
1

Optimized Fast GPU Implementation of Robust

Artificial-neural-networks for k-space Interpolation

(RAKI) Reconstruction

Chi Zhang1,2, Seyed Amir Hossein Hosseini1,2, Sebastian Weingärtner1,2,3,

Kâmil Uǧurbil2, Steen Moeller2, Mehmet Akçakaya1,2*

1 Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States
2 Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
3 Department of Imaging Physics, Delft University of Technology, Delft, Netherlands

*Corresponding Author

E-mail: akcakaya@umn.edu (MA)

mailto:akcakaya@umn.edu

2

Abstract

Background: Robust Artificial-neural-networks for k-space Interpolation (RAKI) is a recently

proposed deep-learning-based reconstruction algorithm for parallel imaging. Its main premise is

to perform k-space interpolation using convolutional neural networks (CNNs) trained on subject-

specific autocalibration signal (ACS) data. Since training is performed individually for each

subject, the reconstruction time is longer than approaches that pre-train on databases. In this

study, we sought to reduce the computational time of RAKI.

Methods: RAKI was implemented using CPU multi-processing and process pooling to

maximize the utility of GPU resources. We also proposed an alternative CNN architecture that

interpolates all output channels jointly for specific skipped k-space lines. This new architecture

was compared to the original CNN architecture in RAKI, as well as to GRAPPA in phantom,

brain and knee MRI datasets, both qualitatively and quantitatively.

Results: The optimized GPU implementations were approximately 2-to-5-fold faster than a

simple GPU implementation. The new CNN architecture further improved the computational

time by 4-to-5-fold compared to the optimized GPU implementation using the original RAKI

CNN architecture. It also provided significant improvement over GRAPPA both visually and

quantitatively, although it performed slightly worse than the original RAKI CNN architecture.

Conclusions: The proposed implementations of RAKI bring the computational time towards

clinically acceptable ranges. The new CNN architecture yields faster training, albeit at a slight

performance loss, which may be acceptable for faster visualization in some settings.

Key words: accelerated imaging; image reconstruction; machine learning; deep learning; neural

networks; GPU implementation

3

Introduction

Long acquisition times remain a major drawback in MRI, creating a strong need for scan time

acceleration. Parallel imaging is the most commonly used acceleration strategy in the clinic,

where the local sensitivities of receiver coils are used for reconstruction [1-3]. One of the most

utilized parallel imaging approaches is generalized autocalibrating partially parallel acquisition

(GRAPPA), which estimates shift-invariant convolutional kernels from autocalibration signal

(ACS) data to interpolate missing k-space lines from acquired ones [3].

Recently, there has been an interest in using machine learning techniques for accelerating MRI.

These methods aim to generate more advanced regularizers by training on large amounts of

datasets, with highly promising initial results [4-17]. Training in this setting requires large

databases of MR images, and these methods do not exhibit any adaptation in a patient or scan-

specific manner. An alternative recently proposed strategy, called robust artificial-neural-

networks for k-space interpolation (RAKI) uses machine learning in a scan-specific manner,

without the need for training databases [18]. RAKI interpolates missing k-space lines from

acquired ones using several convolutional neural networks (CNNs) trained on subject-specific

ACS data. The use of CNNs in RAKI was shown to improve the reconstruction quality over

GRAPPA at high acceleration rates both visually and quantitatively [18].

In the original implementation of RAKI, CNNs were trained using a gradient descent approach

with momentum [19] and central processing unit (CPU) processing. However, training multiple

CNNs for each subject in this manner is a time-consuming task, leading to total reconstruction

times of up to an hour, hindering its translational utility.

In this study, we sought to speed up RAKI reconstruction towards clinically acceptable

4

computational times. We used a graphical processing unit (GPU) with CPU multi-processing to

maximize the number of simultaneous training tasks, and proposed an alternative CNN

architecture to reduce the number of required CNNs in the reconstruction and improve memory

efficiency. Performance of different computational acceleration strategies and their combinations

were compared in terms of run-time and reconstruction quality, using high-resolution phantom,

brain and knee data.

Materials and Methods

Overview of RAKI Reconstruction

RAKI non-linearly estimates the missing k-space lines in a uniformly undersampled acquisition

based on the acquired data, using multiple CNNs consisting of convolutional and non-linear

activation layers. The reconstruction is similar to GRAPPA, but uses CNNs instead of linear

convolutional kernels for interpolation in k-space [18]. For processing, the complex k-space is

mapped to the real field, leading to a total of 2nc input channels, where nc is the number of coils.

Let 𝑆𝑆�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦, 𝑗𝑗� denote the k-space point (kx, ky) of the jth channel. In RAKI, the unacquired lines

are approximated by:

�𝑆𝑆�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦 − 𝑚𝑚∆𝑘𝑘𝑦𝑦, 𝑗𝑗��
𝑚𝑚∈{1,2… 𝑅𝑅 −1}

≈ 𝑓𝑓𝑗𝑗 ��𝑆𝑆�𝑘𝑘𝑥𝑥 − 𝑏𝑏𝑥𝑥∆𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦 − 𝑅𝑅𝑏𝑏𝑦𝑦∆𝑘𝑘𝑦𝑦, 1: 2𝑛𝑛𝑐𝑐��𝑏𝑏𝑥𝑥∈[−𝐵𝐵𝑥𝑥,𝐵𝐵𝑥𝑥],𝑏𝑏𝑦𝑦∈�−𝐵𝐵𝑦𝑦,𝐵𝐵𝑦𝑦�
� (1)

where ∆𝑘𝑘𝑥𝑥 and ∆𝑘𝑘𝑦𝑦 are the sampling intervals in frequency and phase encoding directions, 𝑅𝑅 is

the acceleration rate, 𝑚𝑚 specifies an unacquired k-space position between two acquired lines, 𝐵𝐵𝑥𝑥

and 𝐵𝐵𝑦𝑦 are set by the size of the convolutional kernel along kx and ky directions, 𝑓𝑓𝑗𝑗 represents the

5

set of functions that estimate unacquired lines from acquired data, and 1: 2𝑛𝑛𝑐𝑐 denotes indexing

across all channels. In RAKI, 𝑓𝑓𝑗𝑗 is implemented using a three-layer CNN with the following

structure [18]:

𝑓𝑓(𝒔𝒔) = 𝒘𝒘𝟑𝟑 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒘𝒘𝟐𝟐 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒘𝒘𝟏𝟏 ∗ 𝒔𝒔)) (2)

where ∗ denotes convolution; 𝒘𝒘𝟏𝟏,𝒘𝒘𝟐𝟐,𝒘𝒘𝟑𝟑 are linear convolution kernels, of sizes 𝑏𝑏1𝑥𝑥 × 𝑏𝑏1
𝑦𝑦 ×

2𝑛𝑛𝑐𝑐 × 𝑛𝑛1 , 𝑏𝑏2𝑥𝑥 × 𝑏𝑏2
𝑦𝑦 × 𝑛𝑛1 × 𝑛𝑛2 , and 𝑏𝑏3𝑥𝑥 × 𝑏𝑏3

𝑦𝑦 × 𝑛𝑛2 × (𝑅𝑅 − 1) respectively, and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) =

max(𝑥𝑥, 0). Thus, each CNN has (𝑅𝑅 − 1) outputs, corresponding to the missing lines between

uniformly undersampled k-space lines for a given channel. This approach necessitates a total of

2𝑛𝑛𝑐𝑐 CNNs [18]. In the learning phase of the algorithm, the convolutional kernels 𝒘𝒘𝟏𝟏,𝒘𝒘𝟐𝟐,𝒘𝒘𝟑𝟑 are

estimated by minimizing mean square error loss function over the ACS region.

GPU Implementation using Parallel Multi-Channel Processing

RAKI was implemented on GPU using Tensorflow [20]. For optimizer, the gradient descent with

momentum used in [18] utilizes a fixed gradient step, which leads to slow convergence [21].

Thus, Adaptive Moment Estimation (Adam) [22], which controls learning rates of all parameters

by an exponential moving average window, as well as the first and second moments of historical

gradients, was utilized in this study. This approach will be referred to as the naïve GPU

implementation [21].

Further optimization of the GPU implementation was achieved as follows. Since RAKI trains 2nc

CNNs during a single reconstruction, where nc is typically 30 or 32, and these CNNs are

designed in a very compact structure that consist of only three convolutional layers and two

activations, each individual training task in RAKI requires only limited GPU resources.

6

Additionally, the subject-specific ACS data is comparably small compared to memory resources.

Thus, since the training across channels is performed independently, multiple training tasks were

parallelized to increase GPU utilization, and to provide speed up compared to sequential training

procedures. For full GPU utilization, multiple CPU processes were launched simultaneously with

each process allocating an individual training task on the GPU. For the CNN parameters used in

this study, up to 16-20 CPU processes were concurrently executed to maintain peak GPU

utilization. This CPU multi-processing allowed the GPU to commence processing of multiple

calls at the same time. Furthermore, process pooling was utilized to avoid GPU overloading,

while optimizing GPU resource usage.

Line-by-Line CNN Architecture for Improved Memory Utilization

In the implementation in [18], each CNN estimated all the unacquired lines at a given coil, which

will be referred to as coil-by-coil (CBC) architecture. Consequently, 2nc CNNs needed to be

trained during reconstruction. However, since training tasks are independent, each training task

requires CPU-GPU communication proportional to the number of training tasks. Furthermore,

distributing GPU resources into a high number of tasks, for instance 2nc, reduces available

resources for each training task, leading to performance decrease. Therefore, in this study, we

investigated an alternative architecture that improves the GPU memory usage. This architecture,

which will be referred to as line-by-line (LBL), utilizes non-linear interpolation with CNNs, but

each CNN estimates the unacquired lines for all channels for a given missing position m, as

follows:

𝑆𝑆�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦 − 𝑚𝑚∆𝑘𝑘𝑦𝑦, 1: 2𝑛𝑛𝑐𝑐�

7

 ≈ 𝑓𝑓𝑚𝑚 �𝑆𝑆�𝑘𝑘𝑥𝑥 − 𝑏𝑏𝑥𝑥∆𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦 − 𝑅𝑅𝑏𝑏𝑦𝑦∆𝑘𝑘𝑦𝑦 ,1: 2𝑛𝑛𝑐𝑐��
𝑏𝑏𝑥𝑥∈[−𝐵𝐵𝑥𝑥,𝐵𝐵𝑥𝑥],𝑏𝑏𝑦𝑦∈�−𝐵𝐵𝑦𝑦,𝐵𝐵𝑦𝑦�

 (3)

where 1: 2𝑛𝑛𝑐𝑐 denotes indexing across all channels. Note the unacquired data are estimated by a

CNN indexed by 𝑚𝑚 , which outputs estimates in position 𝑚𝑚 for all channels. Hence, this

architecture reduces the CNN amount from 2𝑛𝑛𝑐𝑐 to 𝑅𝑅 – 1. For instance, for R = 5, and nc = 32, this

leads to a 16-fold reduction. Note the kernel size of the third layer has been correspondingly

changed to 𝑏𝑏3𝑥𝑥 × 𝑏𝑏3
𝑦𝑦 × 𝑛𝑛2 × 2𝑛𝑛𝑐𝑐 for these CNNs, while the parameters of the other layers were

kept fixed to maintain a fair comparison between the two architectures. The main advantage of

this architecture from a computational perspective is the reduction of the number of CNNs that

are used in reconstruction, which in turn reduces the data transfer between CPU and GPU, while

allowing more GPU resources to be assigned to each training task.

Implementation Details

GPU-accelerated RAKI reconstruction was implemented using Tensorflow 1.7.0 and python

3.6.2, supported by CUDA 8.0 and CuDNN 7.0.5, on Linux kernel 3.10.0. The Python

environment was created under Anaconda 5.1.0. All programs were run on a server with two

Intel E5-2643 CPUs (6 cores each, 3.7 GHz), 256 GB memory and an NVIDIA Tesla V100 GPU

(32 GB memory) with single precision. CPU-based RAKI reconstruction was implemented using

Matlab 2016a and MatConvNet, as described in [18]. The RAKI networks shared the following

parameters 𝑏𝑏1𝑥𝑥 = 5, 𝑏𝑏1
𝑦𝑦 = 2, 𝑛𝑛1 = 32; 𝑏𝑏2𝑥𝑥 = 1, 𝑏𝑏2

𝑦𝑦 = 1, 𝑛𝑛2 = 8; 𝑏𝑏3𝑥𝑥 = 3, 𝑏𝑏3
𝑦𝑦 = 2. Prior to training,

complex k-space data were mapped into real field, and then scaled into the range of [0, 0.015].

Parameters of Adam optimizer were set as: 𝛼𝛼 = 0.001, 𝛽𝛽1 = 0.9, 𝛽𝛽2 = 0.999, ε = 10-8. Maximum

training epoch was been chosen as 1000, and the training will be stopped prior than it if the

normalized change of loss within 100 epochs is less than 0.0001. The multi-channel

8

reconstruction result was combined by root-of-sum-of-squares. As weights were randomly

initiated in CNN training, which affected the total run time, each run was repeated 10 times, and

the reconstruction times were reported as mean ± standard deviation. GRAPPA reconstruction

with a 5×4 kernel was also implemented for comparison with RAKI reconstructions.

Phantom Imaging

Phantom imaging was performed on a 3T Siemens Magnetom Prisma (Siemens Healthcare,

Erlangen, Germany) system using a 32-channel receiver head coil-array and a head-shaped

resolution phantom. A 2D multi-slice spoiled gradient recalled echo (GRE) sequence with the

following parameters was used: FOV = 220×220 mm2, in-plane resolution = 0.7×0.7 mm2,

matrix size = 320×320, slice thickness = 4 mm, TR/TE = 500 ms/15 ms, flip angle = 70°, 27

slices, bandwidth = 360 Hz/pixel. Retrospective sub-sampling was performed at 𝑅𝑅 = 3, 4, 5, 6

with an ACS region of 40 lines at the center. Normalized MSE (NMSE) with respect to the fully

sampled data was used to compare the accelerated RAKI implementations.

Brain Imaging

Brain imaging was performed on the same 3T system and on a 7T Siemens Magnex Scientific

(Siemens Healthcare, Erlangen, Germany) system using a 32-channel receiver head coil-array.

The imaging protocols were approved by the University of Minnesota institutional review board,

and written informed consent was obtained from all participants before each examination for this

HIPAA-compliant study. For 3T imaging, a T1-weighted 3D-MPRAGE sequence was acquired

in a healthy subject (male, 41 years) with the following parameters: FOV = 224×224×179 mm3,

resolution = 0.7×0.7×0.7 mm3, matrix size = 320×320, TR/TE = 2400 ms/2.2 ms, flip angle = 8°,

bandwidth = 210 Hz/pixel, inversion time = 1000 ms, ACS lines = 40, with iPAT = 2 and 5.

9

Furthermore, the R = 2 acquisition was also retrospectively undersampled to R = 4 and 6. For 7T

imaging, 3D-MPRAGE was acquired in a healthy volunteer (male, 43 years) with the following

parameters: FOV = 230×230×154 mm3, resolution = 0.6×0.6×0.6 mm3, TR/TE = 3100 ms/3.5

ms, flip angle = 6°, bandwidth = 140 Hz/pixel, inversion time = 1500 ms, ACS lines = 40, with 𝑅𝑅

= 3, 4, 5, 6. Additionally, two averages were acquired for R = 5 and 6 data to mitigate the SNR

loss from undersampling [18]. The k-space data was inverse Fourier transformed along the slice

direction for all datasets, and a central slice was processed. For these acquisitions, where a fully-

sampled reference was not available, reconstruction quality was assessed qualitatively.

Knee Imaging

Knee MRI data were obtained from the NYU fastMRI initiative database [23]. Experiments were

performed on proton density weighted images with fat suppression, which was acquired using a

15-channel knee coil. Scan parameters of these datasets are as follows: echo train length = 4,

matrix size = 320 × 320, TR/TE = 2870ms/33ms, in-plane resolution = 0.5×0.5mm2, slice

thickness = 3mm, 36 slices, no gap between slices. These fully-sampled datasets were

retrospectively undersampled with R = 2, 3 and 4, and 40 lines in the center of k-space were used

as ACS data. Taking advantage of the copious amounts of data in this database, reconstructions

were performed on 190 randomly selected slices across different subjects. Structural similarity

index (SSIM), as well as NMSE with respect to fully sampled data was used to quantitatively

measure the reconstruction quality. SSIM and NMSE performance with respect to the fully-

sampled data was statistically compared using the Wilcoxon signed rank test among the two

GPU implementations and GRAPPA over all the 190 instance for each acceleration rate. A type-

I error of 0.05 was used to consider statistical significance.

10

Results and Discussion

Phantom Imaging

Reconstruction run times, including the learning phase, are listed in Table 1. Using the proposed

GPU implementation with CPU multi-processing, 2.9 to 4.2-fold speed-up compared to naïve

GPU implementation was achieved for different acceleration rates, with a maximum of 4.2-fold

speed-up obtained for R = 3. Additional speed-up was achieved with the proposed LBL strategy,

resulting in a 13.2 to 19.9-fold acceleration, where the maximum speed-up was again achieved

for R = 3. Fig. 1 shows the reconstruction results using GRAPPA, as well as the proposed RAKI

GPU implementations with both CBC and LBL CNN architectures for different rates. The LBL

GPU implementation uses a different architecture, but leads to virtually identical image quality

for the phantom, while providing approximately 5-fold speed-up in computational time over the

CBC implementation. This visual assessment is consistent with the NMSE values for this slice,

0.0010, 0.0018, 0.0033, 0.0069 for the RAKI GPU implementation with CBC architecture at R =

3 to 6 respectively, and NMSEs of 0.0011, 0.0017, 0.0034, 0.0072 for the LBL architecture for R

= 3 to 6 respectively. Both CBC and LBL RAKI showed advantage over GRAPPA

reconstruction, which had NMSEs of 0.0011, 0.0019, 0.0035, 0.0088 for R = 3 to 6, respectively.

Fig 1. Reconstruction results of phantom imaging. Reconstruction was using the proposed

GPU implementations with CPU multi-processing using the conventional coil-by-coil (CBC) and

the novel line-by-line (LBL) architectures, and GRAPPA using 5 by 4 kernel for different

acceleration rates. Different reconstructions for the same acceleration rate exhibit similar image

quality and NMSE values. However, the optimized GPU-CBC strategy leads to 2.9 to 4.2-fold

11

speed-ups compared to a naïve GPU implementation, while the optimized GPU-LBL strategy

has further computational acceleration from 13.2 to 19.9-fold.

Table 1. Run–times of all RAKI implementations.

R CPU-CBC (s) Naïve GPU (s) GPU-CBC (s) Speed-up GPU-LBL (s)

Speed
-up

Phantom

(Fig. 1)

3 8198 ± 43.8 159.4 ± 1.3 37.7 ± 0.2 4.2 8.0 ± 0.1 19.9

4 7711 ± 14.4 155.2 ± 6.1 42.0 ± 0.4 3.7 9.1 ± 0.1 17.1

5 6931 ± 19.2 147.1 ± 6.2 47.5 ± 0.3 3.1 10.9 ± 0.2 13.5

6 5900 ± 30.6 158.4± 2.7 54.3 ± 1.1 2.9 12.1 ± 0.0 13.2

Brain 3T

(Fig. 2)

2 7583 ± 12.0 155.3 ± 2.3 32.8 ± 0.2 4.9 6.9 ± 0.1 22.2

4 7589 ± 13.8 155.7 ± 2.2 40.4 ± 0.2 3.9 9.5 ± 0.1 16.4

5 6840 ± 19.2 157.3 ± 2.4 46.0 ± 0.6 3.4 11.0 ± 0.2 14.3

6 6055 ± 11.4 154.8 ± 1.6 51.8 ± 0.5 3.0 12.6 ± 0.4 12.3

Brain 7T

(Fig.3)

3 9079 ± 13.2 157.7 ± 2.1 66.0 ± 3.8 2.4 8.5 ± 0.0 18.6

4 8929 ± 12.6 168.6 ± 2.2 73.4 ± 5.6 2.3 10.1 ± 0.1 16.7

5 8027 ± 13.8 165.0 ± 1.9 67.2 ± 1.1 2.5 11.4 ± 0.3 14.5

6 7413 ± 29.4 168.9 ± 2.2 74.9 ± 2.6 2.3 12.9 ± 0.1 13.1

Knee

(Fig.4)

2 4595 ± 27.6 80.3 ± 1.3 38.2 ± 1.9 2.1 6.9 ± 0.1 11.6

3 4529 ± 24,4 80.5 ± 1.2 37.0 ± 0.6 2.2 7.7 ± 0.1 10.5

4 4044 ± 34.8 78.8 ± 2.2 37.9 ± 0.8 2.1 9.2 ± 0.2 8.6

Running times are reported in seconds. Means and standard deviations were calculated from 10

repetitions of the algorithm, with changes due to the random initialization of the weights in

12

training. CBC and LBL refers to the output structure of the CNNs used in RAKI. The speed-ups

in the table are reported with respect to the naïve GPU implementation.

In-vivo Imaging

Reconstruction run times for the different in vivo datasets, as well as for different R values are

reported in Table 1. Similar to phantom imaging, 2.0 to 4.9 fold speed-ups with respect to naïve

GPU implementations were achieved by using the proposed optimized GPU implementation

over the in vivo datasets. Further speed-up from 8.6 to 22.2-fold is achieved by using the GPU

implementation with the proposed LBL CNN architecture.

Fig 2 depicts the reconstruction results for a slice of the high-resolution 3T MPRAGE

acquisition. There is a minor increase in noise amplification with the proposed fast GPU RAKI

implementation with the LBL architecture as compared to the conventional CBC architecture at

R = 5 and 6, while there are no visible differences for R = 2, 4. However, LBL RAKI still holds

an advantage over GRAPPA in terms of visual quality and noise amplification, especially for R =

5, 6. Furthermore, the use of LBL architecture enabled computational speed-ups of 4.1 to 4.5-

fold with respect to CBC architecture.

Fig 2. Reconstruction results of a central slice of MPRAGE data at 3T. The MPRAGE data

was acquired at 3T with 0.7 mm isotropic resolution, using the proposed GPU implementations

with CPU multi-processing using the conventional coil-by-coil (CBC) and the novel line-by-line

(LBL) architectures for different acceleration rates. For R = 2 and 4, all reconstructions are

visibly similar, but compared to a naïve GPU implementation, , the proposed GPU strategies lead

to computational speed-ups of up to 4.9 and 22.2-fold using the CBC and LBL architectures,

respectively. For R = 5 and 6, slight noise amplification is observed for the RAKI-LBL

13

implementation compared to the RAKI-CBC implementation. However, RAKI-LBL is still

advantageous compared to GRAPPA in terms of noise resilience. The proposed GPU

implementations of RAKI-CBC and RAKI-LBL led to 3.4 and 14.3-fold speed-ups over the

naïve GPU implementation for these acceleration rates, respectively

Fig 3 depicts a reconstructed slice for 7T MPRAGE acquisition at 0.6mm isotropic resolution.

Similar reconstruction characteristics are observed in this scenario as well. Minor noise

amplification is observed with the proposed fast GPU RAKI implementation with the LBL

architecture compared to the CBC architecture, but only at the higher acceleration rates of 5 and

6. Up to approximately 8-fold acceleration is achieved with the LBL GPU implementation, when

compared to the CBC GPU approach for this dataset. RAKI reconstructions with both CBC and

LBL architectures show better noise resilience over GRAPPA.

Fig 3. Reconstruction results of a central slice of MPRAGE data at 7T. The MPRAGE data

was acquired at 7T with 0.6 mm isotropic resolution, using the proposed GPU implementations

with CPU multi-processing using the conventional coil-by-coil (CBC) and the novel line-by-line

(LBL) architectures for different acceleration rates. R = 5 and 6 data were acquired with two

averages for reduced SNR penalty. For R = 3 and 4, reconstructions are visibly similar.

Compared to the naïve GPU implementation, with the GPU strategies leading to computational

speed-ups of up to 2.4 and 18.6-fold using the CBC and LBL architectures, respectively. Slight

noise amplification with the RAKI-LBL approach over the RAKI-CBC approaches are visible

for R = 5 and 6. However, RAKI-LBL offers better noise resilience over GRAPPA. GPU

implementation of RAKI-CBC and RAKI-LBL led to 2.5 and 14.5-fold computational speed-ups

over the naïve GPU implementation for these rates, respectively.

Fig 4 displays reconstructions of proton density weighted knee images with fat suppression from

14

the fastMRI dataset [23]. For R = 2, no visual differences are observed among the three

reconstruction methods, which is consistent with SSIM values of 0.8543, 0.8643 and 0.8584, for

GRAPPA, RAKI GPU-CBC and RAKI GPU-LBL respectively. For R = 3, both CBC and LBL

RAKI show advantage over GRAPPA in terms of reconstruction noise visually, while CBC and

LBL RAKI methods are visually similar. The SSIM values for GRAPPA, CBC and LBL are

0.7373, 0.7988 and 0.7807 respectively, consistent with visual observations. For R = 4,

GRAPPA suffers from even higher reconstruction noise, while RAKI offers higher

reconstruction fidelity for both CBC and LBL implementations, with minor improvements with

CBC over LBL. The SSIM values are 0.5955, 0.7534 and 0.7382 for GRAPPA, CBC and LBL

respectively.

Fig 4. Reconstruction results of a proton density weighted knee image with fat suppression.

Fully sampled data was provided by fastMRI dataset [23]. Reconstructions using GRAPPA, and

proposed GPU implementations CBC and LBL are shown. For R = 2 case there is no visible

difference between reconstruction results. For R = 3, RAKI shows advantages in noise resilience

compared to GRAPPA. Both CBC and LBL architectures lead to less noise than GRAPPA. This

advantage is even more apparent at R = 4, where RAKI reconstructions show considerably lower

noise level than GRAPPA. For both R = 3 and 4 cases, RAKI-CBC and RAKI-LBL have no

substantial visual difference. Quantitative SSIM and NMSE metrics confirm these observations.

Fig 5 summarizes the mean and standard deviation of the SSIM and NMSE metrics for

GRAPPA, and CBC and LBL RAKI over the 190 knee MRI datasets from the fastMRI database

[23]. CBC RAKI performs best at all rates, while LBL RAKI also outperforms GRAPPA at all

rates, with 0.5%, 5.9% and 24.0% SSIM improvement at R = 2, 3 and 4. The relative differences

between CBC RAKI and LBL RAKI were smaller for SSIM at 0.7%, 2.3% and 2.0% at R = 2, 3

15

and 4. Similar observations are made for the NMSE metric, where LBL RAKI outperforms

GRAPPA by 7.8%, 26.9% and 54.3% at R = 2, 3, 4, while the relative difference between CBC

RAKI and GRAPPA is 27.3%, 36.7% and 57.1% at R = 2, 3, 4. All the differences for SSIM and

NMSE were statistically significant at all rates (P < 0.05).

Fig 5. Mean structural similarity index (SSIM) and normalized mean squared error

(NMSE) for different methods. SSIM and NMSE of GRAPPA, RAKI-CBC and RAKI-LBL

for 190 proton density weighted knee data with fat suppression from the fastMRI dataset [23].

Error bars represent standard deviation across datasets. SSIM results showing both RAKI-CBC

and RAKI-LBL offers better image quality than GRAPPA, with 24.0% improvement at R = 4.

Similar observations apply to NMSE. All differences between methods and across rates were

statistically significant (P < 0.05), which are marked with *.

Discussion

In this study, we proposed various approaches to accelerate RAKI reconstruction. Individual

CNN training was accelerated by GPU-aided implementation. Multiple CNNs for RAKI

reconstruction were trained in a parallel manner based on CPU multi-processing and process

pooling techniques, in order to maximize GPU utilization and achieve further acceleration.

Additionally, an LBL CNN architecture for RAKI was proposed to reduce the number of CNNs

required for reconstruction, which afforded additional speed-up with no significant changes in

image quality. These efforts reduced RAKI run-time from hour-long CPU processing towards

clinically acceptable range of seconds.

Acceleration of deep learning techniques using massive parallelization is an active area of

16

research. To date, most studies focused on the case where one large training task is performed at

a time [24, 25]. The computational acceleration need in RAKI is different since multiple compact

CNNs are trained independently. Due to the comparably small size of the individual CNNs,

powerful GPUs are not at full use if these networks are trained subsequently. Hence, our

approach was to parallelize the training on a single GPU without compromising the performance

of each individual training. This strategy of allocating multiple training tasks on a single GPU

facilitated peak performance resulting in faster RAKI reconstructions.

Further computational speed-up was achieved by reducing the number of CNNs required for a

RAKI reconstruction. Conventional RAKI requires 2nc CNNs, where each CNN corresponds to a

certain coil over the real field. In this work, we proposed an LBL network structure that outputs

reconstructions across all coils for a specific missing k-space line, in order to reduce CNN

requirement in RAKI reconstruction. This strategy significantly reduced the number of CNNs

that needed to be trained, further improving the reconstruction times.

Two different GPU implementations were investigated in this study. The first one utilized the

same CBC structure as in [18], but used GPU and CPU multi-processing. Compared to a naïve

GPU implementation, using this strategy improved processing speed from several minutes to less

than a minute. Additionally, the use of fixed learning rate in the original CPU implementation

was identified as a limitation [18], which was ameliorated in this study by using a more

advanced optimization approach [21, 22]. Overall, our strategies reduced the hour-long CPU run-

time in [18] to seconds, while providing the best reconstruction quality, robustness, even for high

acceleration rates The LBL strategy gave further considerable speed-up, with similar

reconstruction quality at moderate acceleration rates of up to 4, although consistent but minor

noise amplification was observed for high-resolution brain imaging at high acceleration rates of

17

5 and 6, while the visual differences were not substantial for the knee datasets. This indicates a

trade-off between reconstruction quality and speed-up, which may be acceptable in certain

settings, considering the additional 5 to 8-fold speed-up in computational time with this

approach.

The two CNN architectures considered in this study had the same number of layers, kernel sizes,

and number of outputs except for the last layer. This led to different numbers of parameters that

needed to be learnt. For the CBC architecture, the number of parameters is given as 640𝑛𝑛𝑐𝑐 + 208

+ 48R for each CNN. 2𝑛𝑛𝑐𝑐 such CNNs resulting 1280𝑛𝑛𝑐𝑐2+ 516𝑛𝑛𝑐𝑐 + 96𝑅𝑅𝑅𝑅𝑐𝑐 parameters in total,

whereas for the LBL architecture, there were 736𝑛𝑛𝑐𝑐 + 208 parameters for each CNN, and totally

(736𝑛𝑛𝑐𝑐 + 208)(R - 1) parameters for the (R - 1) CNNs. Note in this study, 𝑛𝑛𝑐𝑐 = 32 for phantom

and brain imaging, and 𝑛𝑛𝑐𝑐 = 15 for knee imaging. Thus for R ≤ 6, the CBC architecture had more

than 4-fold as many as parameters as the LBL. This suggests that the LBL architecture can

potentially support deeper CNNs with more outputs per layer. However, for a fair comparison

between the two architectures, while avoiding any additional confounding factors, both

architectures were tested with the same number of layers and other network parameters in this

study. According to our experiments, using larger kernel sizes did not improve the reconstruction

quality for either GRAPPA or RAKI.

Further acceleration may be achieved by using multi-task learning. In multi-task learning [26-

28], a single network offers multiple output utilities, by allowing partial parameter sharing

between different output branches. Aided by this mechanism, reconstruction of the whole multi-

coil image may be accomplished using a single multi-task network, rather than multiple

individual networks. This strategy facilitates overlaps between the network architectures for

multiple outputs. Thus, it has the potential to provide a more efficient reconstruction procedure

18

than existing RAKI-CBC and RAKI-LBL. Since the scope of this study is to accelerate RAKI

reconstruction proposed in [18], we have tried to keep algorithmic modification to a minimum.

However, future studies using more advanced multi-task learning models to further accelerate

the reconstruction are warranted.

For the GPU implementation, there is a non-trivial overhead due to data transfer to GPU, which

impacts the overall run-time. To quantify the effect of this overhead, we computed a data transfer

to computation ratio for the different implementations. For RAKI-CBC, this ratio was between

0.4 and 0.6, while for RAKI-LBL, the ratio was between 2.2 to 2.4. Thus, for the latter

implementation more than half of the total run-time is spent on data transfer to the GPU. Further

reduction in this overhead would be beneficial for the implementations, but are currently

unavoidable due to hardware limitations.

While RAKI enables scan-specific machine learning reconstruction, more conventional machine

learning reconstruction algorithms have also been considered in the literature. These methods

require large databases of fully-sampled images for training. Transfer learning methods have also

been proposed to partially address the need for large databases, which may not be available in all

target applications. In transfer learning, neural networks are pre-trained on an available large

database, and then fine-tuned on smaller datasets for the specific application [29, 30]. However,

these methods still require fully-sampled data for training. Thus, they may not be applicable to

scenarios, where it is infeasible to acquire such datasets, for instance for the high-resolution

whole-brain imaging considered in this paper, since the scan time would be prohibitive.

Additionally, the databases used for training with or without transfer learning may have

limitations on pathologies of interest, bringing risks in generalizability for diagnosis of rare

pathologies [31]. This latter problem is also addressed by the scan-specific nature of RAKI.

19

In summary, we proposed several strategies to accelerate RAKI reconstructions in order to

facilitate translation of this scan-specific machine learning parallel imaging reconstruction to the

clinic. The original CBC RAKI reconstruction was accelerated by a factor of 2.1 to 4.9 compared

to a naïve GPU implementation. Additional speed-up of up 8.6 to 22.2-fold compared to a naïve

GPU implementation, was achieved using a novel LBL CNN structure in RAKI, further bringing

the computational time towards clinically acceptable range.

Acknowledgements

Knee MRI data were obtained from the NYU fastMRI initiative database [23]. NYU fastMRI

investigators provided data but did not participate in analysis or writing of this report. A listing

of NYU fastMRI investigators, subject to updates, can be found at fastmri.med.nyu.edu.

http://fastmri.med.nyu.edu/

20

References

1. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH):
fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38(4):591-603. Epub
1997/11/05. PubMed PMID: 9324327.
2. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding
for fast MRI. Magn Reson Med. 1999;42(5):952-62. Epub 1999/11/05. doi: 10.1002/(SICI)1522-
2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S [pii]. PubMed PMID: 10542355.
3. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized
autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202-
10. Epub 2002/07/12. doi: 10.1002/mrm.10171. PubMed PMID: 12111967.
4. Chen F, Taviani V, Malkiel I, Cheng JY, Tamir JI, Shaikh J, et al. Variable-Density
Single-Shot Fast Spin-Echo MRI with Deep Learning Reconstruction by Using Variational
Networks. Radiology. 2018:336-73. Epub 2018/07/24. doi: 10.1148/radiol.2018180445. PubMed
PMID: 30040039.
5. Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, et al. Learning a
variational network for reconstruction of accelerated MRI data. Magn Reson Med.
2018;79(6):3055-71. doi: 10.1002/mrm.26977. PubMed PMID: 29115689; PubMed Central
PMCID: PMCPMC5902683.
6. Lee D, Yoo J, Tak S, Ye JC. Deep Residual Learning for Accelerated MRI Using
Magnitude and Phase Networks. IEEE Trans Biomed Eng. 2018;65(9):1985-95. Epub
2018/04/02. doi: 10.1109/TBME.2018.2821699. PubMed PMID: 29993390.
7. Mardani M, Gong E, Cheng JY, Vasanawala SS, Zaharchuk G, Xing L, et al. Deep
Generative Adversarial Neural Networks for Compressive Sensing (GANCS) MRI. IEEE Trans
Med Imaging. 2018;38(1):167-79. Epub 2018/07/23. doi: 10.1109/TMI.2018.2858752. PubMed
PMID: 30040634.
8. Yang G, Yu S, Dong H, Slabaugh G, Dragotti PL, Ye X, et al. DAGAN: Deep De-
Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction.
IEEE Trans Med Imaging. 2018;37(6):1310-21. doi: 10.1109/TMI.2017.2785879. PubMed
PMID: 29870361.
9. Quan TM, Nguyen-Duc T, Jeong WK. Compressed Sensing MRI Reconstruction Using a
Generative Adversarial Network With a Cyclic Loss. IEEE Trans Med Imaging.
2018;37(6):1488-97. doi: 10.1109/TMI.2018.2820120. PubMed PMID: 29870376.
10. Yang Y, Sun J, Li H, Xu Z. ADMM-Net: A Deep Learning Approach for Compressive
Sensing MRI. 30th Conference on Neural Information Processing Systems (NIPS 2016)2016. p.
10-8.
11. Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, et al. Accelerating magnetic
resonance imaging via deep learning. 2016 IEEE 13th International Symposium on Biomedical
Imaging (ISBI). Prague, Czech Republic: IEEE; 2016: 514-517.
12. Qin C, Hajnal JV, Rueckert D, Schlemper J, Caballero J, Price AN. Convolutional
Recurrent Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans Med Imaging.
2018;38(1):280-90. Epub 2018/08/06. doi: 10.1109/TMI.2018.2863670. PubMed PMID:
30080145.
13. Eo T, Jun Y, Kim T, Jang J, Lee HJ, Hwang D. KIKI-net: cross-domain convolutional
neural networks for reconstructing undersampled magnetic resonance images. Magn Reson Med.
2018;80(5):2188-201. Epub 2018/04/06. doi: 10.1002/mrm.27201. PubMed PMID: 29624729.

21

14. Han Y, Yoo J, Kim HH, Shin HJ, Sung K, Ye JC. Deep learning with domain adaptation
for accelerated projection-reconstruction MR. Magn Reson Med. 2018;80(3):1189-205. Epub
2018/02/04. doi: 10.1002/mrm.27106. PubMed PMID: 29399869.
15. Aggarwal HK, Mani MP, Jacob M. MoDL: Model Based Deep Learning Architecture for
Inverse Problems. IEEE Trans Med Imaging. 2018, DOI: 10.1109/TMI.2018.2865356. Epub
2018/08/13. doi: 10.1109/TMI.2018.2865356. PubMed PMID: 30106719.
16. Kwon K, Kim D, Park H. A parallel MR imaging method using multilayer perceptron.
Med Phys. 2017;44(12):6209-24. Epub 2017/10/23. doi: 10.1002/mp.12600. PubMed PMID:
28944971.
17. Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A Deep Cascade of
Convolutional Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans Med
Imaging. 2018;37(2):491-503. doi: 10.1109/TMI.2017.2760978. PubMed PMID: 29035212.
18. Akcakaya M, Moeller S, Weingartner S, Ugurbil K. Scan-specific robust artificial-neural-
networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast
imaging. Magn Reson Med. 2019;81(1):439-53. doi: 10.1002/mrm.27420. PubMed PMID:
30277269; PubMed Central PMCID: PMCPMC6258345.
19. Qian N. On the momentum term in gradient descent learning algorithms. Neural Netw.
1999;12(1):145-51. PubMed PMID: 12662723.
20. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: a system for
large-scale machine learning. OSDI; 2016.
21. Zhang C, Weingärtner S, Moeller S, Uğurbil K, Akçakaya M, editors. Fast GPU
Implementation of a Scan-Specific Deep Learning Reconstruction for Accelerated Magnetic
Resonance Imaging. 2018 IEEE International Conference on Electro/Information Technology
(EIT); 2018 3-5 May 2018.
22. Kingma D, Ba J. Adam: A method for stochastic optimization. the 3rd International
Conference on Learning Representations (ICLR 2015)2015.
23. Zbontar J, Knoll F, Sriram A, Muckley MJ, Bruno M, Defazio A, et al. fastMRI: An
Open Dataset and Benchmarks for Accelerated MRI preprint. 2018:arXiv:1811.08839.
24. Zhao R, Song W, Zhang W, Xing T, Lin J-H, Srivastava M, et al. Accelerating Binarized
Convolutional Neural Networks with Software-Programmable FPGAs. Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays; Monterey,
California, USA. 3021741: ACM; 2017. p. 15-24.
25. Li C, Yang Y, Feng M, Chakradhar S, Zhou H. Optimizing Memory Efficiency for Deep
Convolutional Neural Networks on GPUs. SC '16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis; 2016 13-18 Nov. 2016.
26. Caruana R. Multitask Learning. Machine Learning. 1997;28(1):41-75. doi:
10.1023/a:1007379606734.
27. Hussein S, Cao K, Song Q, Bagci U. Risk Stratification of Lung Nodules Using 3D
CNN-Based Multi-task Learning2017; Cham: Springer International Publishing.
28. Zhang L, Karanikolas GV, Akçakaya M, Giannakis GB,s. Fully Automatic Segmentation
of the Right Ventricle Via Multi-Task Deep Neural Networks. 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP); 2018 15-20 April 2018.
29. Han Y, Yoo J, Kim HH, Shin HJ, Sung K, Ye JC. Deep learning with domain adaptation
for accelerated projection-reconstruction MR. Magnetic Resonance in Medicine.
2018;80(3):1189-205. doi: 10.1002/mrm.27106.

22

30. Dar SUH, Cukur T. Transfer learning for reconstruction of accelerated MRI acquisitions
via neural networks. Proceedings of the 26th Scientific Meeting of ISMRM; 2018 June; Paris:
Proceedings of the 26th Scientific Meeting of ISMRM.
31. Eldar YC, A. O. Hero I, Deng L, Fessler J, Kovacevic J, Poor HV, et al. Challenges and
Open Problems in Signal Processing: Panel Discussion Summary from ICASSP 2017 [Panel and
Forum]. IEEE Signal Processing Magazine. 2017;34(6):8-23. doi: 10.1109/MSP.2017.2743842.

	Manuscript
	Fig 1
	Fig 2
	Fig 3
	Fig 4
	Fig 5

