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Abstract

An r-uniform hypergraph is a tight r-tree if its edges can be ordered so that every edge e contains
a vertex v that does not belong to any preceding edge and the set e — v lies in some preceding edge.
A conjecture of Kalai [13], generalizing the Erdés-S6s Conjecture for trees, asserts that if T is a
tight r-tree with ¢ edges and G is an n-vertex r-uniform hypergraph containing no copy of T', then
G has at most =2 (") edges.

A trunk T’ of a tight r-tree T is a tight subtree such that every edge of T'—T" has r — 1 vertices
in some edge of 77 and a vertex outside T”. For r > 3, the only nontrivial family of tight r-trees
for which this conjecture has been proved is the family of r-trees with trunk size one in [5] from
1987. Our main result is an asymptotic version of Kalai’s conjecture for all tight trees T' of bounded
trunk size. This follows from our upper bound on the size of a T-free r-uniform hypergraph G in
terms of the size of its shadow. We also give a short proof of Kalai’s conjecture for tight r-trees
with at most four edges. In particular, our result on the tight path of length 4 for 3-graphs implies
the intersection shadow theorem of Katona [14].

1 Results and history of tight trees

Turan-type problems are among central in combinatorics. For integers n > r > 2 and an r-uniform
hypergraph (r-graph, for short) H, the Turdn number ex,(n, H) is the largest m such that there exists
an n-vertex r-graph G with m edges that does not contain H. One of well-known conjectures in
extremal graph theory is the Erd6s-Sés Conjecture (see [2]) that every n-vertex graph G with more
than n(t — 1)/2 edges contains every tree with t edges as a subgraph. In other words, they conjecture
that exa(n,T') < n(t —1)/2 for each tree with ¢ edges. The conjecture, if true, would be best possible
whenever ¢ divides n, as seen by taking G to be the disjoint union of K;’s. There are many partial
results on the conjecture. The most significant progress on the conjecture was made by Ajtai, Komlds,

Simonovits, and Szemerédi [1], who solved the conjecture for all sufficiently large t¢.
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In 1984, Kalai [13] made a more general conjecture for r-graphs. To describe the conjecture, we
need the following notion of hypergraph trees. Let » > 2 be an integer. An r-graph T is called a tight

r-tree if its edges can be ordered as ey, ..., e so that
for each i > 2, there are a vertex v € e; and 1 < s < i —1 such that v ¢ U;;ll ej and (1)
e; —v C es.

Note that a graph tree is a tight 2-tree. We write e(H) for the number of edges in H.

Conjecture 1.1 (Kalai 1984, see in [5]). Let r > 2 and let T be a tight r-tree with t > 2 edges. Then
ex,(n,T) < %(Tfl)

Kalai observed that his conjecture, if true, is asymptotically optimal using constructions obtained
from partial Steiner systems due to Rédl [20]. The recent work of Keevash [15] (see also [10]) on the
existence of designs show that in fact for every r > 2 and t there are infinitely many n for which there
is an n-vertex r-graph G with e(G) = =21

T

n
r—1

) that contains none of the tight r-trees with ¢ edges.
For example, this bound can be achieved for all n > ng(r,t) when some divisibility properties hold,
e.g., n —r+ 2 is divisible by (¢t +r — 1)!. This gives a lower bound d( ") = Opt(n"=2) for all n.

r \r—1

A weaker upper bound

ex,(n,T) < (e(T) — 1) (r ﬁ 1) for each tight r-tree T (2)

is implicit in several earlier works, and is explicit in [9] (see Proposition 5.4 there).

To prove Conjecture 1.1, we need to improve the bound in (2) by a factor of r. This turns out to
be difficult even for very special cases of tight trees. It is only recently that the authors [8] were able
to improve (2) in the case T is the tight r-uniform path with ¢ edges by a factor of 1 —1/r. (For short
paths, t < (3/4)r, Patkds [19] proved better coefficients).

So far, the only family of tight trees for which Kalai’s conjecture is verified is the family of so-called
star-shaped trees. A tight r-tree T is star-shaped if it contains an edge eg such that [eNeg| = r—1 for
each e € T'\ {ep}.

Theorem 1.2 ([5]). Let n,r,t > 2 be integers. Let G be an n-vertex r-graph with e(G) > =1(")).

r \r—1

Then G contains every star-shaped tight r-tree with t edges.

Given a tight r-tree T and a tight subtree 7" of T, we say that T” is a trunk of T if there exists an
edge-ordering of T satisfying (1) such that the edges of T" are listed first and for each e € E(T)\ E(T")
there exists ¢/ € E(T”) such that e Ne'| = r — 1. Let ¢(T) be the minimum number of edges in a
trunk of 7. Hence, a star-shaped tight tree is a tight tree 7" with ¢(7") = 1, and Theorem 1.2 says that
Kalai’s Conjecture holds for tight r-trees 7" with ¢(7") = 1. Note from the definition above that for a
tight tree T having ¢(T') < ¢ is equivalent to saying that all but at most ¢ edges of T' contain a vertex
of degree 1.

The primary goal of this paper is to extend Theorem 1.2 to tight trees of bounded trunk size.
Our main theorem says that for every fixed integers r > 2 and ¢ > 1, Kalai’s Conjecture holds
asymptotically in e(T") for tight r-trees T with ¢(T') < c.
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Theorem 1.3. Let n,r,t,c be positive integers, where n > r > 2 and t > ¢ > 1. Let a(r,c) =
(r"+1—12)(c—1). Let T be a tight r-tree with t edges and c(T) < c. Then

ex (n, T) < <t_rl +alr, c)> <T i 1). (3)

Note that Theorem 1.2 follows from Theorem 1.3 by setting ¢ = 1. The main point of Theorem 1.3
is that the coefficient in front of (") is (t — 1)/r + Oyc(1), while the coefficient in Kalai’s conjecture
is(t—1)/r.

We also give a (simple) proof of the fact that Kalai’s Conjecture holds for tight r-trees with at
most four edges.

Theorem 1.4. Let n > r > 2 be integers and T be a tight r-tree with t < 4 edges. Then

t—1 n
T 7T S .
ex,(n,T) <r—1>

r

The proofs of Theorems 1.3 and 1.4 are postponed to Sections 4 and 5.

2 Tight trees and shadows

An important notion in extremal set theory is that of shadow. Given an r-graph G, the shadow of G
is

AG)={S:|S|=r—1, and S Ce forsome ece(G)}.

The result in [5] is more explicit than Theorem 1.2. It was shown that if 7" is any star-shaped
tight r-tree with ¢ edges and G is a T-free r-graph then e(G) < =19(G)|, from which Theorem 1.2
immediately follows. There were several other results in the literature that bound the size of an H-free
r-graph in terms of the size of its shadow. Katona [14] showed that if G is an intersecting r-graph then
e(G) < |0(G)|. This is known as the intersection shadow theorem. More recently, Frankl [4] showed
that if G is an r-graph that does not contain a matching of size s+ 1 then e(G) < s|0(G)|. Sometimes
it is easier prove the bounds in terms of the shadow size than in terms of n using induction. Instead
of Theorems 1.3-1.4 we will prove bounds on ¢(G) in terms of |9(G)|, from which Theorems 1.3-1.4
will follow.

Based on our results, we propose the following conjecture, which we will show is equivalent to
Kalai’s conjecture.

Conjecture 2.1. Let r > 2,t > 1 be integers. Let T be a tight r-tree with t edges. If G is an r-graph
that does not contain T' then e(G) < =2[0(G)).

The lower bound constructions obtained from designs mentioned earlier show that the bound in
Conjecture 2.1, if true, would be tight. Since for every r-graph G on n vertices one has |0(G)| < (Tfl)
Conjecture 2.1 obviously implies Conjecture 1.1. We will show in Theorem 2.3 that Conjecture 1.1

also implies Conjecture 2.1.
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Proposition 2.2. Conjecture 2.1 is equivalent to Kalai’s conjecture.

Theorem 2.3. If T is a tight tree then the limit

a(T) == lim exr(n,T)/( " )

n—o0 r—1

exists and is equal to its supremum. Moreover,

e(@) :

a(T) = sup { : G is a T-free r—gmph} .
=P )

In particular for a := a(T) we have ex(n,T) < a(,",) and e(G) < a|0(G)| for every n and for every

T-free r-graph G.

Let H be a u-uniform hypergraph on v vertices (v > u > 1). An almost disjoint induced packing
of H of size m on n vertices consists of v-subsets of [n], V1,...,V,,, and m copies of H on these sets,
Hy,..., Hy, such that either |V;NVj| < uor |V;NV}| = u, but in the latter case V; NV} is not an edge
of any of the Hy’s. So Vj, induces Hy, in the union UE(H;). Obviously, m < (') /e(H). For the proof
of Theorem 2.3 we need a result from [6] about the existence of almost perfect induced packings of
subhypergraphs with nearly disjoint vertex sets. We recall it in the form we need. Given H as n — oo
one has

max m = (1+ o(1)) (”)/e(H). (4)
u
In fact (4) is an application of the packing result of Frankl and Rodl [7] .

Lemma 2.4. Let T be a tight r-tree and suppose that G is a T-free r-graph. Then for every e > 0,
there exists ng = no(T, G,€) such that for all n > ng

“Wﬂ><&g'”>QnJ‘

Proof of Lemma 2.4. To get a lower bound we need a construction F', a T-free r-graph on n vertices.

Define H = 9(G) and apply (4) (with u = r — 1) to obtain near optimal number of copies of 9(G),
Hi,...,H,, with vertex sets Vi,...,V,,. Put a copy of G, G;, on each V; such that 9(G;) = H;.
The resulting copies of G share no (r — 1)-shadow and in particular are edge-disjoint. The union
F =UE(G;) has (1-0(1))(e(G)/|0(G)])(,",) edges and it is T-free. Indeed, F' cannot contain a tight

tree that moves from one copy of G; to another. When we start to build the tree T = {ej,..., e}
with e; € G; then all other edges e; must also belong to G; so there is no such tree in F'. O

Note that a similar proof idea was used by Huang and Ma [12] to disprove an Erdds-Sés/Verstraéte

conjecture concerning tight cycles.

Remark 2.5. It follows from the proof of Lemma 2.4 that it still holds if T is replaced with any
r-graph with a connected (r — 1)-intersection graph, meaning that the auxiliary graph defined on E(T)
where e, ¢’ € E(T) are adjacent if and only if e Ne/| =r — 1 is connected.
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Proof of Theorem 2.3. Define

o) = esun)/( "))

r—1
G
TigG)] : G is a T-free r-graph on n Vertices} .

B(n,T) = max{

Since f(n,T) < B(n+ 1,T) and B(n,T) < e(T) — 1 (by (2)) the limit f = B(T") = lim, 00 5(1, T)
exists, is positive, and is equal to its supremum. Since a(n,T) < B(n,T) we have sup,, a(n,T) < S.
The proof of the existence of the limit o can be completed by Lemma 2.4 showing that for every € > 0
taking a T-free r-graph G with %g))' > [ — ¢ there exists an ng such that a(n,T’) > g — 2¢ for all

n > ng. a

3 Notation and preliminaries

Given an r-graph G and a subset D C V(G), we define the link of D in G, denoted by Lg(D), to be
La(D)={e\D:e€ E(G),D C e}.

The degree of D, denoted by dg (D), is defined to be |Lg(D)[; equivalently it is the number of edges of
G that contain D. When G is r-uniform and |D| = r — 1, elements of Lg(D) are vertices. In this case,
we also use Ng(D) to denote Lg(D) and call it the co-neighborhood of D in G. When the context is
clear we will drop the subscripts in Lg(D), Ng(D) and dg(D). For each 1 < p <r — 1, we define the

minimum p-degree of G to be
0p(G) =min{dg(D) : |D|=p, and D Ce forsome ec E(G)}.

Given an r-graph G, and D € 9(G), let w(D) = m. For each e € E(G), let

we)= Y wdy= 3 dgiD). (5)

De(,%4) De(,%y)

We call w the default weight function on E(G) and 9(G). The following simple property of the default
weight function is key to the weight method, employed in [5] and in various other works.

Proposition 3.1. Let G be an r-graph. Let w be the default weight function on E(G) and O(G). Then

Proof. By definition,
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An r-graph G is called r-partite if V(G) can be partitioned into 7 sets Aj, ..., A, such that every
edge of G contains one vertex from each 4;. We call (A1, ..., A;) an r-partition of G. Equivalently, we
say that an r-graph G is r-colorable if G if there exists a vertex coloring of G with r colors such that
each edge uses all r colors; we call such a coloring a proper r-coloring of G. The following proposition
follows by induction on the number of edges in T'.

Proposition 3.2. Let r > 2. Every tight r-tree T' has a unique r-partition. O

Given r-graphs G and H, an embedding of H into G is an injection f : V(H) — V(G) such that
for each e € E(H), f(e) € E(G).

Proposition 3.3. (Color-preserving embedding) Let T be a tight r-tree with t edges. Let ¢
be a proper r-coloring of T. Let G be an r-partite graph with 0,_1(G) > t, where (Ay,---,A;) is
an r-partition of G. Then there exists an embedding f of T into G such that for each uw € V(T)
f(u) € Apuy-

Proof. We use induction on t. The base step is trivial. Now, suppose t > 2. Let e1,...,e; be an
ordering of the edges of T that satisfies (1). Let 7" = T'\ ;. Then T" is a tight r-tree with ¢t — 1 edges.
By the induction hypothesis, there exists an embedding f of 7" into G such that for each u € V(T"),
f(u) € Agy. Let D = e; Neqy and let v be the unique vertex in e; \ eqy = V(T) \ V(T"). Then
er = DU {v}. Since f(D) is an (r — 1)-set contained in f(e;—1) and §,_1(G) > ¢, da(f(D)) > t. So
there are at least ¢ edges of G containing f(D), at most |V (T")] — (r — 1) =t — 1 of which contain a
vertex of f(7"). Hence there exists an edge e in G that contains f(D) and a vertex z outside f(7").
We extend f by letting f(v) = z. Now f is an embedding of T" into G.

It remains to show that z € A, (). By permuting colors if needed, we may assume that ¢(v) = r.
Since D U {v} € E(T) and ¢ is proper, the colors used in D are 1,...,r — 1. By our assumption,
vertices in f(D) lie in Ay, ..., A,_1, respectively, which implies z € A,. O

The following proposition is folklore. We include a proof for completeness,

Proposition 3.4. Let r > 2 and g > 1 be integers and let G be an r-graph with e(G) > q|0(G)|. Then
G contains a subgraph G" with 6,_1(G') > ¢+ 1 and
e(G') > q|o(G). (6)

Proof. Among subgraphs G’ of G satisfying (6), choose one with the fewest edges. We claim that
dr—1(G") > ¢ + 1. Indeed, if there is D € J(G’) that is contained in at most ¢ edges of G’, then the
r-graph G” obtained from G’ by deleting all edges containing D again satisfies (6), but has fewer edges
than G’, a contradiction. O

Another useful folklore fact is:

Proposition 3.5. Let o be a positive real, r > 3 be an integer and G be an r-graph with e(G) >
210(G)|. Then there is v € V(G) such that the link G := Lg({v}) satisfies

e(G1) > —==|9(G)].
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Proof. Suppose that |Lg({v})| < ;25|0(La({v})| for each v € V(G). Then
a
re@= Y da= Y lalloDl< 2= Y jLe({v))]
veV(G) veV(G) veV(Q)
Since each edge f € 0(G) contributes r —1to 3 cy () [0(La({v})] (1 to the link of each its vertex),

this proves the proposition. O

We also need the following fact used in [5].

Proposition 3.6. Let r be a positive integer. Let dy < da,--- < d, be positive reals. If > ;_, d%_ = s,
then for each i € [r], d; > L.

Proof. For each i € [r], since i >0 > d%,, we have d% < Z;zl d% <s. So, d; >

@ |

4 Proof of Theorem 1.3 on trees with bounded trunks

As discussed in the introduction, we prove the following stronger version of Theorem 1.3.

Theorem 1.3'. Let n,rt,c be positive integers, where n > r > 2 and t > ¢ > 1. Let a(r,c) =
(r"+1—2)(c—1). Let T be a tight r-tree with t edges and c(T) < c. If G is an r-graph that does not
contain T then

(6 < (" +at0)) (6] )

Proof of Theorem 1.3'. Suppose T is a tight r-tree with ¢ edges and ¢(T) = ¢. Let G be an n-vertex
r-graph with e(G) > (=1 + a(r, ¢))|0(G)|. We show that G contains T. For convenience, let
t—1 t—1 1

" +a(r,e) —r"(c—1) = " Jr(l—;)(cfl).

’)/ =
Then
e(G) > (v +r"(c—1))[0(G)]-

Let w be the default weight function on E(G) and 9(G). By Proposition 3.1, 3 c ) w(e) = |0(G)|.
Let 1 ]
H={ec€ E(G):w() > ;} and L ={e € E(G) : w(e) < ;}

By the definition of H,

Le(t) < 3 wle) < 3 wle) = 10(G).

v ecH ecG
Hence e(H) < v|0(G)|. Since e(G) > (v +r"(c —1))|0(G)|, we have

e(L) > r"(c— 1)|0(G)|.



FUREDI, JIANG, KOSTOCHKA, MUBAYI, VERSTRAETE: TURAN NUMBERS OF TIGHT TREES 8

By averaging, L contains an r-partite subgraph L; with

e(L1) > :—ie(L) > :—irr(c ~DIAG)] = ri(e— DIAG)]- (8)

Let (A1, ..., A;) be an r-partition of Li. Let e € E(L;). Let o be a permutation of [r] such that

da(e\ Ayy) < -+ <dgle\ Ayr)-

We let 7(e) = (o(1),...,0(r)) and refer to it as the pattern of e. Since there are r! different permu-
tations of [r], by the pigeonhole principle, some [e(L1)/r!] edges e of L1 have the same pattern m(e).
Let Lo be the subgraph of L; consisting of these edges. By (8),

e(L1)

G(LQ) 2 7”‘!

> (e = 1)]O(G)].
By Lemma 3.4, Ly contains a subgraph L3 such that
or—1(L3) > c.

Recall that all edges in L5 C L; have the same pattern. By permuting indices if needed, we may
assume that 7(e) = (1,2,...,r) for each e € L3. By our assumption,

dg(e\Al) <. < dg(e\Ar) Ve € Lé. (9)

Also, by the definition of L,

- 1 1
w(e) = — Y < - Vee L5 C L.
©= 2 Toienay <5 2 €
By Lemma 3.6 and (9), we have
dg(e\ A4;) > iy Ve € L Vi € [r]. (10)

Now consider a trunk 7" of T with ¢ edges. By the definition of a trunk, if E’ is any subset of
E(T)\ E(T') then T" U E' is a tight tree with ¢ + |E’| edges. By Proposition 3.2, T" is r-partite. Let
(Bi1,...,By) be an r-partition of 7". For each e € E(T)\ E(T"), by definition, there exists a(e) € E(T")
such that |[eNa(e)| =r — 1. Thus, eNa(e) = a(e) \ B; for some unique i € [r]. For each i € [r], let

E;={e€ E(T)\ E(T") : ena(e) = ale) \ B;}.
By permuting the subscripts in the r-partition (B, ..., B,) of T" if needed, we may assume that

Since Y i |Ei| =t — ¢, this implies

|Eq| + -+ |Ei| < V(t;C)J Vi € [r]. (11)
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Since e(T") = ¢, dp—1(L3}) > ¢, (A1,...,A;) is an r-partition of L and (By,..., B,) is an r-partition
of T', by Proposition 3.3, there exists an embedding h of 7" into L} such that for each ¢ € [r] every
vertex in B; of T” is mapped into A;. Now consider the edges in E;. By the definition of F1, for each
e € Fy there is a(e) € E(T") such that e Na(e) = a(e) \ By and h(a(e \ B1)) = h(a(e)) \ A;. Since
hlale)) € L3, by (10),

do(h(o(e)\ A) > (7] +1 Ve e By, (12)

Since T" U F1 is a tight tree with

t—c t—1

J+e=|

FO-Ye—1)+1= |y +1

|E1|+c< |
T T

edges, and h is an embedding of 7" into G, (12) ensures that we can greedily extend h to an embedding
of T"U Ey into G. In general, let i € [r] \ {1} and suppose that we have extended h to an embedding
of T"UEyU---UE;_; into G. By the definition of E;, for each e € E; there is a(e) € T" such that
eNna(e) = ale) \ B; and h(eNale)) = h(a(e)) \ Ai. By (10),

da(h(ena(e)) > [iy] + 1 Ve € E;. (13)

Since T U E1 U --- U E; is a tight tree with

i(t —c)

e+ B+ o+ B < B2

| +e< liv] +1

edges, and h is already an embedding of 7"U E; U---U E;_1 into G, (13) ensures that we can greedily
extend h further to an embedding of 7"U E; U--- U E; into G. Hence we can find an embedding of
T into G. O

5 Proof of Theorem 1.4 on trees with four edges

Again, we are proving the shadow version of the theorem:

Theorem 1.4, Let n > r > 2 be integers and T be a tight r-tree with t < 4 edges. If G is an r-graph
that does not contain T' then e(G) < =2[0(G)).

We start from a partial case of such T, the 3-uniform tight path P} with 4 edges. The case of the
path P2 is still unsolved (to our knowledge).

Lemma 5.1. Let n > 5 and G be an n-vertex 3-graph containing no tight path P} with four edges.
Then e(G) < |0(G)|.

Observe that for 3-graphs Lemma 5.1 is stronger than Katona’s intersecting shadow theorem, since
an intersecting 3-graph must be Pj-free. There are many nearly extremal families with very different
structures for Lemma 5.1 besides the ones obtained from Steiner systems S(n, 5,2). Here we mention
just two. First, one can observe that the Erdds-Ko-Rado family G := {g € ([g}) : 1 € g} is Pj-free

with
= (3) = 25("5 1) = e
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Second, for n = 0 mod 3 one can take a tournament D on n/3 vertices and a partition of [n] into
triples Vi, Va,...,V, /3 and define the P}-free triple system as

G = {g € <[g]> : for some Z € E(B) one has |ViNg| =2, |V;Nyg|l = 1}.

Then we have [9(G)|/e(G) = (3)/9("4) = (n = 1)/(n = 3).
Proof of Lemma 5.1. Suppose G is an n-vertex 3-graph with the fewest edges such that

e(G) > |0(G)| and G contains no P}. (14)
By Proposition 3.4 and the minimality of G,

02(G) > 2. (15)

Let w be the default weight function on G and 9(G). Since ) ., w(e) = |0(G)| < e(G), by (14),
G has an edge ey = abc with

w(eo) = d(ib) + d(jw) * d(éc) <1 (16)

We may assume d(ab) < d(ac) < d(bc). Similarly to Proposition 3.6, in order (16) to hold, we need
d(ac) >3 and d(bc) > 4. (17)

By (15) and (16), we can greedily choose distinct ', V', ¢’ € V(G) —{a, b, ¢} so that abc, acb’,bea’ € G.

We claim that
ab'b,ac’c € G. (18)

Indeed, by (15) G has an edge ab’x for some z # c. If x ¢ {b,a’}, then G has a tight 4-path a’bcab’z, a
contradiction to (14). So suppose z = a’. By (17), G has an edge bey for some y ¢ {a,a’,b'}. Then G
has a tight 4-path ybcal'a’, again a contradiction to (14). Thus ab’b € G. Similarly, ac’c € G, and (18)
holds.

Next we similarly show that
a'ba,d’ca € G. (19)

Indeed, by (15) G has an edge a’bz for some z # c. If x ¢ {a,b'}, then G has a tight 4-path V'acba’z.
Suppose = V. Then by (18), G has a tight 4-path b'a’becac’, again a contradiction to (14). Thus
a’ba € G. Similarly, d’ca € G, and (19) holds.

Together, (18) and (19) imply that dg(ab) > 4 and dg(ac) > 4. So, the proof of (18) yields similarly
that ’be, b'chb € G. If the degree of each of a’a,a’b, d’c is 2, then the 3-graph G2 = G\ {dab, d’ac, a’bc}
has |G| — 3 edges and |0(G2)| = |0(G)| — 3, a contradiction to the minimality of G. Thus we may

assume that G has an edge a’az, where z ¢ {b, c}. By the symmetry between b’ and ¢/, we may assume
x # b'. Then G has a tight 4-path xa'abcl’. O
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Now we are ready to prove Theorem 1.4’.

Proof of Theorem 1.4 '. We use induction on 7.

Base Step. r = 2. In this case, 9(G) = V(G). For t < 3 the statement is trivial. Let ¢ = 4. There
are three non-isomorphic (graph) trees with four edges: the path Py = vovivavsvs with 4 edges, the
star Sy with center vy and leaves v, v2, v3, v4, and the tree I obtained from the star S; by replacing
edge vovy with edge v4v3. So we want to show that for every graph G

if e(G) > 3|V(G)| then G contains each of Py, Sy and Fy. (20)

The case of T' = Py is a special case of the Erdds-Gallai Theorem [3]. The other two possibilities also
are known from the literature, but we give a short proof. Consider a counterexample G to (20) with
the fewest vertices. By Proposition 3.4, §(G) = 2. Since } ¢y (¢ d(a) = 2¢(G) > 3|V (G)], there is
a € V(G) with s > 4 neighbors, say, b1,...,bs. In particular, G contains Sy with center a. Since
d(G@) > 2, by has a neighbor b # a. So we can embed Fy into G[{a,b,b1,...,bs}] by sending vy to a,
v3 to by, v4 to b, and v; and ve to two vertices in {bg, b3, by} — b. Thus (20) holds.

Induction Step. Suppose r > 3, the theorem holds for all 7/ < r, T is a tight r-tree, and G is an
r-graph with e(G) > =10(G).

Case 1: T has a vertex v belonging to all edges. Let T; be the link Ly({v}) of v. It is a tight
(r — 1)-tree with ¢ edges. By Proposition 3.5, there is a € V(G) such that the link G; := Lg({a})
satisfies e(G1) > £=1|9(G1)|. By the induction assumption, there is an embedding ¢ of T} into Gi.
Then by letting ¢(v) = a we obtain an embedding of T into G.

Case 2: T has no vertex belonging to all edges. By the definition of a tight r-tree, this is possible
only if t =4, 7 =3 and T = P}. In this case, we are done by Lemma 5.1. O

6 Concluding remarks

e Theorem 2.3 shows that some shadow theorems in the literature are not really stronger than
their nonshadow versions. In particular, this is the case whenever the forbidden r-graph T has
a connected (r — 1)-intersection graph (see Remark 2.5).

e [t would be interesting to decide if Lemma 2.4 holds for other r-graphs besides tight trees and also
for which r-graphs T lim,, o ex,.(n,T')/ (Tfl) exist. In particular, we ask if lim,,_,~ ex,(n,T)/ (Tfl)
exists for each r-uniform tree T, where an r-graph is a tree if it is a subgraph of a tight tree. This
question is not even solved when r = 2 and T is a graph forest, see, e.g., [18]. See [9] and [17]

for recent results on the Turdan numbers of some large families of r-uniform trees.

Note that even for trees, if the limits «(T") and B(T') exist they need not be equal. (See the proof
of Theorem 2.3 for the definition of «(7T") and 3(T).) Consider a linear path P = P} of length four,
EP) ={{1,2,...;r},{r,r+1,....2r—=1},{2r—1,2r,...,3r—2},{3r—2,3r—1,...,4r—3}}. It
is known [9, 17] that ex(n,T') = (:f:%) + (:‘:3) +e(n,r) for n > ng(r) and r > 3, where e(n,r) =0

except for r = 3, when it is 0, 1 or 2. So we have «(P) = 1. On the other hand, the complete
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r-graph G on 4r — 4 vertices avoids P and e(G)/|0G| = (4?4)/(4:__14) = (3r —3)/r < B(P).

Consequently, 0 < a(P) < p(P) for r > 3. (Actually, a linear path of length 3 is also an
appropriate example).

In the case r = 2 consider T' = kP», a disjoint union of k paths of length 2 on 3k vertices.
Gorgol [11] showed that a(kP;) = k — 1/2 while considering the complete graph on 3k — 1
vertices we get B(kPy) > (3k — 2)/2. Moreover, the Erdds-Gallai Theorem implies that here
equality holds here.

e Recent substantial work by Keller and Lifshitz [16] studies the Turdn number of some r-graphs
F with small core. However their junta method for hypergraphs does not seem to apply here,
since it seems to require that r > |C| where C' is the set of the vertices of F' of degree at least
2.

e A direction we will continue to pursue is to reduce the error term a(r,c) in the coefficient in
Theorem 1.3. We have some nontrivial improvements. For example, in the first unsolved case,
that is, when T is a 3-uniform tight tree with ¢(7") = 2, we have a proof that a(3,2) < 1/3. Thus
we have 3(T) < t/3 and ex3(n,T) < (t/3)(5).
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