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Abstract 

Purpose: To accelerate coronary MRI acquisitions with arbitrary undersampling patterns by 

using a novel reconstruction algorithm that applies coil self-consistency using subject-specific 

neural networks.  

Methods: Self-consistent robust artificial-neural-networks for k-space interpolation (sRAKI) 

performs iterative parallel imaging reconstruction by enforcing self-consistency among coils. 

The approach bears similarity to SPIRiT, but extends the linear convolutions in SPIRiT to 

nonlinear interpolation using convolutional neural networks (CNNs). These CNNs are trained 

individually for each scan using the scan-specific autocalibrating signal (ACS) data. 

Reconstruction is performed by imposing the learned self-consistency and data-consistency, 

which enables sRAKI to support random undersampling patterns. Fully-sampled targeted right 

coronary artery MRI was acquired in six healthy subjects. The data were retrospectively 

undersampled, and reconstructed using SPIRiT, l1-SPIRiT and sRAKI for acceleration rates of 2 

to 5. Additionally, prospectively undersampled whole-heart coronary MRI was acquired to 

further evaluate reconstruction performance.   

Results: sRAKI reduces noise amplification and blurring artifacts compared with SPIRiT and l1-

SPIRiT, especially at high acceleration rates in targeted coronary MRI. Quantitative analysis 

shows that sRAKI outperforms these techniques in terms of normalized mean-squared-error 

(~44% and ~21% over SPIRiT and ℓ1-SPIRiT at rate 5) and vessel sharpness (~10% and ~20% 

over SPIRiT and l1-SPIRiT at rate 5). Whole-heart data shows the sharpest coronary arteries 

when resolved using sRAKI, with 11% and 15% improvement in vessel sharpness over SPIRiT 

and l1-SPIRiT, respectively. 



Conclusion: sRAKI is a database-free neural network-based reconstruction technique that may 

further accelerate coronary MRI with arbitrary undersampling patterns, while improving noise 

resilience over linear parallel imaging and image sharpness over l1 regularization techniques. 

Keywords: coronary MRI, image reconstruction, accelerated imaging, parallel imaging, neural 

networks, deep learning 

 

  



Introduction 

Coronary artery disease (CAD) is the leading cause of death in the United States, accounting for 

one in seven deaths [1]. Coronary MRI provides a non-invasive and radiation-free diagnostic tool 

for CAD assessment [2], with a potential for repeated use. It is typically acquired with 

electrocardiogram (ECG) triggering during diastolic quiescence, where ~30-35 k-space lines are 

sampled per R-R interval [3–5]. When imaging the right coronary artery in a targeted manner 

[3], this leads to a ~3 minute nominal scan time. Since this scan time necessitates a free-

breathing acquisition [6,7], respiratory motion compensation needs to be applied [4,5], typically 

with navigator gating [5,8], which further reduces the efficiency of the scans by ~2-3 fold, 

leading to a scan time of ~6-10 minutes. Alternatively, coronary MRI can be acquired with 

whole-heart coverage, which leads to a higher signal-to-noise ratio (SNR) [9,10], albeit at a 

longer nominal acquisition time of 6-8 minutes. The additional scan time overhead due to 

respiratory motion compensation often requires accelerated acquisitions, necessitating a trade-off 

with SNR [9,11]. 

Several strategies have been used to accelerate coronary MRI acquisitions such as parallel 

imaging [12,13], compressed sensing [14–16], and their combinations [17–23]. Recently, deep 

learning-based techniques [24–38] have also gained attention as a means to accelerate MRI 

acquisition. Numerous studies have designed neural network architectures that either establish an 

end-to-end nonlinear mapping from under-sampled k-space/distorted image to full k-

space/undistorted image [25,27,28,31,33–35,37] or decompose an iterative optimization problem 

into (recurrent) deep learning blocks that learn a data-specific regularization [26,29,30,32,38]. A 

number of these studies also show support for parallel imaging with multi-coil data 

[24,26,29,31,36]. While these studies show promising results in accelerated MRI, there are 



limitations regarding the training phase of reconstruction. Primarily, large datasets are required 

for training the neural networks, which is not readily available in all situations. This challenge 

has been partially addressed by transfer learning approaches, which pre-train neural networks on 

available large datasets and then fine-tune them on smaller datasets of specific applications 

[28,39]. However, transfer learning still requires training on fully-sampled data. The acquisition 

of fully-sampled training data in some applications e.g., in whole-heart coronary MRI, may be 

infeasible, since the scan time would become prohibitively long. Furthermore, training datasets 

may not include all pathologies of interest, which may lead to risks in generalizability for  

diagnosis [40]. These obstacles may hinder the clinical application of current transfer learning-

based techniques to high-resolution cardiac MRI [40].  

An alternative line of work considers subject-specific application of neural networks [24]. In this 

approach, called robust artificial-neural-networks for k-space interpolation (RAKI), several 

convolutional neural networks (CNN) are calibrated from scan-specific autocalibrating signal 

(ACS) data for improved interpolation of missing k-space lines. Thus, this method extends the 

linear convolutions used in GRAPPA [41], and was shown to increase noise resilience for 

uniform undersampling patterns, especially in low-SNR and high-acceleration rate regimes [24]. 

However, previous work has shown the benefits of random undersampling in high-resolution 

three-dimensional (3D) coronary MRI, for instance in the setting of compressed sensing [17]. 

For such undersampling patterns, iterative self-consistent parallel imaging reconstruction 

(SPIRiT) [42] provides a k-space interpolation approach for multi-coil data. SPIRiT utilizes 

multi-coil information by including a self-consistency term that ensures the interpolated k-space 

is consistent with itself according to the calibration kernels, along with a data-consistency term 



in reconstruction. SPIRiT requires iterative processing in the reconstruction and is consequently 

more computationally-intensive than GRAPPA.  

In this study, we exploit the notion of coil self-consistency in SPIRiT to enable RAKI with 

arbitrary undersampling. The proposed technique, called self-consistent RAKI (sRAKI), is 

evaluated in targeted and whole-heart coronary MRI, and compared with SPIRiT and ℓ1-SPIRiT 

at various acceleration rates. This work has been partially presented in [43–46]. 

Methods 
All imaging protocols were approved by the University of Minnesota institutional review board. 

Written informed consent was obtained from all participants before each examination. 

Calibration 

For multi-coil k-space data with 𝑛𝑛𝑐𝑐 coils, a k-space point in the jth coil, 𝑥𝑥𝑗𝑗�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧� can be 

estimated as a function of distinct k-space points from all coils 𝑖𝑖 ∈ {1, … ,𝑛𝑛𝑐𝑐} within a 

neighborhood region of (kx, ky, kz) [41,42]. In linear parallel imaging techniques, this function is 

modeled by a linear spatially shift-invariant convolution, and the convolutional kernels can be 

found by solving nc linear least squares optimization problems [41,42]. In particular, SPIRiT 

uses these linear convolutional kernels to define a coil self-consistency rule that connects all the 

k-space elements with neighboring elements across all coils. However, it has been noted that a 

nonlinear mapping may be advantageous from a noise reduction perspective due to two factors. 

First, the shape and size of the neighborhood is heuristically set in practice [24], which may not 

capture all the required dependencies. Second, in contrast to typical least squares optimization 

problems, both the target and source points for the kernels in calibration are contaminated with 



noise, and nonlinear functions have been shown to deal more effectively with such imperfections 

[24,47]. Thus, we propose to utilize CNNs that are calibrated (the terminology used for finding 

the self-consistency rule using ACS data) on ACS data of a single scan only to nonlinearly model 

the self-consistency in multi-coil k-space data.  

In this study, a 4-layer CNN architecture was employed to learn the self-consistency rule among 

coils (Fig 1). In contrast to conventional RAKI, where separate CNNs were used for mapping to 

individual coils, a single CNN was used to map from all coils of multi-coil k-space onto itself, 

facilitating considerably reduced run time. For reduced computational complexity, 3D k-space 

data was first inverse Fourier transformed along fully-sampled kx dimension. Subsequently 2D 

convolutional kernels were jointly calibrated on the resultant 2D slices of data [48]. The k-space 

data across all coils were normalized to have unit power as a preprocessing step to enable the use 

of a fixed learning rate. In addition, the complex k-space data was embedded to the real field, by 

concatenating the real and imaginary components of k-space along the coil dimension leading to 

2nc input and output channels. All layers, except the last one, were followed by rectifier linear 

units (ReLU) as activation functions. The kernel size at input and output layers was 5×5, while 

the hidden layers used 3×3 kernels. The number of output channels of different layers was 16, 

8, 16 and 2nc, respectively. The network was designed such that the middle layer narrowed down 

to fewer output channels [49], since the CNN is prone to learn a trivial identity mapping from 

identical input and output training data, otherwise. A zero-padding strategy was used at each 

layer to maintain the size of input at the output after convolution. The network was trained by 

minimizing a MSE objective function using Adam optimizer [50]. A learning rate of 0.01 and 

maximum number of iterations of 1000 were used in training.  



 

 

Fig 1. The CNN architecture to learn and enforce the coil self-consistency rule. The number 
of layer output channels is denoted by depth of blocks. All layers, except the last one, were 
followed by rectifier linear units (ReLU) as activation functions. The kernel sizes of the layers 
were 5×5, 3×3, 3×3 and 5×5, respectively. Each layer had 16, 8, 16 and 2nc output channels, 
respectively.  The 3D k-space data was first inverse Fourier transformed along fully-sampled kx 
dimension. Subsequently 2D convolutional kernels were jointly trained on the ACS region of 
resultant 2D slices of data to learn the self-consistency rule. 

 

 

 

Reconstruction 

After calibrating the CNN on ACS data to learn the coil self-consistency rule, the following 

objective function is minimized to reconstruct k-space: 

                                                      arg min
𝐱𝐱
‖𝐲𝐲 − 𝐃𝐃𝐃𝐃‖22 + 𝛽𝛽‖𝐱𝐱 − 𝐆𝐆(𝐱𝐱)‖22 ,                                                (1) 

where x is the reconstructed k-space data across all coils, y is the noisy acquired data, D is the 

undersampling operator and G(·) represents the calibrated CNN for self-consistency. The first 

term in the objective function in (1) ensures that the reconstructed k-space is consistent with 

acquired data. The second term enforces self-consistency in the reconstructed k-space according 

to the coil self-consistency rule that was learned by calibrating on the ACS data. The parameter β 

determines the balance between these two terms. Note that the main difference between sRAKI 

and RAKI is in this phase, where RAKI performs a one-time application of calibration kernels to 



estimate the missing data, whereas sRAKI requires iterative optimization of Equation (1). 

Additional regularization terms can also be incorporated in (1), although this was not 

investigated in the current study to maintain the focus on multi-coil data processing.  

The objective function in (1) was optimized using the Adam optimizer with a tuned learning rate 

of 2, for the same k-space normalization to unit power as before. We note that Adam only 

requires the gradient of the objective function with respect to the optimization variable x, which 

is the network input rather than network parameters in the reconstruction phase. Similar to 

network parameters, gradients with respect to the input were efficiently calculated through back-

propagation by using the deep learning package Keras. In order to avoid a heuristic tuning of β, 

consistency with data was strictly enforced as in SPIRiT [42]. This led to gradients being 

calculated for non-acquired elements only while the rest of k-space was directly replaced with 

acquired data at each iteration. For comparison, SPIRiT using a conjugate gradient 

reconstruction was implemented with a 5×5 kernel [42]. l1-SPIRiT was also implemented with 

additional a Daubechies-wavelet regularization [42], where the thresholding parameter was 

empirically tuned to 0.0005 of the maximum absolute wavelet coefficient. The number of 

reconstruction iterations were tuned separately for each technique and was set to 50 for SPIRiT 

and sRAKI, and 15 for l1-SPIRiT. We note that l1-SPIRiT converges at a faster rate, thus 

necessitating fewer iterations. All hyper-parameters were selected to optimize the performance of 

each technique both qualitatively and quantitatively.  

Targeted Coronary MRI 

All imaging was performed on a 3T Siemens Magnetom Prisma (Siemens Healthineers, 

Erlangen, Germany) system with a 30-channel receiver body coil-array. Targeted right coronary 



artery (RCA) MRI was acquired on 6 healthy subjects (26.7 ± 2.9 years, 3 women). Scout images 

were followed by axial breath-hold cine bSSFP images to identify the quiescent period of the 

RCA, which was used for the trigger delay of coronary acquisitions. A low-resolution free-

breathing ECG-triggered 3D coronary survey was acquired for slab orientation of the RCA 

imaging. Targeted RCA MRI was then acquired with a free-breathing ECG-triggered GRE 

sequence with imaging parameters: TR/TE=3.4/1.5ms, flip angle=20°, bandwidth=601 Hz/pixel, 

field-of-view (FOV)=300×300×48 mm3, resolution=1×1×3 mm3, navigator window=5 mm. The 

nominal scan time was 160 seconds at a heart rate of 60 bpm. T2-preparation and a spectrally-

selective fat saturation were utilized for improved contrast.  

The 3D k-space data was exported and retrospectively undersampled with a Poisson disc pattern 

at acceleration rates 2, 3, 4, and 5 with a fully-sampled 40×10 ACS region in ky - kz plane. These 

under-sampled data were then reconstructed using SPIRiT, l1-SPIRiT and sRAKI for 

comparison, with the implementations detailed above. Final images were obtained using root-

sum-squares combination of all coil images. All algorithms were implemented in Python, and 

processed on a workstation with an Intel E5-2640V3 CPU (2.6GHz and 256GB memory), and an 

NVIDIA Tesla V100 GPU with 32GB memory. Additional comparisons for uniformly 

undersampled data are shown in Supporting Information S1 Fig, while different random 

undersampling patterns, and their reconstructions are depicted in Supporting Information S2 and 

S3 Figs, respectively. 

Image Analysis 

Quantitative analysis of the reconstructions was performed using normalized mean square error 

(NMSE) with respect to the fully-sampled reference, as well as normalized vessel sharpness 



measurements. NMSE was calculated in image domain between a given reconstruction method 

and the fully-sampled reference, normalized by the energy of the reference. Vessel sharpness 

scores were calculated for both sides of the vessel using a Deriche algorithm [51]. Normalized 

vessel sharpness was calculated as the average score of both sides divided by the intensity at 

vessel center. A normalized vessel sharpness value closer to 1 represents a sharper vessel border. 

The NMSE and normalized vessel sharpness measurements of the different reconstructions were 

statistically compared across subjects using a nonparametric sign-rank test for each acceleration 

rate. A p-value of <0.05 was considered significant.  

Whole-Heart Coronary MRI 

Prospectively undersampled whole-heart coronary MRI was acquired on an additional subject 

(28 years, male) at an acceleration rate of 5 with a Poisson disc pattern. The same sequence 

parameters were used with FOV=300×300×106 mm3, resolution=1.2×1.2×1.2 mm3. The data 

were then reconstructed using SPIRiT, l1-SPIRiT and sRAKI for comparison, with the same 

implementations described above. We note that this scenario poses a challenge for traditional 

machine learning algorithms that perform supervised learning on databases of fully-sampled 

data, as it is difficult to acquire high-quality fully-sampled whole-heart coronary MRI data. This 

is due to the long scan time of a fully-sampled acquisition, which leads to quality degradation 

due to drift and changes in the motion patterns. We also note that there have been some recent 

efforts to acquire fully-sampled whole-heart coronary MRI for this purpose, even though the 

acquisition time remains long [52]. 



Results 

Fig 2 depicts reformatted images from a targeted coronary MRI dataset reconstructed using 

SPIRiT, l1-SPIRiT and sRAKI techniques at retrospective acceleration rates 2, 3, 4, and 5.  RCA 

is visualized at all rates for all methods. sRAKI has visibly less noise at high acceleration rates 

compared to SPIRiT and fewer blurring artifacts compared to l1-SPIRiT. The reformatted images 

from a second subject, are shown in Fig 3 with similar results showing that sRAKI has visibly 

less noise at high acceleration rates. sRAKI demonstrates improved quality at higher acceleration 

rates, reducing noise amplification and blurring artifacts compared with other reconstruction 

methods. 

 

 

Fig 2. Reformatted right coronary artery (RCA) images from a 3D targeted coronary MRI 
dataset. The data were retrospectively undersampled at rates 2, 3, 4, and 5 in the ky - kz plane and 
then reconstructed using SPIRiT, l1-SPIRiT and sRAKI (top, middle and bottom rows). Fully-
sampled images are also displayed in the first column as a reference for comparison. sRAKI is 
visually more robust to noise amplification and blurring artifacts at high acceleration rates 
compared to SPIRiT and l1-SPIRiT, respectively. (RCA: right coronary artery; AO: Aortic Root) 

 

 



Fig 3. Reformatted right coronary artery (RCA) images from another 3D targeted 
coronary MRI dataset. This data was also retrospectively undersampled at rates 2, 3, 4, and 5, 
and fully-sampled images are shown in the first column as reference. The difference between 
SPIRiT and sRAKI is visually evident at all acceleration rates for this subject with more apparent 
noise amplification. Furthermore, compared to l1-SPIRiT, sRAKI is more robust to blurring 
artifacts with increasing acceleration rates. (RCA: right coronary artery; AO: Aortic Root) 

 

 

 

Fig 4 Summarizes the mean and standard deviation of the NMSE and normalized vessel 

sharpness measurements for SPIRiT, l1-SPIRiT and sRAKI across all subjects. sRAKI improves 

mean NMSE  by 34%, 30%, 39%, 44% compared to SPIRiT, and 18%, 21%, 21% and 21% 

compared to l1-SPIRiT for rates 2, 3, 4 and 5, respectively. Statistical analysis confirms that 

sRAKI significantly improves NMSE at all acceleration rates over both SPIRiT and l1-SPIRiT. 

In terms of normalized vessel sharpness, sRAKI provides 7%, 9%, 11%, 10% improvement 

compared to SPIRiT and 4%, 5%, 13% and 20% improvement compared to l1-SPIRiT for rates 2 

to 5, respectively. The improvements over SPIRiT are statistically significant at rates 2 and 3, 

while improvements over l1-SPIRiT are statistically significant at rates 3-5. 

 

 

 

Fig 4. (a) Mean normalized mean squared error (NMSE) and (b) quantitative normalized 
vessel sharpness measures for all reconstructions of rates 2 to 5. Error bars represent standard 
deviation across subjects. sRAKI outperforms SPIRiT and l1-SPIRiT at all rates for both metrics. 



The improvements in NMSE are statistically significant at all rates over both SPIRiT and l1-
SPIRiT, whereas the improvements in vessel sharpness with sRAKI are significant at rates 2 and 
3 over SPIRiT, and rates 3-5 over l1-SPIRiT. Red lines mark significant differences in the 
graphs. 

 

 

 

Fig 5 depicts the results of a prospectively 5-fold accelerated whole-heart coronary imaging. 

sRAKI yields an improved visualization of both the RCA and the left circumflex artery (LCX) 

compared to SPIRiT and l1-SPIRiT. The normalized vessel sharpness measurements for this 

subject were 0.30, 0.31 and 0.33 for RCA and 0.25, 0.22, 0.28 for LCX with SPIRiT, l1-SPIRiT 

and sRAKI reconstructions.  

 

Fig 5. Reformatted coronal image from a prospectively 5-fold accelerated whole-heart 
coronary MRI dataset.  The results show similar characteristics to targeted coronary MRI, 
where sRAKI reduces blurring with respect to l1-SPIRiT, and noise amplification with respect to 
SPIRiT. 

 

 

Discussion 

In this study, we proposed a novel reconstruction method called sRAKI to accelerate coronary 

MRI. sRAKI trained subject-specific CNNs to learn a nonlinear coil self-consistency rule for 



multi-coil k-space data. In the reconstruction phase, this learned self-consistency rule was 

enforced along with data-consistency constraints, similar to SPIRiT reconstruction. Thus, sRAKI 

enabled reconstruction with arbitrary undersampling patterns, an extension to RAKI [24], which 

was designed to handle uniform undersampling patterns only. A nonlinear calibration may 

capture further dependencies for learning coil self-consistency rule more effectively, when the 

shape and size of the neighborhood is heuristically set [24] and both the target and source points 

for the kernels in calibration are contaminated with noise [24,47]. In this study, this translated to 

considerable reduction of reconstruction noise compared to SPIRiT. In contrast to the recent 

machine learning-based MRI techniques [25–38], which require large training datasets, sRAKI is 

trained on scan/subject-specific ACS data.  

We note that there have been other methods for performing k-space interpolation using machine 

learning [24,36,53]. In DeepSPIRiT [36], multi-coil k-space data from a training database is first 

pre-processed with coil compression to yield a similar number of channels. Subsequently, CNNs 

are trained for different regions of k-space, which are then applied in a multi-resolution 

approach. This method was shown to reduce aliasing, while difficulty with high-resolution 

content was also noted. Because this method uses a training database, it still requires fully-

sampled training data, which is difficult to apply in whole-heart coronary imaging, and thus 

differs fundamentally from the sRAKI approach. An alternative method that more closely 

matches sRAKI was proposed in [53]. This method, proposed independently after the initial 

presentation of our work [43–46], extends the AC-LORAKS approach to CNNs, in a manner 

similar to RAKI [24] and sRAKI. LORAKI has shown promising results in brain imaging, and 

has not been studied in the context of coronary MRI.  



Several modifications were made to RAKI [24]. First, RAKI employed separate CNNs to learn 

nonlinear mapping functions from zero-filled multi-coil k-space data to missing data of 

individual coils. Therefore, 2nc CNNs were trained to learn a full mapping function from multi-

coil data to itself. In the new setting, we exploited a single CNN with more hidden layers to learn 

the coil self-consistency rule jointly, considerably reducing run time. Second, RAKI was 

examined in only 2D scenarios, whereas sRAKI was implemented for 3D datasets with two 

phase encoding dimensions. Another major difference is concerned with the reconstruction phase 

in which RAKI interpolates missing data with no iterations, but sRAKI optimizes an objective 

function to enforce data-consistency and self-consistency among coils. This procedure, which is 

similar to the reconstruction phase of SPIRiT, increases the computational burden by requiring 

first-order derivative calculation in each iteration. However, the extra complexity is not limiting. 

In this study, calibration on targeted right coronary artery datasets took ~20 seconds for SPIRiT 

and l1-SPIRiT, and ~40 seconds for sRAKI all on GPU implementations, although none of the 

implementations were fully optimized. In addition, the reconstruction phase on GPU took ~220, 

120 and 100 seconds for SPIRiT, l1-SPIRiT and sRAKI, respectively. sRAKI is also different 

from its previous version, in which a different reconstruction optimizer was used for 2D imaging 

[46]. In addition the 4-layer architecture of SPIRiT-RAKI in [43] is different from sRAKI, as the 

former applies 3D kernels on the whole 3D volume rather than training a single network with 2D 

kernels on 2D slices of the 3D volume. We observed that the latter further improves training by 

reducing the number of trainable parameters for the same amount of data. 

In this study, the CNN parameters including the number of layers, the number of layer output 

channels and kernel sizes were empirically set to optimize the performance visually and 

quantitatively. Meanwhile, we noted that a simpler model would be more likely to generalize to 



future data. Other parameters such as learning rates were also tuned to achieve the best 

performance across the coronary MRI data sets. We note that this set of parameters may not 

yield the best performance for imaging all organs. Therefore, similar to other techniques, a 

parameter tuning procedure may need to be performed prior to using sRAKI in other applications 

for an optimal performance.  

Similar to SPIRiT, regularization terms can be included in the sRAKI objective function, in order 

to incorporate additional prior information, such as sparsity in transform domains [14–16]. 

However, these regularization parameters often need to be carefully tuned to avoid residual 

artifacts [16]. On the other hand, sRAKI without transform domain regularization, whose 

objective function requires no additional parameter tuning, showed desirable noise properties. 

The noise improvement in sRAKI is learnt from the coil geometry, and does not inherently 

include any assumptions about compressibility in transform domains. A combination of sRAKI 

with advanced regularizers bears potential for improved reconstruction quality in certain lower 

SNR scenarios (additional experiments for these scenarios are shown in Supporting Information 

S4 and S5 Figs), but this was beyond the scope of this work, which emphasized the multi-coil 

aspect of the data at the native acquisition SNR.  

In addition to explicit regularization terms, some noise amplification reduction can be achieved 

by limiting the number of iterations for both SPIRiT and sRAKI, at the cost of incomplete 

unaliasing. The effect of early termination of reconstruction is most pronounced as residual 

blurring artifacts, which is particularly troublesome in the application of high-resolution 

coronary MRI. Thus, our main criterion for number of iterations was to assure that blurring 

artifacts were entirely removed before reconstruction noise started to be amplified. We further 



observed that in contrast to ℓ1-SPIRiT and sRAKI, the transition between residual blurring 

artifacts and amplified reconstruction noise was particularly fast for SPIRiT, which is due to lack 

of a regularization mechanism in SPIRiT, consistent with the literature on iterative SENSE [54]. 

In terms of quantitative evaluation, since NMSE is captured in the loss function, additional 

evaluation of image quality was incorporated using the vessel sharpness measurements, as is 

standard in coronary MRI [11,16,21]. 

Finally, while this work showed the feasibility of using sRAKI for accelerating coronary MRI, 

we have not comprehensively evaluated the failure modes and the residual artifacts, and how 

these would affect diagnostic decisions. Further study of these effects is warranted in patient 

populations to establish diagnostic utility, and will be explored in future research.  

Conclusion 

The proposed sRAKI reconstruction is a database-free CNN-based technique for self-consistent 

parallel imaging with arbitrary undersampling patterns, where the CNNs are trained on scan-

specific ACS data. sRAKI is effective in accelerating coronary MRI, and improves 

reconstruction quality compared to regularized and non-regularized SPIRiT. 
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Supporting Information 

S1 Fig. Reformatted right coronary artery (RCA) images from a 3D targeted coronary MRI 
dataset. The data were uniformly undersampled retrospectively at rates 2×2, 3×2, 4×2 and 5×2 in 𝑘𝑘𝑦𝑦 −
𝑘𝑘𝑧𝑧 plane, which are approximately equivalent to net acceleration rates 4, 5, 6 and 7 (including the ACS 
lines and an elliptical mask). These data were then reconstructed using GRAPPA, SPIRiT, ℓ1-SPIRiT, 
RAKI and sRAKI (from top to bottom). Acceleration rate was set no higher than 2 for 𝑘𝑘𝑧𝑧 dimension, 
since the size of data along this dimension was small (20 lines in total and 10 lines for ACS). For RAKI, a 
3-layer network was designed with a kernel size of 2×2 (with dilations equaling acceleration rates to 
match the undersampled uniform pattern) for the first layer and a kernel size of 1×1 for subsequent layers. 
Note that this 2D undersampling is different from the original RAKI paper, thus the network architecture 
may be sub-optimal. The learning rate and number of epochs for RAKI were tuned to 0.05 and 2000 
iterations, respectively. Fully-sampled images are also displayed in the first column as a reference for 
comparison. While RAKI is robust, GRAPPA is very sensitive to noise with increasing rates. In addition, 
RAKI outperforms SPIRiT, but RAKI and sRAKI perform comparatively, similar to the relationship 
between GRAPPA and SPIRiT 

S2 Fig. Three ky-kz undersampling patterns were tested. Poisson disc (top), uniform-density random 
(middle) and variable-density random (bottom) with 4-fold acceleration.  

S3 Fig. Reformatted right coronary artery (RCA) images from a 3D targeted coronary MRI 
dataset. The data were retrospectively undersampled with the three different patterns shown in 
Supporting Figure S2. These data were then reconstructed using SPIRiT, ℓ1-SPIRiT and sRAKI. The 
results show that sRAKI is more resilient to noise amplification compared with SPIRiT, regardless of 
undersampling pattern.   



S4 Fig. Noise sensitivity of the reconstruction methods are shown on reformatted right coronary 
artery images. Additive Gaussian noise was added to the datasets retrospectively, and the reported SNR 
was measured at aorta (signal power at aorta divided by noise power in an empty region of interest), with 
the original dataset having SNR of 50. The datasets were then  retrospectively undersampled at rate 4 and 
reconstructed using SPIRiT, l1-SPIRiT and sRAKI. sRAKI is more robust against noise of data 
compared with SPIRiT. However, noise amplification becomes evident with increasing levels of 
noise compared with l1-SPIRiT. 

S5 Fig. Normalized mean squared error (NMSE) of reconstruction across all subjects with 
4-fold acceleration for the experiment setup described in Supporting Figure S4. Error bars 
represent standard deviation across subjects. 













 

Supporting Figure S1: Reformatted right coronary artery (RCA) images from a 3D targeted coronary MRI 

dataset. The data were uniformly undersampled retrospectively at rates 2×2, 3×2, 4×2 and 5×2 in 𝑘𝑘𝑦𝑦 − 𝑘𝑘𝑧𝑧 

plane, which are approximately equivalent to net acceleration rates 4, 5, 6 and 7 (including the ACS lines 

and an elliptical mask). These data were then reconstructed using GRAPPA, SPIRiT, ℓ1-SPIRiT, RAKI 

and sRAKI (from top to bottom). Acceleration rate was set no higher than 2 for 𝑘𝑘𝑧𝑧 dimension, since the 

size of data along this dimension was small (20 lines in total and 10 lines for ACS). For RAKI, a 3-layer 

network was designed with a kernel size of 2×2 (with dilations equaling acceleration rates to match the 

undersampled uniform pattern) for the first layer and a kernel size of 1×1 for subsequent layers. Note that 

this 2D undersampling is different from the original RAKI paper, thus the network architecture may be sub-



optimal. The learning rate and number of epochs for RAKI were tuned to 0.05 and 2000 iterations, 

respectively. Fully-sampled images are also displayed in the first column as a reference for comparison. 

While RAKI is robust, GRAPPA is very sensitive to noise with increasing rates. In addition, RAKI 

outperforms SPIRiT, but RAKI and sRAKI perform comparatively, similar to the relationship between 

GRAPPA and SPIRiT. 

  



 
Supporting Figure S2: Three 2D undersampling patterns were tested: Poisson disc (top), uniform-density 

random (middle) and variable-density random (bottom) with 4-fold acceleration.  

 

  



 

Supporting Figure S3: Reformatted right coronary artery (RCA) images from a 3D targeted coronary MRI 

dataset. The data were retrospectively undersampled with the three different patterns shown in Supporting 

Figure S2. These data were then reconstructed using SPIRiT, ℓ1-SPIRiT and sRAKI. The results show that 

sRAKI is more resilient to noise amplification compared with SPIRiT, regardless of undersampling pattern.   

 

  



 

Supporting Figure S4: Noise sensitivity of the reconstruction methods are shown on reformatted right 

coronary artery images. Additive Gaussian noise was added to the datasets retrospectively, and the reported 

SNR was measured at aorta (signal power at aorta divided by noise power in an empty region of interest), 

with the original dataset having SNR of 50. The datasets were then  retrospectively undersampled at rate 4 

and reconstructed using SPIRiT, ℓ1-SPIRiT and sRAKI. sRAKI is more robust against noise of data 

compared with SPIRiT. However, noise amplification becomes evident with increasing levels of 

noise compared with ℓ1-SPIRiT. 

  



 

Supporting Figure S5: Normalized mean squared error (NMSE) of reconstruction across all 

subjects with 4-fold acceleration for the experiment setup described in Supporting Figure S4. Error 

bars represent standard deviation across subjects. 
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