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We study the convergence of Nash equilibria in a game of optimal stop-
ping. If the associated mean field game has a unique equilibrium, any se-
quence of n-player equilibria converges to it as n → ∞. However, both the
finite and infinite player versions of the game often admit multiple equilibria.
We show that mean field equilibria satisfying a transversality condition are
limit points of n-player equilibria, but we also exhibit a remarkable class of
mean field equilibria that are not limits, thus questioning their interpretation
as “large n” equilibria.

1. Introduction. Mean field games were introduced by [24–26] and [19, 20] to over-
come the notorious intractability of n-player games. Two key simplifications are made. First,
agents interact symmetrically through the empirical distribution of their states. Second, by
formally letting n → ∞, one passes to a representative agent whose actions do not affect this
distribution because each individual agent becomes negligible. Thus, the mean field game is
seen as an approximation of the n-player game for large n. We refer to the lecture notes [9]
and the monographs [3, 11, 12] and their extensive references for further background.

In this paper, we conduct a case study of an n-player game of optimal stopping where
multiple equilibria may occur naturally. We formulate an associated mean field game and
highlight that certain mean field equilibria are limits of n-player equilibria while others are
not, and study how to distinguish them. Equilibria that are not limit points are questionable
from the point of view of applications, at least if they are motivated as “n-player games with
large n.”

Several ways of connecting n-player and mean field games have been studied in the liter-
ature. In many cases, it is easier to establish the reverse direction, namely that a given mean
field equilibrium induces an approximate Nash equilibrium in the n-player game for large n.
This goes back to [20] and is by now established in some generality; see, in particular, [22] for
diffusion control, [13] for games of timing or [15] for finite state games (but see also [8] for a
counterexample in a degenerate case with absorption). It then follows, conversely, that mean
field equilibria are limits of approximate n-player equilibria. However, we emphasize that
approximate and actual Nash equilibria may look quite different, and in particular one cannot
expect in general that there is a true Nash equilibrium in the proximity of an approximate
one.

The convergence of n-player Nash equilibria to the mean field limit is often more deli-
cate. The deep result of [10] shows convergence for a class of (closed-loop) games where
agents choose drifts of diffusions. In their setting, the mean field game has a unique equi-
librium as a consequence of the so-called monotonicity condition [24], which postulates that
it is disadvantageous for agents’ states to be close to one another. In a related but different
(open-loop) framework, and without imposing uniqueness, [18] obtains convergence under
the assumption that the limiting measure flow is deterministic. More comprehensively, [22]
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shows that n-player equilibria converge to a weak notion of mean field equilibria which can
include mixtures of deterministic equilibria, for a general class of diffusion-control games. A
corresponding result for games of timing is established in [13]. Most recently, [23] provides
results along the lines of [22] for the closed-loop case. Convergence has also been shown in
a number of more specific problems, for instance, stationary mean field games [24], linear-
quadratic problems [2] or a game of Poissonian control [29], among others. However, to the
best of our knowledge, the question which mean field equilibria are limit points of (true)
n-player equilibria has not been emphasized as such in the literature. We can mention the
parallel work [14] on a two-state game: the game has unique n-player equilibria and these
converge to a mean field equilibrium as expected; however, a second, less plausible mean
field solution can appear for certain parameter values and this solution is not a limit. An-
other interesting parallel work [16] studies several approaches of selecting an equilibrium
in a linear-quadratic mean field game with multiple equilibria, including the convergence of
n-player equilibria. Different approaches are shown to select different equilibria.

From the perspective of mean field games, being a limit point of n-player equilibria can
be seen as a stability property of equilibria with respect to the number of players. We are
not aware of a systematic study in this direction (but see [6] for a recent investigation of a
different stability property that is potentially related). Since mean field equilibria are often
motivated as “large n” equilibria, it seems desirable to understand the phenomenon in some
generality and at least establish sufficient conditions. A general formulation and investigation
of this stability seems wide open at this time, whence our focus on a case study in the present
paper.

1.1. Synopsis. We start by introducing an n-player game of optimal stopping inspired
by [4, 5, 13, 28] and the literature on bank-runs following [17]. In addition to their i.i.d.
signals, players observe how many other players have already stopped. A crucial feature is
that whenever an agent leaves the game, staying in the game becomes less attractive for the
remaining agents. For instance, this may reflect that the bank is more likely to default if other
clients withdraw their savings. In particular, the game satisfies the opposite of Lasry and
Lions’ monotonicity condition, or strategic complementarity in economics terminology [7].
Indeed, the model exhibits a “flocking” or “herding” behavior where groups of agents can
collectively decide to stop or not. We will see that these choices can naturally give rise to
multiple equilibria; more precisely, they parametrize the full range of n-player equilibria.

Next, we review the mean field version of the game which was introduced in [28] without
discussing the n-player game. Enhancing slightly a result of [28], mean field equilibria are
described by a simple equation: for any equilibrium, the proportion ρ(t) of agents that have
stopped by time t is a zero of a deterministic function gt on [0,1] as is Figure 1. More gener-
ally, any equilibrium t �→ ρ(t) is characterized as an increasing, right-continuous selection of
such zeros. In Figure 1, we can distinguish several types of zeros: increasing-transversal (i),
tangential (t) and decreasing-transversal (d). These types are related to how concentrated the
distribution of the agents’ signals is in a neighborhood of the zero, relative to the strength of
interaction. Intuitively, tangential solutions are delicate in that they may disappear if Figure 1
is perturbed, whereas the transversal solutions are stable in this sense.

We then turn to our main question and study which mean field equilibria are limits of
n-player equilibria. Roughly, the main result is that:

FIG. 1. Types of mean field equilibria at a fixed time t .
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(i) Increasing-transversal solutions are limits of n-player equilibria,
(ii) decreasing-transversal solutions fail to be limits,

(iii) tangential solutions can but need not be limits.

Specifically, we first consider the minimal and maximal equilibria, corresponding to the
left- and right-most solutions in Figure 1. The n-player game also has such extremal equilibria
and these yield natural candidates for sequences converging to their mean field counterparts.
After introducing appropriate notions for dynamic equilibria, we show that this convergence
indeed holds, under the condition that the solutions are increasing-transversal (on a suffi-
ciently large set of times t). However, we also find that if the minimal (say) solution is tan-
gential, the minimal n-player equilibria can converge to a mixture of mean field equilibria and
then the minimal mean field equilibrium may fail to be a proper limit. (The minimal and max-
imal solutions can be increasing-transversal or tangential, but never decreasing-transversal.)
This also yields a novel example of how randomization can emerge in mean field games.

Second, we study the convergence to a general mean field equilibrium, possibly some-
where in the middle of Figure 1. In that case, there are no obvious candidates for the n-player
approximations and more abstract arguments need to be used. We show by a fixed-point
construction that all increasing-transversal solutions are limits of n-player equilibria. Quite
surprisingly however, (“strongly”) decreasing-transversal solutions fail to be limits despite
appearing stable in Figure 1. In fact, these solutions merely occur as parts of mixtures that
are limits, and the weight within these mixtures can be bounded by a monotone function of
the slope in Figure 1. It turns out that some fairly detailed asymptotic statistics, such as the
expected number of n-player equilibria, can be analyzed in our model—which is unusual for
mean field games.

The remainder of this paper is organized as follows. In Section 2, we introduce the game
of optimal stopping. Section 3 describes the Nash equilibria of the n-player version and Sec-
tion 4 covers the analogue for the mean field game. The results on the convergence to the
minimal and maximal equilibria are relatively direct and established in Section 5, whereas
the more abstract results on the convergence to general equilibria are reported in Section 6.

2. Description of the game. Let (I,I, λ) be a probability space representing the agents;
we shall be interested in the n-player case with a finite I and the mean field case with an
atomless space. Let (�,G,P ) be another probability space, equipped with a right-continuous
filtration G= (Gt )t∈R+ and an exponentially distributed random variable E which is indepen-
dent of G.

Given an agent i ∈ I , let αi ≥ 0 be a G-progressively measurable process which is locally
integrable and consider the random time

θi = inf
{
t :

∫ t

0
αi

s ds = E
}
.

As in [28], one may think of θi as the time when agent i expects the default of her bank. We
fix a parameter r ∈ R, interpreted as the interest rate paid by the bank (and assumed to be
constant for simplicity). Following [28], we suppose that αi is increasing1 and that

(2.1) inf
{
t : αi

t − r ≥ 0
}
< ∞ P -a.s.

Denoting by T the set of all G-stopping times, we then consider the optimal stopping problem

(2.2) sup
τ∈T

E
[
erτ1{θi>τ }∪{θi=∞}

]

1Increase is to be understood in the nonstrict sense throughout the paper.
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which we assume to have a finite value. Thus, if the default θi > τ , we may think of the agent
as accruing the interest on an initial unit investment until τ , but losing everything if θi < τ .
If the stopping time

(2.3) τ i := inf
{
t : αi

t ≥ r
} ∈ T

is a.s. finite, then τ i is optimal and in fact the minimal solution of (2.2); cf. [28], Lemma 2.1.
The solution is unique for instance if αi is strictly increasing, but not in general. We assume
that agents choose (2.3) in the case of nonuniqueness, which can be motivated, for example,
as a preference for early stopping when other things are equal. This convention is not essen-
tial, but simplifies our exposition and allows us to focus on multiplicity of equilibria due to
inherent game-theoretic aspects as it avoids ambiguity at the individual agents’ level.

The processes αi will depend on the proportion ρ(t) of players who have already stopped,
thus inducing an interaction among the agents. Since given ρ, the optimal stopping times are
completely determined by (2.3), we shall simply say that an equilibrium is a process ρ which
is G-adapted and such that

ρ(t) = λ
{
i : τ i ≤ t

}
,

where it is tacitly assumed that the above set is λ-measurable.

3. The n-player game. In this section, we formulate the n-player version of the “toy
model” mean field game in [28], Section 4. Indeed, fix n ∈ N and take I = {1, . . . , n} to
be a set with n elements, equipped with the normalized counting measure. Each player i

observes an idiosyncratic signal Y i
t ≥ 0 which is right-continuous, progressively measurable,

increasing and such that {Y i}i∈I are pairwise i.i.d. with the common c.d.f.

y �→ Ft(y) := P
{
Y i

t ≤ y
}
.

Moreover, for a fixed interaction constant2 c > 0,

αi(t) = Y i
t + cρ−i

n (t) where ρ−i
n (t) = #{j 	= i : τ j ≤ t}

n

is the fraction of other players3 (from the perspective of i) that have already stopped, ac-
cording to (τ j )j 	=i . Specializing from the previous section, an n-player equilibrium boils
down to the process ρn(t) = #{j : τ j ≤ t}/n where τ j are as in (2.3). In particular, if ρn

is an equilibrium and (t,ω) is such that ρn(t)(ω) = k/n, then as the stopping times satisfy
τ i = inf{t : αi(t) ≥ r}, we must have4

(3.1) #
{
Y i

t (ω) + c
k − 1

n
≥ r

}
= k and #

{
Y i

t (ω) + c
k

n
< r

}
= n − k.

This condition is also sufficient, in the sense made precise in Remark 3.5.
Next, we sketch the structure of all equilibria ρn(t) = #{i : τ i ≤ t}/n of this game by a

recursive construction, starting with K = ∅:

2We could more generally consider processes αi which are nonlinear functions of Y i and ρ−i and possibly a
common noise, as in [28]. However, the increased generality does not seem to lead to additional insights regarding
the main questions of this paper, so we have chosen to use the simplified “toy model” in our exposition. The
constant c could in fact be normalized to 1 by changing Y i and r , but we find it useful to represent the strength of
interaction explicitly.

3Once again, we have decided to exclude player i in order to focus on the game-theoretic aspect of multiplicity.

If player i considers her own action, that is, uses ρ instead of ρ−i , nonuniqueness can occur without other agents’
involvement simply because of the direct feedback on the state process.

4We will often abbreviate #{i ∈ I : . . . } to #{. . . } in what follows.
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1. Suppose that at a given stopping time t0, a group K � I of agents has already stopped.
Then every remaining agent i /∈ K examines her criterion

θ i
K = inf

{
t : Y i

t + c
#K

n
≥ r

}
.

If θi
K ≤ t0, then player i must stop immediately. We add i to the set K and repeat Step 1 until

no further players are forced to stop. (By the monotonicity in #K , it does not matter in which
order the agents are processed.)

2. Beyond individual players forced to stop, a group J ⊆ Kc of agents may be able to
“coordinate” and stop together.5 Indeed, suppose that

θJ
K = inf

{
t : Y i

t + c
#K + #J − 1

n
≥ r

}

satisfies θJ
K ≤ t0 for all i ∈ J . Then it is optimal for all these agents to stop as a group, and

they may or may not “choose” to do so. If they stop, we add J to K and repeat the procedure
starting with Step 1.

3. After all remaining groups of agents have decided whether to stop at time t0, we in-
crement time until there exists a group or individual agent wanting to stop, and start again at
Step 1.

The multiplicity of equilibria of this game arises because of the choices taken by the groups
J in Step 2, as well as the order in which the groups are processed. Next, we describe two of
these equilibria in detail. The first one is the minimal equilibrium and corresponds to groups
J in Step 2 always choosing not to stop. This is equivalent to all players remaining in the
game until their own optimality criterion forces them to quit.

PROPOSITION 3.1. There exists an n-player equilibrium ρm
n such that

(3.2) ρm
n (t) = k

n
⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

#
{
Y i

t + c
k

n
≥ r

}
= k,

#
{
Y i

t + c
k − l

n
≥ r

}
≥ k − l + 1, 1 ≤ l ≤ k.

This equilibrium is minimal, that is, ρm
n (t) ≤ ρn(t) for any n-player equilibrium ρn.

PROOF. The construction is iterative. Given a set K � I corresponding to players who
have already stopped, we can consider for all i /∈ K the stopping times

θi
K = inf

{
t : Y i

t + c
#K

n
≥ r

}

with the corresponding order statistics θ
(1)
K ≤ θ

(2)
K ≤ . . . . We define θK = θ

(1)
K and iK = (1).

We note that agent i must stop at θi
K , even if no further agents j /∈ K choose to stop, and that

iK is the first of the agents i /∈ K subject to this event.
To define the equilibrium, start with K0 = ∅ and set τ i = θK0 ≡ θ

(1)
K0

on {i = iK0}. Next,

set K1 = {iK0} and τ i = max{θK1, θK0} on {i = iK1}, and continue inductively setting Kk =
Kk−1 ∪ {iKk−1} and τ i = max{θKk

, τ
iKk−1 } on {i = iKk

} for k = 2, . . . , n − 1. (The maximum
needs to be taken since all the αj are increased after player iKk−1 stops.)

5While we are using suggestive language here, it should be noted that these are simply different configurations
which may be equilibria. We are not trying to model a mechanism how players “find” an equilibrium.
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Setting ρm
n (t) = #{i : τ i ≤ t}/n, we have by construction that ρm

n is an equilibrium with
corresponding optimal stopping times (τ i) and that (3.2) holds.

To see the minimality, let ρn be any n-player equilibrium and consider (t,ω) such that
ρn(t)(ω) = k/n. Let k′ be such that ρm

n (t)(ω) = k′/n. If we had k′ > k, then (3.2) would
imply #{Y i

t (ω)+ c k
n

≥ r} ≥ k + 1, and hence #{Y i
t (ω)+ c k

n
< r} ≤ n− k − 1, a contradiction

to (3.1). Thus, k′ ≤ k and we have shown that ρm
n ≤ ρn. �

REMARK 3.2. Let ρ be an n-player equilibrium and t0 a stopping time. There exists
an equilibrium which is minimal among all n-player equilibria 	 such that 	 = ρ on [0, t0].
Indeed, it is obtained by agents stopping as in ρ until t0, whereas from t0 onwards we apply
the construction in the proof of Proposition 3.1 starting with K = {i : τ i ≤ t0}. We call this 	

the minimal extension of ρ after t0.

The second extremal equilibrium is maximal and corresponds to players coordinating their
actions such as to stop as early as possible. As seen in the construction below, this is equiv-
alent to all players constantly seeking (maximally large) groups of collaborators so that im-
mediate simultaneous stopping is optimal for all agents in the group.

PROPOSITION 3.3. There exists an n-player equilibrium ρM
n such that

(3.3)

ρM
n (t) = k

n

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

#
{
Y i

t + c
k − 1

n
≥ r

}
= k,

#
{
Y i

t + c
k + l − 1

n
≥ r

}
≤ k + l − 1, 1 ≤ l ≤ n − k.

This equilibrium is maximal, that is, ρM
n (t) ≥ ρn(t) for any n-player equilibrium ρn.

PROOF. Given a set K � I of size k = #K corresponding to players who have already
stopped, we can consider for 1 ≤ l ≤ n − k the stopping times,

θ l
K = inf

{
t : #

{
i /∈ K : Y i

t + c
k + l − 1

n
≥ r

}
≥ l

}
;

intuitively, this is the first time an additional group J of #J = l agents can collectively stop.
If θ

(1)
K ≤ · · · ≤ θ

(n−k)
K are the corresponding order statistics (ties are split by assigning the

lower rank to the larger index l), pick l = (1) and let J = J (K) be the set of i /∈ K such
that {Y i

θl
K

}i∈J are the l largest elements in {Y i

θl
K

}i∈Kc ; we think of J as the l most pessimistic

agents remaining at time θ l
K and denote θK := θ l

K .
To define the equilibrium, start with K0 = ∅ and set τ i = θ∅ for i ∈ J (∅). Next, set

K1 = J (∅) and τ i = θK1 for i ∈ J (K1), and continue inductively with K2 = J (K1) ∪ K1.
Setting ρM

n (t) = #{i : τ i ≤ t}/n, we have by construction that ρM
n is an equilibrium with

corresponding optimal stopping times (τ i) and that (3.3) holds.
To see the maximality, let ρn be any n-player equilibrium and consider (t,ω) such that

ρn(t)(ω) = k/n. Again, ρn must satisfy (3.1). Let k′ be such that ρM
n (t)(ω) = k′/n. If we

had k′ < k, then (3.3) would imply that #{Y i
t (ω) + c k−1

n
≥ r} ≤ k − 1, contradicting (3.1).

�

The following observations will be used in Section 6 when we construct n-player equilibria
converging to a given mean field equilibrium.
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REMARK 3.4. (i) Consider n-player equilibria ρ and ρ ′, a stopping time t0 and assume
that ρ(t0) ≤ ρ ′(t0). Then there exists an n-player equilibrium 	 such that

	1[0,t0) = ρ1[0,t0) and 	1[t0,∞) = ρ′1[t0,∞).

Indeed, let I0 be the set of agents that have stopped by time t0 in equilibrium ρ and let I1 be
the analogue for ρ ′. By (2.3), we necessarily have I0 ⊆ I1. The equilibrium 	 is obtained by
following the stopping times of ρ on [0, t0). At t0, all agents in the group J = I1 \ I0 stop
(and this must be optimal as ρ′ is an equilibrium). After that, the remaining agents act as in
ρ′.

(ii) Extending the above, consider n-player equilibria ρ and ρ′, stopping times t0 ≤ t1 and
assume that ρ(t0) ≤ ρ ′(t1). Then there exists an n-player equilibrium 	 such that

(3.4) 	1[0,t0) = ρ1[0,t0) and 	1[t1,∞) = ρ′1[t1,∞).

Indeed, let ρ1 be the minimal extension of ρ after t0 (cf. Remark 3.2). Let I0 be the set
of agents that have stopped by time t0 in equilibrium ρ and let I1 be the set of agents that
have stopped by time t1 in equilibrium ρ′. Again, we observe that I0 ⊆ I1, due to (2.3) and
the increase of Y i . Moreover, I1 must include all agents that stop in the construction of the
minimal extension on [t0, t1]. As a result, ρ1(t1) ≤ ρ′(t1), and now the claim follows by
applying (i).

(iii) A last generalization is that when ρ(t0) ≤ ρ ′(t1) merely holds on some set A ∈ Gt1 ,
then we can still construct an n-player equilibrium 	 satisfying (3.4) on A. Indeed, 	 is found
as in (ii) except that on Ac, agents continue to stop according to ρ1 after t1.

REMARK 3.5. (i) The necessary condition (3.1) is sufficient in the following sense. Fix
n and a stopping time t0, and suppose there exists an Gt0 -measurable random variable k

satisfying (3.1) at t0, that is,

#
{
Y i

t0
+ c

k − 1

n
≥ r

}
= k and #

{
Y i

t0
+ c

k

n
< r

}
= n − k.

Then there exists an n-player equilibrium 	 such that 	(t0) = k/n.
To construct 	, let agents stop as in the minimal equilibrium ρm

n up to time t0. By the
argument at the end of the proof of Proposition 3.1, we must have ρm

n (t0) ≤ k/n. At t0, all
remaining agents i with Y i

t0
+ c k−1

n
≥ r stop, so that ρ(t0) = k/n. After that, the remaining

agents follow the construction in the proof of Proposition 3.1 starting with K = {i : τ i ≤ t0}.
(ii) A variant of this holds when (3.1) is satisfied on some set A ∈ Gt0 , with the conclusion

that 	(t0) = k/n holds only on A. Indeed, we construct 	 as above on A, whereas on Ac we
use ρm

n .
(iii) For later use, we observe that if this construction is applied for two times t0 ≤ t1 and

corresponding random variables k0 ≤ k1, the resulting equilibria satisfy 	0 ≤ 	1.

4. The mean field game. The game considered in this section is the “toy model” mean
field game of [28], Section 4. Indeed, (I,I, λ) is an atomless probability space and we work
on a so-called Fubini extension (I × �,
,μ) of the product (I × �,I × G, λ × P); see
[28], Section 3. For each i ∈ I , let Y i

t ≥ 0 be a right-continuous, increasing, G-progressively
measurable process such that for each t ≥ 0, (i,ω) �→ Y i

t (ω) is 
-measurable and Y i
t , i ∈ I

are λ-essentially pairwise i.i.d.; see also [28], Definition 3.1. Working on a Fubini extension
ensures that such processes exist, as well as the validity of an exact law of large numbers. In
all that follows, we assume that the c.d.f. y �→ Ft(y) = P {Y i

t ≤ y} is continuous.
Since λ is atomless, each individual agent has zero mass, and hence does not influence the

state process ρ(t) = λ{i : τ i ≤ t}. In particular, we do not distinguish ρ and ρ−i and simply
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set αi(t) = Y i
t + cρ(t). We recall that ρ is an equilibrium if ρ(t) = λ{i : τ i ≤ t} where τ i

is as in (2.3) for λ-a.e. i ∈ I . Such a process may be random (see also [28]). However, as
common in the mean field game literature, we pay special attention to equilibria which are
deterministic due to the infinite number of players.6 The following is an improved version of
[28], Proposition 4.1, with necessary and sufficient conditions.

PROPOSITION 4.1. A real function ρ : R+ → [0,1] is a mean field game equilibrium if
and only if it is increasing, right-continuous and

(4.1) ρ(t) + Ft

(
r − cρ(t)

) = 1, t ≥ 0.

PROOF. Suppose that ρ is a mean field game equilibrium, then ρ is clearly increasing.
Since Y i

t , i ∈ I are λ-essentially pairwise i.i.d., the Exact Law of Large Numbers (e.g., [28],
Section 3) states that λ{i : Y i

t ≤ u} = Ft(u) for all u. Using also (2.3) and that y �→ Ft(y) is
continuous, we have

(4.2) ρ(t) = λ
{
i : τ i ≤ t

} = λ
{
i : Y i

t + cρ(t+) ≥ r
} = 1 − Ft

(
r − cρ(t+)

)
.

Recall that Y i has right-continuous paths. Using again the continuity of Ft , this implies that

(4.3) (t, u) �→ Ft(r − cu) is jointly right-continuous.

It follows that t �→ 1 − Ft(r − cρ(t+)) is right-continuous, and thus the left-hand side of
(4.2) must also be right continuous. That is, ρ(t) = ρ(t+), and then (4.2) becomes (4.1).

Conversely, suppose that ρ is a function with the stated properties. Defining the corre-
sponding optimal stopping times τ i as in (2.3), the Exact Law of Large Numbers shows that

λ
{
i : τ i ≤ t

} = λ
{
i : Y i

t + cρ(t) ≥ r
} = 1 − Ft

(
r − cρ(t)

) = ρ(t);
that is, ρ is an equilibrium. �

The following notions will be crucial in determining the convergence to the mean field
limit.

DEFINITION 4.2. Fix t ≥ 0. A solution u ∈ [0,1] of u + Ft(r − cu) = 1 is called left-
increasing-transversal (or left-transversal for short) if

(4.4) for all ε > 0 there is u′ ∈ (u − ε,u) such that u′ + Ft

(
r − cu′) < 1

and right-increasing-transversal (or right-transversal) if

(4.5) for all ε > 0 there is u′ ∈ (u,u + ε) such that u′ + Ft

(
r − cu′) > 1.

It is called increasing-transversal if both (4.4) and (4.5) hold, and decreasing-transversal if
these hold with the inequality signs reversed.

For instance, in Figure 2, um is left-increasing-transversal and umrt, uM are right-
increasing-transversal, but only uMlt is increasing-transversal. A decreasing-transversal so-
lution is also depicted. Next, we introduce a quartet of solutions that will be important in
Section 5.

LEMMA 4.3. Fix t ≥ 0. The equation u + Ft(r − cu) = 1 has a minimal solution um ∈
[0,1], a maximal solution uM ∈ [0,1], a minimal right-transversal solution umrt ∈ [0,1], and
a maximal left-transversal solution uMlt ∈ [0,1].

6Note that the key message of this paper, namely that some mean field equilibria are not limits of n-player
equilibria, is only amplified if more mean field equilibria are considered.
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FIG. 2. Solutions um, umrt, uMlt and uM .

PROOF. Since G(u) := u + Ft(r − cu) < 1 for u < 0 and G(u) > 1 for u > 1, the ex-
istence of um and uM is immediate from the continuity of G. The fact that G(u) < 1 for all
u < um entails that um is left-transversal, and since it follows directly from the definition that
the set of left-transversal solutions is stable under increasing limits, it follows that uMlt exists.
The argument for umrt is similar. �

As illustrated in Figure 2, these four solutions may be distinct, and while um is automati-
cally left-transversal, it can happen that umrt is not. Similarly, for uM and uMlt. We can also
note that umrt ≤ uMlt may fail, say if the graph is replaced by a flat stretch on [um,uM ].
But in more generic cases, and in particular whenever um and uM are not local extrema, the
quartet describes at most two distinct solutions um = umrt ≤ uMlt = uM and these are then
increasing-transversal.

In view of Lemma 4.3, we may define, given t ≥ 0,

(4.6) ρm(t) = um, ρM(t) = uM, ρmrt(t) = umrt, ρMlt(t) = uMlt.

Using the increase of Yt and (4.3), one can check that ρm, ρM , ρmrt, ρMlt are increasing,
ρM and ρmrt are right-continuous, and ρm and ρMlt are left-continuous (but not continuous
in general).

COROLLARY 4.4.

(i) If ρ : R+ → [0,1] is any increasing function such that (4.1) holds, then ρ(t+) is an
equilibrium.

(ii) The functions t �→ ρm(t+) and t �→ ρM(t) are the minimal and maximal equilibria
of the mean field game, that is, they are equilibria and any other equilibrium ρ satisfies
ρm(t+) ≤ ρ(t) ≤ ρM(t) for all t ≥ 0.

PROOF. (i) If ρ is any increasing function such that (4.1) holds, then the joint right-
continuity in (4.3) implies that ρ(t+) + Ft(r − cρ(t+)) = 1 for all t ≥ 0. It now follows
from Proposition 4.1 that ρ(t+) is an equilibrium.

(ii) Both ρm(t+) and ρM(t) are equilibria by (i). If ρ is any equilibrium, then it is neces-
sarily right-continuous by Proposition 4.1, and thus ρm ≤ ρ ≤ ρM implies ρm(t+) ≤ ρ(t) ≤
ρM(t) for all t ≥ 0. �

5. Convergence to extremal equilibria. The main goal of the last two sections is to
understand which mean field equilibria are limits of n-player equilibria. In brief, we will
see that mean field equilibria described by increasing-transversal solutions of (4.1) (on a
sufficiently large sets of times t) are such limits, whereas other equilibria need not be proper
limits of n-player equilibria; they merely occur as parts of mixtures which are limits.

In this section, we focus on the convergence to the minimal and maximal mean field equi-
libria; the less straightforward interior case is treated in the next section. As a first step, we
relate limits of arbitrary n-player equilibria to mean field equilibria at a fixed time. We will
see in Example 5.8 that such limits need not be deterministic mean field equilibria as defined
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in the preceding section, hence the following result relates limits to mixtures of equilibria.
This is in line with the results of [13, 22] stating that n-player equilibria converge to “weak”
equilibria of the mean field game, while also illustrating that randomization can indeed occur
in a quite natural example.

Given a closed set A ⊆ R, we say that a sequence (ξn) of random variables is asymp-
totically concentrated on A if limn→∞ P(ξn ∈ Aε) = 1 for all ε > 0, where Aε = {x ∈ R :
d(x,A) < ε} is the open ε-neighborhood of A. When (ξn) is uniformly bounded, as it will be
the case below, this is equivalent to any weak cluster point of (ξn) being concentrated on A.
Moreover, for t ≥ 0, we denote the solutions of (4.1) by

U(t) = {
u ∈ [0,1] : u + Ft(r − cu) = 1

}
.

PROPOSITION 5.1. Fix t ≥ 0 and let (ρn)n≥1 be a sequence of n-player equilibria. Then
ρn(t) is asymptotically concentrated on U(t).

PROOF. We first show that for any interval [u0, u1] ⊆ [0,1] such that u �→ u+Ft(r −cu)

is strictly smaller than 1 on [u0, u1],
(5.1) P

(
u0 + ε′ ≤ ρn(t) ≤ u1 − ε′) → 0 for all ε′ > 0.

Indeed, let u0 < u1 be as above. By increasing the value of u1 if necessary, we may assume
without loss of generality that u �→ u + Ft(r − cu) attains its maximum over [u0, u1] at u1.
Given 0 < ε < u1 − u0, we can then choose by continuity some u ∈ (u1 − ε,u1) such that

(5.2) u′ + Ft

(
r − cu′) ≤ u + Ft(r − cu) < 1 for all u0 ≤ u′ ≤ u.

Furthermore, setting

εn(x) = #{Y i
t + cx ≥ r}

n
− (

1 − Ft(r − cx)
)
, x ∈ R

and εn = supx∈R{|εn(x)|}, we have εn → 0 a.s. by the uniform convergence in the Glivenko–
Cantelli theorem. Let Xi = 1{Y i

t +cu≥r}, then

(5.3)
X1 + · · · + Xn

n
= 1 − Ft(r − cu) + εn(u).

Denote by [x] the largest integer k ≤ x. For any [u0n] + 1 ≤ l ≤ [un], let Zl
i = 1{Y i

t +c l
n
≥r},

then similarly

Zl
1 + · · · + Zl

n

n
= 1 − Ft

(
r − c

l

n

)
+ εn

(
l

n

)
.

On the event {Zl
1 + · · · + Zl

n = l}, we then have

1 + εn

(
l

n

)
= l

n
+ Ft

(
r − c

l

n

)
≤ u + Ft(r − cu)

by (5.2), and thus
X1 + · · · + Xn

n
= 1 − Ft(r − cu) + εn(u) ≤ u − εn

(
l

n

)
+ εn(u) ≤ u + 2εn.

Combining this observation with (3.1), we have for all [u0n] + 1 ≤ l ≤ [un] that{
ρn(t) = l

n

}
⊆

{
#
{
Y i

t + c
l

n
≥ r

}
= l

}

=
{
Zl

1 + · · · + Zl
n

n
= l

n

}

⊆
{
X1 + · · · + Xn

n
≤ u + 2εn

}
.
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Hence, { [u0n] + 1

n
≤ ρn(t) ≤ [un]

n

}
⊆

{
X1 + · · · + Xn

n
≤ u + 2εn

}
,

and thus

P

( [u0n] + 1

n
≤ ρn(t) ≤ [un]

n

)
≤ P

(
X1 + · · · + Xn

n
≤ u + 2εn

)

= P
(
u + Ft(r − cu) ≥ 1 − 2εn + εn(u)

) → 0

by (5.3) and (5.2). Since ε > 0 was arbitrary, this shows (5.1).
In a symmetric way, one can show the analogue of (5.1) for intervals where u �→ u +

Ft(r − cu) is strictly larger than 1. Since for any ε > 0 the complement of U(t)ε consists of
finitely many intervals of one of these two types, the claim follows. �

Next, we narrow down the asymptotic support for the minimal and maximal n-player equi-
libria ρm

n and ρM
n . We will see in Section 5.1 that the following result is optimal and the

limiting support is not a singleton in general. We recall the notation introduced in (4.6).

LEMMA 5.2. Fix t ≥ 0.

(i) The minimal n-player equilibrium ρm
n (t) is asymptotically concentrated on [ρm(t),

ρmrt(t)] ∩ U(t).
(ii) The maximal n-player equilibrium ρM

n (t) is asymptotically concentrated on [ρMlt(t),

ρM(t)] ∩ U(t).

PROOF. (i) In view of Proposition 5.1 and the definition of ρm(t), it suffices to show that

(5.4) P
(
ρm

n (t) ≥ ρmrt(t) + ε′) → 0 for all ε′ > 0.

Let ε > 0. As ρmrt(t) is right-transversal we can find u ∈ (ρmrt(t), ρmrt(t) + ε) such that
1 − Ft(r − cu) < u. For n large enough, we then have ρmrt(t) < [un]/n ≤ u. Let Xi =
1{Y i

t +cu≥r}, then

X1 + · · · + Xn

n
→ EXi = 1 − Ft(r − cu) a.s.

by the law of large numbers. Hence,

X1 + · · · + Xn

n
− [un]

n
→ 1 − Ft(r − cu) − u < 0 a.s.

Using also (3.2), we conclude that

P
(
ρm

n (t) ≥ u
) ≤ P

(
ρm

n (t) ≥ [un]
n

)

≤ P

(
#
{
Y i

t + c
[un]
n

≥ r

}
≥ [un]

)

≤ P

(
#{Y i

t + cu ≥ r}
n

≥ [un]
n

)

= P

(
X1 + · · · + Xn

n
− [un]

n
≥ 0

)
→ 0.

As ε > 0 was arbitrary, the above implies (5.4).
(ii) The arguments are similar to (i) and, therefore, omitted. �
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Next, we introduce an appropriate notion of convergence for dynamic equilibria as re-
quired for our main results. Note that given an increasing function, its right- and left-
continuous limits (and all functions between these) differ only by the allocation of the
function value at the (countably many) jumps. The fact that mean field equilibria are right-
continuous (cf. Proposition 4.1) reflects the fact that agents stopping at time t are counted as
having left the game at time t , whereas left-continuity would correspond to counting them
as leaving immediately after t . Since this difference is not fundamental, it seems reasonable
to consider limits “up to taking right-continuous versions.” This has been accomplished by
notions of so-called Fatou convergence, for example, [21, 31] in other areas of stochastic
analysis.

For increasing functions ϕn, ϕ on R+, we have that (lim infn ϕn)(t+) =
(lim supn ϕn)(t+) = ϕ(t+) holds for all t ∈ R+ if and only if limϕn(t) = ϕ(t) for all t in
a dense subset D ⊆ R+. This motivates the following.

DEFINITION 5.3. A sequence (ρn)n≥1 of n-player equilibria Fatou converges in proba-
bility to a mean field equilibrium ρ if there exists a dense set D ⊆ R+ such that ρn(t) → ρ(t)

in probability for all t ∈ D.

We note that by a diagonalization procedure, Fatou convergence in probability implies
Fatou convergence a.s. along a subsequence (nk), where the a.s. convergence is defined by
direct analogy to the above. In particular, it then follows that the right-continuous versions of
lim infk ρnk

and lim supk ρnk
coincide with ρ a.s.

With these notions in place, we can establish the convergence of extremal equilibria
in the increasing-transversal case. (Note that the extremal equilibria cannot be decreasing-
transversal; they are either increasing-transversal or tangential.)

THEOREM 5.4. Suppose that for all t in a dense subset D ⊆ R+, the minimal solution
u ∈ [0,1] of u + Ft(r − cu) = 1 is increasing-transversal. Then the minimal n-player equi-
libria ρm

n Fatou converge in probability to the minimal mean field equilibrium as n → ∞.
The analogous assertion holds for the maximal equilibria ρM

n .

PROOF. By the hypothesis, ρm(t) = ρmrt(t) for t ∈ D. Thus, Lemma 5.2 implies that
limρm

n (t) = ρm(t) = ρmrt(t) in probability for t ∈ D. The analogue holds for ρM
n . �

Next, we discuss the transversality condition in more detail. In fact, if uniqueness holds for
the mean field game, the condition is automatically satisfied and we conclude the following.

COROLLARY 5.5. The following are equivalent:

(i) the mean field game has a unique equilibrium ρ,
(ii) the equation u + Ft(r − cu) = 1, u ∈ [0,1] has a unique solution for a dense set of

t ∈ R+.

In that case, any sequence (ρn)n≥1 of n-player equilibria Fatou converges in probability to
ρ.

PROOF. If (i) holds, then ρm(t+) = ρM(t) for all t ≥ 0 by Corollary 4.4, and (ii) follows
since ρm(t+) = ρm(t) except at the (countably many) jumps of ρm. The converse holds
because equilibria are right-continuous; cf. Proposition 4.1. Finally, if u+Ft(r − cu) = 1 has
a unique solution, this solution is necessarily increasing-transversal since u+Ft(r − cu) < 1
for u < 0 and u + Ft(r − cu) > 1 for u > 1. �
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While we will see below that the transversality condition in Theorem 5.4 cannot be
dropped, we can argue that this condition holds for a generic choice of signals Y i . More
generally, we discuss the following hypothesis (again, note that the extremal solutions can
never be decreasing-transversal).

DEFINITION 5.6. We say that Hypothesis (H) holds if for all t in a dense subset of
R+, any solution of u ∈ [0,1] of u + Ft(r − cu) = 1 is increasing-transversal or decreasing-
transversal.

While this hypothesis does not hold for all choices of Y i , the exceptional set is small in
the sense that a “typical” Ft will not have a local extremum of u �→ u + Ft(r − cu) at a
solution of u+Ft(r − cu) = 1, so that the latter must be transversal. As t varies over R+, the
nontransversal case is somewhat more likely to occur, but typically at only finitely many t so
that the hypothesis still holds. There seems to be no obvious way to quantify this. However,
we state the following result which confirms the general intuition and shows that Hypothesis
(H) is always valid after a small perturbation of Y i .

PROPOSITION 5.7. For every δ > 0, there exists 0 ≤ ε ≤ δ such that after replacing Y i
t

with Y i
t + ε, Hypothesis (H) is satisfied.

PROOF. Let us first observe that for any real function f (x), the set of local minimum
values S = {f (x) : x is a local minimum of f } is countable. Indeed, for every s ∈ S there is
an open interval Is with rational endpoints such that s = min{f (x) : x ∈ Is}. If s, t ∈ S and
Is = It , then s = t , showing that I : S →Q×Q is injective.

For fixed t ≥ 0, denote by S(t) the set of all local minimum and maximum values of
u �→ u + Ft(r − cu) − 1, then

⋃
t∈Q S(t) is again countable. Thus, we can find a sequence

ak ↓ 0 with ak /∈ ⋃
t∈Q+ S(t). Set εk = cak . Then, passing from Yt to Y

εk
t = Yt + εk , the

function under consideration is

u �→ u + F
εk
t (r − cu) = u + Ft(r − cu − εk) = (u + ak) + Ft

(
r − c(u + ak)

) − ak.

By the construction of ak , we know that 1 is not a local extremum value of this function.
However, if a solution of u + F

εk
t (r − cu) = 1 failed to be transversal, then 1 would be the

value at a local extremum. �

5.1. Counterexamples. In this section, we illustrate that the assertion of Theorem 5.4
may fail without the transversality condition, and more generally that the intervals in
Lemma 5.2 cannot be improved. The examples presented here are essentially static, meaning
that Y i

t does not depend on t . For purely technical reasons, namely to ensure the finiteness
of the optimal stopping times (2.3) as assumed throughout, we introduce a time horizon
T ∈ (0,∞) at which Y i

t jumps to a value larger than r , thus ensuring that all players stop.
In the first example, we allow for atoms in the distribution of Y i

t to obtain an analyti-
cally tractable example. We argue below that the atoms are not essential to the observed
phenomenon.

EXAMPLE 5.8. Let r = c = 1 and let Y i
t = Y i

0 , 0 ≤ t < T be constant i.i.d. processes
such that Law(Y i

t ) = 1
2δ 1

2
+ 1

2δ2 for all 0 ≤ t < T , and set Y i
t = 2 for t ≥ T . Then the law of

the minimal n-player equilibrium ρm
n (t) converges to 1

2δ 1
2
+ 1

2δ1 for all 0 ≤ t < T .
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PROOF. Proposition 3.1 yields two cases for every ω. If strictly less than n/2 of the
realizations {Y i

0(ω), i = 1, . . . , n} equal 2, all players i with Y i
0(ω) = 2 stop at t = 0 and

those with Y i
0(ω) = 1/2 never stop. Whereas if n/2 or more of the realizations equal 2, then

all agents stop at t = 0. It follows that the law of ρm
n (t) ≡ ρm

n (0) converges to 1
2δ 1

2
+ 1

2δ1 as
n → ∞. �

The limit law 1
2δ 1

2
+ 1

2δ1 can be seen as a mixture of the deterministic mean field equilibria

ρm(t) ≡ 1
2 and ρmrt(t) ≡ 1. In fact, with an appropriate definition allowing for randomized

equilibria, this mixture is itself an equilibrium. However, a remarkable conclusion is that
there are no n-player equilibria converging to the minimal equilibrium ρm.

COROLLARY 5.9. In the context of Example 5.8, ρm(t) is not a weak accumulation point
of n-player equilibria, for any 0 ≤ t < T .

PROOF. Suppose that there exists a subsequence ρk = ρnk
of nk-player equilibria such

that ρk(t) → ρ(t) = 1/2 weakly. Then ρk(t) ≥ ρm
k (t) and Law(ρm

k (t)) → 1
2δ 1

2
+ 1

2δ1 yield a
contradiction. �

It may be useful to contrast this with the fact that ρm is a limit of approximate Nash
equilibria. To wit, if all players i with Y i

0(ω) = 2 stop at t = 0 whereas those with Y i
0(ω) =

1/2 do not stop until T , we obtain an approximate Nash equilibrium converging to ρm as
n → ∞.

The following example is a smooth version of Example 5.8 where Y i
t admits a density; see

also Figure 3(b). It is not analytically tractable but the qualitative behavior is the same.

EXAMPLE 5.10. Let r = c = 1 and let Y i
t = Y i

0, 0 ≤ t < T be i.i.d. processes such
that the law of Y i

t has the density ft (y) = 41[ 3
8 , 1

2 ](y) + 1[ 3
2 ,2](y) for all 0 ≤ t < T , and

let Y i
t = 2 + Xi , t ≥ T , where Xi are i.i.d. with a continuous distribution on [0,1]. Then

the simulation of ρm
n (t) (cf. Figure 4(a)) shows that ρm

n (t) again converges to 1
2δ 1

2
+ 1

2δ1 for

0 ≤ t < T which is again a mixture of the deterministic mean field equilibria ρm(t) ≡ 1
2 and

ρmrt(t) ≡ 1.

In the third example, the mean field game admits a continuum of solutions; see also Fig-
ure 3(c).

FIG. 3. Graphs of Ft (1 − u) (solid) and 1 − u (dashed).
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FIG. 4. Simulations for n-player minimal equilibria (n = 10′000). Locations k/n of equilibria with k stopped
players on the x-axis, number of samples with that equilibrium on the y-axis.

EXAMPLE 5.11. Consider the setting of Example 5.10 with density ft (y) = 1[0, 1
2 ](y) +

1[ 3
2 ,2](y). In this case, we again have ρm(t) ≡ 1

2 and ρmrt(t) ≡ 1, but now all values in be-

tween also correspond to mean field equilibria. The simulation of ρm
n (t) (cf. Figure 4(b))

illustrates that the law of ρm
n (t) converges to a mixture of all these equilibria.

When the minimal mean field equilibrium is not increasing-transversal, the preceding ex-
amples illustrate that it need not be the limit of the minimal n-player equilibria. The final
example shows that both cases are possible: it may be the limit even if it is not increasing-
transversal.

EXAMPLE 5.12. Consider the setting of Example 5.10 with density ft (y) = 21[1/2,1](y).
In this case, we easily compute that ρm(t) ≡ 0 and ρmrt(t) ≡ 1. Nevertheless, ρm

n (t) ≡ 0 due
to Y i

t < r a.s., and thus ρm
n (t) → ρm(t).

6. Convergence to general equilibria. Theorem 5.4 shows that if the minimal and max-
imal mean field equilibria are increasing-transversal (on a dense set), then they are the limits
of the minimal and maximal n-player equilibria. Indeed, the latter are obvious candidates
for sequences converging to these mean field equilibria. For mean field equilibria that are
not extremal, there are no obvious candidates for the approximating n-player equilibria. The
following result shows that increasing-transversal equilibria are still limits; however, the ap-
proximating n-player equilibria have no simple description. We will see in Section 6.2 that
the analogue for decreasing-transversal solutions fails.

6.1. Increasing-transversal equilibria.

THEOREM 6.1. Let ρ be a mean field equilibrium. Suppose that for all t in a dense
subset D ⊆ R+, the solution u := ρ(t) of u + Ft(r − cu) = 1 is increasing-transversal. Then
there exist n-player equilibria (ρn)n≥1 which Fatou converge in probability to ρ as n → ∞.

The first step of the proof is to solve a static version of the problem. This will be accom-
plished by a fixed-point argument for monotone functions.

LEMMA 6.2. Let t ≥ 0, let u ∈ [0,1] be an increasing-transversal solution of u+Ft(r −
cu) = 1 and let ε, δ > 0. There are n0 ∈ N and A ∈ Gt with P(A) > 1 − ε such that for all
n ≥ n0 and ω ∈ A, there exists k(ω) ∈ N such that |u − k(ω)/n| ≤ δ and (3.1) holds, that is,

#
{
Y i

t (ω) + c
k(ω) − 1

n
≥ r

}
= k(ω) and #

{
Y i

t (ω) + c
k(ω)

n
< r

}
= n − k(ω).

Moreover, k(ω) can be chosen as a measurable function of Y 1
t (ω), . . . , Y n

t (ω).
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PROOF. Since u is increasing-transversal, there are points u0, u1 ∈ R such that u−δ/2 ≤
u0 < u < u1 ≤ u + δ/2 and

u0 < 1 − Ft(r − cu0) ≤ 1 − Ft(r − cu1) < u1,

where the inequality in the middle is due to the monotonicity of Ft . The Glivenko–Cantelli
theorem then implies that the event An consisting of all ω such that

[nu0] ≤ #
{
Y i

t (ω) + c
[nu0] − 1

n
≥ r

}
≤ #

{
Y i

t (ω) + c
[nu1]

n
≥ r

}
≤ [nu1]

satisfies P(An) → 1. For fixed n and ω ∈ An, consider the integer-valued function

k �→ G(k) := #
{
Y i

t (ω) + c
k

n
≥ r

}
.

By the above, G maps {[nu0] − 1, [nu0], . . . , [nu1]} into {[nu0], . . . , [nu1]}. Moreover, G

is monotone increasing. Lemma 6.3 below then yields the existence of [nu0] ≤ k ≤ [nu1]
such that G(k − 1) = G(k) = k which is exactly (3.1). By the choice of u0, u1, we also have
|u − k/n| ≤ δ for n large. Moreover, it is clear from the proof of Lemma 6.3 that k is a
measurable function of Y 1

t , . . . , Y n
t . �

LEMMA 6.3. Let x0 < x1 < · · · < xN be real numbers for some N ≥ 1. Let J =
{x1, . . . , xN } and J0 = {x0} ∪ J . If f : J0 → J is monotone increasing, there exists k ∈
{1, . . . ,N} such that f (xk−1) = f (xk) = xk .

PROOF. Since f is monotone and maps J into J , it must have a fixed point in J . We
claim that the minimal k ∈ {1, . . . ,N} such that f (xk) = xk has the desired property. Indeed,
if k = 1, monotonicity implies that f (x0) = f (x1) and the proof is complete. If k > 1, we
observe that f (xl−1) ≥ xl for all 1 ≤ l ≤ k. Indeed, f (x1) ≥ x2 since x1 is not a fixed point,
but then f (x2) ≥ x3 since x2 is not a fixed point and f is monotone, and so on. In particular,
f (xk−1) ≥ xk , and thus f (xk−1) = f (xk) = xk . �

PROOF OF THEOREM 6.1. Fix N ∈ N and let t1 < · · · < tN be in D. For n large enough,
Lemma 6.2 allows us to find sets Al ∈ Gtl with P(Al) > 1 − N−2 and random variables kl

satisfying |ρ(tl) − kl/n| ≤ δ := 1/N and (3.1) on Al , for 1 ≤ l ≤ N .
Following Remark 3.5, we can construct n-player equilibria ρl

n such that ρl
n(tl) = kl/n on

Al . Next, we argue that these ρl
n can be chosen such that

(6.1) ρ1
n(t1) ≤ · · · ≤ ρm

n (tm) on A1 ∩ · · · ∩ Am,1 ≤ m ≤ N.

Indeed, we have ρ(tl) ≤ ρ(tl+1) by the increase of ρ. If ρ(tl) < ρ(tl+1), then we can ensure
ρl

n(tl) ≤ ρl+1
n (tl+1) on Al ∩Al+1 simply by choosing δ < |ρ(tl)−ρ(tl+1)|/2 in Lemma 6.2. If

ρ(tl) = ρ(tl+1), we can observe that if the construction in the proof of Lemma 6.2 is executed
twice with tl and tl+1, then by choosing the same parameters u0, u1 the corresponding func-
tions fl and fl+1 satisfy fl ≤ fl+1 due to the increase of Y i . This implies that the correspond-
ing minimal fixed points produced by the proof of Lemma 6.3 satisfy ρl

n(tl) ≤ ρl+1
n (tl+1).

In view of (6.1), we can use Remark 3.4(iii) to construct from the equilibria (ρl
n)1≤l≤N

another n-player equilibrium 	n with the property that 	n(tl) = ρl
n(tl) for all 1 ≤ l ≤ N on

AN := ⋂N
l=1 Al .

To summarize, 	n satisfies |ρ(tl) − 	n(tl)| ≤ 1/N for all 1 ≤ l ≤ N on the set AN which
has probability P(AN) ≥ 1 − N−1. By letting t1, . . . , tN exhaust a countable dense subset
D′ ⊆ D ⊆ R+ as N → ∞, this shows that there exist n-player equilibria (	n)n≥1 such that
	n(t) → ρ(t) in probability for all t ∈ D′ and the proof is complete. �
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REMARK 6.4. The construction leading to Theorem 6.1 is pathwise, and thus extends
beyond deterministic mean field equilibria. For instance, let ρ1, ρ2 be such equilibria satisfy-
ing the assumption of Theorem 6.1, let λ ∈ [0,1] and suppose that the n-player game admits
a set A ∈ G0 with P(A) = λ. Then we can apply the construction separately on A and Ac to
find n-player equilibria ρn converging to the mixture λδρ1 + (1 − λ)δρ2 on a dense set. In the
same vain, convergence to more general mixtures could be analyzed.

6.2. Decreasing-transversal equilibria. Let us begin with a simulation and then establish
that the observations correspond to a general result.

EXAMPLE 6.5. Let r = c = 1 and let Y i
t = Y i

0 , 0 ≤ t < T be constant i.i.d. processes
such that Law(Y i

t ) has the tent-shaped probability density f (x) = 2 − 4|x − 1/2|, x ∈ [0,1].
As illustrated in Figure 5 (left panel), the corresponding equation (4.1) has a decreasing-
transversal solution at u = 1/2 and increasing-transversal solutions at u = 0 and u = 1. For
the game with n = 10,000 players, the histogram in Figure 5 shows the values of k/n such
that k satisfies the equilibrium conditions (3.1). The simulation illustrates the convergence to
the equilibria at u = 0,1 as proved in Theorem 6.1 but also suggests that u = 1/2 is not a
limit of n-player equilibria; indeed, only about 12.5% of the samples allow for an n-player
equilibrium with k/n close to 1/2. In Proposition 6.11, we will establish an asymptotic upper
bound which yields e−2 ≈ 13.5% in this example.

In the remainder of this section, we assume that Ft admits a continuous density ft . Let
x ∈ [0,1] be a solution of u+Ft(r −cu) = 1. We say that x is strongly decreasing-transversal
if ∂u|u=x[u + Ft(r − cu)] < 0 or equivalently

ft (r − cx) > c−1.

We note that x is then necessarily in (0,1) and decreasing-transversal in the sense of Defi-
nition 4.2; the only difference (given the continuity assumption) is that we exclude the case
where u+Ft(r −cu) has a vanishing derivative at x (see also Remark 6.10). Intuitively, when
ft (r − cx) is large, there are many similar agents (in terms of values of Y i and relative to the
interaction constant c) close to such a state. As a result, these agents may tend to coordinate
and either all stop or all not stop: it may be impossible to break up the group7 and create an
n-player equilibrium close to x.

FIG. 5. C.d.f. and simulation of Example 6.5. The decreasing-transversal equilibrium at 0.5 can only be ap-
proximated on 12.5% of the samples.

7Clearly, this intuition does not explain the phase-transition character of the phenomenon. To gather the intuition
for a large density, it may be useful to consider the limiting case of an atom in Ft : all agents corresponding to the
atom make the same stopping decision.
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THEOREM 6.6. Let ρ be a mean field equilibrium and suppose that the set{
t ≥ 0 : ρ(t) is strongly decreasing-transversal

}
has nonempty interior.8 Then there does not exist a sequence of n-player equilibria ρn Fatou
converging to ρ in probability.

This theorem follows from Corollary 6.8 below which shows nonexistence with positive
probability at any fixed time t where ρ(t) is strongly decreasing-transversal. For brevity, we
set

Gn,t (k) = #
{
Y i

t + c
k

n
≥ r

}

so that the n-player equilibrium conditions (3.1) can be expressed concisely as Gn,t (k) = k =
Gn,t (k − 1). Moreover, we introduce

Kn,t = {
0 ≤ k ≤ n : Gn,t (k) = k = Gn,t (k − 1)

}
.

Roughly speaking, we think of Kn,t (ω) as the set of all k such that k/n = ρn(t)(ω) for
some n-player equilibrium ρn(t). (This is not quite meaningful since equilibria can always be
altered on nullsets.) More precisely, we have that if ρn is a given equilibrium, then nρn(t) ∈
Kn,t a.s. by (3.1). In particular, we will use below that {|x − ρn(t)| < ε} ⊆ {∃k ∈ Kn,t :
|x − k

n
| < ε} a.s. for all x ∈ [0,1] and ε > 0. Finally, we also introduce the superset

K∗
n,t = {

0 ≤ k ≤ n : Gn,t (k) = k
} ⊇Kn,t

which has no direct interpretation in terms of our game but is conveniently related to crossings
of empirical distribution functions (see the proof below).

PROPOSITION 6.7. Fix t ≥ 0 and let x ∈ (0,1) satisfy x + Ft(r − cx) = 1. Let α :=
cft (r − cx) and assume that α > 1. Then

lim
ε→0

lim
n→∞P

(
∃k ∈ K∗

n,t :
∣∣∣∣x − k

n

∣∣∣∣ < ε

)
= 1 − θ

α − 1
< 1,

where θ ∈ (0,1) is defined through θe−θ = αe−α .

PROOF. We first observe the local nature of the claim. Indeed, introducing the uniform
random variables Ui = Ft(Y

i
t ) we see that the event

An,ε =
{
∃k ∈ K∗

n,t :
∣∣∣∣x − k

n

∣∣∣∣ < ε

}

=
{
∃0 ≤ k ≤ n : #

{
Y i

t + c
k

n
≥ r

}
= k,

∣∣∣∣x − k

n

∣∣∣∣ < ε

}

=
{
∃0 ≤ k ≤ n : #

{
Ui ≥ Ft

(
r − c

k

n

)}
= k,

∣∣∣∣x − k

n

∣∣∣∣ < ε

}

depends only on the values of Ft in an ε-neighborhood of x. In particular, for ε small enough,
we may change Ft outside that neighborhood to guarantee that the set of solutions of u +
Ft(r − cu) = 1 is {0, x,1}.

8Note that the condition is nonempty interior rather than the set being nonempty. This corresponds to the fact
that convergence in probability on a dense set of times t is sufficient for Fatou convergence; cf. Definition 5.3.
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FIG. 6. Bounds for the probability of finding an n-player equilibrium near x as in Corollary 6.8. The dashed
and dashed-dotted lines are the upper bounds derived from Proposition 6.7 and Proposition 6.11, respectively.
The solid line is the lower bound from Proposition 6.13.

Considering the c.d.f. G(u) = 1 − Ft(r − cu), the proposition can be rephrased as the
probability of having no crossings of the empirical distribution of G and the (theoretical)
uniform distribution near x:

An,ε =
{
∃t ∈ [0,1] : 1

n
#
{
G−1(

Ui) ≤ t
} = t, |x − t | < ε

}
.

(To see this identity, note that 1
n

#{G−1(Ui) ≤ t} = t implies t = k/n for some 0 ≤ k ≤ n.)
Following [27], this problem can be related to boundary-crossing probabilities of Poisson
processes which turn out to be computable. In particular, after changing Ft as outlined above,
the conditions of [27], Theorem 1, are satisfied for G and noting that α = G′(x), this theorem
yields the result. �

In view of Kn,t ⊆ K∗
n,t , we have the following consequence (see also Figure 6).

COROLLARY 6.8. Fix t ≥ 0 and let x ∈ [0,1] satisfy x +Ft(r − cx) = 1. If x is strongly
decreasing-transversal, then

lim
ε→0

lim
n→∞P

(
∃k ∈ Kn,t :

∣∣∣∣x − k

n

∣∣∣∣ < ε

)
< 1.

REMARK 6.9. One can ask if the nonexistence result is related to the convention made
in Section 3 that players do not consider their own impact on the state process. To address
this question, we can drop the first equation in the equilibrium conditions (3.1) and keep only
the second (which seems uncontroversial), that is, #{Y i

t + c k
n

< r} = n − k. This corresponds
to the definition of K∗

n,t and Proposition 6.7 shows that nonexistence holds even under this
condition alone.

REMARK 6.10. Heuristics suggest that in the tangential case of a decreasing-transversal
x with α = 1, the limiting probability is 1, that is, the equilibrium is in fact a limit of n-player
equilibria. The tangential case is less important because it generically does not occur, in the
same sense as discussed below Definition 5.6. We do not provide a rigorous result.

In our last result, we determine the asymptotic expected number of equilibria close to
x (for both increasing- and decreasing-transversal cases). Importantly, it implies that this
number is positive with positive probability. When α > 1 is not close to 1, it also yields a
fairly accurate upper bound for the probability of not finding an n-player equilibrium close to
x (cf. Example 6.5) since the probability of finding more than one solution is small. On the
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other hand, we see that as α → 1, the expected number of solutions tends to infinity, and in
particular the probability of finding many solutions becomes large.9

PROPOSITION 6.11. Fix t ≥ 0 and let x ∈ (0,1) satisfy x + Ft(r − cx) = 1. Let α :=
cft (r − cx) and assume that α 	= 1. Then

lim
ε→0

lim
n→∞E

[
#
{
k ∈ Kn,t :

∣∣∣∣x − k

n

∣∣∣∣ < ε

}]
= e−α

|1 − α| .

In particular,

lim sup
ε→0

lim sup
n→∞

P

(
∃k ∈ Kn,t :

∣∣∣∣x − k

n

∣∣∣∣ < ε

)
≤ e−α

|1 − α| .

One consequence of Proposition 6.11 is that nonuniqueness is indeed the typical case for
the n-player game, as claimed in the Introduction: under the stated smoothness assumption
on Ft , we typically have at least one mean field equilibrium corresponding to 0 	= α < 1 and
then the proposition and Lemma 6.2 imply that there is more than one n-player equilibrium,
for large n.

PROOF OF PROPOSITION 6.11.. We may assume that c = 1, and we drop the index t

everywhere. We denote

α(z) = f (r − z)

and recall that x ∈ (0,1) and α = α(x) 	= 1. Fix ε > 0 and denote

x− = x − ε, x+ = x + ε,

F− = F(r − x − ε), F+ = F(r − x + ε),

α− = inf|z−x|<ε
α(z), α+ = sup

|z−x|<ε

α(z),

m(z) = inf|z−x|≤ε
z(1 − z), M(z) = sup

|z−x|≤ε

z(1 − z).

We assume that ε is small enough such that x± ∈ (0,1) and 1 /∈ [α−, α+].
Step 1: Bounds for P(k ∈ Kn). Fix n and let Ui = F(Y i), 1 ≤ i ≤ n so that (Ui) are

i.i.d. Unif[0,1] and let U(1) ≥ · · · ≥ U(n) be the associated reverse order statistics. Noting
that U(k) = U(n−k+1) for the usual (increasing) order statistics U(·), we have that U(k) ∼
Beta(n − k + 1, k) and U(k+1) = U(k)W

1
n−k

k where Wk ∼ Unif[0,1] is independent; cf. [1],
Section 4. Moreover, we note that k ∈ Kn is equivalent to

(6.2) U(k) ≥ F

(
r − k − 1

n

)
=: Fk−1 and U(k+1) ≤ F

(
r − k

n

)
=: Fk.

9In fact, one can show that limα→1 lim supn→∞ P(#{Kn,t ∩ |x − k
n | < ε} = j) = 0 for all finite j ≥ 0 when

ε > 0 is small enough.
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As a result, for any deterministic integer 1 ≤ k ≤ n,

P(k ∈ Kn) = P
(
U(k+1) ≤ Fk,U

(k) ≥ Fk−1
)

=
∫ 1

Fk−1

P
(
U(k+1) ≤ Fk|U(k) = z

)
dP

(
U(k) = z

)

=
∫ 1

Fk−1

P
(
W ≤ (Fk/z)

n−k|U(k) = z
)
dP

(
U(k) = z

)

= n!
(n − k)!(k − 1)!

∫ 1

Fk−1

Fn−k
k (1 − z)k−1 dz

=
(
n

k

)
Fn−k

k (1 − Fk−1)
k,

(6.3)

where dP (U(k) = z) indicates integration with respect to the law of U(k). We may observe
that this quantity is reminiscent of a binomial distribution except that the success probability
changes with k. Next, we use Taylor’s theorem to find that

(6.4) Fk−1 = F

(
r − k

n
+ 1

n

)
= F

(
r − k

n

)
+ αk/n = Fk + αk/n,

where αk = α(ηk) with ηk ∈ [ k−1
n

, k
n
] and in particular αk ∈ [α−, α+]. Now suppose that

|x − k
n
| < ε. Then k ≥ nx−, and using also Fk ≥ F−,

P(k ∈ Kn) =
(
n

k

)
Fn−k

k (1 − Fk − αk/n)k

=
(
n

k

)
Fn−k

k (1 − Fk)
k

(
1 − αk

(1 − Fk)n

)k

≤
(
n

k

)
Fn−k

k (1 − Fk)
k

(
1 − α−

(1 − F−)n

)nx−
.

The fact that

(1 − y) ≤ e−y ≤ (1 − y)
(
1 + o(y)

)
as y → 0 applied with y = w/n yields(

1 − w

n

)n

≤ e−w ≤
(

1 − w

n

)n(
1 + O(1/n)

)
as n → ∞, uniformly over w in a compact interval. This leads us to the upper bound

P(k ∈ Kn) ≤
(
n

k

)
Fn−k

k (1 − Fk)
ke

− α−x−
1−F− .(6.5)

Similarly, we have the lower bound

P(k ∈ Kn) ≥
(
n

k

)
Fn−k

k (1 − Fk)
k

(
1 − α+

(1 − F+)n

)nx+

≥
(
n

k

)
Fn−k

k (1 − Fk)
ke

− α+x+
1−F+

(
1 + O(1/n)

)
.

Step 2: Decay away from x. Let us recall Robbin’s version [30] of the Stirling approxima-
tion,

(6.6)
√

2πn

(
n

e

)n

e
1

12n+1 ≤ n! ≤ √
2πn

(
n

e

)n

e
1

12n ,
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showing in particular that n! = √
2πn(n

e
)n(1 + O(1/n)). Since n − k and k are comparable

to n when |x − k
n
| < ε, we have
(
n

k

)
= (

1 + O(1/n)
) √

2πn(n
e
)n√

2π(n − k)(n−k
e

)(n−k)
√

2πk(k
e
)k

uniformly over all k such that |x − k
n
| < ε. This shows that

Zn,ε := ∑
k:|x− k

n
|<ε

(
n

k

)
Fn−k

k (1 − Fk)
k

= (
1 + O(1/n)

) ∑
k:|x− k

n
|<ε

1√
2πn(1 − k

n
) k
n

F n−k
k (1 − Fk)

k

(1 − k
n
)n−k( k

n
)k

≤ 1 + O(1/n)√
m(x)

∑
k:|x− k

n
|<ε

1√
2πn

Fn−k
k (1 − Fk)

k

(1 − k
n
)n−k( k

n
)k

.

(6.7)

Our next goal is to estimate the summand above. We introduce the function

ϕ(z) = (1 − z)n−kzk

so that

(6.8)
Fn−k

k (1 − Fk)
k

(1 − k
n
)n−k( k

n
)k

= ϕ(1 − Fk)

ϕ( k
n
)

is the term in question. We can use Taylor’s theorem similarly as above to find

Fk = F

(
r − k

n

)
= F

(
r − x + x − k

n

)
= F(r − x) + α̃k

(
x − k

n

)
,

where α̃k ∈ [α−, α+]. As F(r − x) = 1 − x, this equality can be rewritten as

Fk = 1 − k

n
+ (α̃k − 1)

(
x − k

n

)
.

Introducing also

ψ(z) = logϕ(z) = (n − k) log(1 − z) + k log z,

we have

ψ ′(z) = −n − k

1 − z
+ k

z
, ψ ′′(z) = −n

[ 1 − k
n

(1 − z)2 +
k
n

z2

]
< 0

and then ψ ′(k/n) = 0 shows that ψ and ϕ have a global maximum at k/n. Taylor’s theorem
at the second order yields

ψ(1 − Fk) − ψ

(
k

n

)
= ψ

(
k

n
− (α̃k − 1)

(
x − k

n

))
− ψ

(
k

n

)

= ψ ′′(ξk)

2
(α̃k − 1)2

(
x − k

n

)2

for a suitable number ξk between k
n

and k
n

− (α̃k − 1)(x − k
n
). Therefore, we have |ξk − x| <

Aε, with A = max{α+,1}. Using the above formula for ψ ′′(z) and setting

�ε = inf|p−x|<ε
|z−x|<Aε

[
1 − p

(1 − z)2 + p

z2

]
,
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we arrive at

ψ(1 − Fk) − ψ

(
k

n

)
≤ −n

2
�ε(α̃k − 1)2

(
x − k

n

)2
.

Setting also α∗ = α− if α > 1 and α∗ = α+ if α < 1, exponentiating leads us to the desired
estimate

ϕ(1 − Fk)

ϕ( k
n
)

≤ exp
(
−n

2
�ε(α∗ − 1)2

(
x − k

n

)2)

and plugging this into (6.7) we have that

Zn,ε ≤ 1 + O(1/n)√
m(x)

∑
k:|x− k

n
|<ε

1√
2πn

exp
(
−n

2
�ε(α∗ − 1)2

(
x − k

n

)2)
.

Set

wk = √
n�ε|α∗ − 1|

(
k

n
− x

)

and note that

�w := wk − wk−1 = 1√
n

√
�ε|α∗ − 1|.

The above sum can then be written as

Zn,ε ≤ 1 + O(1/n)√
m(x)

∑
k:|wk |<√

n�ε|α∗−1|ε

1√
2πn

e−w2
k/2

= 1 + O(1/n)√
m(x)�ε

1

|α∗ − 1|
∑

k:|wk |<√
n�ε|α∗−1|ε

1√
2π

e−w2
k/2�w

which suggests comparison with a Gaussian integral
∫
R

1√
2π

e−w2/2 dw = 1. Indeed, after

subtracting the two largest summands neighboring the origin, the sum can be seen as a Rie-
mann sum which is entirely below the integral. These two summands are O(1/

√
n) so that∑

k:|wk |<√
n�ε|α∗−1|ε

1√
2π

e−w2
k/2�w ≤ 1 + O(1/

√
n)

and finally

Zn,ε ≤ 1√
m(x)�ε

1

|α∗ − 1|
(
1 + O(1/

√
n)

)
.

Step 3: Conclusion. Recalling (6.5), we have

E

[
#
{
k ∈ Kn :

∣∣∣∣x − k

n

∣∣∣∣ < ε

}]
= ∑

k:|x− k
n
|<ε

P (k ∈ Kn)

≤ e
− α−x−

1−F− Zn,ε

≤ e
− α−x−

1−F− 1√
m(x)�ε

1

|α∗ − 1|
(
1 + O(1/

√
n)

)
,

and hence

lim sup
n→∞

E

[
#
{
k ∈ Kn :

∣∣∣∣x − k

n

∣∣∣∣ < ε

}]
≤ e

− α−x−
1−F− 1√

m(x)�ε

1

|α∗ − 1| .
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As ε → 0, we have x− → x, α− → α, α∗ → α, F− → F(r − x) = 1 − x and

m(x) → x(1 − x), �ε → 1

1 − x
+ 1

x
= 1

x(1 − x)
.

Thus,

lim sup
ε→0

lim sup
n→∞

E

[
#
{
k ∈ Kn :

∣∣∣∣x − k

n

∣∣∣∣ < ε

}]
≤ e−α

|α − 1| .

The matching lower bound follows similarly after replacing α− by α+, F− by F+, and so on.
�

REMARK 6.12. The above proof offers insight into the speed of convergence of n-player
equilibria. Specifically, the estimates entail that if εn ↓ 0 is such that εn

√
n → β ∈ [0,∞],

then

E

[
#
{
k ∈ Kn,t :

∣∣∣∣x − k

n

∣∣∣∣ < εn

}]
→ e−α

|1 − α|μ
(
− |α − 1|√

x(1 − x)
β,

|α − 1|√
x(1 − x)

β

)
,

where μ is the standard Gaussian distribution. Thus, a ball of radius rn/
√

n around x, where
rn → ∞ arbitrarily slowly, will asymptotically contain all n-player equilibria converging to
x, and this is optimal in the sense that if lim sup rn < ∞ the ball will miss some solutions.

In our final result, we complement the upper bound in Proposition 6.11 by a lower bound.
The gap between the bounds vanishes for large α; see also Figure 6.

PROPOSITION 6.13. Fix t ≥ 0, let x ∈ (0,1) satisfy x +Ft(r − cx) = 1 and suppose that
α := cft (r − cx) > 1. Then

lim inf
ε→0

lim inf
n→∞ P

(
∃k ∈ Kn,t :

∣∣∣∣x − k

n

∣∣∣∣ < ε

)
≥ L(α) > 0,

where

L(α) = e−α

(α − 1)(1 + 2
√

2
|a0| {1 − �(

√
2|a0|)})

with a0 := 1 − α + log(α) < 0 and � is the standard normal c.d.f.

Since the lower bound is strictly positive, we can interpret the result as stating that x is
necessarily part of a mixture which is itself a limit of n-player equilibria. In summary, when
x is strongly decreasing-transversal, we cannot find n-player equilibria converging to x at
time t , but at least we can find n-player equilibria converging to a randomized mean field
equilibrium which charges x.

PROOF OF PROPOSITION 6.13. We use the notation from the proof of Proposition 6.11
and suppress t . Let K = Kn,t and X = Xn,ε = #{k ∈ Kn,t : |x − k

n
| ≤ ε}. Set μ = E[X] and

let

A = An,ε = {|X − cμ| ≥ cμ
}

for a constant c > 0 to be chosen later. Clearly, P(X = 0) ≤ P(A). Using the Markov in-
equality,

P
(|X − cμ| ≥ cμ

) ≤ E((X − cμ)2)

c2μ2 = E(X2)

c2μ2 − 2

c
+ 1 = 2

c

(
E(X2)

2cμ2 − 1
)

+ 1
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and choosing c = θ E[X2]
2μ2 for some θ > 1, we obtain that

P(X = 0) ≤ 1 − 4μ2(θ − 1)

θ2E[X2] .

Optimizing over the right-hand side, we note that θ = 2 yields the best bound, so we choose

c = E[X2]
μ2 and conclude that

(6.9) P(X = 0) ≤ 1 − μ2

E[X2] = 1 − E[X]2

E[X2] .
Since we have already determined the limit of E[X] in Proposition 6.11, our goal is to find
an upper bound for E[X2]. To that end, we first compute

P(k ∈ K, j ∈ K) = P
(
U(k+1) ≤ Fk,U

(k) ≥ Fk−1,U
(j+1) ≤ Fj ,U

(j) ≥ Fj−1
)

for k < j ; recall the notation of (6.2). In fact, this probability is zero for j = k + 1, so we
focus on k + 2 ≤ j . Conditionally on U(k+1) = h < U(k) = u, the pair (U(j),U(j+1)) has the
same distribution as (hV (j−(k+1)), hV (j−k)) where V (�) are the reverse order statistics of an
i.i.d. sample V1, . . . , Vn−(k+1) of size n − (k + 1) and distribution Unif[0,1]. Thus, we have

P
(
U(j+1) ≤ Fj ,U

(j) ≥ Fj−1|U(k+1) = h,U(k) = u
)

= P

(
V j−(k+1) ≤ Fj

h
,V (j−k) ≥ Fj−1

h

)
.

(6.10)

Clearly, P(V (j−k) ≥ Fj−1
h

) = 0 if Fj−1 ≥ h, so we only need to consider the case h ∈
[Fj−1,Fk]. Using the formula developed in (6.3), we obtain

P
(
U(j+1) ≤ Fj ,U

(j) ≥ Fj−1|U(k+1) = h,U(k) = u
)

=
(
n − (k + 1)

j − (k + 1)

)(
Fj

h

)n−j(
1 − Fj−1

h

)j−(k+1)

.
(6.11)

As above (6.2), the joint density of U(k) and U(k+1) can be computed using the fact that

U(k) ∼ Beta(n − k + 1, k) and U(k+1) = W
1

n−k

k U(k) where Wk ∼ Unif[0,1] is independent of
U(k):

dP
(
U(k) = u,U(k+1) = h

) = k(n − k)

(
n

k

)
(1 − u)k−1hn−(k+1)10≤h≤u≤1 dudh.

Integrating with respect to this density and using the appropriate restrictions, we deduce that

P(k ∈ K, j ∈ K) = k(n − k)

(
n

k

)(
n − (k + 1)

j − (k + 1)

)
F

n−j
j

×
∫ 1

Fk−1

(1 − u)k−1 du

∫ Fk

Fj−1

(h − Fj−1)
j−(k+1) dh

=
(
n

k

)
(1 − Fk−1)

k n − k

j − k

(
n − (k + 1)

j − (k + 1)

)
F

n−j
j (Fk − Fj−1)

j−k

=
(
n

k

)
(1 − Fk−1)

kF n−k
k

(
n − k

j − k

)(
Fj

Fk

)n−j(
1 − Fj−1

Fk

)j−k

≤
(
n

k

)
(1 − Fk−1)

kF n−k
k

(
n − k

j − k

)(
Fj

Fk

)n−j(
1 − Fj

Fk

)j−k

.
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By a repeated application of (6.4), we have that Fj

Fk
= 1 − αj (j−k)

nFk
for some αj ∈ [α−, α+],

and hence the last two terms above satisfy(
Fj

Fk

)n−j(
1 − Fj

Fk

)j−k

≤
[
1 − αj (j − k)

nFk

]n−j[
αj (j − k)

nFk

]j−k

≤ exp
(
−α−(j − k)

n − j

nFk

)
(α+)j−k

(
j − k

nFk

)j−k

≤ exp
(
−α−(j − k)

1 − x+
F+

)
(α+)j−k

(
j − k

nFk

)j−k

.

On the other hand, Stirling’s approximation as in (6.6) yields(
n − k

j − k

)(
j − k

nFk

)j−k

= (n − k)!
(n − j)!(j − k)!

(
j − k

nFk

)j−k

≤
(

n − k

nFk

)j−k (j − k)j−k

(j − k)!

≤
(

1 − x−
F−

)j−k

(j − k)j−k

×
[(

(j − k)

e

)j−k√
2π(j − k) exp

(
1

12(j − k) + 1

)]−1

≤
(

1 − x−
F−

)j−k ej−k

√
2π(j − k)

.

As a result, we obtain the upper bound

(6.12) P(k ∈ K, j ∈ K) ≤
(
n

k

)
(1 − Fk−1)

kF n−k
k

1√
2π(j − k)

exp
(
a(j − k)

)
,

where

a = a(α, ε) := 1 − α−
1 − x+

F+
+ log(α+) + log

(
1 − x−

F−

)
.

If the following sums run over indices i with |x − i/n| ≤ ε, we can express the second
moment of X as

E
[
X2] = E

[(∑
k

1k∈K
)(∑

j

1j∈K
)]

= E

[∑
k,j

1k∈K1j∈K
]

= E

[∑
k

1k∈K + 2
∑
k<j

1k∈K1j∈K
]

= ∑
k

P (k ∈ K) + 2
∑
k<j

P (k ∈ K, j ∈ K).

Thus, (6.12) leads to

E
[
X2] = ∑

k:|x−k/n|≤ε

P (k ∈ K) + 2
∑

k,j :j≥k+2,
|x−k/n|≤ε,
|x−j/n|≤ε

P (k ∈ K, j ∈ K)

≤ E[X] + 2√
2π

E[X]
n(x+−x−)∑

�=2

1√
�
ea�.
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Note that a0 := limε↓0 a(α, ε) = 1 − α + log(α) is strictly negative since α > 1. Thus, a =
a(α, ε) < 0 for ε small enough, so that 1√

�
ea� is summable. More precisely,

1√
2π

∞∑
�=2

1√
�
ea� ≤ 1√

2π

∫ ∞
1

1√
�
ea� d� =

√
2

|a|
1√
2π

∫ ∞
√

2|a|
e

−z2
2 dz.

Recalling also that limε→0 limn→∞ E[X] = e−α

|α−1| =: H(α) by Proposition 6.11, we deduce
that

lim sup
ε→0

lim sup
n→∞

E
[
X2] ≤ H(α)

(
1 + 2

√
2

|a0|
(
1 − �

(√
2|a0|))

)

and combining this with (6.9) yields the claim. �
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