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Abstract

Background: Robust Artificial-neural-networks for k-space Interpolation (RAKI) is a recently
proposed deep-learning-based reconstruction algorithm for parallel imaging. Its main premise is
to perform k-space interpolation using convolutional neural networks (CNNs) trained on subject-
specific autocalibration signal (ACS) data. Since training is performed individually for each
subject, the reconstruction time is longer than approaches that pre-train on databases. In this
study, we sought to reduce the computational time of RAKI.

Methods: RAKI was implemented using CPU multi-processing and process pooling to
maximize the utility of GPU resources. We also proposed an alternative CNN architecture that
interpolates all output channels jointly for specific skipped k-space lines. This new architecture
was compared to the original CNN architecture in RAKI, as well as to GRAPPA in phantom,
brain and knee MRI datasets, both qualitatively and quantitatively.

Results: The optimized GPU implementations were approximately 2-to-5-fold faster than a
simple GPU implementation. The new CNN architecture further improved the computational
time by 4-to-5-fold compared to the optimized GPU implementation using the original RAKI
CNN architecture. It also provided significant improvement over GRAPPA both visually and
quantitatively, although it performed slightly worse than the original RAKI CNN architecture.
Conclusions: The proposed implementations of RAKI bring the computational time towards
clinically acceptable ranges. The new CNN architecture yields faster training, albeit at a slight
performance loss, which may be acceptable for faster visualization in some settings.

Key words: accelerated imaging; image reconstruction; machine learning; deep learning; neural

networks; GPU implementation



Introduction

Long acquisition times remain a major drawback in MRI, creating a strong need for scan time
acceleration. Parallel imaging is the most commonly used acceleration strategy in the clinic,
where the local sensitivities of receiver coils are used for reconstruction [1-3]. One of the most
utilized parallel imaging approaches is generalized autocalibrating partially parallel acquisition
(GRAPPA), which estimates shift-invariant convolutional kernels from autocalibration signal

(ACS) data to interpolate missing k-space lines from acquired ones [3].

Recently, there has been an interest in using machine learning techniques for accelerating MRI.
These methods aim to generate more advanced regularizers by training on large amounts of
datasets, with highly promising initial results [4-17]. Training in this setting requires large
databases of MR images, and these methods do not exhibit any adaptation in a patient or scan-
specific manner. An alternative recently proposed strategy, called robust artificial-neural-
networks for k-space interpolation (RAKI) uses machine learning in a scan-specific manner,
without the need for training databases [18]. RAKI interpolates missing k-space lines from
acquired ones using several convolutional neural networks (CNNs) trained on subject-specific
ACS data. The use of CNNs in RAKI was shown to improve the reconstruction quality over

GRAPPA at high acceleration rates both visually and quantitatively [18].

In the original implementation of RAKI, CNNs were trained using a gradient descent approach
with momentum [19] and central processing unit (CPU) processing. However, training multiple
CNNs for each subject in this manner is a time-consuming task, leading to total reconstruction

times of up to an hour, hindering its translational utility.

In this study, we sought to speed up RAKI reconstruction towards clinically acceptable
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computational times. We used a graphical processing unit (GPU) with CPU multi-processing to
maximize the number of simultaneous training tasks, and proposed an alternative CNN
architecture to reduce the number of required CNNs in the reconstruction and improve memory
efficiency. Performance of different computational acceleration strategies and their combinations
were compared in terms of run-time and reconstruction quality, using high-resolution phantom,

brain and knee data.

Materials and Methods

Overview of RAKI Reconstruction

RAKI non-linearly estimates the missing k-space lines in a uniformly undersampled acquisition
based on the acquired data, using multiple CNNs consisting of convolutional and non-linear
activation layers. The reconstruction is similar to GRAPPA, but uses CNNs instead of linear
convolutional kernels for interpolation in k-space [18]. For processing, the complex k-space is
mapped to the real field, leading to a total of 2x. input channels, where 7. is the number of coils.
LetS (kx, ky, j) denote the k-space point (kx, k) of the j channel. In RAKI, the unacquired lines

are approximated by:

{S(ky, ky — mAky,j)}

me{1,2...R —1}

< f; ({0cx = ok, by = RbyAky, 1:21,)) )
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where Ak, and Ak,, are the sampling intervals in frequency and phase encoding directions, R is
the acceleration rate, m specifies an unacquired k-space position between two acquired lines, B,

and B), are set by the size of the convolutional kernel along kx and &, directions, f; represents the



set of functions that estimate unacquired lines from acquired data, and 1: 2n, denotes indexing
across all channels. In RAKI, f; is implemented using a three-layer CNN with the following

structure [18]:
f(s) = wy *x ReLU(w, x ReLU(w4 * S)) (2)

where * denotes convolution; wq, W, w3 are linear convolution kernels, of sizes by X bf X
2n. xny , bf Xb) xny xn,, and b x by Xn, X (R — 1) respectively, and ReLU(x) =
max(x,0). Thus, each CNN has (R — 1) outputs, corresponding to the missing lines between
uniformly undersampled k-space lines for a given channel. This approach necessitates a total of
2n. CNNs [18]. In the learning phase of the algorithm, the convolutional kernels w4, w,, w3 are

estimated by minimizing mean square error loss function over the ACS region.

GPU Implementation using Parallel Multi-Channel Processing

RAKI was implemented on GPU using Tensorflow [20]. For optimizer, the gradient descent with
momentum used in [18] utilizes a fixed gradient step, which leads to slow convergence [21].
Thus, Adaptive Moment Estimation (Adam) [22], which controls learning rates of all parameters
by an exponential moving average window, as well as the first and second moments of historical
gradients, was utilized in this study. This approach will be referred to as the naive GPU

implementation [21].

Further optimization of the GPU implementation was achieved as follows. Since RAKI trains 27,
CNNs during a single reconstruction, where n. is typically 30 or 32, and these CNNs are
designed in a very compact structure that consist of only three convolutional layers and two

activations, each individual training task in RAKI requires only limited GPU resources.



Additionally, the subject-specific ACS data is comparably small compared to memory resources.
Thus, since the training across channels is performed independently, multiple training tasks were
parallelized to increase GPU utilization, and to provide speed up compared to sequential training
procedures. For full GPU utilization, multiple CPU processes were launched simultaneously with
each process allocating an individual training task on the GPU. For the CNN parameters used in
this study, up to 16-20 CPU processes were concurrently executed to maintain peak GPU
utilization. This CPU multi-processing allowed the GPU to commence processing of multiple
calls at the same time. Furthermore, process pooling was utilized to avoid GPU overloading,

while optimizing GPU resource usage.

Line-by-Line CNN Architecture for Improved Memory Utilization

In the implementation in [18], each CNN estimated all the unacquired lines at a given coil, which
will be referred to as coil-by-coil (CBC) architecture. Consequently, 2n. CNNs needed to be
trained during reconstruction. However, since training tasks are independent, each training task
requires CPU-GPU communication proportional to the number of training tasks. Furthermore,
distributing GPU resources into a high number of tasks, for instance 2n., reduces available
resources for each training task, leading to performance decrease. Therefore, in this study, we
investigated an alternative architecture that improves the GPU memory usage. This architecture,
which will be referred to as line-by-line (LBL), utilizes non-linear interpolation with CNNs, but
each CNN estimates the unacquired lines for all channels for a given missing position m, as

follows:

S(ky, ky — mAk,,1:2n,)



~ fn (S(kx = bybky, ky — Ry Ak, 1:2n.) ) (3)
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where 1: 2n. denotes indexing across all channels. Note the unacquired data are estimated by a
CNN indexed by m, which outputs estimates in position m for all channels. Hence, this
architecture reduces the CNN amount from 2n, to R — 1. For instance, for R = 5, and n. = 32, this
leads to a 16-fold reduction. Note the kernel size of the third layer has been correspondingly
changed to b X bg X n, X 2n. for these CNNs, while the parameters of the other layers were
kept fixed to maintain a fair comparison between the two architectures. The main advantage of
this architecture from a computational perspective is the reduction of the number of CNNs that
are used in reconstruction, which in turn reduces the data transfer between CPU and GPU, while

allowing more GPU resources to be assigned to each training task.

Implementation Details

GPU-accelerated RAKI reconstruction was implemented using Tensorflow 1.7.0 and python
3.6.2, supported by CUDA 8.0 and CuDNN 7.0.5, on Linux kernel 3.10.0. The Python
environment was created under Anaconda 5.1.0. All programs were run on a server with two
Intel E5-2643 CPUs (6 cores each, 3.7 GHz), 256 GB memory and an NVIDIA Tesla V100 GPU
(32 GB memory) with single precision. CPU-based RAKI reconstruction was implemented using
Matlab 2016a and MatConvNet, as described in [18]. The RAKI networks shared the following
parameters by = 5, bf =2,n,=32; by =1, b%’ =1,n,=8; by =3, bé’ = 2. Prior to training,
complex k-space data were mapped into real field, and then scaled into the range of [0, 0.015].
Parameters of Adam optimizer were set as: @ = 0.001, £ = 0.9, £> = 0.999, ¢ = 10, Maximum
training epoch was been chosen as 1000, and the training will be stopped prior than it if the

normalized change of loss within 100 epochs is less than 0.0001. The multi-channel
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reconstruction result was combined by root-of-sum-of-squares. As weights were randomly
initiated in CNN training, which affected the total run time, each run was repeated 10 times, and
the reconstruction times were reported as mean + standard deviation. GRAPPA reconstruction

with a 5x4 kernel was also implemented for comparison with RAKI reconstructions.

Phantom Imaging

Phantom imaging was performed on a 3T Siemens Magnetom Prisma (Siemens Healthcare,
Erlangen, Germany) system using a 32-channel receiver head coil-array and a head-shaped
resolution phantom. A 2D multi-slice spoiled gradient recalled echo (GRE) sequence with the
following parameters was used: FOV = 220x220 mm?, in-plane resolution = 0.7x0.7 mm?,
matrix size = 320%320, slice thickness = 4 mm, TR/TE = 500 ms/15 ms, flip angle = 70°, 27
slices, bandwidth = 360 Hz/pixel. Retrospective sub-sampling was performed at R = 3, 4, 5, 6

with an ACS region of 40 lines at the center. Normalized MSE (NMSE) with respect to the fully

sampled data was used to compare the accelerated RAKI implementations.

Brain Imaging

Brain imaging was performed on the same 3T system and on a 7T Siemens Magnex Scientific
(Siemens Healthcare, Erlangen, Germany) system using a 32-channel receiver head coil-array.
The imaging protocols were approved by the University of Minnesota institutional review board,
and written informed consent was obtained from all participants before each examination for this
HIPAA-compliant study. For 3T imaging, a Ti-weighted 3D-MPRAGE sequence was acquired
in a healthy subject (male, 41 years) with the following parameters: FOV = 224x224x179 mm?,
resolution = 0.7x0.7x0.7 mm?, matrix size = 320x320, TR/TE = 2400 ms/2.2 ms, flip angle = 8°,

bandwidth = 210 Hz/pixel, inversion time = 1000 ms, ACS lines = 40, with iPAT = 2 and 5.



Furthermore, the R = 2 acquisition was also retrospectively undersampled to R =4 and 6. For 7T
imaging, 3D-MPRAGE was acquired in a healthy volunteer (male, 43 years) with the following
parameters: FOV = 230x230x154 mm?, resolution = 0.6x0.6x0.6 mm?, TR/TE = 3100 ms/3.5
ms, flip angle = 6°, bandwidth = 140 Hz/pixel, inversion time = 1500 ms, ACS lines = 40, with R
=3, 4, 5, 6. Additionally, two averages were acquired for R = 5 and 6 data to mitigate the SNR
loss from undersampling [18]. The k-space data was inverse Fourier transformed along the slice
direction for all datasets, and a central slice was processed. For these acquisitions, where a fully-

sampled reference was not available, reconstruction quality was assessed qualitatively.

Knee Imaging

Knee MRI data were obtained from the NYU fastMRI initiative database [23]. Experiments were
performed on proton density weighted images with fat suppression, which was acquired using a
15-channel knee coil. Scan parameters of these datasets are as follows: echo train length = 4,
matrix size = 320 x 320, TR/TE = 2870ms/33ms, in-plane resolution = 0.5x0.5mm?, slice
thickness = 3mm, 36 slices, no gap between slices. These fully-sampled datasets were
retrospectively undersampled with R =2, 3 and 4, and 40 lines in the center of k-space were used
as ACS data. Taking advantage of the copious amounts of data in this database, reconstructions
were performed on 190 randomly selected slices across different subjects. Structural similarity
index (SSIM), as well as NMSE with respect to fully sampled data was used to quantitatively
measure the reconstruction quality. SSIM and NMSE performance with respect to the fully-
sampled data was statistically compared using the Wilcoxon signed rank test among the two
GPU implementations and GRAPPA over all the 190 instance for each acceleration rate. A type-

I error of 0.05 was used to consider statistical significance.



Results and Discussion

Phantom Imaging

Reconstruction run times, including the learning phase, are listed in Table 1. Using the proposed
GPU implementation with CPU multi-processing, 2.9 to 4.2-fold speed-up compared to naive
GPU implementation was achieved for different acceleration rates, with a maximum of 4.2-fold
speed-up obtained for R = 3. Additional speed-up was achieved with the proposed LBL strategy,
resulting in a 13.2 to 19.9-fold acceleration, where the maximum speed-up was again achieved
for R = 3. Fig. 1 shows the reconstruction results using GRAPPA, as well as the proposed RAKI
GPU implementations with both CBC and LBL CNN architectures for different rates. The LBL
GPU implementation uses a different architecture, but leads to virtually identical image quality
for the phantom, while providing approximately 5-fold speed-up in computational time over the
CBC implementation. This visual assessment is consistent with the NMSE values for this slice,
0.0010, 0.0018, 0.0033, 0.0069 for the RAKI GPU implementation with CBC architecture at R =
3 to 6 respectively, and NMSEs of 0.0011, 0.0017, 0.0034, 0.0072 for the LBL architecture for R
= 3 to 6 respectively. Both CBC and LBL RAKI showed advantage over GRAPPA

reconstruction, which had NMSEs of 0.0011, 0.0019, 0.0035, 0.0088 for R = 3 to 6, respectively.

Fig 1. Reconstruction results of phantom imaging. Reconstruction was using the proposed
GPU implementations with CPU multi-processing using the conventional coil-by-coil (CBC) and
the novel line-by-line (LBL) architectures, and GRAPPA using 5 by 4 kernel for different
acceleration rates. Different reconstructions for the same acceleration rate exhibit similar image

quality and NMSE values. However, the optimized GPU-CBC strategy leads to 2.9 to 4.2-fold
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speed-ups compared to a naive GPU implementation, while the optimized GPU-LBL strategy

has further computational acceleration from 13.2 to 19.9-fold.

Table 1. Run-times of all RAKI implementations.

Speed
R CPU-CBC (s) Naive GPU(s) GPU-CBC (s) Speed-up GPU-LBL (s) -up
3 8198+43.8 159.4 + 1.3 37.7+£0.2 4.2 8.0 +0.1 19.9
Phantom
4 7711+14.4 155.2 + 6.1 42.0+0.4 3.7 9.1+0.1 17.1
(Fig. 1)
5 6931+19.2 147.1 +£ 6.2 47.5+0.3 3.1 10.9 £0.2 13.5
6 5900 +30.6 158.4+ 2.7 54.3+1.1 2.9 12.1 £0.0 13.2
2 7583 +12.0 155.3+2.3 32.8+0.2 4.9 6.9 £ 0.1 22.2
Brain 3T 4 7589 +13.8 155.7 £ 2.2 404 +0.2 3.9 9.5+0.1 16.4
(Fig.2) 5 6840+19.2 157.3+2.4 46.0 = 0.6 3.4 11.0 £ 0.2 14.3
6 6055+11.4 154.8 £ 1.6 51.8+0.5 3.0 12.6 £ 0.4 12.3
3 9079+13.2 157.7+2.1 66.0 3.8 2.4 8.5+0.0 18.6
Brain 7T 4 8929=*12.6 168.6 = 2.2 73.4+5.6 2.3 10.1 £0.1 16.7
(Fig.3) 5 8027+13.8 165.0 1.9 67.2+1.1 2.5 11.4+0.3 14.5
6 7413+29.4 168.9 +2.2 74.9 +£2.6 2.3 12.9 £ 0.1 13.1
2 4595 +27.6 80.3+1.3 382+1.9 2.1 6.9 +0.1 11.6
Knee
3 4529+244 80.5+1.2 37.0+ 0.6 2.2 7.7+0.1 10.5
(Fig.4)
4 4044 +£34.8 78.8 £2.2 37.9+0.8 2.1 9.2 +£0.2 8.6

Running times are reported in seconds. Means and standard deviations were calculated from 10

repetitions of the algorithm, with changes due to the random initialization of the weights in
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training. CBC and LBL refers to the output structure of the CNNs used in RAKI. The speed-ups

in the table are reported with respect to the naive GPU implementation.

In-vivo Imaging

Reconstruction run times for the different in vivo datasets, as well as for different R values are
reported in Table 1. Similar to phantom imaging, 2.0 to 4.9 fold speed-ups with respect to naive
GPU implementations were achieved by using the proposed optimized GPU implementation
over the in vivo datasets. Further speed-up from 8.6 to 22.2-fold is achieved by using the GPU

implementation with the proposed LBL CNN architecture.

Fig 2 depicts the reconstruction results for a slice of the high-resolution 3T MPRAGE
acquisition. There is a minor increase in noise amplification with the proposed fast GPU RAKI
implementation with the LBL architecture as compared to the conventional CBC architecture at
R =5 and 6, while there are no visible differences for R = 2, 4. However, LBL RAKI still holds
an advantage over GRAPPA in terms of visual quality and noise amplification, especially for R =
5, 6. Furthermore, the use of LBL architecture enabled computational speed-ups of 4.1 to 4.5-

fold with respect to CBC architecture.

Fig 2. Reconstruction results of a central slice of MPRAGE data at 3T. The MPRAGE data
was acquired at 3T with 0.7 mm isotropic resolution, using the proposed GPU implementations
with CPU multi-processing using the conventional coil-by-coil (CBC) and the novel line-by-line
(LBL) architectures for different acceleration rates. For R = 2 and 4, all reconstructions are
visibly similar, but compared to a naive GPU implementation, , the proposed GPU strategies lead
to computational speed-ups of up to 4.9 and 22.2-fold using the CBC and LBL architectures,

respectively. For R = 5 and 6, slight noise amplification is observed for the RAKI-LBL
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implementation compared to the RAKI-CBC implementation. However, RAKI-LBL is still
advantageous compared to GRAPPA in terms of noise resilience. The proposed GPU
implementations of RAKI-CBC and RAKI-LBL led to 3.4 and 14.3-fold speed-ups over the

naive GPU implementation for these acceleration rates, respectively

Fig 3 depicts a reconstructed slice for 7T MPRAGE acquisition at 0.6mm isotropic resolution.
Similar reconstruction characteristics are observed in this scenario as well. Minor noise
amplification is observed with the proposed fast GPU RAKI implementation with the LBL
architecture compared to the CBC architecture, but only at the higher acceleration rates of 5 and
6. Up to approximately 8-fold acceleration is achieved with the LBL GPU implementation, when
compared to the CBC GPU approach for this dataset. RAKI reconstructions with both CBC and

LBL architectures show better noise resilience over GRAPPA.

Fig 3. Reconstruction results of a central slice of MPRAGE data at 7T. The MPRAGE data
was acquired at 7T with 0.6 mm isotropic resolution, using the proposed GPU implementations
with CPU multi-processing using the conventional coil-by-coil (CBC) and the novel line-by-line
(LBL) architectures for different acceleration rates. R = 5 and 6 data were acquired with two
averages for reduced SNR penalty. For R = 3 and 4, reconstructions are visibly similar.
Compared to the naive GPU implementation, with the GPU strategies leading to computational
speed-ups of up to 2.4 and 18.6-fold using the CBC and LBL architectures, respectively. Slight
noise amplification with the RAKI-LBL approach over the RAKI-CBC approaches are visible
for R = 5 and 6. However, RAKI-LBL offers better noise resilience over GRAPPA. GPU
implementation of RAKI-CBC and RAKI-LBL led to 2.5 and 14.5-fold computational speed-ups

over the naive GPU implementation for these rates, respectively.

Fig 4 displays reconstructions of proton density weighted knee images with fat suppression from
13



the fastMRI dataset [23]. For R = 2, no visual differences are observed among the three
reconstruction methods, which is consistent with SSIM values of 0.8543, 0.8643 and 0.8584, for
GRAPPA, RAKI GPU-CBC and RAKI GPU-LBL respectively. For R = 3, both CBC and LBL
RAKI show advantage over GRAPPA in terms of reconstruction noise visually, while CBC and
LBL RAKI methods are visually similar. The SSIM values for GRAPPA, CBC and LBL are
0.7373, 0.7988 and 0.7807 respectively, consistent with visual observations. For R = 4,
GRAPPA suffers from even higher reconstruction noise, while RAKI offers higher
reconstruction fidelity for both CBC and LBL implementations, with minor improvements with
CBC over LBL. The SSIM values are 0.5955, 0.7534 and 0.7382 for GRAPPA, CBC and LBL

respectively.

Fig 4. Reconstruction results of a proton density weighted knee image with fat suppression.
Fully sampled data was provided by fastMRI dataset [23]. Reconstructions using GRAPPA, and
proposed GPU implementations CBC and LBL are shown. For R = 2 case there is no visible
difference between reconstruction results. For R = 3, RAKI shows advantages in noise resilience
compared to GRAPPA. Both CBC and LBL architectures lead to less noise than GRAPPA. This
advantage is even more apparent at R = 4, where RAKI reconstructions show considerably lower
noise level than GRAPPA. For both R = 3 and 4 cases, RAKI-CBC and RAKI-LBL have no

substantial visual difference. Quantitative SSIM and NMSE metrics confirm these observations.

Fig 5 summarizes the mean and standard deviation of the SSIM and NMSE metrics for
GRAPPA, and CBC and LBL RAKI over the 190 knee MRI datasets from the fastMRI database
[23]. CBC RAKI performs best at all rates, while LBL RAKI also outperforms GRAPPA at all
rates, with 0.5%, 5.9% and 24.0% SSIM improvement at R = 2, 3 and 4. The relative differences

between CBC RAKI and LBL RAKI were smaller for SSIM at 0.7%, 2.3% and 2.0% at R =2, 3
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and 4. Similar observations are made for the NMSE metric, where LBL RAKI outperforms
GRAPPA by 7.8%, 26.9% and 54.3% at R = 2, 3, 4, while the relative difference between CBC
RAKI and GRAPPA 1is 27.3%, 36.7% and 57.1% at R = 2, 3, 4. All the differences for SSIM and

NMSE were statistically significant at all rates (P < 0.05).

Fig 5. Mean structural similarity index (SSIM) and normalized mean squared error
(NMSE) for different methods. SSIM and NMSE of GRAPPA, RAKI-CBC and RAKI-LBL
for 190 proton density weighted knee data with fat suppression from the fastMRI dataset [23].
Error bars represent standard deviation across datasets. SSIM results showing both RAKI-CBC
and RAKI-LBL offers better image quality than GRAPPA, with 24.0% improvement at R = 4.
Similar observations apply to NMSE. All differences between methods and across rates were

statistically significant (P < 0.05), which are marked with *.

Discussion

In this study, we proposed various approaches to accelerate RAKI reconstruction. Individual
CNN training was accelerated by GPU-aided implementation. Multiple CNNs for RAKI
reconstruction were trained in a parallel manner based on CPU multi-processing and process
pooling techniques, in order to maximize GPU utilization and achieve further acceleration.
Additionally, an LBL CNN architecture for RAKI was proposed to reduce the number of CNNs
required for reconstruction, which afforded additional speed-up with no significant changes in
image quality. These efforts reduced RAKI run-time from hour-long CPU processing towards

clinically acceptable range of seconds.

Acceleration of deep learning techniques using massive parallelization is an active area of
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research. To date, most studies focused on the case where one large training task is performed at
a time [24, 25]. The computational acceleration need in RAKI is different since multiple compact
CNNs are trained independently. Due to the comparably small size of the individual CNNs,
powerful GPUs are not at full use if these networks are trained subsequently. Hence, our
approach was to parallelize the training on a single GPU without compromising the performance
of each individual training. This strategy of allocating multiple training tasks on a single GPU

facilitated peak performance resulting in faster RAKI reconstructions.

Further computational speed-up was achieved by reducing the number of CNNs required for a
RAKI reconstruction. Conventional RAKI requires 2n. CNNs, where each CNN corresponds to a
certain coil over the real field. In this work, we proposed an LBL network structure that outputs
reconstructions across all coils for a specific missing k-space line, in order to reduce CNN
requirement in RAKI reconstruction. This strategy significantly reduced the number of CNNs

that needed to be trained, further improving the reconstruction times.

Two different GPU implementations were investigated in this study. The first one utilized the
same CBC structure as in [18], but used GPU and CPU multi-processing. Compared to a naive
GPU implementation, using this strategy improved processing speed from several minutes to less
than a minute. Additionally, the use of fixed learning rate in the original CPU implementation
was identified as a limitation [18], which was ameliorated in this study by using a more
advanced optimization approach [21, 22]. Overall, our strategies reduced the hour-long CPU run-
time in [ 18] to seconds, while providing the best reconstruction quality, robustness, even for high
acceleration rates The LBL strategy gave further considerable speed-up, with similar
reconstruction quality at moderate acceleration rates of up to 4, although consistent but minor

noise amplification was observed for high-resolution brain imaging at high acceleration rates of
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5 and 6, while the visual differences were not substantial for the knee datasets. This indicates a
trade-off between reconstruction quality and speed-up, which may be acceptable in certain
settings, considering the additional 5 to 8-fold speed-up in computational time with this

approach.

The two CNN architectures considered in this study had the same number of layers, kernel sizes,
and number of outputs except for the last layer. This led to different numbers of parameters that
needed to be learnt. For the CBC architecture, the number of parameters is given as 640n, + 208
+ 48R for each CNN. 2n, such CNNs resulting 1280n2+ 516n, + 96Rn, parameters in total,
whereas for the LBL architecture, there were 736n, + 208 parameters for each CNN, and totally
(736n, + 208)(R - 1) parameters for the (R - 1) CNNs. Note in this study, n. = 32 for phantom
and brain imaging, and n, = 15 for knee imaging. Thus for R < 6, the CBC architecture had more
than 4-fold as many as parameters as the LBL. This suggests that the LBL architecture can
potentially support deeper CNNs with more outputs per layer. However, for a fair comparison
between the two architectures, while avoiding any additional confounding factors, both
architectures were tested with the same number of layers and other network parameters in this

study. According to our experiments, using larger kernel sizes did not improve the reconstruction

quality for either GRAPPA or RAKI.

Further acceleration may be achieved by using multi-task learning. In multi-task learning [26-
28], a single network offers multiple output utilities, by allowing partial parameter sharing
between different output branches. Aided by this mechanism, reconstruction of the whole multi-
coil image may be accomplished using a single multi-task network, rather than multiple
individual networks. This strategy facilitates overlaps between the network architectures for

multiple outputs. Thus, it has the potential to provide a more efficient reconstruction procedure
17



than existing RAKI-CBC and RAKI-LBL. Since the scope of this study is to accelerate RAKI
reconstruction proposed in [18], we have tried to keep algorithmic modification to a minimum.
However, future studies using more advanced multi-task learning models to further accelerate

the reconstruction are warranted.

For the GPU implementation, there is a non-trivial overhead due to data transfer to GPU, which
impacts the overall run-time. To quantify the effect of this overhead, we computed a data transfer
to computation ratio for the different implementations. For RAKI-CBC, this ratio was between
0.4 and 0.6, while for RAKI-LBL, the ratio was between 2.2 to 2.4. Thus, for the latter
implementation more than half of the total run-time is spent on data transfer to the GPU. Further
reduction in this overhead would be beneficial for the implementations, but are currently

unavoidable due to hardware limitations.

While RAKI enables scan-specific machine learning reconstruction, more conventional machine
learning reconstruction algorithms have also been considered in the literature. These methods
require large databases of fully-sampled images for training. Transfer learning methods have also
been proposed to partially address the need for large databases, which may not be available in all
target applications. In transfer learning, neural networks are pre-trained on an available large
database, and then fine-tuned on smaller datasets for the specific application [29, 30]. However,
these methods still require fully-sampled data for training. Thus, they may not be applicable to
scenarios, where it is infeasible to acquire such datasets, for instance for the high-resolution
whole-brain imaging considered in this paper, since the scan time would be prohibitive.
Additionally, the databases used for training with or without transfer learning may have
limitations on pathologies of interest, bringing risks in generalizability for diagnosis of rare

pathologies [31]. This latter problem is also addressed by the scan-specific nature of RAKI.
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In summary, we proposed several strategies to accelerate RAKI reconstructions in order to
facilitate translation of this scan-specific machine learning parallel imaging reconstruction to the
clinic. The original CBC RAKI reconstruction was accelerated by a factor of 2.1 to 4.9 compared
to a naive GPU implementation. Additional speed-up of up 8.6 to 22.2-fold compared to a naive
GPU implementation, was achieved using a novel LBL CNN structure in RAKI, further bringing

the computational time towards clinically acceptable range.
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