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Abstract

A tight r-tree T' is an r-uniform hypergraph that has an edge-ordering eq, es, ..., e; such that for
each ¢ > 2, e; has a vertex v; that does not belong to any previous edge and e; — v; is contained in
e; for some j < ¢. Kalai conjectured in 1984 that every n-vertex r-uniform hypergraph with more

than £=1 (")) edges contains every tight r-tree T with ¢ edges.

A trunk T' of a tight r-tree T is a tight subtree 7" of T such that vertices in V(T') \ V(T") are
leaves in T'. Kalai’s Conjecture was proved in 1987 for tight r-trees that have a trunk of size one.
In a previous paper we proved an asymptotic version of Kalai’s Conjecture for all tight r-trees that
have a trunk of bounded size. In this paper we continue that work to establish the exact form of
Kalai’s Conjecture for all tight 3-trees on at least 20 edges that have a trunk of size two.

Mathematics Subject Classification: 05C35, 05C65.
Keywords: Turan problem, extremal hypergraph theory, hypergraph trees.

1 Introduction. Trees, trunks, and Kalai’s conjecture

For an r-uniform hypergraph (r-graph, for short) H, the Turdn number ex,(n, H) is the largest m such
that there exists an n-vertex r-graph G with m edges that does not contain H. Estimating ex,(n, H)
is a difficult problem even for r-graphs with a simple structure. Here we consider Turdn-type problems
for so called tight r-trees. A tight r-tree (r > 2) is an r-graph whose edges can be ordered so that each
edge e apart from the first one contains a vertex v, that does not belong to any preceding edge but
the set e — v, is contained in some preceding edge. Such an ordering is called a proper ordering of the
edges. A usual graph tree is a tight 2-tree.

A vertex v in a tight r-tree T is a leaf if it has degree one in T. A trunk T' of a tight r-tree T is a
tight subtree of T' such that in some proper ordering of the edges of T' the edges of T” are listed first
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and vertices in V(T') \ V(T") are leaves in T. Hence, each e € E(T) \ E(T") contains an (r — 1)-subset
of some ¢’ € E(T") and a leaf in T (that lies outside V(7”)). In the case of r = 2 each e € E(T)\ E(T")
is a pendant edge. Every tight tree T with at least two edges has a trunk (for example, 7" minus the
last edge in a proper ordering is a trunk). Let ¢(7') denote the minimum size of a trunk of 7. We
write e(H) for the number of edges in H.

In this paper we consider the following classical conjecture.
Conjecture 1.1 (Kalai 1984, see in [1]). Let T be a tight r-tree with t edges. Then ex;(n,T) <

% (rﬁl) :

The coefficient (t—1)/r in this conjecture, if it is true, is optimal as one can see using constructions
obtained from partial Steiner systems due to Rodl [4]. The conjecture turns out to be difficult even for
very special cases of tight trees, in fact for r = 2 it is the famous Erd6s-Sés conjecture. The following

partial result on Kalai’s conjecture was proved in 1987.
Theorem 1.2 ([1]). Let T be a tight r-tree with t edges and c¢(T') = 1. Suppose that G is an n-vertex
r-graph with e(G) > d( " ) Then G contains a copy of T.

r \r—1

In a previous paper [2], we showed that Conjecture 1.1 holds asymptotically for tight r-trees with
a trunk of a bounded size. Our result is as follows. Define a(r,c) := (r" +1— 1)(c —1).

Theorem 1.3 ([2]). Let T be a tight r-tree with t edges and c¢(T) < c¢. Then

exp(n, T) < <t;1 —}—a(r,c)) <rfl>.

The goal of this paper is to prove the conjecture in ezact form for infinitely many 3-trees.

Theorem 1.4. Let T be a tight 3-tree with t edges and c(T) < 2. If t > 20 then

t—1/n
T < —— .
exs(n,T) < 3 <2)

Beside ideas and observations from [2], discharging is quite helpful here.

2 Notation and preliminaries. Shadows and default weights

In this section, we introduce some notation and list a couple of simple observations from [2]. For the
sake of self-containment, we present their simple proofs as well.

The shadow of an r-graph G is 9(G) :={S : |S|=r—1, and S C e for somee € e(G)}.
The link of a set D C V(G) in an r-graph G is defined as Lg(D) :={e\ D:e € E(G),D C e}.

The degree of D, dg(D), is the number the edges of G containing D. If G is an r-graph and
|D| = r — 1, the elements of Lg(D) are vertices. In this case, we also use Ng(D) to denote Lg(D).
Many times we drop the subscript G. For 1 < p <r — 1, the minimum p-degree of G is

0p(G) :=min{dg(D) : |D| =p, and D Ce for some e € E(G)}.



FUREDI, JIANG, KOSTOCHKA, MUBAYI, VERSTRAETE: TURAN NUMBERS OF TIGHT TREES 3

For an r-graph G and D € 9(G), let w(D) := m. For each e € E(G), let
1
wle):= > wD)= Y .
‘ ¢\ da(D)
De(r—l) De(r—l)

We call w the default weight function on E(G) and 9(G). Frankl and Fiiredi [1] (and later some others)
used the following simple property of this function.

Proposition 2.1. Let G be an r-graph. Let w be the default weight function on E(G) and O(G). Then

Proof. By definition,

1 1
2 ve= > | X |t 2 > |- X 1=l B

e€E(G) e€E(G) De(ril) Ded(G) \e€E(G),DCe

An embedding of an r-graph H into an r-graph G is an injection f : V(H) — V(G) such that for
each e € E(H), f(e) € E(G). The following proposition is folklore.

Proposition 2.2. Let G be an r-graph with e(G) > ¢q|0(G)|. Then G contains a subgraph G’ with
r—1(G') = [q) + 1.

Proof. Starting from G, if there exists D € 9(G) of degree at most |¢g] in the current r-graph, we
remove the edges of this r-graph containing D. Let G’ be the final r-graph. Since we have deleted at
most ¢|0(G)| < e(G) edges, G’ is nonempty. By the stopping rule, é,_1(G’") > ¢ + 1. O

3 Lemmas for Theorem 1.4

The idea behind the proof of Theorem 1.4 is to find in the host 3-graph G a special pair of edges with
good properties where we plan to map the trunk of size 2 of T'. We use the weight argument together
with discharging to find such special pairs in the next two lemmas.

Given edges e = abc and f = adc in a 3-graph G sharing pair ac, for a pair {z,y} C {a,b,c,d}, let
d;, ;(z,y) denote the number of z € V(G) \ {a, b, ¢, d} such that xyz € G. By definition

de ¢(x,y) > d(z,y) — 2 for every {x,y} C {a,b,c,d}. (1)

Lemma 3.1. Let m > 20 be a positive integer and let G be a 3-graph satisfying e(G) > |0(G)| and
02(G) > 5. Let w be the default weight function on E(G) and O(G). Then there exist edges e = abc
and f = adc in G satisfying

(a) w(e) < 2 and w(ac) < L,

(b) min{d,e,f(a7 b)7 dé,f(cv b)} > L%J ’
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(c) max{d, ;(a,b),d; ;(c,b)} > 22|, and
(d) either 3(w(f) —2) < (2 —w(e)) or max{d, ;(a,d),d; ;(c,d)} >m —1.

Proof. For convenience, let wy = . By Proposition 2.1, 3", w(e) = |0(G)|. So,

e > w0 = G Ly, @)

Hence the average weight of an edge in G is less than wy. We call an edge e € E(G) light if w(e) < wy
and heavy otherwise. A pair {x,y} of vertices in G is good, if d(xy) > m + 1.

To find the desired pair of edges e, f we first do some marking of edges. For every light edge e, fix
an ordering, say a, b, ¢, of its vertices so that d(ab) < d(bc) < d(ac). We call ab, be, ac the low, medium,
high sides of e, respectively.

Since e is light, w(e) = d(tllb) + d(}m) + d(zw) <wp = 2, it follows that
d(ac) > m, d(be) > 377“ d(ab) > - (3)

In particular, ac is good. We define markings involving e based on three cases.

Case M1: d(ab) > |m/3] + 2 and d(bc) > [2m/3]| + 2. In this case, we let e mark every edge
containing ac apart from itself.

Case M2: d(ab) < |m/3] + 1. By (3), d(ab) = |m/3] + 1, and since e is light,

d(ac) > d(be) > ——5— = m(”i; 3. (4)
m—+3

3
m

We let e mark all the edges acx # e containing ac such that abx is not an edge in G. By (4), in this

case m(m+3)_m+3:(m+3)(m—3)

9 3 9

edges. (5)

e marks at least
Case M3: d(bc) < [2m/3] + 1. By (3), d(bc) = [2m/3| + 1. Let e mark all the edges acx # e
containing ac such that bex is not an edge in G. Since e is light,

d(ac) > ! T = m(277;+ 3). (6)

m 2m+-3
Similarly to (5), in this case

m2m+3) 2m+3 _ (2m+3)(m —3)
9 3 9

edges. (7)

e marks at least

We perform the above marking procedure for each light edge e.

Claim 1. If e is a light edge and f is an edge marked by e then (a)-(c) hold. Further, if f is light,
then the lemma holds for (e, f).
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Proof of Claim 1. Suppose e = abc, where a,b,c are ordered as described earlier and suppose
f = acd. Then (a) holds by e being light and by (3). (b) holds, since either d(ab) > |m/3] + 2 or
d(ab) = |m/3| + 1 and d ;(a,b) = d(ab) — 1 (because abd ¢ ). Similarly, (c) holds, since either
d(be) > [2m/3] + 2 or d(bc) = [2m/3] + 1 and d, ;(b,c) = d(bc) — 1 (because bed ¢ G). Now, if f is
also a light edge then (d) holds since w(f) — 2 <0 < 2 —w(e). O

By Claim 1, we may henceforth assume that every marked edge is heavy. We will now use a
discharging procedure to find our pair (e, f). Let the initial charge ch(e) of every edge e in G equal
tow(e). Then ) s ch(e) =) cqw(e) = |0(G)|. We will redistribute charges among the edges of G
so that the total sum of charges does not change and the resulting charge of each heavy edge remains
at least wy.

The discharging rule is as follows. Suppose a heavy edge f was marked by exactly ¢ light edges. If
g = 0, then let the new charge ch*(f) equal ch(f). Otherwise, let f transfer to each light edge e that
marks it a charge of (ch(f) — wg)/q so that ch*(f) = wp. It is easy to see that the total charge does
not change in this discharging process. Hence, by (2), there is an edge e with ch*(e) < wy. By our
discharging rule, e must be a light edge. Suppose e marked p edges. In each of Cases M1,M2, M3, e
marks at least one edge. So p > 0. Among all edges e marked, let f be one that gave the least charge
to e. By definition, f gave e a charge of at most (ch*(e) — ch(e))/p < (wo — ch(e))/p. We claim that
the pair (e, f) satisfies the lemma. Suppose e = abc, where a, b, ¢ are ordered as before, and suppose
f = acd. By Claim 1, (a), (b), and (c) hold. It remains to prove (d). If all three pairs in f are good,
then w(f) < 2

=, contradicting f being heavy. So, at most two of the pairs in f are good. By our

earlier discussion, ac is good. If one of ad and cd is also good, then the second part of (d) holds. So
we may assume that ac is the only good pair in f. Let g be the number of the light edges that marked
f. By the marking process, a light edge only marks edges containing its high side and the high side is
a good pair. Since ac is the only good pair in f, each of the ¢ light edges that marked f contains ac
and has ac as its high side.

First, suppose that Case M1 was applied to e. Then all the edges containing ac other than e were
marked, which by our assumption must be heavy. In particular, this implies that ¢ = 1. By our rule,
f gave e a charge of ch(f) — wg. By our choice of f, each of the d(ac) —1 > m edges of G containing
ac (other than e) gave e a charge of at least ch(f) —wo. Hence, wy > ch*(e) > ch(e) +m(ch(f)— wy),
from which the first part of (d) follows.

Next, suppose that Case M2 was applied to e. Then d(ab) < |m/3| + 1. If ¢ > [m/3] + 1, then
one of light edges containing ac, say acz, satisfies that abxz ¢ G. By rule, e marked acz, contradicting
our assumption that no light edge was marked. So ¢ < [m/3]| + 1. Similarly if Case 3 was applied to
e then ¢ < [2m/3] 4+ 1. In both of these cases, e marked at least w edges, and by the choice
of f, each of these edges gave to e charge at least (ch(f) — wg)/q. Since ch*(e) < wq, we conclude

(m+ 3)(m —3) ch(f) — wo S (m+3)(m —3)

—ch(e) >
wo = ch(e) 9 g - 32m+3)

(ch(f) — wo).

Since m > 20, this means

ch(f) —wo - 3(2m + 3) < 3-45

5 1
wo — ch(e) (m+3)(m—3)_24'18_ﬁ<§'
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So, the first part of (d) holds. O
For an edge e, by dmin(e) we denote the minimum codegree over all three pairs of vertices in e.

Lemma 3.2. Let G be a 3-graph satisfying e(G) > ~|0(G)|. Let w be the default weight function on
E(G) and O(G). Then there exists a pair of edges e, f with |e N f| = 2 such that

1. w(e) < %,
2. len f| = dmin(e),
1

3. w(f) < %4— ﬁe)—l(§ —w(e)).

Proof. For convenience, let wg = % As in the proof of Lemma 3.1, call an edge e with w(e) < wy
light and an edge e with w(e) > wy heavy. As before, the average average of w(e) over all e is
|0(G)|/e(G) < wp. For each light edge e, let us mark a pair of vertices in it of codegree dmin(€). If e
is a light edge with a marked pair xy and f is another light edge containing xy, then our statements
already hold. So we assume that no marked pair of any light edge lies in another light edge. Let us
initially assign a charge of w(e) to each edge e in G. Then the average charge of an edge in G is less
than wg. We now apply the following discharging rule. For each heavy edge f, transfer %(w( f) — wo)
of the charge to each light edge e whose marked pair is contained in f. Note that for each f there are
at most 3 such e. In particular, each heavy edge still has charge at least wqg after the discharging.

Since discharging does not change the total charge, there exists some edge e with charge less than
wg. By the previous sentence, e is a light edge in G . Let zy be its marked pair. There are dpin(€) — 1
other edges containing it, each of which is heavy. Each such edge f has given a charge of %(w( f)—wo)

to wo. For e to still have a charge less than wg, one of these edges f satisfies %(w(f) —wp) < %.
1 3 1
Hence w(f) < S+ dmin(e)ﬂ(? —w(e)). O

Our third lemma proves a special case of Theorem 1.4.

Lemma 3.3. Let T be a tight 3-tree with t > 5 edges. Suppose T has a trunk {ei,ea} of size 2
such that dr(e1 Nex) > |551] + 2. Let G be an n-vertez 3-graph that does not contain T. Then
e(G) < (G-

Proof. For convenience, let m =t — 1. Let G be a 3-graph with e(G) > §[9(G)|. Then G contains a
subgraph G’ such that e(G’) > % [0(G")| and d2(G’) > . For convenience, we assume G itself satisfies
these two conditions. Let w be the default weight function on E(G) and 9(G). Then G satisfies the
conditions of Lemma 3.1. Let the edges e = abc and f = adc satisfy the claim of that lemma, where
a,b, c are ordered as in Lemma 3.1. In particular, by (a), e is light and ac is good, i.e. d(ac) > m + 1.
By our assumptions, d(ab) < d(bc). By parts (b) and (c),

L p(a,b) > [%J and dy, ¢(c,b) > F?J . (8)

We rename pairs {a,d} and {c,d} as Dy and D so that di ;(D1) = min{d] ;(a,d),d, ;(c,d)} and
dy, ;(D2) = max{d, ;(a,d),d, ;(c,d)}. We claim that in these terms,

m

V= dl (D) > bJ —1 and dy:=d, ;(Ds) > {%J (9)



FUREDI, JIANG, KOSTOCHKA, MUBAYI, VERSTRAETE: TURAN NUMBERS OF TIGHT TREES 7

By (1) and the fact that 6o(G) > %, d},dy > [ ] — 1. We will use part (d) of Lemma 3.1 to show

that dj > [%§]. If the second part of (d) holds, then dj > m — 1 and we are done. So suppose the

first part of Lemma 3.1 (d) holds instead, i.e. 3(w(f) — wp) < (wg — w(e)). Then w(f) < %wo =4
If d) = dy = [%] — 1, then d(D1) = d(D3) = | 2| + 1 and hence
2 6 4

when m > 9, a contradiction. Thus, dj > |%] and (9) holds.

By our assumption, T" has a trunk {ej, ez} with dr(e; Nez) > %] + 2. Suppose e; = zyu and

e = xyv so that e; Neg = zy. By our assumption, each edge in E(T')\ {e1, e2} contains a pair in e; or

ez and a vertex outside e; Uey. For each pair B contained in e or ey, let N7.(B) = Np(B)\ {z,y,u,v}

and p(B) = |Nj(B)|. Then pu(zy) = dr(zy) —2, and u(B) = dr(B) —1 for each B € {zu, zv, yu, yv},.
By definition,

u(zy) + plzw) + plav) + plyw) + plyv) =t —2=m —1. (10)

Since p(ry) = dr(ry) —2 > [%5] > 5 — 1, we have
2m
pla) + p(zv) + plyu) + plyv) < == (11)

We consider three cases, and in each case we find an embedding of T into G.

Case 1. d, ;(a,b) > |22 |. Recall that by (8), dy, ¢(c,b) > [2]. By symmetry we may assume
that p(zu) + p(yu) > p(zv) + p(yv) and that p(zv) > p(yv). Then by (11) p(av) + plyv) < [%2], so
we construct an embedding ¢ of T" into G as follows.

First, let ¢(u) = b and ¢(v) = d. Then choose distinct ¢(x), d(y) € {a,c} so that ¢({y,v}) = D
and ¢({z,v}) = D,. This maps e; to e and ey to f. Since p(yv) < 22 =" by (9) we can next map
N%(yv) into Nj(Dy). Now, since pu(yv) + p(zv) < 322 = 2 agaln by (9) we can map N/.(zv) into

NG(D2) \ ¢(Np(yv)). If ¢(x) = a,¢(y) = ¢, then by the condition of Case 1 and (11), we can map
NIy ) into N, (be) \ ¢(N7-(yv) U Nip(zv)) and N (zu) into N (ac) \ ¢(Nr(yv) U Np(zv)). The case
é(x) = ¢, p(y) = a is similar. Finally, embed N/.(zy) into N (ac).

Case 2. L%J < d’e7 (a,b) < LTWJ —1and d] > L%J Then we can strengthen the second part
of (9) to
m
d)y > L—J . (12)
Indeed, (9) holds immediately if the second part of (d) holds in Lemma 3.1; so we may assume

3(w(f) — wo) < (wp — w(e)). By the condition of Case 2,

3 3(m+3)

3
_ <2 _ = )
wo —wle) < m  2m+3  m(2m+3)

From this, we get
3 (m+3)  Tm+12

wif) < m + m@2m+3)  m(2m +3)’
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If dy < |%| —1, then
2 2

> 9
w(f)>d’2+2_ m+t2

Tm+12

which is larger than m(2m+3)

for m > 24. This contradiction proves (12).

For convenience, suppose D1 = cd (the case D; = ad is similar). By symmetry, we may assume
that p(zu) + p(yv) < p(yu) + p(zv) and that p(yu) > p(zv). Then by (11),

plew) +ulyo) < | 5|0 plew) + ulyo) + plav) < | T - (13)

We embed T into G by mapping z,y,u,v to a,c,b,d, respectively and embedding in order N/.(yv)
into N{:(ed), Np(zu) into N/ (ab), N (zv) into N (ad), Nip(yu) into N (be), and Ni(zy) into N (ac)
greedily. Conditions (10), (11), (12) and (13) ensure that such an embedding exists.

Case 3. |Z] < dy, s(a,b) < |22 — 1 and d} = |2 ] — 1. We now strengthen (12) to

2m
dy > {3J : (14)
Indeed, exactly as in the proof of (12), we derive that w(f) < Jgn‘t}é) If d) < L%”J — 1, then
3 1 Tm + 12 1 < Tm + 12 3

< < — _ ,
2m+3 ~ dy+2  m(2m+3) di+2 7 m@2m+3) m+3
which is not true for m > 20. This proves (14).

As in Case 2, suppose D; = cd (the case D1 = ad is similar). By symmetry, we may assume that
p(zu) + p(yv) < p(yu) + p(zv) and that p(zu) = p(yv). Then by (11),

p(zu) + pyv) < L%J o ulyw) < L%J : (15)

We embed T into G by mapping z,y,u,v to a,c,b,d, respectively and embedding in order N/J.(yv)
into N{:(ed), Ni(zu) into Nj(ab), N (zv) into N (ad), Ni(yu) into N (be), and Ni(zy) into N (ac)
greedily. Conditions (10), (11), (14) and (15) ensure that such an embedding exists. O

4 Proof of Theorem 1.4

We prove the shadow version of Theorem 1.4, which immediately implies Theorem 1.4.

Theorem 1.4'. Let t > 20 be an integer. Let T be a tight 3-tree with t edges and ¢(T) < 2. If G is
an r-graph that does not contain T then e(G) < %\8(6’)]

Proof. First, let us point that in this proof, we exploit Lemma 3.2 and will not need Lemma 3.1 in
an explicit way. Let T be a tight 3-tree with ¢t > 20 edges that contains a trunk {ej, es} of size 2. For
convenience, let m =t — 1. Let G be a 3-graph with e(G) > %|0(G)|. We prove that G contains T'.
As before we may assume that do(G) > %. Let w be the default weight function on E(G) and 9(G).



FUREDI, JIANG, KOSTOCHKA, MUBAYI, VERSTRAETE: TURAN NUMBERS OF TIGHT TREES 9

By Lemma 3.2, there exist edges e and f in G such that d(e N f) = dmin(e), w(e) < 2, and (using
m > 19)

if dlen f) > %, then w(f) < %—i— (m—i—l?;/2—1 (:L —w(e)) < % —i—% (i —w(e)) < %, (16)
and
iM@ﬂﬂg?JMmMﬂ<iﬂﬁmé]1<i—w@)§i+;<i—i>:;. (17)

Suppose e = acb and f = acd, so that e N f = ac. For each pair D contained in e or f, let
N{(D) = Ng(D)\{a,b,c,d} and d,(D) = |N{(D)|. Then di(D) > dg(D) —2. Consider T. Suppose
e1 = zyu and ez = xyv, so that ey Nex = zy. If dr(zy) > | 5] + 2, then we apply Lemma 3.3 and are
done. Hence we may assume that

m
dr(zy) < {gJ + 1.

For each pair B contained in e; or eg, let N;.(B) = Np(B) \ {z,y,u,v} and let u(B) = |NJ(B)|. Then
w(zy) = dr(zy) — 2 and p(B) = dr(B) — 1 for the other pairs. Also, we have

p(xu) + p(yw) + plzv) + plyv) + plzy) =m — 1. (18)
Since p(ry) = dr(zy) -2 < § — 1,
3

+ 22 Vi € [4]. (19)

u(zy) + i(m —1—play)) < c

Let us view e, f as glued together at ac with e on the left and f on the right. Let

Lypae = max{dg(ab),dg(bc)}, Lynin, = min{dg(ab), dg(bc)},
Rpaz = max{dg(ad),dg(cd)}, Rynin = min{dg(ad), dg(cd)}.

Since d(ac) = dmin(€), Limaz > Lmin > dg(ac). Since w(e) < %, we have

Lopaz > m. (20)
We consider two cases. In each case, we find an embedding of T into G.

Case 1. Ly, > m. This implies di;(ab),d;(bc) > m — 1. By symmetry, we may assume that
dg(ad) > dg(cd) so that dg(ad) = Rpyar and dg(cd) = Ryin. Now, consider T'. By symmetry, we may
assume that p(zu) + p(yu) > p(zv) + p(yv) and that p(zv) > p(yv). Then p(yv) < H(m—1— p(zy))
and p(zv) + p(yv) < 3(m —1— p(zy)). This, together with (19) implies

uyv) < |2, plav) +u(yo) < | 5] =1,

plyv) + pley) < |5 =1, plav) + plyw) + pley) < {MJ ~-L (21)
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Case 1.1. dg(ac) > 2. By (16), 7o + = < w(f) < -, 50 Rz > 2. Since 62(G) > 2, we

’ Rmam min
have Ry > 5. Hence
2
diz(ab), diz(be) > m — 1, djs(ac) > HLJ —1 dglad) > | 3] -1 dled) = | T -1 (22)

Now we can embed T into G as follows. First, we map z,y,u,v to a,b, ¢, d respectively. This maps e;
to e and ep to f. Then we map N7.(yv) into N{;(cd) followed by Ni.(zv) into N{;(ad). Next, we map
Ni.(zy) into N/ (ac), Nj(yu) into N{(bc), and N7.(zu) into N (ab) in that order. Conditions (21)
and (22) ensure that such an embedding exists.

Case 1.2. dg(ac) < 2. Then w(e) > 5>-. If dg(ac) > 2, then by (16), w(f) < 2 4+3(2 - 32) =
7. On the other hand, if dg(ac) < %, then w(e) > 2 and by (17), w(f) < 2 +3(2 - 2)= ;L. So
in any case,

1 1 7 3 2
Rmam + len < 'Uj(f) - ’UJ(CZC) < % — % = E

Then Ryae > m and Ry, > % . Also, since 02(G) > %, we have dg(ac) > . Hence,
do(ab),dg(be) > m =1, dgla) > |5 =1, dglad) >m—1, dgled) > | 5| -1 (23)

Now we can embed T into G as follows. First, we map x,y, u, v to a, b, ¢, d respectively. This maps e to
e and ez to f. Then we map N7(zy) into N, (ac). This is doable since di(zy) = dr(zy) —2 < [F] -1
while di;(ac) > [ | — 1. Then we map Ny (yv) into N¢,(cd) followed by Nj.(xv) into N(,(ad). Next,
we map N7.(yu) into N (bc), and N (zu) into N¢(ab) in that order. Conditions (21) and (23) ensure
that such an embedding exists.

Case 2. L, < m. By symmetry, we may assume that dg(ab) > dg(be) so that dg(ab) = Liyax
and dg(bc) = Lynin. We have ﬁ + W <w(e) < % Since d(ac) = dmin(e), dg(ac) < Lpin < m.
This yields Lyin > 2%, 2 < dg(ac) < m, and w(e) > 2. By (20), Linqz > m. Thus,

32
d(ab) > m—1, ds(be) > V;”J 1 dglae) > [ 2] -1 (24)
Since dg(ac) > m/2, by (16),
W<t = M s R SO g < g

Case 2.1 Ry,4, > m. By our assumption and (25),

Raz > m, Rpin > —

First suppose that dg(ad) > dg(ed). Then

dofad) > m—1, dylcd) > f’mJ Y (26)
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By symmetry, we may assume that p(zu) + p(xv) > p(yu) + p(yv) and that p(yu) > p(yv). Then
by these assumptions and (19), we have

pu(yv) < L%J =1, plyv) + pley) < L%J =1, plyv) + p(zy) + plyu) < {?J -1 (27)

Now we can embed T into G as follows. First, we map z,y, u, v to a, b, ¢, d respectively. This maps
e; to e and ey to f. Then we map Ni(yv) into N (cd) followed by Ni(zy) into N (ac). Next, we
map N7.(yu) into N[ (be), Ni.(zv) into N/ (ad), and N7.(zu) into N{;(ab) in that order. Conditions
(24), (26) and (27) ensure that such an embedding exists.

Next, suppose that dg(cd) > dg(ad). Then

d(ad) > {3’7"J 1, di(ed) > m—1. (28)

By symmetry, we may assume that p(zu) + p(yv) > p(zv) + p(yuw) and that p(yu) > p(zv). By
these assumptions and (19), we have

m m 2m
o) < |5] =1t 4 uten) < | 5] -1 o)+ uten) 4t < |5 <1 @)

Now we can embed T into G as follows. First, we map z,y,u,v to a, b, ¢, d respectively. This maps
e1 to e and ez to f. Then we map N7.(xv) into N/, (ad) followed by N7.(zy) into N/ (ac). Next, we
map Np(yu) into N (be), Nj(yv) into N/ (cd), and Nj(zu) into N/ (ab) in that order. Conditions
(24), (28) and (29) ensure that such an embedding exists.

Case 2.2 R4, < m. Since Ryin < Rpar < m, by (25), we again have R4, > 67’", and

R S N W 1
Ryin  3m m  3m’ e 4
By (25), w(f) < 3=. Also, ﬁlm > Lnlm > L. Hence,
1 2 4
w(ac) < % =% and hence dg(ac) > PTJ — 1. (30)
First, suppose that dg(ad) > dg(cd). Then
d'(ad) > an —1, d(cd) > B”J ~ 1 (31)
By symmetry, we may assume that p(zu) + p(xv) > p(yu) + p(yv) and that p(zxu) > p(zv). In
particular,
1 1 m m
> (m—1- >7( - 1):f. 2
plew) = 5 m— 1 pay) 2+ (m—1- " y1) =" (32)

By (19), (24), (31), and (32), we can greedily embed T into G by mapping z,y,u,v to a,c,b,d,
respectively and mapping in order NJ.(yv) into N/ (cd), Ni(zy) into N/ (ac), Ni(yu) into N (be),
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N (zv) into N(;(ad), and Ni(zu) into Nf(ab).

Next, suppose that dg(cd) > dg(ad). Then d'(ad) > |2%| — 1 and d'(cd) > |%2] — 1. By
symmetry, we may assume that p(zu) + p(yv) > p(zv) + p(yu) and that p(zu) > p(yv). Again, (32)
holds. We can greedily embed T into G by mapping x,y,u,v to a,c,b,d, respectively and mapping
in order N/.(yu) into N (be), Ni(xzy) into N (ac), Np(xzv) into Ni(ad), Ni(yv) into N/ (cd), and
N (zu) into N{(ab). O
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