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Abstract

Purpose: To accelerate coronary MRI acquisitions with arbitrary undersampling patterns by
using a novel reconstruction algorithm that applies coil self-consistency using subject-specific

neural networks.

Methods: Self-consistent robust artificial-neural-networks for k-space interpolation (sRAKI)
performs iterative parallel imaging reconstruction by enforcing self-consistency among coils.
The approach bears similarity to SPIRiT, but extends the linear convolutions in SPIRIT to
nonlinear interpolation using convolutional neural networks (CNNs). These CNNs are trained
individually for each scan using the scan-specific autocalibrating signal (ACS) data.
Reconstruction is performed by imposing the learned self-consistency and data-consistency,
which enables sRAKI to support random undersampling patterns. Fully-sampled targeted right
coronary artery MRI was acquired in six healthy subjects. The data were retrospectively
undersampled, and reconstructed using SPIRiT, /;-SPIRiIT and sRAKI for acceleration rates of 2
to 5. Additionally, prospectively undersampled whole-heart coronary MRI was acquired to

further evaluate reconstruction performance.

Results: SRAKI reduces noise amplification and blurring artifacts compared with SPIRIT and /;-
SPIRIT, especially at high acceleration rates in targeted coronary MRI. Quantitative analysis
shows that sSRAKI outperforms these techniques in terms of normalized mean-squared-error
(~44% and ~21% over SPIRIT and #,-SPIRIT at rate 5) and vessel sharpness (~10% and ~20%
over SPIRIT and /;-SPIRIT at rate 5). Whole-heart data shows the sharpest coronary arteries
when resolved using sSRAKI, with 11% and 15% improvement in vessel sharpness over SPIRiT

and /;-SPIRIT, respectively.



Conclusion: sRAKI is a database-free neural network-based reconstruction technique that may

further accelerate coronary MRI with arbitrary undersampling patterns, while improving noise

resilience over linear parallel imaging and image sharpness over /; regularization techniques.

Keywords: coronary MRI, image reconstruction, accelerated imaging, parallel imaging, neural

networks, deep learning



Introduction

Coronary artery disease (CAD) is the leading cause of death in the United States, accounting for
one in seven deaths [1]. Coronary MRI provides a non-invasive and radiation-free diagnostic tool
for CAD assessment [2], with a potential for repeated use. It is typically acquired with
electrocardiogram (ECGQG) triggering during diastolic quiescence, where ~30-35 k-space lines are
sampled per R-R interval [3—5]. When imaging the right coronary artery in a targeted manner
[3], this leads to a ~3 minute nominal scan time. Since this scan time necessitates a free-
breathing acquisition [6,7], respiratory motion compensation needs to be applied [4,5], typically
with navigator gating [5,8], which further reduces the efficiency of the scans by ~2-3 fold,
leading to a scan time of ~6-10 minutes. Alternatively, coronary MRI can be acquired with
whole-heart coverage, which leads to a higher signal-to-noise ratio (SNR) [9,10], albeit at a
longer nominal acquisition time of 6-8 minutes. The additional scan time overhead due to
respiratory motion compensation often requires accelerated acquisitions, necessitating a trade-off

with SNR [9,11].

Several strategies have been used to accelerate coronary MRI acquisitions such as parallel
imaging [12,13], compressed sensing [14—16], and their combinations [17-23]. Recently, deep
learning-based techniques [24-38] have also gained attention as a means to accelerate MRI
acquisition. Numerous studies have designed neural network architectures that either establish an
end-to-end nonlinear mapping from under-sampled k-space/distorted image to full k-
space/undistorted image [25,27,28,31,33-35,37] or decompose an iterative optimization problem
into (recurrent) deep learning blocks that learn a data-specific regularization [26,29,30,32,38]. A
number of these studies also show support for parallel imaging with multi-coil data

[24,26,29,31,36]. While these studies show promising results in accelerated MRI, there are



limitations regarding the training phase of reconstruction. Primarily, large datasets are required
for training the neural networks, which is not readily available in all situations. This challenge
has been partially addressed by transfer learning approaches, which pre-train neural networks on
available large datasets and then fine-tune them on smaller datasets of specific applications
[28,39]. However, transfer learning still requires training on fully-sampled data. The acquisition
of fully-sampled training data in some applications e.g., in whole-heart coronary MRI, may be
infeasible, since the scan time would become prohibitively long. Furthermore, training datasets
may not include all pathologies of interest, which may lead to risks in generalizability for
diagnosis [40]. These obstacles may hinder the clinical application of current transfer learning-

based techniques to high-resolution cardiac MRI [40].

An alternative line of work considers subject-specific application of neural networks [24]. In this
approach, called robust artificial-neural-networks for k-space interpolation (RAKI), several
convolutional neural networks (CNN) are calibrated from scan-specific autocalibrating signal
(ACS) data for improved interpolation of missing k-space lines. Thus, this method extends the
linear convolutions used in GRAPPA [41], and was shown to increase noise resilience for
uniform undersampling patterns, especially in low-SNR and high-acceleration rate regimes [24].
However, previous work has shown the benefits of random undersampling in high-resolution
three-dimensional (3D) coronary MRI, for instance in the setting of compressed sensing [17].
For such undersampling patterns, iterative self-consistent parallel imaging reconstruction
(SPIRIT) [42] provides a k-space interpolation approach for multi-coil data. SPIRIiT utilizes
multi-coil information by including a self-consistency term that ensures the interpolated k-space

is consistent with itself according to the calibration kernels, along with a data-consistency term



in reconstruction. SPIRIT requires iterative processing in the reconstruction and is consequently

more computationally-intensive than GRAPPA.

In this study, we exploit the notion of coil self-consistency in SPIRIT to enable RAKI with
arbitrary undersampling. The proposed technique, called self-consistent RAKI (sRAKI), is
evaluated in targeted and whole-heart coronary MRI, and compared with SPIRiT and ¢{-SPIRiT

at various acceleration rates. This work has been partially presented in [43—46].

Methods

All imaging protocols were approved by the University of Minnesota institutional review board.

Written informed consent was obtained from all participants before each examination.

Calibration

For multi-coil k-space data with n. coils, a k-space point in the /™ coil, Xj (kx, k,, kz) can be
estimated as a function of distinct k-space points from all coils i € {1,...,n.} within a
neighborhood region of (kx, &y, kz) [41,42]. In linear parallel imaging techniques, this function is
modeled by a linear spatially shift-invariant convolution, and the convolutional kernels can be
found by solving n. linear least squares optimization problems [41,42]. In particular, SPIRiT
uses these linear convolutional kernels to define a coil self-consistency rule that connects all the
k-space elements with neighboring elements across all coils. However, it has been noted that a
nonlinear mapping may be advantageous from a noise reduction perspective due to two factors.
First, the shape and size of the neighborhood is heuristically set in practice [24], which may not
capture all the required dependencies. Second, in contrast to typical least squares optimization

problems, both the target and source points for the kernels in calibration are contaminated with



noise, and nonlinear functions have been shown to deal more effectively with such imperfections
[24,47]. Thus, we propose to utilize CNNs that are calibrated (the terminology used for finding
the self-consistency rule using ACS data) on ACS data of a single scan only to nonlinearly model

the self-consistency in multi-coil k-space data.

In this study, a 4-layer CNN architecture was employed to learn the self-consistency rule among
coils (Fig 1). In contrast to conventional RAKI, where separate CNNs were used for mapping to
individual coils, a single CNN was used to map from all coils of multi-coil k-space onto itself,
facilitating considerably reduced run time. For reduced computational complexity, 3D k-space
data was first inverse Fourier transformed along fully-sampled 4. dimension. Subsequently 2D
convolutional kernels were jointly calibrated on the resultant 2D slices of data [48]. The k-space
data across all coils were normalized to have unit power as a preprocessing step to enable the use
of a fixed learning rate. In addition, the complex k-space data was embedded to the real field, by
concatenating the real and imaginary components of k-space along the coil dimension leading to
2n. input and output channels. All layers, except the last one, were followed by rectifier linear
units (ReLU) as activation functions. The kernel size at input and output layers was 5x5, while
the hidden layers used 3x3 kernels. The number of output channels of different layers was 16,
8, 16 and 2n., respectively. The network was designed such that the middle layer narrowed down
to fewer output channels [49], since the CNN is prone to learn a trivial identity mapping from
identical input and output training data, otherwise. A zero-padding strategy was used at each
layer to maintain the size of input at the output after convolution. The network was trained by
minimizing a MSE objective function using Adam optimizer [50]. A learning rate of 0.01 and

maximum number of iterations of 1000 were used in training.



Fig 1. The CNN architecture to learn and enforce the coil self-consistency rule. The number
of layer output channels is denoted by depth of blocks. All layers, except the last one, were
followed by rectifier linear units (ReLU) as activation functions. The kernel sizes of the layers
were 5x5, 3x3, 3x3 and 5x5, respectively. Each layer had 16, 8, 16 and 2n. output channels,
respectively. The 3D k-space data was first inverse Fourier transformed along fully-sampled &«
dimension. Subsequently 2D convolutional kernels were jointly trained on the ACS region of
resultant 2D slices of data to learn the self-consistency rule.

Reconstruction

After calibrating the CNN on ACS data to learn the coil self-consistency rule, the following
objective function is minimized to reconstruct k-space:

argmin|ly — Dx||7 + Blx - GX)IIz, ey

where x is the reconstructed k-space data across all coils, y is the noisy acquired data, D is the
undersampling operator and G(-) represents the calibrated CNN for self-consistency. The first
term in the objective function in (1) ensures that the reconstructed k-space is consistent with
acquired data. The second term enforces self-consistency in the reconstructed k-space according
to the coil self-consistency rule that was learned by calibrating on the ACS data. The parameter
determines the balance between these two terms. Note that the main difference between sRAKI

and RAKI is in this phase, where RAKI performs a one-time application of calibration kernels to



estimate the missing data, whereas sRAKI requires iterative optimization of Equation (1).
Additional regularization terms can also be incorporated in (1), although this was not

investigated in the current study to maintain the focus on multi-coil data processing.

The objective function in (1) was optimized using the Adam optimizer with a tuned learning rate
of 2, for the same k-space normalization to unit power as before. We note that Adam only
requires the gradient of the objective function with respect to the optimization variable x, which
is the network input rather than network parameters in the reconstruction phase. Similar to
network parameters, gradients with respect to the input were efficiently calculated through back-
propagation by using the deep learning package Keras. In order to avoid a heuristic tuning of f,
consistency with data was strictly enforced as in SPIRiT [42]. This led to gradients being
calculated for non-acquired elements only while the rest of k-space was directly replaced with
acquired data at each iteration. For comparison, SPIRiT wusing a conjugate gradient
reconstruction was implemented with a 5x5 kernel [42]. [;-SPIRiT was also implemented with
additional a Daubechies-wavelet regularization [42], where the thresholding parameter was
empirically tuned to 0.0005 of the maximum absolute wavelet coefficient. The number of
reconstruction iterations were tuned separately for each technique and was set to 50 for SPIRiT
and sRAKI, and 15 for /;-SPIRiT. We note that /;-SPIRIT converges at a faster rate, thus
necessitating fewer iterations. All hyper-parameters were selected to optimize the performance of

each technique both qualitatively and quantitatively.

Targeted Coronary MRI

All imaging was performed on a 3T Siemens Magnetom Prisma (Siemens Healthineers,

Erlangen, Germany) system with a 30-channel receiver body coil-array. Targeted right coronary



artery (RCA) MRI was acquired on 6 healthy subjects (26.7 £ 2.9 years, 3 women). Scout images
were followed by axial breath-hold cine bSSFP images to identify the quiescent period of the
RCA, which was used for the trigger delay of coronary acquisitions. A low-resolution free-
breathing ECG-triggered 3D coronary survey was acquired for slab orientation of the RCA
imaging. Targeted RCA MRI was then acquired with a free-breathing ECG-triggered GRE
sequence with imaging parameters: TR/TE=3.4/1.5ms, flip angle=20°, bandwidth=601 Hz/pixel,
field-of-view (FOV)=300x300x48 mm?, resolution=1x1x3 mm?, navigator window=5 mm. The
nominal scan time was 160 seconds at a heart rate of 60 bpm. T2-preparation and a spectrally-

selective fat saturation were utilized for improved contrast.

The 3D k-space data was exported and retrospectively undersampled with a Poisson disc pattern
at acceleration rates 2, 3, 4, and 5 with a fully-sampled 40x10 ACS region in &, - k; plane. These
under-sampled data were then reconstructed using SPIRiT, /;-SPIRIT and sRAKI for
comparison, with the implementations detailed above. Final images were obtained using root-
sum-squares combination of all coil images. All algorithms were implemented in Python, and
processed on a workstation with an Intel E5-2640V3 CPU (2.6GHz and 256GB memory), and an
NVIDIA Tesla V100 GPU with 32GB memory. Additional comparisons for uniformly
undersampled data are shown in Supporting Information S1 Fig, while different random
undersampling patterns, and their reconstructions are depicted in Supporting Information S2 and

S3 Figs, respectively.

Image Analysis

Quantitative analysis of the reconstructions was performed using normalized mean square error

(NMSE) with respect to the fully-sampled reference, as well as normalized vessel sharpness



measurements. NMSE was calculated in image domain between a given reconstruction method
and the fully-sampled reference, normalized by the energy of the reference. Vessel sharpness
scores were calculated for both sides of the vessel using a Deriche algorithm [51]. Normalized
vessel sharpness was calculated as the average score of both sides divided by the intensity at
vessel center. A normalized vessel sharpness value closer to 1 represents a sharper vessel border.
The NMSE and normalized vessel sharpness measurements of the different reconstructions were
statistically compared across subjects using a nonparametric sign-rank test for each acceleration

rate. A p-value of <0.05 was considered significant.

Whole-Heart Coronary MRI

Prospectively undersampled whole-heart coronary MRI was acquired on an additional subject
(28 years, male) at an acceleration rate of 5 with a Poisson disc pattern. The same sequence
parameters were used with FOV=300x300x106 mm?®, resolution=1.2x1.2x1.2 mm?>. The data
were then reconstructed using SPIRIT, /;-SPIRiT and sRAKI for comparison, with the same
implementations described above. We note that this scenario poses a challenge for traditional
machine learning algorithms that perform supervised learning on databases of fully-sampled
data, as it is difficult to acquire high-quality fully-sampled whole-heart coronary MRI data. This
is due to the long scan time of a fully-sampled acquisition, which leads to quality degradation
due to drift and changes in the motion patterns. We also note that there have been some recent
efforts to acquire fully-sampled whole-heart coronary MRI for this purpose, even though the

acquisition time remains long [52].



Results

Fig 2 depicts reformatted images from a targeted coronary MRI dataset reconstructed using
SPIRIT, /;-SPIRIT and sRAKI techniques at retrospective acceleration rates 2, 3, 4, and 5. RCA
is visualized at all rates for all methods. SRAKI has visibly less noise at high acceleration rates
compared to SPIRIT and fewer blurring artifacts compared to /;-SPIRiT. The reformatted images
from a second subject, are shown in Fig 3 with similar results showing that SRAKI has visibly
less noise at high acceleration rates. SRAKI demonstrates improved quality at higher acceleration
rates, reducing noise amplification and blurring artifacts compared with other reconstruction

methods.

Fig 2. Reformatted right coronary artery (RCA) images from a 3D targeted coronary MRI
dataset. The data were retrospectively undersampled at rates 2, 3, 4, and 5 in the &, - & plane and
then reconstructed using SPIRIT, /;-SPIRIT and sRAKI (top, middle and bottom rows). Fully-
sampled images are also displayed in the first column as a reference for comparison. sSRAKI is
visually more robust to noise amplification and blurring artifacts at high acceleration rates
compared to SPIRIT and /;-SPIRIT, respectively. (RCA: right coronary artery; AO: Aortic Root)



Fig 3. Reformatted right coronary artery (RCA) images from another 3D targeted
coronary MRI dataset. This data was also retrospectively undersampled at rates 2, 3, 4, and 5,
and fully-sampled images are shown in the first column as reference. The difference between
SPIRIT and sRAKI is visually evident at all acceleration rates for this subject with more apparent
noise amplification. Furthermore, compared to /;-SPIRiT, sRAKI is more robust to blurring
artifacts with increasing acceleration rates. (RCA: right coronary artery; AO: Aortic Root)

Fig 4 Summarizes the mean and standard deviation of the NMSE and normalized vessel
sharpness measurements for SPIRIT, /;-SPIRIiT and sRAKI across all subjects. SRAKI improves
mean NMSE by 34%, 30%, 39%, 44% compared to SPIRiT, and 18%, 21%, 21% and 21%
compared to /;-SPIRIT for rates 2, 3, 4 and 5, respectively. Statistical analysis confirms that
sRAKI significantly improves NMSE at all acceleration rates over both SPIRiT and /;-SPIRiT.
In terms of normalized vessel sharpness, SRAKI provides 7%, 9%, 11%, 10% improvement
compared to SPIRIT and 4%, 5%, 13% and 20% improvement compared to /;-SPIRiT for rates 2
to 5, respectively. The improvements over SPIRIT are statistically significant at rates 2 and 3,

while improvements over /;-SPIRIT are statistically significant at rates 3-5.

Fig 4. (a) Mean normalized mean squared error (NMSE) and (b) quantitative normalized
vessel sharpness measures for all reconstructions of rates 2 to 5. Error bars represent standard
deviation across subjects. SRAKI outperforms SPIRiT and /;-SPIRIT at all rates for both metrics.



The improvements in NMSE are statistically significant at all rates over both SPIRIT and /;-
SPIRIT, whereas the improvements in vessel sharpness with sSRAKI are significant at rates 2 and
3 over SPIRIT, and rates 3-5 over /;-SPIRIT. Red lines mark significant differences in the
graphs.

Fig 5 depicts the results of a prospectively 5-fold accelerated whole-heart coronary imaging.
sRAKI yields an improved visualization of both the RCA and the left circumflex artery (LCX)
compared to SPIRiT and /;-SPIRiT. The normalized vessel sharpness measurements for this
subject were 0.30, 0.31 and 0.33 for RCA and 0.25, 0.22, 0.28 for LCX with SPIRiT, /;-SPIRiT

and sRAKI reconstructions.

Fig 5. Reformatted coronal image from a prospectively 5-fold accelerated whole-heart
coronary MRI dataset. The results show similar characteristics to targeted coronary MRI,
where sRAKI reduces blurring with respect to /;-SPIRiT, and noise amplification with respect to
SPIRiT.

Discussion

In this study, we proposed a novel reconstruction method called sSRAKI to accelerate coronary

MRI. sRAKI trained subject-specific CNNs to learn a nonlinear coil self-consistency rule for



multi-coil k-space data. In the reconstruction phase, this learned self-consistency rule was
enforced along with data-consistency constraints, similar to SPIRIT reconstruction. Thus, sSRAKI
enabled reconstruction with arbitrary undersampling patterns, an extension to RAKI [24], which
was designed to handle uniform undersampling patterns only. A nonlinear calibration may
capture further dependencies for learning coil self-consistency rule more effectively, when the
shape and size of the neighborhood is heuristically set [24] and both the target and source points
for the kernels in calibration are contaminated with noise [24,47]. In this study, this translated to
considerable reduction of reconstruction noise compared to SPIRiT. In contrast to the recent
machine learning-based MRI techniques [25-38], which require large training datasets, SRAKI is

trained on scan/subject-specific ACS data.

We note that there have been other methods for performing k-space interpolation using machine
learning [24,36,53]. In DeepSPIRIT [36], multi-coil k-space data from a training database is first
pre-processed with coil compression to yield a similar number of channels. Subsequently, CNNs
are trained for different regions of k-space, which are then applied in a multi-resolution
approach. This method was shown to reduce aliasing, while difficulty with high-resolution
content was also noted. Because this method uses a training database, it still requires fully-
sampled training data, which is difficult to apply in whole-heart coronary imaging, and thus
differs fundamentally from the sRAKI approach. An alternative method that more closely
matches sSRAKI was proposed in [53]. This method, proposed independently after the initial
presentation of our work [43—46], extends the AC-LORAKS approach to CNNs, in a manner
similar to RAKI [24] and sSRAKI. LORAKI has shown promising results in brain imaging, and

has not been studied in the context of coronary MRI.



Several modifications were made to RAKI [24]. First, RAKI employed separate CNNs to learn
nonlinear mapping functions from zero-filled multi-coil k-space data to missing data of
individual coils. Therefore, 2n. CNNs were trained to learn a full mapping function from multi-
coil data to itself. In the new setting, we exploited a single CNN with more hidden layers to learn
the coil self-consistency rule jointly, considerably reducing run time. Second, RAKI was
examined in only 2D scenarios, whereas sSRAKI was implemented for 3D datasets with two
phase encoding dimensions. Another major difference is concerned with the reconstruction phase
in which RAKI interpolates missing data with no iterations, but sSRAKI optimizes an objective
function to enforce data-consistency and self-consistency among coils. This procedure, which is
similar to the reconstruction phase of SPIRIT, increases the computational burden by requiring
first-order derivative calculation in each iteration. However, the extra complexity is not limiting.
In this study, calibration on targeted right coronary artery datasets took ~20 seconds for SPIRiT
and /;-SPIRIT, and ~40 seconds for sSRAKI all on GPU implementations, although none of the
implementations were fully optimized. In addition, the reconstruction phase on GPU took ~220,
120 and 100 seconds for SPIRiT, /;-SPIRiT and sRAKI, respectively. SRAKI is also different
from its previous version, in which a different reconstruction optimizer was used for 2D imaging
[46]. In addition the 4-layer architecture of SPIRiT-RAKI in [43] is different from sRAKI, as the
former applies 3D kernels on the whole 3D volume rather than training a single network with 2D
kernels on 2D slices of the 3D volume. We observed that the latter further improves training by

reducing the number of trainable parameters for the same amount of data.

In this study, the CNN parameters including the number of layers, the number of layer output
channels and kernel sizes were empirically set to optimize the performance visually and

quantitatively. Meanwhile, we noted that a simpler model would be more likely to generalize to



future data. Other parameters such as learning rates were also tuned to achieve the best
performance across the coronary MRI data sets. We note that this set of parameters may not
yield the best performance for imaging all organs. Therefore, similar to other techniques, a
parameter tuning procedure may need to be performed prior to using sSRAKI in other applications

for an optimal performance.

Similar to SPIRIT, regularization terms can be included in the sSRAKI objective function, in order
to incorporate additional prior information, such as sparsity in transform domains [14-16].
However, these regularization parameters often need to be carefully tuned to avoid residual
artifacts [16]. On the other hand, sRAKI without transform domain regularization, whose
objective function requires no additional parameter tuning, showed desirable noise properties.
The noise improvement in sSRAKI is learnt from the coil geometry, and does not inherently
include any assumptions about compressibility in transform domains. A combination of sSRAKI
with advanced regularizers bears potential for improved reconstruction quality in certain lower
SNR scenarios (additional experiments for these scenarios are shown in Supporting Information
S4 and S5 Figs), but this was beyond the scope of this work, which emphasized the multi-coil

aspect of the data at the native acquisition SNR.

In addition to explicit regularization terms, some noise amplification reduction can be achieved
by limiting the number of iterations for both SPIRiT and sRAKI, at the cost of incomplete
unaliasing. The effect of early termination of reconstruction is most pronounced as residual
blurring artifacts, which is particularly troublesome in the application of high-resolution
coronary MRI. Thus, our main criterion for number of iterations was to assure that blurring

artifacts were entirely removed before reconstruction noise started to be amplified. We further



observed that in contrast to £;-SPIRIiT and sRAKI, the transition between residual blurring
artifacts and amplified reconstruction noise was particularly fast for SPIRiT, which is due to lack
of a regularization mechanism in SPIRIT, consistent with the literature on iterative SENSE [54].
In terms of quantitative evaluation, since NMSE is captured in the loss function, additional
evaluation of image quality was incorporated using the vessel sharpness measurements, as is

standard in coronary MRI [11,16,21].

Finally, while this work showed the feasibility of using SRAKI for accelerating coronary MRI,
we have not comprehensively evaluated the failure modes and the residual artifacts, and how
these would affect diagnostic decisions. Further study of these effects is warranted in patient

populations to establish diagnostic utility, and will be explored in future research.

Conclusion

The proposed sRAKI reconstruction is a database-free CNN-based technique for self-consistent
parallel imaging with arbitrary undersampling patterns, where the CNNs are trained on scan-
specific ACS data. sRAKI is effective in accelerating coronary MRI, and improves

reconstruction quality compared to regularized and non-regularized SPIRiT.
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Supporting Information

S1 Fig. Reformatted right coronary artery (RCA) images from a 3D targeted coronary MRI
dataset. The data were uniformly undersampled retrospectively at rates 2x2, 3x2, 4x2 and 5x2 in k,, —
k, plane, which are approximately equivalent to net acceleration rates 4, 5, 6 and 7 (including the ACS
lines and an elliptical mask). These data were then reconstructed using GRAPPA, SPIRiT, ¢{-SPIRIiT,
RAKI and sRAKI (from top to bottom). Acceleration rate was set no higher than 2 for k, dimension,
since the size of data along this dimension was small (20 lines in total and 10 lines for ACS). For RAKI, a
3-layer network was designed with a kernel size of 2x2 (with dilations equaling acceleration rates to
match the undersampled uniform pattern) for the first layer and a kernel size of 1x1 for subsequent layers.
Note that this 2D undersampling is different from the original RAKI paper, thus the network architecture
may be sub-optimal. The learning rate and number of epochs for RAKI were tuned to 0.05 and 2000
iterations, respectively. Fully-sampled images are also displayed in the first column as a reference for
comparison. While RAKI is robust, GRAPPA is very sensitive to noise with increasing rates. In addition,
RAKI outperforms SPIRiT, but RAKI and sRAKI perform comparatively, similar to the relationship
between GRAPPA and SPIRiT

S2 Fig. Three ky-k, undersampling patterns were tested. Poisson disc (top), uniform-density random
(middle) and variable-density random (bottom) with 4-fold acceleration.

S3 Fig. Reformatted right coronary artery (RCA) images from a 3D targeted coronary MRI
dataset. The data were retrospectively undersampled with the three different patterns shown in
Supporting Figure S2. These data were then reconstructed using SPIRiT, #;-SPIRIiT and sRAKI. The
results show that sSRAKI is more resilient to noise amplification compared with SPIRiT, regardless of
undersampling pattern.



S4 Fig. Noise sensitivity of the reconstruction methods are shown on reformatted right coronary
artery images. Additive Gaussian noise was added to the datasets retrospectively, and the reported SNR
was measured at aorta (signal power at aorta divided by noise power in an empty region of interest), with
the original dataset having SNR of 50. The datasets were then retrospectively undersampled at rate 4 and
reconstructed using SPIRiT, /;-SPIRIT and sRAKI. sRAKI is more robust against noise of data
compared with SPIRiT. However, noise amplification becomes evident with increasing levels of
noise compared with /;-SPIRiT.

S5 Fig. Normalized mean squared error (NMSE) of reconstruction across all subjects with
4-fold acceleration for the experiment setup described in Supporting Figure S4. Error bars
represent standard deviation across subjects.
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Supporting Figure S1: Reformatted right coronary artery (RCA) images from a 3D targeted coronary MRI
dataset. The data were uniformly undersampled retrospectively at rates 2x2, 3x2, 4x2 and 52 in k,, — k,
plane, which are approximately equivalent to net acceleration rates 4, 5, 6 and 7 (including the ACS lines
and an elliptical mask). These data were then reconstructed using GRAPPA, SPIRIT, ¢;-SPIRiT, RAKI
and sRAKI (from top to bottom). Acceleration rate was set no higher than 2 for k, dimension, since the
size of data along this dimension was small (20 lines in total and 10 lines for ACS). For RAKI, a 3-layer
network was designed with a kernel size of 2x2 (with dilations equaling acceleration rates to match the
undersampled uniform pattern) for the first layer and a kernel size of 1x1 for subsequent layers. Note that

this 2D undersampling is different from the original RAKI paper, thus the network architecture may be sub-



optimal. The learning rate and number of epochs for RAKI were tuned to 0.05 and 2000 iterations,
respectively. Fully-sampled images are also displayed in the first column as a reference for comparison.
While RAKI is robust, GRAPPA is very sensitive to noise with increasing rates. In addition, RAKI
outperforms SPIRiT, but RAKI and sRAKI perform comparatively, similar to the relationship between
GRAPPA and SPIRIT.



Supporting Figure S2: Three 2D undersampling patterns were tested: Poisson disc (top), uniform-density

random (middle) and variable-density random (bottom) with 4-fold acceleration.
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Supporting Figure S3: Reformatted right coronary artery (RCA) images from a 3D targeted coronary MRI
dataset. The data were retrospectively undersampled with the three different patterns shown in Supporting
Figure S2. These data were then reconstructed using SPIRiT, #;-SPIRIT and sSRAKI. The results show that

sRAKI is more resilient to noise amplification compared with SPIRIT, regardless of undersampling pattern.
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Supporting Figure S4: Noise sensitivity of the reconstruction methods are shown on reformatted right
coronary artery images. Additive Gaussian noise was added to the datasets retrospectively, and the reported
SNR was measured at aorta (signal power at aorta divided by noise power in an empty region of interest),
with the original dataset having SNR of 50. The datasets were then retrospectively undersampled at rate 4
and reconstructed using SPIRIT, #;-SPIRIT and sSRAKI. sSRAKI is more robust against noise of data

compared with SPIRiT. However, noise amplification becomes evident with increasing levels of

noise compared with £{-SPIRiT.
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Supporting Figure S5: Normalized mean squared error (NMSE) of reconstruction across all
subjects with 4-fold acceleration for the experiment setup described in Supporting Figure S4. Error

bars represent standard deviation across subjects.
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