOVC can achieve “perfect conversion”, in
the sense that the conversion output would match the true distribu-
tion of the target speaker uttering the source content. This is because
the narrow bottleneck can squeeze out the source speaker informa-
tion and keep the content information only, forcing disentanglement
between speaker and content information.

Fig.1 illustrates the architecture of the encoder and decoder net-
works. In the encoder, the input mel-spectrogram fs[n] (of dimen-
sion 80) concatenated with the source speaker embedding e (one-
hot or D-vector) at each time step is passed through three 5 x 1 con-
volution layers with ReLU activation and 512 channels, each fol-
lowed by batch normalization, and then through two bidirectional
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Fig. 1. The AUTOVC architecture. Down and up arrows denote
down-sampling and up-sampling respectively. Circle arrows with
‘xn’ above denote that the enclosed blocks are repeated by n times
and stacked. ‘Concat’ denotes concatenation. e and e; are first
copied across the time dimension before concatenation.

LSTM layers with tunable cell dimension 16. Finally, the resulting
code is down-sampled every 16 time steps. The down-sampling and
up-sampling are different between the forward and backward outputs
of the Bidirectional LSTM, as illustrated in [17].

In the decoder, the content code is first up-sampled by 16, then
concatenated with the target speaker embedding e; (one-hot or D-
vector) at each time, which is passed through three LSTM layers
with cell dimension 512. Post-nets are added on top of the LSTM to
refine the output mel-spectrogram[25] which consists of five 5 x 1
convolution layers with 512 channels, ReLU activation except for
the last layer, and batch normalization. The input to the post-net is
merged to the output of the post-net through addition. The recon-
struction error in the first term of Eq. (3) is evaluated both before
and after the post-net.

2.2. F0-conditioned AUTOVC

However, speech converted using the above model contains incon-
sistent FO distribution compared to the true distribution of the target
speaker (please refer to Section 3 for details). We hypothesize that
it’s caused by prosodic information (mainly FO) being encoded in the
bottleneck and carried over to the decoder. As a result, the decoder
generates speech that has FO flipping between the input FO and the
target speaker’s FO pattern. The core of this issue is speaker embed-
ding containing insufficient information about the speaker’s prosodic
style. One way to solve this issue is to make sure speaker embedding
contains a speaker’s prosody information, but it is unrealistic as it
requires hours of data for each speaker. Therefore, we take another
approach, disentangling all three features, speech content, FO and
speaker identity during training. Our solution is simple: in addition
to speaker embedding e, we condition the decoder of AUTOVC on
a per-frame feature p,, directly computed from the source speaker’s
FO. This feature, called normalized quantized log-F0, is computed
as follows: first, we extract the log-FO of the source speaker’s voice
samples using a pitch tracker and then we compute log-FO’s mean
w and variance o2. Then we normalize the input speech’s log-FO
Dsre BY Dnorm = (Dsre — pt)/o /4. This operation roughly limits
Prorm to be within the range of 0-1. Then we quantize the range 0-1
into 256 bins and use it to one-hot encode pnorm. Finally, we add
another bin to represent unvoiced frames resulting in 257 one-hot
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Fig. 2. System Overview. The speaker embeddings are generated
from waveforms by a pre-trained speaker encoder module, which is
not shown in the figure.

encoded feature p,,. Consequently, the decoder is conditioned on a
global feature e and per-frame feature p,, as shown below:

fstln] = D(c[n'], er, pn) S

During training, the target FO is the source FO normalized using the
FO mean and variance of the source speaker. Since the model is only
trained on self-reconstruction loss, we expect the decoder to learn
to “de-normalize” the conditioned FO based on speaker embedding.
The decoder architecture is the same as in Fig.1, except that the up-
sampled content code is concatenated with both the speaker embed-
ding and FO before feeding into the decoder, as illustrated in Fig.2.

2.3. Bottleneck Tuning and augmentation

Similar to AUTOVC , we tune bottleneck to the smallest possible
size to contain sufficient speech content in order to reconstruct the
mel-spectrogram of the input speech almost perfectly. Through our
experiment, the bottleneck is reduced to 16 in frequency. Since the
decoder has already been provided with FO information by condi-
tioning on p,, we hypothesize that the bottleneck will only preserve
speech content. To help the decoder to learn to use p,, for the miss-
ing prosodic information in the bottleneck, we augmented the data
by randomly time-stretch and compress mel-spectrograms between
a factor of 0.7 to 1.35 using interpolation. We found that that the
augmentation which helps the model to generalize better to differ-
ent speech rate and thus recover prosodic pattern better for the given
speaker. In addition, we randomly change the signal power between
10% and 100% of the full power to make the model robust to vol-
ume variations. The input length is also randomly cropped between
1s and 3s to make the model robust to variable-length input.

3. EXPERIMENTS

We conducted experiments to compare the FO consistency between
converted speech of our method and AUTOVC . We also evaluated
the proposed model under different training schemes and FO con-
ditions to quantitatively prove that FO information is disentangled
by the bottleneck and controllable by modifying the FO condition
at the decoder. To compare speech quality and speaker similarity
of our method to AUTOVC , a subjective study is conducted on
Amazon Mechanical Turk where subjects are asked to rate the mean-
opinion-score for converted audio samples. All models are trained
and evaluated on the VCTK corpus [26]. To be consistent to pre-
vious work, we used voice samples from the same 10 male and 10
female speakers in the experiment. The utterances of each speaker
are partitioned into 90% training and 10% test. AUTOVC and our
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Fig. 3. Comparison of FO distributions between the ground truth and
the generated speech using AUTOVC or our method.

proposed models are trained using Adam optimizer with a batch size
of 2 for 700k iterations with data augmentation2.3. The learning
rate is 0.0001, and A = 1. Audio samples are available at https:
//auspicious3000.github.io/icassp-2020-demo

3.1. Quantitative Analysis
3.1.1. FO distribution

The first study aims to illustrate the FO issue in AUTOV C by compar-
ing the FO distribution of the converted speech with the ground truth
distribution. In this study, 8 voices are used in which 4 are male and
4 are female. We computed all pairs of conversion from male to fe-
male (m2f) and from female to male (f2m), each consists of 16 pairs
of voices and 10 different held-out utterances, totaling 160 samples
for either case. Then we extracted the log-FO of these samples and
plot the distribution. Note that unvoiced FOs are thrown away from
the plot. Finally, we overlaid the ground truth FO distribution of the
target speakers on the above two distributions, as shown in Figure 3.

From the result we can see that in both f2m and m2f cases, AU-
TOVC has two peaks in the distribution where one of them overlaps
with the ground truth distribution and the other is centered at the FO
of a different gender. This is consistent with the “flipping FO issue”
we discussed earlier. It is also visible that m2f contains more “FO
flipping” than f2m. In contrast, the proposed method produces an
FO distribution that overlaps well with the ground truth distribution
even though we did not explicitly tell the decoder the FO range of the
target speaker. Our hypothesis is that by conditioning on normalized
FO, the target FO range is inferred from the speaker embedding. As
expected, the FO of the output matches the speaker identity and thus
consistent with the speaker’s true FO distribution.

3.1.2. FO consistency

The second study aims to measure how well the generated FO fol-
lows the input FO. Since there lacks a ground truth FO of the target
speaker, we created a pseudo-FO by de-normalizing the conditioned
FO using the target speaker’s FO statistics. This is equivalent to com-
puting Gaussian normalized transformation from the source log-FO
using mean and variances of source and target voices:

o
log pigt = tegt + o_tgt

(logpsrc - ,usrc)

With the pseudo-FO in the log space log p:g:, we compare how the
generated speech’s FO matches the pseudo-FO and plot the distri-
bution of errors for both AUTOVC and our method in Figure 4(a).
The upper half of the figure shows an actual instance in which the
pseudo-F0, the FO of our method’s converted speech, and that of
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Fig. 4. Comparison of FO contours of generated speech based on the two methods. In each sub-figure, the upper two plots display example
FO contour overlaid on the input FO normalized to the target speaker’s FO range. The lower two plots show the error distribution between the
FO of the converted speech and the normalized input FO. In both upper and lower plots, the left one corresponds to male-to-female cases and
the right one corresponds to female-to-male cases. The caption of each sub-figure shows the two methods being compared.

AUTOVC are plotted together. One can see that our method’s FO
follows the pseudo-FO consistently with only minor shifting, which
is reasonable as the network is never trained using denormalized FO,
to begin with. In contrast, the FO produced by AUTOV C rapidly fluc-
tuates above and below the pseudo-FO, and it is only partially con-
sistent in trend. We hypothesize that it is due to FO leaking through
the bottleneck during training and thus interfering with the FO range
encoded in the speaker identity. The lower half of the plot shows
the error distribution between the converted speech’s log-FO and the
pseudo ground truth. Our method shows significantly smaller error
rate than that of the original AUTOVC.

3.1.3. Bottleneck test and FO controllability

This study focuses on experimentally verifying that our model dis-
entangles FO by information-constraining bottleneck and thus makes
FO controllable. In the first experiment, we concatenated an encoder
from a pre-trained model with a new decoder that is only conditioned
on the speaker identity without the FO. Then, we train this decoder
with the encoder fixed. The resulting FO of the converted speech
becomes random as depicted in 4(b). Since no source FO informa-
tion leaks through the bottleneck, the generated speech matches the
FO distribution of the target speaker but sounds random and lacks
details. This result verifies our assumption that the speaker em-
bedding only encodes prosodic pattern partially and that the source
voice’s FO information is largely disentangled by the bottleneck. To
test controllability, we modified the conditioned FO to be constant-
valued (Flat FO). As shown in Figure 4(c), the converted speech’s
FO follows a flat contour despite that the input speech has a non-flat
FO. Note that there are some FO fluctuations at boundaries between
voiced and unvoiced segments, which is likely caused by inaccuracy
of FO detection algorithms. The lower half of the plot also shows
high consistency between our method’s FO and the reference flat FO.

3.2. Qualitative Analysis

We conducted Mean-Opinion-Score (MOS) evaluation via Amazon
Mechanical Turk, where subjects are asked to rate the similarity and
quality of synthesized voice samples on a scale of 1-5. Our main

MOS OURS AUTOVC STAR CHOU
Quality 3732 3546 2876 1.937
Similarity | 3.331  3.076 2572 1929
Ours [93.4% M2F 6.4% | AutoVC
Ours (82.7% F2M | 173%| AutovC
Ours [67.3% M2M | 32.7%| AutoVC
Ours |51.8% lef 48.2%| AutoVC

Fig. S.
method.

MOS and pair-comparison between AUTOVC and our

goal is to compare the FO-conditioned AUTOVC against the origi-
nal AUTOVC , but we also include 2 additional baselines, which we
name STAR and CHOU respectively. STAR [13] is a voice conver-
sion system based on the StarGAN scheme. CHOU [23] an autoen-
coder based voice conversion system that adopts adversarial training
to force speaker disentanglement. As shown in Figure.5, our method
with FO disentanglement outperforms the original AUTOVC. To fur-
ther verify that our method improves over AUTOV C in most cases,
we conducted pairwise comparison tests on Turk where subjects are
asked to choose between two converted speech (ours and AUTOVC
) which one sounds better given a voice sample of the target speaker.
We collected 16 ratings for each one of the 560 tests. The result is
also shown in Figure 5 and our method significantly outperforms the
baseline especially under cross-gender conversion cases.

4. CONCLUSION

In this paper, we proposed an FO-conditioned voice conversion sys-
tem that refreshes the previous state-of-the-art performance of AU-
TOVC by eliminating any FO-related artifacts. It experimentally ver-
ified the hypothesis that any conditioned prosodic features can be
disentangled from the input speech signal in an unsupervised man-
ner by properly tuning the information-constraining bottleneck of a
vanilla autoencoder. This could open a new path towards more de-
tailed voice conversion by controlling different prosodic features.
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