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ABSTRACT

End-to-end spoken language understanding (SLU) systems are typi-
cally trained on large amounts of data. In many practical scenarios,
the amount of labeled speech is often limited as opposed to text. In
this study, we investigate the use of non-parallel speech and text to
improve the performance of dialog act recognition as an example
SLU task. We propose a multiview architecture that can handle each
modality separately. To effectively train on such data, this model
enforces the internal speech and text encodings to be similar using a
shared classifier. On the Switchboard Dialog Act corpus, we show
that pretraining the classifier using large amounts of text helps learn-
ing better speech encodings, resulting in up to 40% relatively higher
classification accuracies. We also show that when the speech em-
beddings from an automatic speech recognition (ASR) system are
used in this framework, the speech-only accuracy exceeds the per-
formance of ASR-text based tests up to 15% relative and approaches
the performance of using true transcripts.

Index Terms— Dialog act recognition, spoken language under-
standing, multiview training, non-parallel data

1. INTRODUCTION

Speech understanding is a major component of human-machine in-
teractions and its quality affects the user experience. Conventional
speech understanding systems rely on a two-step approach where
the speech signals are converted into text using an automatic speech
recognition (ASR) system and then a natural language processing
(NLP) system is applied to understand intents, to fill the slots or to
detect named entities [1, 2]. However, this two-step approach suffers
from error-propagation due to imperfect ASR systems and also from
non-optimality as ASR and NLP systems are trained separately with
different objectives. Moreover, for many of the world languages,
there is not sufficient data to train reliable ASR sytems [3, 4]. There-
fore, there is an interest in approaches which can directly use speech
input to achieve the understanding task without using intermediate
ASR transcripts [5, 6, 7, 8].

Given that the variability in speech signals is larger than that of
the text inputs, and also the fact that recent text-based embeddings
such as BERT [9] achieve state-of the art performance in NLP tasks,
the performance of text based SLU systems are usually better than
corresponding speech based systems. To improve the performance
of speech-only based systems, it would therefore be useful to uti-
lize the complementary information present in text based represen-
tations. For many training approaches, although parallel speech and
text data would be required to integrate such information, with mul-
tiview based techniques we can train systems with non-parallel data.
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Fig. 1: Multiview training for SLU systems

Systems trained in this fashion also have an advantage of being able
to use any one of the two modalities at test time.

In this work, we focus on two goals for learning SLU systems
with non-parallel data using speech-only dialog act recognition as
an example task. First, we propose a multimodal (speech and text)
approach for dialog act recognition based on a multiview training
approach. In many practical scenarios, we have large amounts of
external text data but limited amounts of parallel data with the corre-
sponding text and speech for dialog act recognition. Therefore, our
first goal is to show how we can improve speech-only performance
by incorporating text information during training, especially in the
non-parallel text case in the multiview approach. This problem is
tackled by using a multiview system shown in Fig. 1 where we try to
tie the speech and text encodings using a shared classifier. Second,
if we are given an ASR system during training time, we try to iden-
tify the best way of utilizing information in the ASR model to train
a speech-based dialog act recognition system.

Rest of the paper is organized as follows: We first review prior
work and contrast them with our contributions in this work. In Sec-
tion 3, we give an overview of the proposed multiview system. Next,
we describe the experimental setups in detail and present our results.
In Section 5, we conclude the paper by summarizing this work.

2. RELATION TO PRIOR WORK

Dialog act recognition is a form of utterance classification in which
each utterance is an action [10], and the label encodes the type of ac-
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tion, e.g. acceptance, appreciation, open-question, negative answer,
thanking, etc. Early systems for dialog act recognition usually ex-
tract lexical, prosodic, or word n-gram features, and use statistical
modeling techniques such as hidden Markov models [11] to classify
the features. Alternatively, CRFs [1] or SVMs [2] are used to clas-
sify the representations obtained from ASR output lattices. Recently,
neural network based approaches have also been used for this task.
Most of these works only focus on classification of the text rather
than the corresponding speech signal. Our goal in this work, how-
ever, is to perform recognition directly on speech rather than text.
There are also NLP studies that focus on text-based SLU which are
usually based on classifying word representations. For example, in
[12], 1-hot vectors or embeddings such as word2vec [13] are used for
SLU. Recently, more powerful embeddings such as BERT embed-
dings [9] are used for joint intent classification and slot-filling [14].

End-to-end (E2E) approaches for spoken language understand-
ing (SLU) include [5, 6, 7, 8]. Most of these approach require
large amounts of labeled speech data to achieve good performance.
In [5], authors attempt to predict intent labels directly from log-
mel features. Although the speech-only accuracy is lower than a
cascaded ASR+SLU system performance, the ASR+SLU degrades
when tested with ASR based text. In [15], the authors aim at
finding compact speech representations instead of using acoustic
features directly to improve speech-only SLU. An encoder-decoder
framework is used in [6], where the decoder is conditioned on the
audio transcript. The authors conclude that having an intermediate
text representation performs better than simply classifying acous-
tic features without any constraint. In our experiments, we also
make similar observations and therefore use a text-based classifier
pretraining to guide a subsequent speech-only training.

None of the mentioned studies tackle the problem of having non-
parallel text and speech. In [7], an E2E approach for slot filling is
introduced; because of data scarcity, the authors pre-train the system
as an ASR system, then adapt it to the tasks of named entity recog-
nition and slot-filling using small parallel corpora. Another transfer
learning approach is used in [8] where the authors first train a word
recognizer and use it as a feature extractor or fine-tune those layers
on the slot-filling task. Although the word recognizer and the SLU
classifier can be trained on different datasets, the recognition system
still requires large amounts of parallel speech and text. In our ASR
embedding based experiments, we use a similar idea but our features
are extracted at an earlier layer rather than the pre-softmax layer.
In [16], a cascaded approach is used where grapheme posteriors are
generated from speech features and then the posterior features are
classified. Similar to the previous method, although the graphemic
part can be separately trained on an ASR corpus, and the SLU part
on a text based dataset, this model still requires large amounts of
parallel data.

As mentioned above, the primary contribution of the proposed
speech-to-dialog act detection system is the handling of non-parallel
speech and text data for training using a multiview architecture. A
brief review of various multiview training approaches is presented
in [17]. A more recent method for multiview training, namely deep
canonical correlation analysis, is proposed in [18]. In [19], a shared
decoder is used for multiview learning. However, to our knowledge,
this work is the first study that uses multiview learning for SLU.

3. MULTIVIEW TRAINING

As observed in earlier studies, achieving good performance in a
speech-only E2E SLU is difficult especially with limited amounts
of data. It has also been shown that multimodal approaches usually

improve results as compared to unimodal systems [20, 21]. When la-
beled text data is available for a task, we therefore hypothesize that
it will be useful to improve the speech-based system.

One direct way of utilizing two modalities is to append the fea-
tures in the system either at the input or at an intermediate level.
However, training such a system requires parallel data correspond-
ing to the same sample both at training and test time but especially
during test time, we do not have access to text data for speech-based
dialog act recognition and it is therefore not usable if, during test
time, we do not have access to text.

To handle the non-parallel data case, we propose a multiview
learning technique which consists of two unimodal branches which
are coupled. The unimodal systems take either text or speech as
input and produce dialog act labels. They consist of an encoder and
a classifier. In this work, we used BERT [9] embeddings upon their
recent success as text features and MFCCs or ASR-derived acoustic
embeddings as speech features to the unimodal systems.

Our proposed model shown in Fig. 1, processes speech and
text information separately using two branches. We try to force the
learned embeddings to be similar by using a shared classifier on both
branches. The system can be thought of as an inverted Siamese net-
work because of the shared classification parts in the two branches.
This structure allows us to partially train the model using one modal-
ity without parallel speech and text data. This model is also practical
as it allows to use speech data during test time.

Training of the multiview model is summarized in Algorithm 1.
We start with training the encoder and classifier with the rich-
resource (text) modality. Then we freeze the classifier and train
the encoder on the other modality (speech) and in the final step
we fine-tune both branches using parallel data while still sharing
the classifier between the two branches. If there is no parallel data
available, we skip the fine-tuning step. At the end, we report the
speech branch accuracy.

Algorithm 1 Training steps of the multiview system

Input: Labeled text-only, speech-only and parallel data
Output: Dialog act labels per utterance and overall accuracy

1: Train the text branch using text-only data

2: Freeze the classifier

3: Train the speech encoder with fixed classifier on speech-only
data
if parallel data exists, then

Fine-tune the encoders and the classifier on parallel data

end if
Test the speech branch alone
return Speech branch accuracy

e

4. EXPERIMENTS AND RESULTS

Experiments are performed on the Switchboard Dialog Act Corpus
(SWDA) [22, 23]. The labels in the dataset are originally associated
with text rather than speech. To use both speech and text modal-
ities, we first create a matching speech corpus by finding the cor-
responding speech segments from the original Switchboard dataset
based on forced alignments. We simulated the non-parallel setting
by splitting the training data into text-only, speech-only and parallel
portions where the amounts of total training, heldout and test sets are
determined based on the division of [11].

In the first set of experiments, we used MFCCs with delta and
double delta features as speech input. For text input, we extracted
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Fig. 2: Classification accuracy versus the amount of non-parallel
(NP) speech data when inputs are MFCCs

BERT embeddings [9] from a pretrained model on the true tran-
scripts.

In multiview systems, the speech encoder consists of 3 bidi-
rectional LSTM (BLSTM) layers each of size 128 followed by 2
fully-connected layers of size 64. The text encoder consists of
2 BLSTM layers each with 128 units followed by a single fully-
connected layer. In both branches transition from the BLSTM layer
to the fully-connected layers is achieved by averaging over time.
The classifier has 3 fully-connected layers with rectified linear unit
nonlinearity.

Fig. 2 compares the classification accuracies of four speech-only
systems depending on the amount of non-parallel (NP) speech data
used in training. The baseline is the case where we train the speech
branch on low amounts of NP speech data (NP speech). Next, we
combine the NP speech data with the speech portion of the paral-
lel (P) data and train the speech branch on that set (NP+P speech).
As the amount of data is larger in this situation, we achieve higher
accuracy than the baseline. In multiview training, we first train the
rich-resource text branch with NP data. We then freeze the classifier
and train speech encoder on non-parallel speech data (“Speech after
text”, corresponds to the model at the end of Step 3 in Algorithm 1).
As seen from the figure, pretraining the classifier on text and then
learning the speech encoder on NP data performs better than train-
ing the speech model on NP+P data. We then fine-tune both text
and speech branches using the limited amount of parallel text and
speech (“Speech after parallel”, corresponds to the model at the end
of Step 5 in Algorithm 1). For the cases where we have more than 30
hours of speech, fine-tuning step does not bring any benefit. How-
ever, when we have less than 30 hours of speech, fine-tuning with
parallel data improves the accuracy as compared to “Speech after
text”. In the fine-tuning stage we adjust both the encoders and the
classifier whereas in “Speech after text”, we only learn the encoder
with classifier fixed.

Since multiview system allows us to test the system using uni-
modal data, we also report the text-only performance of the systems.
Table 1 shows the classification accuracy of both speech and text
branch after all training steps. The speech accuracies in the table cor-
respond to “Speech after parallel” curve in Fig. 2. Although training
is performed on true transcript text, in practical scenarios we usu-
ally do not have the true text during test time but only ASR outputs.
Therefore, we also show the results of testing the text branch with
ASR-based text. We see how the mismatch between noisy and clean
text affects the classification accuracy. We see that although true-text
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Table 1: Amount of non-parallel data (hr) to pretrain the branches
and the accuracy of the text-only, speech-only and ASR-text based
testing of the multiview model for the MFCC-based setup

Training condition (in hr) Test Accuracy

Text | Speech | Parallel Text | Speech || ASR-text
60 60 14.5 || 0.675 | 0.547 0.541
70 50 145 || 0.685 | 0.549 0.548
80 40 14.5 || 0.679 | 0.526 0.552
90 30 14.5 || 0.673 | 0.533 0.539
100 20 14.5 || 0.677 | 0.523 0.546
110 10 14.5 || 0.654 | 0.512 0.536

based testing gives above 65% performance, ASR-text based testing
lowers the accuracy to that of the speech-only testing. Another dis-
advantage of ASR based testing is that it requires a language model
in addition to an acoustic model whereas in the speech-only E2E
classification, all we need is the acoustic features.

When we compare “NP speech” and “Speech after parallel” se-
tups, for the low-resource case, we get between 5-40% relative im-
provement in accuracy after fine-tuning with parallel data. The gain
reaches to 40% (0.363 to 0.512) when we have only 10 hours of
non-parallel speech at the beginning.

For the conditions achieving 40% relative improvement, which
is the 10 hours of non-parallel speech scenario, we plot the Euclidean
distance between the text and speech embeddings to see if the pro-
posed approach can tie them together using a shared classifier. If the
hypothesis holds, then the distances after training should be smaller
than the distance of the unimodal systems. As shown in Fig. 3, af-
ter applying either “Speech after text” or the “Speech after parallel”
method, we get smaller distances between embeddings as they are
mostly below the diagonal, e.g. the point (10, 4) implies that af-
ter multiview approach, the Euclidean distance between the average
speech embedding and average text embedding for an utterance is
reduced from 10 to 4. The comparison between both methods do not
show a significant difference as shown in Fig. 2 implying that the
main contribution comes from “Speech after text”, i.e. pretraining
the classifier with text rather than the fine-tuning stage.

These results confirm several hypotheses. First, simple acoustic
features are harder to classify than text embeddings such as BERT.
Second, although text-based system works well if tested on true text,
in practice we do not have access to that information and hence
need to resort to ASR-based noisy text which deteriorates the re-
sults to the level of speech-only testing. Third, having non-parallel
text data can be used to guide learning speech encodings and it helps
improving speech-only performance. Although we do not have the
state of the art results on the text branch [24], we can still improve
the speech-only performance in the proposed multiview architecture.
Our speech-only performance on the other hand achieves better than
the best speech-only system reported in [11], which is at 38.9%.

Another way of increasing the performance is to improve the
speech features fed into the system. Note that text representations
come from a pretrained BERT model however in the first set of ex-
periments, speech features were MFCCs. Even though ASR text-
based testing performs poorly, in the cases where we have access to
a neural network based acoustic model, we can utilize it as a fea-
ture extractor. In the second set of experiments, we took an off-
the-shelf ASR model trained on the Switchboard dataset [25], and
extracted speech features from the LSTM output of that acoustic
model. We then repeated the first set of experiments using these
ASR-based speech features. As shown in Fig. 4, when we have
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Fig. 3: Distance comparison between text and speech embeddings
before and after multiview training (each point represents an utter-
ance)

sufficient amount of speech data, the unimodal speech-only train-
ing achieves above 60% accuracy. Our observations from the first
experiments still hold for this case, i.e. text-based pretraining of the
classifier and then learning the speech encoder (“‘Speech after text”)
helps improving the performance and in the very low-resource case
(Iess than 30 hours), additional fine-tuning (Speech after parallel)
with the parallel data helps further increasing the accuracy.

In Table 2, we report the true text and ASR-text based test-
ing of the multiview model for the second set of experiments per-
formed on ASR-based speech embeddings. In terms of the results,
the major difference between the previous experiment and the cur-
rent one is that here, speech-only results approach to the true text
based performance and they are significantly better than ASR-text
based testing. This shows that we can achieve better performance
than an ASR+NLP system with speech-only training when ASR-
based speech embeddings are used.

When we compare “NP speech” and “Speech after parallel”
setups, for the low-resource case, we get between 5-20% relative
improvement in accuracy after fine-tuning with parallel data. The
largest gain is observed when we have 10 hours of non-parallel
speech data (0.516 to 0.620). Although the relative improvements
are not as large as the first experiments, the absolute accuracies are
much better in this case. If we compare ASR text-based testing to
the speech-only testing case, we achieve about 15% improvement in
accuracy (roughly from 0.55 to 0.63).

5. CONCLUSIONS

In this work, we have proposed a technique to train SLU task with
non-parallel speech and text data, using speech-only dialog act
recognition as an example. We showed how classification accuracy
can be improved using non-parallel data. To handle the lack of
parallel data, we proposed a multiview approach that consists of two
branches each of which contains an encoder and a classifier. By
sharing the classifier between two branches, we constrain the encod-
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Fig. 4: Classification accuracy versus the amount of non-parallel
(NP) speech data when inputs are ASR based embeddings

Table 2: Amount of non-parallel data (hr) to pretrain the branches
and the accuracy of the text-only, speech-only and ASR-text based
testing of the multiview model for the ASR embedding-based setup

Training condition (in hr) Test Accuracy
Text | Speech | Parallel Text | Speech || ASR-text
60 60 145 || 0.677 | 0.630 0.549
70 50 14.5 || 0.688 | 0.640 0.549
80 40 145 || 0.672 | 0.628 0.535
90 30 145 || 0.681 | 0.626 0.558
100 20 145 || 0.682 | 0.627 0.556
110 10 145 || 0.672 | 0.620 0.543

ings from text and speech to be similar. One of the main advantages
of this architecture is that it allows testing the system in a unimodal
fashion. In our experiments on the SWDA corpus, we showed that
text-based pretraining of the classifier in the multiview system helps
improving speech-only classification accuracy (up to 32%) and also
that additional fine-tuning on parallel data helps further (up to 40%)
in the cases where we have less than 30 hours of speech. Since the
text branch uses BERT features from a pretrained model, we also
experimented with the case where the speech features come from
a pretrained ASR model. In these experiments, speech accuracy
approached to that of the text and also performed significantly better
than ASR-text based testing of the text branch (up to 15%).

Dialog act classification is highly context dependent, as simi-
lar words can imply different acts depending on the history of the
conversation. Therefore, one future goal is to incorporate context
information into training. Another direction could be to investigate
other multiview learning techniques such as deep canonical correla-
tion analysis in this framework.
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