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Abstract. Let K0(Vk) be the Grothendieck ring of varieties. Motivic measures often arise
as group homomorphisms K0(Vk) // K0(E), where E is an exact category. In this paper
we give a recipe for lifting such homomorphisms to maps of spectra K(Vk) // K(E), where
K(Vk) is the Grothendieck spectrum of varieties constructed by Campbell and Zakharevich. We
consider two special cases: the classical local zeta function, thought of as a homomorphism
K0(VFq ) // K0(End(Q`)), and the compactly-supported Euler characteristic, thought of as a
homomorphism K0(VC) // K0(Q). We use these to prove that the Grothendieck spectrum of
varieties contains nontrivial geometric information in its higher homotopy groups by showing that
the map S // K(Vk) is nontrivial in higher dimensions when k is finite or C, and, moreover,
that when k is finite this map is not surjective on higher homotopy groups.

1. Introduction

Let k be a field. In this paper, by “variety over k” we mean a reduced, separated k-scheme
of finite type. The Grothendieck ring of varieties over k, denoted K0(Vk), is the abelian group
generated by isomorphism classes [X] of k-varieties, with the relation [X] = [Z] + [X − Z]
for Z ↪→ X a closed inclusion. Thus K0(Vk) is the universal additive invariant; any function
f : {varieties} // A (where A is an abelian group) satisfying f(X) = f(X − Z) + f(Z) (usually
called a motivic measure) factors through K0(Vk). Many important invariants of varieties induce
motivic measures; for example point counts (for k finite) or Hodge numbers (for k ⊂ C) produce
such homomorphisms.

The first and third authors (see [Cam, Zak17a, CWZ]) have constructed a higher Grothendieck
ring of varieties, namely, a spectrum K(Vk) such that π0K(Vk) ∼= K0(Vk). Two natural questions
arise:

(1) Do classical motivic measures lift to maps of spectra?
(2) What arithmetic or geometric information do the higher homotopy groups Ki(Vk) encode?

One of the most important motivic measures of a variety is its zeta function. When k = Fq

and A = (1 + ZJtK,×), this can be written as

X 7→ Z(X, t) = exp

∞∑
n=1

|X(Fqn)|
n

tn.

The zeta function satisfies the defining relation Z(X, t) = Z(Y, t)Z(X−Y, t) for closed subvarieties
Y ↪→ X, and thus gives a well-defined invariant on the ring K0(Vk). If we think of the Fqn-
points of X as the fixed points of the n-th power of Frobenius, then the zeta function is uniquely
determined by the data of Frobenius acting on the Fq-points of k. By the Grothendieck-Lefschetz
fixed point theorem, the number fixed points of Frobenius is equal to the trace of Frobenius acting
on the `-adic cohomology; thus we can instead write the zeta function as REFERENCE

X 7→
∞∏
i=0

det(1− tFrobq|H i
c(X,Q`))

(−1)i+1
.
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Note that this now depends only on the `-adic compactly supported cohomology of X and the
action of Frobenius. (For more detail on this, together with a beautiful discussion of other
formulations of the zeta function, see [Ram15].)

If we instead consider the case when X is not finite, but rather a subfield of C, we can construct
a similar invariant by considering the compactly supported Euler characteristic of X. We can
write

χ(X) =
∞∑
i=0

(−1)i dimH i
c(X(C); Q).

This, again, is a motivic measure that only depends on the compactly supported cohomology of
X.

These two examples bring us to the statement of the main theorem.

Theorem 1.1.

(1) Let k be a field, ks a separable closure of k, and ` 6= char(k) a prime. Denote by
Repcts(Gal(ks/k); Z`) the exact category of finitely generated continuous representations of
Gal(ks/k) over Z`. The function from k-varieties to the Grothendieck ring of continuous
Gal(ks/k) representations

X 7→
∑
i

(−1)i[H i
et,c(X ×k ks; Z`)]

lifts to a map of K-theory spectra

ζ : K(Vk) // K(Repcts(Gal(ks/k); Z`)).

(2) Let k be a subfield of C, and let R be any commutative ring. The function from k-varieties
to the Grothendieck ring of finitely generated R-modules

X 7→
∑
i

(−1)i[H i(X(C);R)]

lifts to a map of K-theory spectra

E : K(Vk) // K(R).

We refer to ζ as the derived `-adic zeta function and to E as the derived R-Euler characteristic.
These are homotopical enrichments of the standard zeta function and R-Euler characteristic.
When k is a finite field, ζ is exactly the lift of the zeta function.

Corollary 1.2. Let k = Fq be a finite field and ` - q a prime. Write W (R) for the ring of (big)
Witt vectors of the ring R. The classical zeta function of Fq-varieties lifts to a map of spectra

ζ:K(VFq) // K(Repcts(Gal(Fq/Fq); Z`)),

which fits into a commuting square

K0(VFq)
π0ζ

//

Z(−,t)
��

K0(Repcts(Gal(Fq/Fq); Z`))

det(1−Frob∗qt)
��

W (Z) // W (Z`)

after applying π0.

This answers the question (1) by lifting the classical zeta function to a derived invariant; for
more details and the proof, see the end of Section 4.

For the question (2), one might begin by asking: are there nontrivial elements in Ki(Vk)
for i > 0? One simple example of an SW -category is FinSet, the category of finite sets; by
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REFERENCE: BARRATT–PRIDDY–QUILLEN the K-theory of this is equivalent to S,
the sphere spectrum. Note that for any variety X we can define a map

σX : S // K(Vk)
by thinking of S as K(FinSet) and sending the finite set F to

∐
F X. When k is a subfield of C

this gives enough information to detect some of these nontrivial elements.

Theorem 1.3. Let k be a subfield of C. Then there are arbitrarily high non-trivial homotopy
groups of K(Vk).

The proof proceeds by tracing through the map π∗σX and showing that in degrees 4s− 1 it is
non-trivial. Thus in particular K4s−1(Vk) is non-trivial. Using an elaboration of this proof could
produce many more non-trivial homotopy groups. For example, from the multiplicative structure
of K(Vk) and the inclusion i: Aut(X) // K1(Vk), we have, for any automorphism f of X, the
composite

π∗S // K∗(Vk)
·i(f)−−−→ K∗+1(Vk) // K∗+1(Z).

We are hopeful that this gives a method for detecting other non-trivial homotopy groups of
K∗(Vk), but leave it to future work. We note that this is an approach very similar to the one
Bökstedt and Waldhausen [BW87] use to detect non-trivial homotopy groups in the algebraic
K-theory of spaces, A(∗).

When k is finite we can obtain more refined information. For a finite field k = Fq, the map
X 7→ X(Fq) defines a map K(VFq) // S which is a cosection of σSpec k, yielding K(VFq) '
S ∨ K̃(VFq). Thus an analogous statement to that of Theorem 1.3 can simply state that when k
is finite, π∗S is a summand of K∗(Vk). Thus, a much more subtle question is:

Do there exist nontrivial elements in K̃i(Vk) for i > 0?

Note that this statement makes sense for any k, by defining K̃(Vk) = hocofibσSpec k.
We use the derived zeta function to answer this question affirmatively.

Theorem 1.4. The group K̃1(Vk) is nontrivial whenever k is a subfield of R, a finite field with
|k| ≡ 3 (mod 4), or a global or local field with a place of cardinality 3 (mod 4).

To prove this theorem we use the derived 2-adic zeta function. For any category C, let Aut(C)
be the category of pairs (P, f), where P ∈ C and f ∈ Aut(P ). Morphisms (P, f) // (Q, g) are
morphisms h:P // Q such that hf = gh. When C is exact it induces an exact structure on
Aut(C). Specializing from a representation of Gal(Fq/Fq) to its value on Frobq gives a functor

Repcts(Gal(Fq/Fq); Z`) // Aut(Q`). Composing the derived zeta function with the K-theory
of this functor and applying π1, gives a homomorphism K1(Vk) // K1(Aut(Q2)). The group
K1(Aut(Q2)) is relatively well-understood. In [Gra79], Grayson constructs a homomorphism
σ2:K1(Aut(Q2)) // K2(Q2). By Moore’s Theorem (see e.g. [Mil71, Appendix]), the 2-adic
Hilbert symbol induces a (split) surjection (−,−)2 : K2(Q2) � Z/2Z, and by composing these
maps, we produce a map

h2 : K1(Vk) // K1(Aut(Q2))
σ2 // K2(Q2)

(−,−)2
// Z/2Z.

We then show h2 ◦ π1σSpec k is trivial, but h2 ◦ π1σP1 is surjective.
Corollary 1.2 and Theorem 1.4 are both applications of Theorem 1.1, in which ζ is constructed.

In order to construct ζ, we use a K-theory machinery first created by the first author in [Cam].
The usual categories one wants to work with as inputs for a K-theory machine are Waldhausen
categories [Wal85]. Unfortunately, these do not work to produce K(Vk), which is why the first
and third authors introduced their formalisms. In [Cam], the difficulty is circumvented by defin-
ing a modification of Waldhausen categories called SW -categories (the S is for “scissors”) where
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one can define algebraic K-theory for Vk in much the same way one does for Waldhausen cat-
egories. However, in order to get maps K(C) // K(W) where C is an SW -category and W
is a Waldhausen category, one needs the notion of a “W -exact functor” introduced in [Cam].
It needs to satisfy certain variance conditions reminiscent of push-pull formulae (see Section 2
for details). To construct the derived `-adic zeta function, we take the SW -category Vk and
the Waldhausen category Chb(Repcts(Gal(ks/k); Z`)) of homologically finite and bounded chain
complexes of Galois representations. To go from one to the other we need to use compactly-
supported étale cohomology. Unfortunately, this is not sufficiently functorial; to resolve this,
we construct a helper category which decorates each variety with a compactification. Once the
compactification is chosen, compactly-supported étale cohomology is functorial and satisfies the
axioms of a W -exact functor. Applying K-theory, we obtain the derived `-adic zeta function.

We view this work as part of a larger program to lift motivic measures to the spectral/homotopical
level. For example, the outline we follow should adapt to give lifts for other cohomologically
defined motivic measures, e.g. p-adic zeta functions, Serre polynomials, and the Gillet–Soulé
measure [GS96]. One might similarly ask for lifts of Kapranov’s motivic zeta function, or of
the motivic measure used by Larsen and Lunts [LL03] to show that motivic zeta function is not
rational as a map out of K0(VC). See Section 7 for a more detailed discussion.

This paper is organized as follows. In Section 2, we quickly review Waldhausen K-theory and
introduce SW-categories. In Section 3, we review the background and necessary results from
`-adic cohomology and Galois representations. In Section 4 we review our general approach to
constructing derived motivic measures, and provide the the construction of the motivic measure
arising from singular cohomology. Section 5 contains the full construction of the derived `-adic
zeta function. In Section 6 we use the results of the previous section to construct nontrivial
elements in the higher K-theory of varieties over both C and finite fields. We close, in Section 7,
by discussing questions for future work.
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Madapusi Pera and Nick Rozenblyum for helpful correspondence. We thank Oliver Braunling,
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for many helpful questions and comments on an earlier draft. J.W. was supported in part by
NSF Grant No. DMS-1400349. I.Z. was supported in part by an NSF MSPRF grant and NSF
Grant No. DMS-1654522.

Notation 1.5. Throughout, when dealing with schemes or varieties, we let Z ↪→ Y denote a

closed inclusion and X
◦−→ Y denote an open inclusion.

2. SW -categories and K-Theory

In [Zak17a], the third author defines a spectrum K(Vk) whose zeroth homotopy group is the
Grothendieck ring of varieties over k. In [Cam], the first author gives an alternate construction
of this spectrum. In this paper, we use the latter construction to produce maps out of K(Vk), so
we review the structure necessary to produce this spectrum.

Most definitions of K-theory work with categories where a suitable notion of quotient exists,
for example Quillen’s exact categories [Qui73] or Waldhausen’s categories [Wal85]. These notions
of quotient are then used to define the exact sequences that K-theory is defined to “split.” When
dealing with the category of varieties, we have no such quotients. Instead, our “exact sequences”

are sequences of the form Z ↪→ X
◦←− (X − Z) where the first map is a closed inclusion and the

second is an open inclusion. The notion of an SW -category is meant to modify Waldhausen’s
definition of categories with cofibrations and weak equivalences to allow the use of such “exact
sequences.” For ease of reading, we review Waldhausen’s construction before recalling the first
author’s construction.
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Definition 2.1 (Waldhausen category, [Wal85, Section 1.2]). A Waldhausen category1 is a cat-
egory C equipped with two distinguished subcategories: cofibrations and weak equivalences, de-
noted co(C) and w(C). The arrows in co(C) are denoted by hooked arrows ↪→. Arrows repre-
senting weak equivalences are decorated with ∼. These categories satisfy the following axioms:

(1) C has a zero object 0.
(2) All isomorphisms are contained in co(C) and w(C).
(3) For all objects A of C, the morphism 0 // A is a cofibration.
(4) (pushouts) For any diagram

C Aoo � � // B

where A ↪→ B is a cofibration, the pushout exists and the morphism C ↪→ B ∪A C is a
cofibration.

(5) (gluing) For any diagram

C

∼
��

A � � //oo

∼
��

B

∼
��

C ′ A′ �
�

//oo B′

where the vertical morphisms are weak equivalences the induced morphism

B ∪A C
∼ // B′ ∪A′ C ′

is also a weak equivalence.

We will be using a slightly more general definition of the K-theory of a Waldhausen category,
as we need this flexibility for our main results. For a more standard description of Waldhausen’s
K-theory, see for example [Rog92, Section 1].

We begin with some preliminary definitions.

Definition 2.2. Let C be a category. The category Ar C has, as its objects, the morphisms of C.
The morphisms in Ar C from a morphism f :A // B to a morphism g:C // D are commutative
squares

A //

f
��

C

g

��

B // D

.

If C is equipped with a subcategory of weak equivalences then a morphism in Ar C is considered
a weak equivalence if both horizontal morphisms in the diagram above are weak equivalences.

Let [n] be the ordered set {0 < . . . < n} considered as a category. Then Ar[n] can be considered
to be the set of pairs (i, j) ∈ [n]× [n] with i ≤ j. We are often considering functors X: Ar[n] //C;
in this case, we write Xi,j for X(i, j).

Definition 2.3. Let C be a Waldhausen category. A morphism in Ar C is a weak cofibration if
it is weakly equivalent (via a zigzag of weak equivalences) in Ar C to a cofibration. A square in C
is homotopy cocartesian if it is weakly equivalent (by a zigzag) to a pushout square where either
both horizontal or both vertical morphisms are cofibrations.

Definition 2.4 (S′•-construction, see [BM11, Definition 2.3]). Let C be a Waldausen category.
We define S′nC to be the category of functors

X: Ar[n] // C
with morphisms natural transformations, subject to the conditions

1Referred to as a “category with cofibrations and weak equivalences” by Waldhausen.
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• the initial map 0 // Ai,i is a weak equivalence for all i.
• When i ≤ j ≤ k, Xi,j

// Xi,k is a weak cofibration.
• For any i ≤ j ≤ k the square

Xi,j
//

��

Xi,k

��

0 // Xj,k

is a homotopy cocartesian square.

A map A // B in S′nC is a weak equivalence when each component map Ai,j // Bi,j is a weak
equivalence; it is a cofibration when each component map Ai,j // Bi,j is a cofibration and the
map Ai,k ∪Ai,j Bi,j

// Bi,k is a weak cofibration.

Remark 2.5. The S′nC assemble to form a simplicial category (i.e. a simplicial object in the
category of small categories). For more detail on this, see [BM11, Section 2].

We now define the algebraic K-theory spectrum of a Waldhausen category. Unfortunately, the
S′•-construction does not work correctly for all Waldhausen categories, but only those satisfying
a condition Blumberg–Mandell call functorial factorization of weak cofibrations (FFWC). All
examples that we are concerned with satisfy this condition, but a discussion of the condition is
not illuminating for the sake of the current discussion; we prove that this is the case in Appendix A
and restrict our attention to categories satisfying FFWC.

Definition 2.6. Let C be a Waldhausen category satisfying FFWC. Let wS′nC denote the sub-
category of weak equivalences of S′nC and let N•wS

′
nC denote the nerve of that category. The

topological space Kt(C) is defined by

Kt(C) = Ω|N•wS′•C|
where | − | denotes the geometric realization of a bisimplicial set. The spectrum K(C) is defined
by taking a (functorial) fibrant-cofibrant replacement in the category of spectra of the spectrum
whose m-th space is

|N•wS′• · · ·S′•︸ ︷︷ ︸
m times

C|.

The most important example of a Waldhausen category for the purposes of this paper is the
following:

Example 2.7. Let E be any exact category. If we define the admissible monomorphisms to be the
cofibrations and the isomorphisms to be the weak equivalences then the Waldhausen K-theory
of E and Quillen’s K-theory of E are equivalent. Let Chstr(E) be the category of bounded chain
complexes in E ; by [TT90, Theorem 1.11.7], the incluson E // Chstr(E) given by mapping E to
the chain complexes concentrated at 0 is an equivalence on K-theory. The inverse map on K0 is
exactly the Euler characteristic.

However, we need a stronger version of this. Let R be a ring, and suppose that E is Modfg
R,

the category of finitely generated R-modules. Let Chb(R) be the category of chain complexes
of (possibly infinitely generated) R-modules whose cohomology is bounded and in Modfg

R. We
claim that the induced inclusion K(Modfg

R) // K(Chb(R)) is an equivalence.
We prove this by breaking the map up into three compositions:

K(Modfg
R) // K(Chstr(R)) // K(Chfb(R)) // K(Chb(R)).

Here, Chfb(R) is the category of chain complexes of finitely generated R-modules which are
homologically bounded. The first of these is an equivalence by [TT90, Theorem 1.11.7]. The
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second is an equivalence by [Wei13, Section V.2.7.1]. Thus it remains to consider the third.
We prove that this is an equivalence by using Waldhausen’s Approximation Theorem, [Wal85,
Theorem 1.6.7].

To apply the theorem we must show that for any map f :A // B, where A ∈ Chfb(R) and
B ∈ Chb(R) there exists a cofibration g:A ↪→ A′ in Chfb(R) and a weak equivalence f ′:A′ // B
such that f = f ′g. Note that (by possibly first factoring f as a cofibration followed by a weak
equivalence) it suffices to check this when f is itself a cofibration; in particular f is levelwise
injective. Suppose that the cohomology of B is nonzero below dimension k. We define A′m = 0 if
m > k. For m ≤ k we define A′m to be the submodule of Bm generated by

• the image of Am,
• a choice of generators for Hm(B), and
• a choice of generators for the relations between the generators for Hm+1(B).

(Since the cohomology is bounded we can just construct these starting at m = k and working
downwards.) Since each of these only involves a finite number of generators, A′m is finitely
generated. Thus A′ is levelwise a subcomplex of B which has the same cohomology and satisfies
the desired conditions. Thus the map K(Chfb(R)) // K(Chb(R)) is a weak equivalence.

It is not necessarily the case that for all exact categories, Chb(E) satisfies FFWC. In Appendix A
we show that the specific cases we are interested in in this paper do; the results of this appendix
also suggest that for almost all cases of E that are of interest FFWC holds.

We now turn to defining SW -categories. As much of the intuition necessary for working with
these comes from Waldhausen’s S•-construction we describe the structures in parallel language.
However, we omit the “weakness” hypotheses, since we need to work inside SW -categories more
strictly than in Waldhausen categories.

Definition 2.8 (SW -category [Cam, Definition 3.23]). An SW -category is a category C equipped
with three distinguished subcategories: cofibrations, complement maps, and weak equivalences,
denoted co(C), comp(C) and w(C). The arrows in co(C) are denoted by hooked arrows ↪→ and the

arrows in comp(C) are denoted by
◦−→. Arrows representing weak equivalences are decorated with

∼. The category C is further equipped with a collection of subtraction sequences {Z ↪→ X
◦←− U}.

All of this data is required to satisfy the following axioms.

(1) C has an initial object, denoted ∅. Furthermore, C has coproducts.
(2) For any C,D ∈ C, the canonical map C //CqD is both a cofibration and a complement

map.
(3) All isomorphisms are contained in comp(C), co(C), and w(C).
(4) The pullback of a complement map (resp. cofibration) along any map exists and is a

complement map (resp. cofibration).
(5) Subtraction satisfies the following axioms:

(a) Every cofibration Z ↪→ X participates in a subtraction sequence Z ↪→ X
◦←− Y such

that Y and Y // X are unique up to unique isomorphism. We informally write
Y = X − Z in this case.

(b) The pullback of a subtraction sequence

Z ↪→ X
◦←− U

along a map W // X is again a subtraction sequence.
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(c) Functoriality in cartesian squares: Given a cartesian diagram where every map is a
cofibration

W � � //� _

��

X� _

��

Y � � // Z

there is a unique map X −W // Z − Y .
(6) (pushouts) Given a diagram

W � � f
//� _

g

��

X

��

Y // Z

with both f and g cofibrations, a pushout Z exists and both dotted arrows are cofibrations.
Furthermore, every diagram of this form is required to be a pullback.

(7) (pushout products) Given a pullback diagram

W � � //� _

��

X� _

��

Y � � // Z

where all arrows are cofibrations, the map X qW Y // Z is a cofibration.
(8) (subtraction and pushouts) Given a diagram

X ′� _

��

W ′? _oo � � //� _

��

Y ′� _

��

X W � � //? _oo Y

X ′′

◦

OO

W ′′ �
�

//? _oo

◦

OO

Y ′′

◦

OO

where the columns are subtraction sequences and upper left and upper right squares are
pullback squares, then the pushouts along the rows form a subtraction sequence:

X ′ qW ′ Y ↪→ X qW Y
◦←− X ′′ qW ′′ Y ′′

(9) (gluing) Given the diagram

Y

∼
��

X

∼
��

? _oo � � // Z

∼
��

Y ′ X ′? _oo � � // Z ′

where the vertical arrows are weak equivalences, there is an induced weak equivalence

Y qX Z
∼−→ Y ′ qX′ Z ′

(10) (subtraction and weak equivalences) Given a commuting square

X � � //

∼
��

Y

∼
��

X ′ �
�

// Y ′
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there is a weak equivalence

Y −X ∼−→ Y ′ −X ′.
making the diagram

X � � //

∼
��

Y

∼
��

Y −X◦oo

∼
��

X ′ �
�

// Y ′ Y ′ −X ′◦oo

commute.

This may look like quite a bit of data. The first five axioms are meant to codify the notion
of “subtraction” in an arbitrary category with cofibrations and complement maps standing in
for closed and open embeddings in topological spaces. Axioms 6-10 are essentially technical in
nature, providing the exact conditions under which K-theory may be defined.

There are many examples of these kinds of categories. The following is the motivating example.

Example 2.9. The category Vk of varieties over a field k, is an SW -category, where cofibrations
are closed immersions, complements are open immersions, and the weak equivalences are isomor-
phisms. (This is proven in detail in the results leading up to [Cam, Prop. 3.28]) The subtraction
sequences are defined as follows. Given a closed inclusion i:Z // X, i determines a homeomor-
phism of Z onto a closed set i(Z). We consider the open set X − i(Z) and give it a scheme
structure by restricting the structure sheaf on X. Thus

X − Z = (X − i(Z),OX |X−Z).

The definition of an SW -category is designed to provide exactly the structure needed to carry
out a Waldhausen-style S•-construction when we have subtraction instead of quotients. However,
we need one auxiliary definition.

Definition 2.10. We define Ãr[n] to be the full subcategory of [n]op × [n] consisting of pairs
(i, j) with i ≤ j.

Definition 2.11 (S̃•-construction). Let C be an SW -category. We define S̃nC to be the category
with objects functors

X: Ãr[n] // C
with morphisms natural transformations, subject to the conditions

• Xi,i = ∅, the initial object
• When j < k, Xi,j

// Xi,k is a cofibration.
• The subdiagram

Xi,j −→ Xi,k ←− Xj,k

is a subtraction sequence for all i < j < k.

Remark 2.12. The S̃nC assemble to form a simplicial category (i.e. a simplicial object in the
category of small categories). Each of these is itself an SW -category, so this construction can be
iterated. For details, see [Cam, REFERENCE].

We may finally define the algebraic K-theory spectrum of an SW -category.

Definition 2.13. Let C be an SW -category. Let wS̃nC denote the subcategory of weak equiva-

lence of S̃nC and let N•wS̃nC denote the nerve of that category. The topological space Kt(C) is
defined by

Kt(C) = Ω|N•wS̃•C|
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where | − | denotes the geometric realization of a bisimplicial set. The spectrum K(C) is defined
by taking a (functorial) fibrant-cofibrant replacement in the category of spectra of the spectrum
whose m-th space is

|N•w S̃• · · · S̃•︸ ︷︷ ︸
m times

C|.

There is a notion of exact functors for SW -categories:

Definition 2.14. Let C,D be SW -categories. A functor F : C //D are called exact if

(1) F preserves the initial object: F (∅) = ∅.
(2) F preserves subtraction sequences
(3) F preserves pushout diagrams.

Proposition 2.15. Let C and D be SW -categories and let F : C //D be an exact functor. Then
F descends to a map of spectra K(C) // K(D).

Proof. This follows directly from the definition of exact functor. �

Most of the maps in which we are interested do not have SW -categories as codomains; instead,
we wish to be able to construct a functor from an SW -category to a Waldhausen category. This
requires we use a different definition in order to define the map of K-theories, since we cannot

just hit the source and target with the S̃• construction or S′•-construction. In fact, because of the
change in variance, the proper notion is not a functor at all — instead it is a pair of functors, one
covariant and one contravariant. One should keep in mind here the dual of compactly supported
cohomology, which is covariant on closed inclusions and contravariant on open. There is an
additional functor that needed to keep track of weak equivalences, so, in all it is a triple of
functors.

Definition 2.16 (Based on [Cam, Defn. 5.2]). Let C be an SW -category and D a Waldhausen
category. A weakly W -exact functor from C to D is a triple of functors (F!, F

!, Fw) such that

(1) F! is a functor F!: co(C) // D from the category of cofibrations in C to D. For a map i
we abbreviate F!(i) to i!.

(2) F ! a contravariant functor F !: comp(C)op //D, from the category of complement maps
in C to D. For a map j we abbreviate F !(j) to j!.

(3) Fw is a functor w(C) // w(D).
(4) For objects X ∈ C, F !(X) = F!(X) = Fw(X) and we denote all three by F (X).
(5) For every cartesian diagram in C

X � � j
//

i
��

Z

i′

��

Y � �

j′
// W

where the horizontal maps are cofibrations and the vertical maps are complements, we
obtain a commuting diagram

F (X)
j! // F (Z)

F (Y )

i!

OO

j′! // F (W )

(i′)!

OO
.
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(6) For a subtraction sequence in C

Z � � i // X X − Z? _
j

oo

the square

F (X)
i! //

��

F (Y )

j!

��

F (0) // F (Y −X)

is a weakly cocartesian square in D.
(7) For any commutative diagram

X � � f
//

iX
��

Y

iY
��

X ′ �
�

f ′
// Y ′

where the horizontal morphisms are cofibrations and the vertical morphisms are weak
equivalences, the following diagram commutes

F (X)
f! //

Fw(iX)
��

F (Y )

Fw(iY )
��

F (X ′)
(f ′)!

// F (Y ′)

A similar statement holds for complement maps.

Remark 2.17. For notational ease, we denote W -exact functors by (F!, F
!, Fw): C // D or even

F : C //D, when no confusion can arise.

Having defined this, one can prove the following.

Proposition 2.18 (Based on [Cam, Prop. 5.3]). Let C be an SW -category and D a Waldhausen
category with FFWC and let (F!, F

!, Fw): C //D be a weakly W -exact functor. Then (F!, F
!, Fw)

determines a spectrum map

K(C) F // K(D).

Proof. It suffices to prove that this map exists before taking fibrant-cofibrant replacement, since
our replacement is functorial. But this follows exactly from the definitions of K(C) and K(D),
since a weakly W -exact functor takes a simplex in the spaces defining K(C) to a simplex in the
spaces defining K(D). �

As a consequence of the definition of K-theory, we obtain the following result, which can be used
to pick out interesting elements of K1 of an SW -category. The proof is just as for Waldhausen
K-theory as in [Wal85, §1.5].

Proposition 2.19. Let X be an object in an SW -category (resp. Waldhausen category) C. There
is a homomorphism ξX : Aut(X) // K1(C), which is natural in C in the sense that for any exact
(resp. weakly W -exact) functor F : C //D, ξF (X) = π1F ◦ ξX .
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Proof. We begin by recalling how this statement works for Waldhausen categories (see [Wal85,
p.341]). Given an automorphism f :X //X there is a corresponding 1-simplex in wC. Composing
with the map |wC| //Ω|wS•C| gives the desired map Aut(X) //K1C. This construction is visibly
natural for exact functors F : C //D, and uses only that automorphisms include into π1|wC| and
that we have |wC| // |wS′•C|. As the same is true for the S′•-construction, an analogous statement
holds.

For SW-categories C, the construction works the same way since the simplicial set wS̃•C is still
reduced and isomorphisms are a subcategory of weak equivalences.

For a weakly W-exact functor, F = (F!, F
!, Fw) from an SW-category C to a Waldhausen cate-

goryD we obtain a simplicial map wS̃•C //wS̃′•D. ForX ∈ C, there are maps Aut(X) // Aut(F (X)),
and |wC| // |wD| induced by Fw. It is then clear that the diagram

Aut(X) //

��

π1wC //

��

π1(Ω|wS̃•C|)

��

AutF (X) // π1wD // π1(Ω|wS̃′•D|)

commutes, which is the statement of the proposition.
�

An important tool in the general method discussed in Section 4 is a lemma designed to identify
when the K-theories of two SW -categories are equivalent. Although the conditions of this lemma
look complicated, in the geometric cases we are interested in they are generally very natural. For
a detailed example of an application, see Example 2.23.

Lemma 2.20. Let U :A // C be an exact functor of SW -categories. Suppose that the following
extra conditions hold:

(1) U is surjective on objects. Moreover, one of the following holds:
(a) For all cofibrations f :X ↪→ X ′, if U(A′) = X ′ then there exists a cofibration A ↪→ A′

whose image under U is f .
(b) For all cofibrations f :X ↪→ X ′, if U(A) = X then there exists a cofibration A ↪→ A′

whose image under U is f .

(2) If for f, g:A // B in S̃nA, there exists a weak equivalence h:X // U(A) in S̃nC such

that U(f)h = U(g)h, then there exists a weak equivalence h̃ : Z // A in S̃nA such that h

factors through U(h̃) and such that fh̃ = gh̃.
(3) Given any diagram

U(A)� _

U(f)
��

X� _

��

∼oo ∼ // U(B)� _

U(g)
��

U(A′) X ′
∼oo ∼ // U(B′)

there exists a diagram

A� _

f
��

Coo //� _

��

B� _

g
��

A′ C ′oo // B′
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in A making the diagram

X

∼

uu

∼
{{

∼
##

� _

��

U(A)� _

U(f)

��

U(C)oo //
� _

��

U(B)� _

U(g)

��

X ′

∼

uu

∼
||

∼
""

U(A′) U(C ′)oo // U(B′)

commute.

Then K(U) is an equivalence.

Proof. It suffices to prove that, for n ≥ 0, the map wS̃n(A) //wS̃n(C) induces a weak equivalence
on geometric realizations. By Quillen’s Theorem A [Qui73, Theorem A], it suffices to show that

for any α ∈ wS̃n(C), the undercategory α/wS̃n(A) is cofiltering. Recall that α is represented by
a diagram

X1
� � // · · · �

�
// Xn .

For this, we first observe that by condition (1) the category α/wS̃n(A) is non-empty. We
use the second version of (1); the proof for the first works analogously. Since U is surjective on
cofibrations by (1), there exists a cofibration A1

// A2 that maps to X1
// X2. Now, since

U(A2) = X2, there exists a cofibration A2
// A3 whose image under U is X2

// X3. Working
inductively, we see that there is a sequence A1

// · · · // An of cofibrations whose image under

U is α. To show that α/wS̃n(A) is nonempty we take this sequence and the identity map from
α.

We now show that α/wS̃n(A) is co-filtering. We start by showing that any two parallel arrows

are equalized by a third. An object A ∈ α/wS̃n(A) is a diagram

X1
� � //

∼
��

· · · �
�

// Xn

∼
��

U(A1) � � // · · · �
�

// U(An)

.

Given two such objects A and B, and two morphisms f, g:A // B, we must show that there

exists a map h : Z //A in α/wS̃n(A) such that fh = gh. This is exactly guaranteed by condition
(2).

It remains to show that for every pair of objects in α/wS̃n(A), there exists a third object which
maps into each of them. This is guaranteed by condition (3). �

Our main example is the SW -category of varieties together with a choice of compactification;
we show that forgetting the choices induces an equivalence on K-theory.

Definition 2.21. Let k be a field. We define the SW -category Vcptdk as follows. Objects of Vcptdk

are open embeddings X
◦−→ X where X is a k-variety and X is a proper k-variety. Morphisms
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(X
◦−→ X) // (Y

◦−→ Y ) are commuting squares

X
◦ //

f

��

X

f
��

Y
◦ // Y

.

A morphism (X
◦−→ X) // (Y

◦−→ Y ) is a

cofibration: if f and f are closed embeddings,
complement: if f is an open embedding and f is a closed embedding, and
weak equivalence: if f is an isomorphism.

A sequence (Z
◦−→ Z) −→ (X

◦−→ X)
◦←− (U

◦−→ U) is a subtraction sequence if the left map is a

cofibration, the right map is a complement, Z ↪→ X
◦←− U is a subtraction sequence in Vk, and

the closed embedding U // X has set-theoretic image equal to the closure of X − Z in X.

Lemma 2.22. The category Vcptdk with cofibrations, complements, weak equivalences, and sub-
traction defined as above satisfies the axioms of an SW -category.

Proof. We verify the axioms in turn. Note that limits and colimits are computed pointwise in

Vcptdk . As a result, Axiom 1 is automatically satisfied. Axiom 2 follows immediately because
for any varieties X,Y , the embedding X // X

∐
Y is both open and closed. Axiom 3 is also

immediate, because isomorphisms in Vcptdk are pointwise, and any isomorphism of varieties is
simultaneously an open and closed embedding. Axiom 4 holds for the same reason as in Vk. We
now verify the remaining axioms in turn.

(5a) Let (Z
◦−→ Z) ↪→ (X

◦−→ X) be a cofibration. Then Z ↪→ X determines the open embedding
X − Z ↪→ X up to unique isomorphism, and similarly, Z ↪→ X determines the closed

embedding X − Z // X up to unique isomorphism.
(5b) Given a diagram

(W,W )

��

(Z,Z) � � // (X,X) (U,U)��oo

where the bottom row is a subtraction sequence, we have a subtraction sequence

W ×X Z � � // W W ×X Y��oo

in Vk. Moreover, because taking closure commutes with pullback, we have

W ×X U ∼= W ×X X − Z

= W ×X (X − Z)

where the outer (−) denotes closure in W . Further, because the pullback of the comple-
ment of a subvariety is the complement of its pullback, this is isomorphic to

= W −W ×X Z.

Therefore, (W ×X Z,W ×X Z) � � // (W,W ) (W ×X U,W ×X U)��oo is a subtraction
sequence.
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(5c) Given a Cartesian square

(W,W ) � � //
� _

��

(X,X)� _

��

(Y, Y ) � � // (Z,Z)

in which all maps are cofibrations, the unique map X−W ↪→ Z−Y is an open embedding.
Further, there is a unique map X−W //Z−Y and, because X //Z is a closed emebdding,
this extends uniquely to a closed embedding

X −W // Z − Y .

Axioms (6), (7), and (8) hold for the same reason they hold in Vk, namely [Sch05, Corollary 3.9]
and the remarks following. Axioms (9) and (10) follow immediately from the definition of weak

equivalences in Vcptdk along with Axioms 6 and 5a respectively. �

Example 2.23. Let C = Vk and let A = Vcptdk , with U being the forgetful functor. We claim that
the conditions of Lemma 2.20 hold. We check the conditions in turn:

(1) By Nagata [Nag62, Theorem 4.3]2 every k-variety X admits an open embedding X
◦−→ X

into a proper k-variety X. Thus U is surjective on objects. Moreover, for any cofibration

X ↪→ X ′, if X
′
is a compactification of X ′ then the closure of X in X

′
is a compactification

of X. Thus condition (a) holds.
(2) Weak equivalences in Vk are isomorphisms. In this case this condition says that given two

parallel maps f and g in S̃nVcptdk

(X1, X1) � � //

��

· · · �
�

// (Xn, Xn)

��

(Y1, Y 1) � � // · · · �
�

// (Yn, Y n)

.

such that f and g are equal when restricted to Xi, then there exists a weak equivalence

h in S̃nVcptdk

(X1, X1) � � //

��

· · · �
�

// (Xn, Xn)

��

(X1, X1) � � // · · · �
�

// (Xn, Xn)

.

such that fh = gh. But for this, we can take Xi to be the closure of Xi in Xi, and h to
be given by the canonical inclusions. Then, for each i, the ith components of fh and gh

agree on a dense set in Xi, and thus are equal. Therefore fh = gh.
(3) This property states that given a closed embedding of varieties X ↪→ X ′ together with

induced embeddings of two choices of compactification (X,X) ↪→ (X ′, X ′) and (X,X) ↪→
(X ′, X

′
), there exists a third choice of embeddings of compactifications that dominates

both of these. Note that if we can find a compactification of X ′ that dominates both X ′

and X ′ then we can take the closure of X in it to produce the desired embedding. Thus
all that we must show is that for any two choices of compactification, there is a third that

2For a modern treatment of Nagata’s Theorem, see [Con07], esp. Theorem 4.1.
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dominates them. For example, we can take the closure of X inside X ×X ′, as in [Del77,
§IV-10.5]).

3. Preliminaries on `-adic Cohomology

In this section we recall standard facts that we need about `-adic cohomology with its contin-
uous Galois action. We take [Del77] and [FK80] as standard references.

3.1. Continuous Galois Representations. Let k be a field, let ks be a separable closure, and
let ` 6= char(k) be a prime. The separable Galois group Gal(ks/k) is a profinite group, and
canonically carries the profinite topology

Gal(ks/k) = lim←−
L/k fin.,sep.

Gal(L/k)

where the finite groups Gal(L/k) are discrete, and the limit is in the category of topological
groups. Let R be a ring. Recall that for a (discrete) R-module A, a continuous representation
Gal(ks/k) // AutR(A) is one which factors through a finite subgroup Gal(ks/k) // Gal(L/k) // AutR(A)
for some separable L/k. Denote by Repcts(Gal(ks/k);R) the category of finitely generated con-
tinuous representations of Gal(ks/k) over R. Recall the following (cf. [Del77, Arcata II.4.4]).

Proposition 3.1. Let k be a field, and ks a separable closure. Let R be a ring. Denote by
Sh(Spec(k);R) the category of étale sheaves of (discrete) finitely generated R-modules on Spec(k).
The functor

Sh(Spec(k);R) // Repcts(Gal(ks/k);R)

F 7→ F |Spec(ks)

is an equivalence of categories.

We are especially interested in continuous `-adic representations. Recall the following refor-
mulation of the category of finitely generated Z`-modules (we follow the presentation of [FK80,
Ch I.12]). We consider projective diagrams

F : Z≥ // Mod(Z`),

where Z≥ is the category whose objects are integers and where there is a unique morphism
m //n whenever m ≥ n. The category of diagrams is an abelian category, and in particular has
images,kernels, cokernels, etc. defined pointwise. For r ∈ Z, denote by F [r] the shifted diagram,
i.e. with F [r]m := Fr+m.

Definition 3.2. A projective diagram F : Z≥ // Mod(Z`) satisfies:

(1) the Mittag–Leffler (ML) condition if for every n, there exists t ≥ n such that for all m ≥ t,
Image(Fm // Fn) = Image(Ft // Fn),

(2) the Mittag–Leffler–Artin–Rees (MLAR) condition if there exists some t ≥ 0 such that for
all r ≥ t,

Image(F [r] // F ) = Image(F [t] // F ).

Definition 3.3. Define ProMLAR(Z`) to be the procategory of MLAR projective systems in
which each Fn is torsion. Concretely, for two such systems F and G,

homProMLAR(Z`)(F,G) := lim−→
r≥0

hom(F [r], G).

The key purpose of Mittag–Leffler systems is that on such systems, the inverse limit is an exact
functor. The ML property is frequently satisfied, for instance, if all the modules Fn are finite
length, then F is an ML system.
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Definition 3.4. An `-adic system is a projective diagram F such that Fn = 0 for n < 0 and for
all n

(1) Fn is a module of finite length,
(2) `n+1Fn = 0, and
(3) the map Fn+1

// Fn induces an isomorphism

Fn+1/`
n+1Fn+1

∼= Fn.

An A–R `-adic system is any object of ProMLAR(Z`) which is isomorphic to an `-adic system.
Denote by AR(`) ⊂ ProMLAR(Z`) the full sub-category of A–R-`-adic systems.

We can now give the promised reformulation of the category Modf (Z`) of finitely generated
Z`-modules (cf. e.g. [FK80, Proposition I.12.4])

Proposition 3.5. The inverse limit

lim←− : AR(`) // Modf (Z`)

is an equivalence of exact categories.

We can use the proposition to give a similar reformulation of the category Repcts(Gal(ks/k); Z`).
Recall that Z` is a profinite ring, with the profinite (equivalently “adic” topology). Similarly,
for any finitely generated Z`-module A, the group AutZ`

(A) is canonically a topological group,
with the profinite topology. Mutatis mutandis, we obtain from Definitions 3.3 and 3.4 a notion
of `-adic systems of continuous Gal(ks/k) representations, and a category RepAR

cts (Gal(ks/k); `)
of such. Concretely, objects are given by projective systems

· · · // Fn // Fn−1
// · · ·

where for each n, Fn is a continuous representation of Gal(ks/k) in finitely generated Z/`nZ-
modules and the analogous conditions to those of Definition 3.4 hold. Analogously to Proposition
3.5, we have the following.

Proposition 3.6. The inverse limit

lim←− : RepAR
cts (Gal(ks/k); `) // Repcts(Gal(ks/k); Z`)

is an equivalence of exact categories.

3.2. `-adic Sheaves. We now extend the above to sheaves. We consider schemes X for which
` ∈ O(X) is invertible. Mutatis mutandis, we obtain from Definition 3.3 a definition of MLAR
projective systems of `-torsion étale sheaves, and the category ProMLAR(Sh(X),Z`) of such.

Definition 3.7. Let X be a scheme and ` a prime invertible on X. An `-adic sheaf on X is
projective system F : Z≥ // Sh(X; Z) of étale sheaves of abelian groups on X such that

(1) the sheaves Fn are constructible for all n,
(2) F (n) = 0 for n < 0, and
(3) the map Fn+1

// Fn induces isomorphisms

Fn+1 ⊗Z Z/`nZ ∼= Fn.

An A–R-`-adic sheaf is any object of ProMLAR(Sh(X),Z`) which is isomorphic to an `-adic sheaf.
We denote the category of A–R-`-adic sheaves by Sh(X; Z`).

The following is the key theorem we use for `-adic sheaves (cf. [FK80, Theorem I.12.15]).

Theorem 3.8 (Finiteness Theorem for `-adic Sheaves). Let f : X // S be a compactifiable
mapping, ` a prime invertible on X, and n 7→ Fn an A–R-`-adic sheaf on X. Then for all ν ≥ 0,
the system n 7→ Rνf!(Fn) is an A–R-`-adic sheaf on S.
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Using the smooth base change theorem (cf. e.g. [FK80, Theorem I.7.3]) and Propositions 3.1
and 3.5 above, we immediately deduce the following.

Corollary 3.9. Let k be a field, ks a separable closure, and let X be a variety of finite type over
k. Then for any A–R-`-adic sheaf F on X, a choice of compactification j : X ↪→ X and a choice
of functorial flasque resolution QX on Sh(X; Z`) determine an extension of the assignment

F 7→ H∗c (X/ks ;F )

to a functor

Sh(X; Z`) // Chb(Repcts(Gal(ks/k); Z`))

F 7→ ΓXQX(j!F )|ks

4. The general approach

In this section we discuss our general approach for constructing derived motivic measures. The
main difficulty in constructing a motivic measure directly is that there are choices involved in the
construction. For example, consider the measure

χet:X 7−→
∑

(−1)i[H i
c(X,Q`)] ∈ K0(Q`).

When taking `-adic cohomology with compact supports, it is necessary to choose a compactifi-
cation of X. While this choice does not affect the resulting cohomology, it does mean that the
construction is not functorial, and thus does not lift directly to K-theory.

The general method for getting around this problem is to use an auxillary category A, which
includes all necessary choices, and then construct the measure out of that. To resolve the alternt-
ing sum (which is clearly not a well-defined construct in the category of Q`-modules) we take
chain complexes. As discussed in Example 2.7, the inclusion of an exact category as the chain
complexes concentrated at 0 is an equivalence, with the “Euler characteristic” as the inverse.
Thus we produce a diagram

Vk
U←− A −→ Chb(Q`)

op ←− Q`-Modop.

Applying K-theory to this diagram produces a diagram in which all of the backwards-facing maps
are weak equivalences, and thus invertible (up to homotopy). Inverting these gives the desired
map

K(Vk) // K(Q`).

Remark 4.1. We had two notational questions in this paper pulling us in opposite directions for the
question of variance. Exact categories are by definition symmetric, but Waldhausen categories and
SW -categories are not. However, the categories of chain complexes of modules are biWaldhausen,
since they can be equipped with model category structures with quasiisomorphisms as weak
equivalences; thus we could choose either variance for the right-hand side of our functor. However,
on the left-hand side of the functor we had a difficulty.

On one hand, the standard terminology for exact functors is covariant on cofibrations and
admissible monics. Thus, since cohomology with compact supports is contravariant on closed
embeddings, to be consistent we had to declare the codomain to be Ch(R)op.

On the other hand, cohomology is by definition contravariant. Thus we could have instead
defined W -exact functors to be contravariant on cofibrations, instead of complement maps, and
thus mapped into Ch(R).

Given that we wanted the development of SW -categories to fit nicely into the current literature
on K-theory, we chose the first option. However, the second option is equally valid, and could have
been achieved relatively easily via a small change in the axioms of a W -exact functor. Neither
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choice, of course, changes the underlying reality: compactly supported cohomology is covariant
on open embeddings and contravariant on closed embeddings.

The main example that we use in this paper is A = Vcptdk , defined in Definition 2.21. The
functor U simply forgets the choice of compactification.

We can use Vcptdk to construct two different motivic measures:

Theorem 4.2.

(1) Let k be a field and ks a separable closure of k. Let ` 6= char(k) be a prime, and denote
by Chb(Repcts(Gal(ks/k); Z`)) the category of homologically bounded chain complexes of
continuous representations of Gal(ks/k) over Z` with finitely generated cohomology. There
exists a weakly W -exact functor

F :Vcptdk
// Chb(Repcts(Gal(ks/k); Z`))

op

such that for any object (X,X) of Vcptdk ,

H∗(F (X,X)) ∼= Gal(ks/k) 	 H∗et,c(X ×k ks; Z`).
Here, the Galois group acts naturally on ks, and the map induced by a (cofibration or
complement) map (X,X) // (Y, Y ) is the natural map

H∗et,c(X ×k ks; Z`)←→ H∗et,c(Y ×k ks; Z`)
(with the direction for the map chosen to have the correct variance depending on whether
(X,X) // (Y, Y ) was a cofibration or complement map).

(2) Let k be a subfield of C, and R a commutative ring. Let Chb(R) be the category of
homologically bounded chain complexes of R-modules with finitely generated cohomology.
There exists a weakly W -exact functor

G:Vcptdk
// Chb(R)op

such that for any object (X,X) of Vcptdk ,

H∗(G(X,X)) ∼= H∗c (X(C);R).

Proof. The proof of part (1) is long and technical, so we defer it to Section 5. We now prove part
(2).

In the interest of conciseness, for the rest of this proof instead of writing X(C) we abuse
notation and write X. We also suppress the coefficients on cohomology, which are always be
taken to be R.

We define the functor G as follows. Let

G(X,X) = C∗sing(X,X −X),

be the chain complex of singular cochains with coefficients in R on the topological space X

which are zero outside X. The functor G!: co(Vcptdk ) // Chb(R)op sends a closed embedding

(Z,Z) //(X,X) to the usual pullback on cohomology. Note that this is well-defined, since (as Z is

closed in X) Z−Z ⊆ X−X. The functor G!: comp(Vcptdk ) // Chb(R)op sends an open embedding

(U,U) // (X,X) to the map which extends a cochain on U to a cochain on X by defining it

to be 0 on all cochains which are not contained in U . The functor Gw: w(Vcptdk ) // Chb(R)op

is defined similarly, with the analogous observation that a weak equivalence (X,X) // (X,X)

produces a map of pairs (X,X −X) // (X,X −X).
If G is a weakly W -exact functor then it satisfies the conditions in the statement of the theorem,

so it remains to prove that it is actually weakly W -exact. Conditions (1)-(4) hold by definition.
We check the others in turn.
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(5) By the definitions of the maps, it suffices to check that the diagram commutes on the com-
pactification components. Thus the statement we need to check is that for any cartesian
diagram

X
j

//

i
��

Z

i′
��

Y
j′

// W

where all maps are closed embeddings, (i′)! ◦ j′! = j! ◦ i!. In this case, both of the

compositions around the diagram take a cochain α:C∗(Y , Y − Y ) // R to the cochain
α′:C∗(Z,Z − Z) // R which takes a chain σ: ∆n // Z to 0 if σ doesn’t factor through
X, and to α(i ◦ σ) if it does. Thus the diagram commutes.

(6) Suppose that we are given a subtraction sequence

(Z,Z) � � i // (X,X) (U,U)��j
oo .

Note that we have the following commutative diagram of pairs of spaces:

(U,U − U)

��

(X,X − U) (X,X −X)oo (X − U,X −X)oo

(Z,Z − Z)

OOhh

Applying C∗ gives an exact sequence of cochain complexes across the middle, as it is the
sequence associated to the triple (X,X−U,X−X). By excision, all vertical isomorphisms
become quasi-isomorphisms on cochains. Thus we have the diagram

C∗(U,U − U)

i!

((

∼
��

C∗(X,X − U) //

OO

C∗(X,X −X) //

j! ))

C∗(X − U,X −X)

∼
��

(Z,Z − Z)

where the dotted arrow is the result of applying C∗, and the curved arrow is the quasi-
inverse that extends chains by 0. Both of the solid arrow triangles commute. Thus the
sequence

G(U,U)
i! // G(X,X)

j!
// G(Z,Z)

is weakly equivalent to an exact sequence, and thus is weakly exact.
(7) The condition for complement maps holds because Gw and G! are given by the same

functor. The condition for cofibrations holds because in both cases we extend a cochain
on X ′ to a cochain on Y which is zero outside of X ′; the only difference is that applying
the maps in one direction extends the cochain to Y ′ first, and then to Y , and in the other
direction it extends to X first and then to Y .

�
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Assuming Theorem 4.2(1), we can now prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. We prove the first part of the theorem, which follows from Theorem 4.2(1).
The second part of the theorem follows analogously from Theorem 4.2(2).

Consider the following diagram, where the two categories on the left are the SW -categories
of varieties and varieties with compactifications, and the two categories on the right are the
Waldhausen categories of continuous Galois representations and homologically finite and bounded
chain complexes thereof:

Repcts(Gal(ks/k); Z`)
op

·[0]
��

Vcptdk

U

��

F // Chb(Repcts(Gal(ks/k); Z`))
op

Vk
Here, the functor F is the functor constructed in Theorem 4.2(1). By Example 2.23 and Ex-
ample 2.7, after applying K-theory the two vertical functors become equivalences. Thus after
applying K-theory we get the following diagram of spectra:

K(Repcts(Gal(ks/k); Z`))

·[0]
��

K(Vcptdk )

K(U)

��

K(F )
// K(Chb(Repcts(Gal(ks/k); Z`)))

χ

TT

K(Vk)

h

TT

Here, χ is the inverse equivalence to ·[0] corresponding to the Euler characteristic and h is
the inverse equivalence to K(U). Both of these exist and are well-defined and unique up to a
contractible space of choices since all of the spectra are fibrant and cofibrant. We define

ζ := χ ◦K(F ) ◦ h.
A similar argument gives

E := χ ◦K(G) ◦ h
where now χ is the inverse to the weak equivalence K(Modfg

R) // K(Chb(R)). �

We refer to ζ as the derived `-adic zeta function and E as the derived R-Euler characteristic
Almkvist [Alm78] and Grayson [Gra79] imply the following corollary.

Corollary 4.3. Let k be a field, ks a separable closure, ` 6= char(k) a prime, and g ∈ Gal(ks/k)
any element. Then the assignment

X 7→ g 	 H∗et,c(X ×k ks; Z`)
lifts to a map of K-theory spectra

g∗ ◦ ζ : K(Vk) // K(Aut(Z`)).

Passing to K0 and taking the characteristic polynomial, we recover the “g-Zeta-function”

Zg : K0(Vk) // W (Z`)

[X] 7→ det(1− g∗t;H∗et,c(X ×k ks; Z`)).
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Taking k = Fq and g to be Frobenius, the “g-Zeta-function” is precisely the classical zeta
function (cf. e.g. the discussion on p. 171-174 of [FK80]); in this special case Corollary 4.3 is
exactly Corollary 1.2.

5. Proof of Theorem 4.2(1)

By Proposition 3.6, it suffices to construct a W -exact functor

(5.1) F :Vcptdk
// Chb(RepAR

cts (Gal(ks/k); `))op

such that the cohomology of the chain complex produces compactly supported `-adic cohomology
(with the Galois action induced by the action on ks)

Remark 5.2.

(1) We prove in this section that the functor which assigns compactly supported cochains,
defined via the Godement resolution, to the constant `-adic sheaf Z` takes subtraction
sequences of k-varieties to exact sequences of homologically bounded chain complexes of
sheaves on Spec(k).

(2) Our proof applies to the constant sheaf Z`, considered as a uniform system of sheaves on
all k-varieties. The key property we use is that for f : Y //X, f∗Z`,X ∼= Z`,Y . Our proof
does not apply to any collection of sheaves on k-varieties for which this identity ever fails.
In particular, we do not prove that there is a chain level realization of any cohomology
functor which is exact on the category of all sheaves.

(3) Our proof exploits a key difference between sheaf cohomology and singular cohomology of
topological spaces. Namely, given a disjoint decomposition of a space X = Z∪ (X−Z), it
is not the case that a singular chain is either contained in Z or in X−Z. By contrast, every
point of X is contained in one piece of the decomposition or the other. The Godement
resolution is defined purely in terms of the points of the space; this is what allows our
construction of compactly supported cochains to give an exact functor.

We fix once and for all the Godement resolution as our functorial flasque resolution for étale
sheaves over a variety X,

QX : F 7−→ G•F .

Notation 5.3. In this section, we make the following shorthand definitions.

AnX : denotes, for a k-variety X, the sheaf (Z/`nZ)X|ks .
SX : denotes the functor ΓXQX . Note that this functor lands in the category of chain

complexes, not in the derived category, which is why we avoid the standard notation RΓ.

Following the discussion in Section 2, we proceed by defining functors Fwn , F
n
! and F !

n taking

values in Chb(Repcts(Gal(ks/k); Z/`nZ)). We then show these fit together to define an A–R-`-
adic system of continuous Galois representations. As all of the Gal(ks/k)-actions follow from the
action on ks, we omit these from the notation, but the implication should be that all functors
record this data as well.

We begin by stating a technical lemma whose results we use throughout this section.

Lemma 5.4. Let X be a k-variety, let ι : U ↪→ X be the inclusion of an open subvariety. Let
j : X // Y be a proper map for which j ◦ ι is an embedding. Then for all sheaves F on U , there
is an induced isomorphism (of chain complexes of sheaves on Spec(k))

jΓ : SX(ι!F)
∼= // SY (j!ι!F).

This isomorphism is natural in the following two senses:
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(1) For any map of sheaves g:F // G on U , the diagram

SX(ι!F)
jΓ

//

SX ι!(g)

��

SY (j!ι!F)

SY j!ι!(g)

��

SX(ι!G)
jΓ

// SY (j!ι!G)

commutes.
(2) Given a commuting diagram

U
(j1)|U

//

ι1
��

V

ι2
��

X
j1

// Y
j2

// Z

where ιi is an open embedding and ji is a proper map such that ji ◦ ιi is an embedding for
i = 1, 2, and j1(U) ⊂ V , then for any sheaf F on U ,

(j2)Γ ◦ (j1)Γ = (j2 ◦ j1)Γ.

Proof. Since j is proper, j! = j∗, so it suffices to prove the statement of the lemma with j∗
substituted for j!.

Recall that the Godement resolution G•(F) of an étale sheaf F on a k-variety X is defined
inductively as follows (cf. e.g. [FK80, p. 129]). Fix algebraic closures Ω0: = k and Ωn: =

k(t1, . . . , tn) for all n. Let MX be the set of geometric points

x : Spec(Ωn) // X (n ∈ N)

Note that every point in X is associated to at least one geometric point in MX (this is what
allows us to define the Godement resolution with respect to this set of points of the étale site of
X). Define

G0
X(F): =

∏
x∈MX

x∗x
∗F

Equivalently, G0
X(F) = δX∗δ

∗
XF where δX :

∐
MX

x // X is the inclusion of points.

The functor G0
X(−) is exact (it is exact on stalks), and comes with a diagonal inclusion

F // G0
X(F)

given by mapping a section to its stalks. Define

G1
X(F): = G0

X(coker(F // G0
X(F))).

In general, define

Gi+1
X (F): = G0

X(coker(Gi−1
X (F) // GiX(F)))

Then the assignment F 7→ G•X(F) has the following properties:

(1) it defines an exact functor QX : Sh(X) // Chb(Sh(X)),
(2) the sheaves Gi(F) are flabby for all i,
(3) the map F // G•(F) is a resolution.

In particular, the functor SX : = ΓX ◦QX : Sh(X) // Chb(Sh(Spec(k))) is exact.
Now let ι : U //X be an open embedding, let F be a sheaf on U , and let j : X //Y be a proper

map such that jι : U // Y is an embedding. We claim that there is a canonical isomorphism (of
chain complexes in Sh(Y ))

j∗G•X(ι!F)
∼= // G•Y (j∗ι!F).
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Granting the claim, we obtain jΓ by applying ΓY to this isomorphism and pre-composing with
the natural isomorphism ΓX(−) ∼= ΓY ◦ j∗(−).

The key observation underpinning the claim is that any map of k-varieties f : W // Z deter-
mines a map of sets f : MW

//MZ (just by post-composing f with each map x : Spec(Ωn) //W ,
and thus a commuting diagram (of non-finite type varieties)∐

MW
w

δf
//

δW
��

∐
MZ

z

δZ
��

W
f

// Z

If f is an open embedding, then by the definition of f!, we have a canonical “base change”
isomorphism

δ∗Zf!F ∼= δf∗δ
∗
WF .

Since f is an embedding, δf is an open embedding as well, and is also closed because the varieties
in question are discrete. Therefore δf ! = δf∗.

We are now ready to prove the claim by induction. For the base of the induction,

j∗G0
X(ι!F): = j∗δX∗δ

∗
Xι!F

∼= j∗δX∗δι∗δ
∗
UF (because ι is an embedding)

∼= δY ∗δj∗δι∗δ
∗
UF (by the functoriality of (−)∗)

Finally, because j ◦ ι is an embedding, by inspection of the definitions, we see that there is a
canonical isomorphism

δj∗δι∗δ
∗
UF ∼= δ∗Y j∗ι!F

(i.e. y∗y
∗j∗ι!F = y∗y

∗F for y ∈MU ⊂MY and y∗y
∗j∗ι!F = 0 otherwise.) We conclude that

j∗G0
X(ι!F) ∼= δY ∗δ

∗
Y j∗ι!F =:G0

Y (j∗ι!F).

This settles the base of the induction. But, for the induction step, note that in the argument
above, we have

j∗G0
X(ι!F) ∼= j∗δX∗δι∗δ

∗
UF ∼= j∗ι!δU∗δ

∗
UF

where the second isomorphism follows by inspection from the definition of ι!. This implies that

G1
X(ι!F): = coker(ι!F // ι!δU∗δ

∗
UF) ∼= ι!G1

U (F).

In particular, G1
X(ι!F) is again an extension by 0 of a sheaf on U . Because j is proper, j∗ preserves

colimits, so

j∗G1
X(ι!F) ∼= G1

Y (j∗ι!F)

and we can now apply the same argument as above to conclude that there exists a canonical
isomorphism

j∗GiX(ι!F) ∼= GiY (j∗ι!F)

for all i, thus proving the claim.
It remains to show the two naturality properties. The naturality with respect to morphisms

of sheaves g : F // G follows immediately from the functoriality of the constructions above.
For the second naturality property, a direct inspection of the construction above shows that

the naturality property follows from the properness of the maps ji and the universal properties
of cokernels and products (using that δX∗δ

∗
XF =

∏
x∈MX

Fx). Concretely, the naturality follows

by writing out the explicit definitions of the maps and sheaves on Spec(k) and then repeatedly
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using that if I
ι // J

j
// K are maps of sets such that ι : I // J and jι : I // K are injective,

then for any sheaf of abelian groups A on the discrete space I, there are canonical isomorphisms∏
I

Ai ∼=
∏
I

Ai ×
∏
J−I

0 ∼=
∏
J

(ι!A)j

∼=
∏
I

Ai ×
∏
K−I

0 ∼=
∏
K

((jι)!A)k.

�

We turn our attention to constructing the functor

F !
n : comp(Vcptdk )op // Chb(Repcts(Gal(ks/k); Z/`nZ))op.

On objects, it is given by

(5.5) F !
n(γX : X

◦−→ X) := SXγX!A
n
X .

By definition, a complement map j in Vcptdk consists of a commuting square

U
j

//

γU
��

X

γX
��

U
j

// X

where j is an open embedding and j is a closed embedding. Given such, we obtain a map

F !
nj:SUγU !A

n
U

// SXγX!A
n
X

via the following composition:

SUγU !A
n
U

jΓ // SXj!γU !A
n
U

∼= // SXγX!j!A
n
U

∼= // SXγX!j!j
∗AnX

SXγX!(ε)
// SXγX!A

n
X .

The first map exists by Lemma 5.4. For the last morphism, ε is the counit of the adjunction
j! a j∗ (which exists because j is an open embedding). The two isomorphisms come from the
canonical identification j!γU ! = γX!j! and AnU

∼= j∗AnX .

Lemma 5.6. The assignment j 7→ F !
nj is functorial on comp(Vcptdk )op.

Proof. The definition immediately implies that identities are mapped to identities, so we only
need to check that composition is respected. For this, note that a composable pair of cofibrations

in Vcptdk consists of a commuting diagram

U
j1

//

γU
��

X
j2

//

γX
��

Y

γY
��

U
j1 // X

j2 // Y



26 JONATHAN CAMPBELL, JESSE WOLFSON, AND INNA ZAKHAREVICH

in which the maps ji are open embeddings and the maps ji are closed embeddings. The above
diagram yields the following commutative diagram:

SUγU !A
n
U

j1Γ
��

(j2j1)Γ

))

SX(j1!γU !A
n
U

j2Γ //

∼=
��

SY (j2j1)!γU !A
n
U

∼= //

∼=
��

SY (j2j1)!γU !(j2j1)∗AnY

∼=
��

SXγX!j1!j
∗
1A

n
X

SXγX!ε1

��

j2Γ // SY j2!γX!j1!j
∗
1A

n
X

SY j2!γX!ε1
��

SY γY !(j2j1)!(j2j1)∗AnY

SY γY !(ε21)

��

SXγX!A
n
X

j2Γ // SY j2!γX!A
n
X

∼=
��

SY γY !j2!j
∗
2A

n
Y

SY γY !ε2
// SY γY !A

n
Y

The left-hand side of the diagram commutes by the naturality properties of j2Γ (by Lemma 5.4);
the right-hand side of the diagram commutes because it commutes in Sh(Y ×k ks) before applying
SY . The composition around the bottom is the map F !

n(j2)◦F !
n(j1), and the composition around

the top is the map F !
n(j2 ◦ j1). Since the diagram commutes, F !

n is functorial. �

We now define the functor

Fn! : co(Vcptdk ) // Chb(Repcts(Gal(ks/k); Z/`nZ))op.

On objects, it is equal to F !
n (see (5.5)). By definition, a cofibration i in Vcptdk consists of a

commuting square

Z
i //

γZ
��

X

γX
��

Z
i // X

where the horizontal maps are closed embeddings. Given such, we obtain a map

Fn! i : SXγX!A
n
X

// SZγZ!A
n
Z

using the composition of morphisms

SXγX!A
n
X

SXγX!(η)
// SXγX!i∗i

∗AnX
∼= // SXγX!i!A

n
Z

∼= // SX i!γZ!A
n
Z

i
−1
Γ // SZγZ!A

n
Z .

Here, η is the unit of the adjunction i∗ a i∗, and the last two isomorphisms come from the
canonical identifications i! = i∗ (because i is proper), γX!i! = i!γZ! (by functoriality of !) and
AnZ
∼= i∗AnX . The last map is the inverse of the isomorphism of Lemma 5.4.

Lemma 5.7. The functor Fn! is well-defined.

Proof. The definition immediately implies that identities are mapped to identities, so we only

need to check that composition is respected. A composable pair of complement maps in Vcptdk
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consists of a commuting diagram

W
i2 //

γW
��

Z
i1 //

γZ
��

X

γX
��

W
i2 // Z

i1 // X

in which the horizontal maps are closed embeddings. Given this diagram, we have the following
diagram:

SXγX!A
n
X

SXγX!η1

��

SXγX!η12

++

SXγX!i1∗i
∗
1A

n
X

SXγX!i1∗η2
//

∼=
��

SXγX!(i1i2)∗(i1i2)∗AnX
∼= //

∼=
��

SXγX!(i1i2)!A
n
W

∼=

��

SX i1!γZ!A
n
Z

i1Γ

��

SX i1!γZ!η2
// SX i1!γZ!i2∗i

∗
2A

n
Z

∼=
��

SZγZ!A
n
Z

SZγZ!η2

��

SX i1!γZ!i2!A
n
W

i
−1
1Γ

��

∼= // SX(i1i2)!γW !A
n
W

(i1i2)−1
Γ

��

SZγZ!i2∗i
∗
2A

n
Z

∼= // SZi2!γW !A
n
W

i
−1
2Γ // SWγW !A

n
W

Here, ηa is the unit of the adjunction i∗a a (ia)∗ for a = 1, 2 and η12 is the unit for the adjuction
(i1i2)∗ a (i1i2)∗. The composition around the top is Fn! (i1i2); the composition around the bottom
is Fn! (i2)◦Fn! (i1). The diagram commutes by the naturality of η1,η2,η12 and by Lemma 5.4. Thus
Fn! is a functor. �

It now remains to construct Fwn . We define it using the same formula as for F !
n. Note that as

the proof of Lemma 5.7 only used the results of Lemma 5.4, the proof works analogously to show
that Fwn is well-defined.

Lemma 5.8. The collection of functors {(F !
n, F

n
! , F

w
n )} defines a W -exact functor

F : Vcptdk
// Chb(RepAR

cts (Gal(ks/k); `))op.

Proof. The maps F !
n+1

//F !
n+1⊗ZZ/`nZ //F !

n and similarly for Fn! and Fwn endow the collections

{F !
n}, {Fn! } and {Fwn } with the structure of projective systems. From the construction, for each

fixed X, {F !
n(X)}, {Fn! (X)} and {Fwn } are obtained by applying SXγX! to A–R-`-adic systems

of sheaves on X×k ks. Therefore, by [FK80, Theorem I.12.15], {F !
n(X)}, {Fn! (X)} and {Fwn (X)}

are A–R-`-adic complexes of sheaves on ks, i.e. A–R-`-adic complexes of continuous Gal(ks/k)-
modules. So, we indeed have functors

F ! : comp(Vcptdk )op // (Chb(RepAR
cts (Gal(ks/k); `))op)op

F! : co(Vcptdk ) // Chb(RepAR
cts (Gal(ks/k); `))op

Fw : w(Vcptdk ) // Chb(RepAR
cts (Gal(ks/k); `))op.

It remains to verify that F is W -exact. Axioms (1)-(4) hold by definition, so we check the
remainder in turn.
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First, consider Axiom (5). It suffices to prove it for Fn. This is a large but straightforward
diagram chase using the definitions of F !

n and Fn! . For those who would like to see the details,
we present them in Appendix B.

Now we check Axiom (6): that F takes subtraction sequences to exact sequences. Again, it

suffices to show it for Fn. Given a subtraction sequence in Vcptdk

(Z,Z) � � j
// (X,X) (U,U)��ioo

we obtain a sequence in Sh(X ×k ks)
0 // j!A

n
U

// AnX // i∗AnZ // 0

and we see that this is exact by direct inspection (i.e. by verifying exactness on stalks). Applying
SXγX!, we obtain an exact sequence in Chb(RepAR

cts (Gal(ks/k); `)) (using that the Godement
resolution is an exact functorial flabby resolution, cf. e.g. [FK80, p. 129]). Consider the
following diagram:

SUγU !A
n
U

jΓ
��

F !
n(j)

''

SXγX!j!A
n
U

// SXγX!A
n
X

//

Fn
! (i)

''

SXγX!i
∗AnZ

i
−1
Γ

��

SZγZ!A
n
Z

The exact sequence across the middle is isomorphic to the diagonal sequence, which is thus also
exact. Therefore Fn takes subtraction sequences to exact sequences, as desired.

It remains to verify Axiom (7); as before, it suffices to prove that it holds for Fn. The proof of
(7) for complement maps is identical to the proof of Lemma 5.7, since it is simply checking that
the transformation defined in Lemma 5.4 respects composition. The proof of (7) for cofibrations
is identical to the proof of (5), since any such commutative diagram is automatically a pullback
square, and Fwn is defined identically to Fn! . �

6. Nontrivial Classes in the Higher K-Theory of Varieties

Let FinSet be the category of finite sets. Consider the map S //K(Vk) induced by the exact
functor FinSet // Vk given by A 7→

∐
A Spec(k). This induces a homomorphism

K∗(S) // K∗(Vk).
The stable homotopy groups of spheres have a rich higher structure, but it is not clear that this
structure is not annihilated when passing to varieties. In this section we explore this map in the
cases where k is a subfield of C and when k is a finite field. In the case when k is a subfield of
C we show that the image of this map is nontrivial even above the 0-th homotopy group; in the
case when k is finite we show that K∗(S) is a direct summand of K∗(Vk) and prove that this map
is not surjective when ∗ = 1. Moreover, we are able to extend this result to local and global fields
which contain a place of cardinality congruent to 3 mod 4, as well as to subfields of R.

Our analysis considers a particularly simple family of maps involving permutations of varieties.
In order to construct these maps, it is useful to have a model of the sphere spectrum S within
SW-categories. The following lemmas furnish this.

Lemma 6.1. The category of finite sets FinSet is an SW-category where cofibrations are monomor-
phisms and subtraction sequences are diagrams [m] ↪→ [n]←↩ [n−m] in which the images of the
two maps are disjoint.
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Proposition 6.2. Let KW denote the K-theory of a Waldhausen category, and KSW the K-theory
of an SW-category. Let FinSet be the category of finite sets, considered as an SW -category, and
let FinSet+ be the category of finite pointed sets, considered as a Waldhausen category (both with
injections as the cofibrations). Then

KW (FinSet+) ' KSW (FinSet)

Proof. We prove this by exhibiting an isomorphism of simplicial sets

S•FinSet+
∼= S̃•FinSet.

Given a cofibration sequence [m]+ ↪→ [n]+ // [n−m]+, we can define a corresponding subtraction
sequence [m] ↪→ [n] ←↩ [n −m]. The map [m] ↪→ [n] is exactly the same as [m]+ ↪→ [n]+, but
missing the basepoint. The map [n −m] ↪→ [n] is obtained by observing that [n]+ // [n −m]+
is a monomorphism off of +. The [n−m] ↪→ [n] is then the inverse of this monomorphism. �

We now define the family of maps we use.

Definition 6.3. For each X ∈ Vk, define

σX : FinSet // Vk
to be the exact functor of SW -categories FinSet // Vk induced by

[n] 7−→ X q · · · qX︸ ︷︷ ︸
n times

.

Thus we get a family of maps
π∗σX :π∗(S) // K∗(Vk).

6.1. Subfields of C. We appeal to some facts from Adams [Ada66] and Quillen’s letter to Milnor
[Qui76]. Recall that there is a homomorphism from the stable homotopy of the stable orthogonal
group to the stable homotopy groups of spheres: J : πs∗O // π∗S. This is constructed as follows.
Since every element of O(n) defines a map Rn // Rn, by one point compactification, it defines
a point map Sn // Sn. Thus, there is a map of spaces O(n) // Map∗(S

n, Sn) ∼= ΩnSn. Taking
homotopy groups and stabilizing yields the J-homomorphism. The following is due to Adams

Theorem 6.4. [Ada66, Thm. 1.5] The map J :π4s−1O // π4s−1S exhibits π4s−1O as a direct
summand of π4s−1S and the image is

J(π4s−1(O)) ∼= Cds ds = denominator

(
Bs
4s

)
where Bs is the sth Bernoulli number, and Cds denotes the cyclic group of order ds.

There is also a map pi : πiS // Ki(Z) induced by the inclusion BΣ∞ // BGL(Z). For our
purposes, it is more useful to regard it as the map induced by the exact functor of Waldhausen
categories

P : FinSet+
// Modfg(Z) [n]+ 7→ Z⊕ · · · ⊕ Z

Quillen’s letter to Milnor gives the following.

Theorem 6.5. [Qui76] The composite map

π4s−1(O)
J // π4s−1(S)

p4s−1
// K4s−1(Z)

is injective.

We can use these results to identify nontrivial elements in K2s−1(Vk).

Theorem 6.6. Let k be a subfield of C. There are infinitely many non-trivial homotopy groups
of K∗(Vk). In particular, for all s > 0, K4s−1(Vk) is non-trivial.
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Proof. Fix s > 0, and let X ∈ Vk be a projective variety such that its compactly-generated Euler
characteristic χc(X) is relatively prime to ds. (Note that this is always possible, as for example
χc(CP

n) = n for all n.) Let C∗c (X) be the compactly-supported singular chains on the complex
points of X. Consider the diagram

Vk Vcptdk
Uoo // Chb(Z) Modfg(Z)

·[0]
oo

FinSet

σX

ff

σ(X,X)

OO

// FinSet+
P // Modfg(Z)

⊗C∗c (X)

hh

where the left half of the diagram consists of SW -categories and the right half consists of Wald-
hausen categories; both dashed arrows are W -exact functors. The bottom dashed arrow takes a
finite set S to S+, and takes cofibrations to themselves; a complement map is taken to the map
which takes each element in the image of the complement map to its preimage, and each element
not in the image to the basepoint. Applying π0 and noting that the two solid arrows across the
top become isomorphisms, we recover the motivic measure constructed in Theorem 4.2(2). Upon
applying K-theory we get a diagram

K4s−1(Vk) K4s−1(Vcptdk )
∼=oo // K4s−1(Chb(Z))

χ
// K4s−1(Z)

π4s−1(O)
J // π4s−1S

σX

hh

∼= //

σ(X,X)

OO

π4s−1S
p4s−1

// K4s−1(Z)

ii

·χc(X)

OO

By Theorems 6.4 and 6.5, the composition across the bottom π4s−1(O) //K4s−1(Z) is injective;
since χc(X) is relatively prime to ds, the composition π4s−1(O) // K4s−1(Z) across the bottom
and to the upper-right is also injective. Since this factors through K4s−1(Vk) the theorem follows.

�

Remark 6.7. In the above proof we are not really using anything interesting about X; in particular,
we could take X to be Spec k and the proof still goes through. This makes sense, as the image of
J sees nontrivial elements of K-theory which can be described in terms of permutations, which
are automorphisms of 0-dimensional varieties.

However, we believe that the more complex proof is useful due to the possibility of generaliza-
tion. It should be possible to use the same construction in the proof to show that there are more
interesting nontrivial elements in higher homotopy groups of K(Vk) by exploiting the structure of
the cohomology of C∗c (X). For example, if the measure can be enriched to land in the K-theory
of mixed Hodge structures then by selecting an X with a nontrivial mixed Hodge structure the
above proof would detect an element which is not in the image of the map K∗(§) // K∗(V)
induced by the inclusion of 0-dimensional varieties.

6.2. Finite Fields. When k is finite the functor

Vk // FinSet
X 7−→ X(k)

gives a splitting of the K-theory spectrum K(Vk) as K(Vk) ' S ∨ K̃(Vk) (and thus of each
homotopy group). A priori it may be the case that all higher homotopy groups of K(Vk) are in
the image of the homotopy groups of S.

We show that this is not the case by using ζ to identify a nonzero element in K̃1(Vk) for k = Fq

(with q ≡ 3 mod 4). For such k, we construct a surjective homomorphism h2:K1(Vk) // Z/2

such that the composition π1(S) //K1(Vk)
h2 // Z/2 is trivial. The map h2 is defined as follows.
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Let ? be the operation defined in [Mil71, §8]. Grayson [Gra79] has shown that given a pair of
commuting automorphisms f, g on a Q`-vector space V , the map

(f, g) 7→ f−1 ? g,

induces a homomorphism s`:K1(Aut(Q`)) //K2(Q`). Moore’s Theorem (see [Mil71, Appendix],
or [Wei05, Theorem 57] and its proof) shows that the mod-` Hilbert symbol gives a split surjection
(−,−)` : K2(Q`) � µ(Q`) onto the roots of unity in Q` with kernel an uncountable uniquely
divisible abelian group U2(Q`). For q odd, we then define h2 to be the composition

K1(VFq)
π1(Frob∗◦ζ)

// K1(Aut(Q2))
s2 // K2(Q2)

(−,−)2
// Z/2,

where Frob∗ is the map defined in Corollary 4.3 for g = Frob and (−,−)2 is the 2-adic Hilbert
symbol.

Fix a variety X, and consider the following diagram:

(6.8) K1(Vcptdk )
h2 //

K1(U)

��

Z/2

π1S
π1σX //

π1σ(X,X)
22

K1(Vk)

If X is proper then σ(X,X) exists, and the diagram commutes with the dotted arrow added.

Theorem 6.9. When k = Fq with q ≡ 3 (mod 4) the map h2 defined above detects a nontrivial

class in K̃1(Vk). In particular, the spectrum K̃(Vk) is not an Eilenberg–MacLane spectrum.

Proof. Let η ∈ π1(S) be the nonzero element. We show that h2 is nonzero but contains (π∗σSpec k)(η)

in its kernel. This shows that K̃1(Vk) 6= 0 and therefore that K̃(Vk) is not an Eilenberg–MacLane
spectrum.

Let τ : {1, 2} // {1, 2} be the transposition of two points.
Tracing through the definition, h2(π1σSpec k(τ)) = (−1, 1)2 = 1 in Z/2.
Now let X = P1, and consider the automorphism α:x 7→ 1/x acting on P1. For k = Fq, we

can write α 	 (H∗et,c(P1|Fq
; Q2), F robP

1

q ) as a direct sum

(1 	 Q2(0))⊕ (−1 	 Q2(−1)).

The map s2 sends everything with the identity acting on it to the unit, so the image of this under

h2 is (−1, q)2, which, when q ≡ 3 mod 4, is −1. This gives the desired element in K̃1. �

6.3. Elements in K1 for other fields. Suppose that k is a global or local fields with a place
of cardinality equivalent to 3 mod 4, or k ⊂ R. The results from the previous section hold with
almost identical proofs, with slightly different definitions.

For k a global or local field with a place of cardinality equivalent to 3 mod 4, we pick a
Frobenius element φ for this place, and define h2 to be the composition

K1(Vk)
π1(φ∗◦ζ)

// K1(Aut(Q2))
σ2 // K2(Q2)

(−,−)2
// Z/2,

Similarly for k ⊂ R, we define h2 to be the composition

K1(Vk)
π1((·)∗◦ζ)

// K1(Aut(Q2))
σ2 // K2(Q2)

(−,−)2
// Z/2,

where · denotes complex conjugation and (·)∗ is the map defined in Corollary 4.3 for g = ·.

Theorem 6.10. For k a global or local field with a place of cardinality equivalent to 3 mod 4, or

for k ⊂ R, K̃(Vk) is not an Eilenberg–MacLane spectrum.
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Remark 6.11. We expect that K̃(Vk) is not an Eilenberg–MacLane spectrum in general, however
the particular class that we use h2 to detect requires the assumptions on k. Using the methods
of this paper, it should be possible to find a different example that gives a nontrivial class for all
odd q, all global and local fields with a place of odd cardinality, and all non-algebraically closed
subfields of C. For even q, one would need the p-adic (rather than the `-adic) analogue of the
derived zeta function to employ the present approach.

Proof of Theorem 6.10. This proof works the same way as the proof of Theorem 6.9.
If k is a global or local field with a place of cardinality 3 mod 4, then, for any Frobenius element

φ for this place, the action of φ on the étale cohomology of P1 factors through the action on the
special fiber. In particular, the above computation similarly shows that the map h2 takes the

class α 	 P1 to −1, and thus gives the desired element in K̃1(Vk).
For k ⊂ R, we can consider the same X. We write π1α 	 (H∗et,c(X|C; Q2), ·) as a direct sum

(1 	 (Q2, 1))⊕ (−1 	 (Q2,−1)).

The map s2 sends everything with the identity acting on it to the unit, so the image of this under

h2 is (−1,−1)2 = −1. This gives the desired element in K̃1. �

Theorem 1.4 is a direct consequence of Theorems 6.9 and 6.10.

Remark 6.12. It should be possible to do a more powerful analysis on K1 by exploiting the rich
structure of automorphism groups of varieties and applying Proposition 2.19.

7. Questions for Future Work

Indecomposable Elements in K(Vk). Theorems 6.9 and 6.10 establish that there are non-
trivial classes in the higher K-theory of varieties that do not come from the sphere spectrum.
However, one could ask a more refined question: since K(Vk) is an E∞-ring spectrum, its homo-
topy groups K∗(Vk) form a ring. We therefore have a ready supply of elements of K∗(Vk): those
in the image of the multiplication

β:K0(Vk)⊗ π∗(S)
1⊗σSpec k−−−−−−→ K0(Vk)⊗K∗(Vk) // K∗(Vk).

We call such elements decomposable. A priori, it may be the case that this map is surjective, and
that therefore all higher homotopy groups of K(Vk) are decomposable. The example constructed
in Section 6 is decomposable, since this can just be written as η · [P1].

Question 7.1. Indecomposable elements. Do there exist indecomposable elements in K∗(Vk)?

As we explain in Remark 7.2 below, we do not expect the map h2 to be able to distinguish
decomposable from non-decomposable elements. Instead, we hope that by expanding the collec-
tion of derived motivic measures and employing Proposition 2.19 judiciously, a suitable invariant
could be found.

Remark 7.2. We have shown that the derived `-adic zeta function factors through integral com-
pactly supported motivic cohomology. This suggests that the invariant h2 : K1(Vk) // K2(Q2)
in Section 6 factors through the composition

K1(Aut(Z)) // K2(Z) // K2(Q) // K2(Q2).

We highlight three implications of this expected factoring:

(1) It underscores the importance of the 2-adic Hilbert symbol, as opposed to the `-adic
Hilbert symbol for ` 6= 2. Indeed, by Tate’s computation of K2(Q) (see e.g. [Mil71,
Theorem 11.6]), the map K2(Z) // K2(Q) is split injective, with the splitting given by
the 2-adic Hilbert symbol. In particular, the Hilbert symbols (−,−)` for ` 6= 2 identically
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vanish on K2(Z). Further, no classes outside the summand µ(Q2) ⊂ K2(Q2) are in the
image of K2(Z).

(2) It suggests that we should not expect the map h2 to be able to distinguish indecomposable

elements in K̃1(Vk). Indeed, Milnor’s computation [Mil71, Corollary 10.2] shows that the
map K1(Aut(Z)) // K2(Z) is surjective and the nontrivial class in K2(Z) = Z/2Z is
mapped onto by decomposable classes.

(3) It suggests that the higher invariants of the derived zeta functions should be in some sense
independent of `. It would be fruitful to understand this more precisely!

Other Derived Motivic Measures. The recipe in this paper should work to construct derived
motivic measures for other cohomological invariants. We took `-adic cohomology as the basis for
our derived zeta function. One would like analogous maps for the other Weil cohomology theories.

Problem 7.3. Derived p-adic zeta functions. Let k be a perfect field of characteristic p with
Witt vectors W (k). Construct a map of K-theory spectra

K(Vk) // K(Aut(W (k)))

which lifts the function sending a variety X to H∗rig,c(X/W (k)) to its compactly supported rigid

cohomology (with constant coefficients) acted on by the Frobenius automorphism.

We expect that the construction should parallel that in Section 4, with the category Vcptd
replaced by a category of varieties X equipped with a choice of compactification X ↪→ X, and a
choice of map of admissible triples (X,Y,Y) //(X,Y ,Y) extending X ↪→ X as in [Ber86, Section
3], and with rigid cohomology replacing the `-adic constructions. Note that, Tsuzuki’s finiteness
theorem [Tsu03, Theorem 5.1.1] plays an essential role in defining the W -exact functor.

Problem 7.4. Derived Serre Polynomial. Let k be a field of characteristic 0. Construct a map
of K-theory spectra taking values in the K-theory of integral mixed Hodge structures

K(Vk) // K(MHSZ)

which lifts the function sending a variety X to H∗c (X(C); Z) with its canonical mixed Hodge
structure.

We expect that the construction should parallel that in Section 4, with the category Vcptd
replaced by a category of varieties X equipped with a choice of compactification X ↪→ X̃, and a

choice of cubical hyperresolution X̃• // X̃ of the pair (X̃, X̃ −X) (see e.g. [PS08, Chapter 5]),
and with logarithmic differential forms in lieu of the `-adic constructions.

The framework of motives suggests that the derived `-adic zeta function, along with the two
maps described above, should factor through a derived motivic measure built from motivic coho-
mology.

Problem 7.5. Derived Gillet–Soulé. Let k be a field admitting resolution of singularities. Con-
struct a map of K-theory spectra taking values in the K-theory of integral Chow motives over
k

K(Vk) // K(Mk)

which lifts the motivic measure of Gillet–Soulé [GS96] sending a k-variety X to its compactly
supported integral Chow motive. Prove that the derived `-adic zeta function and the derived
Serre polynomial factor through this map.

We expect that the replacement of Vcptd should be the same as for the Serre polynomial.
For general fields k, one might expect to have a motivic measure based on integral Voevodsky

motives through which all of the above maps factor.
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Moving further away from cohomological invariants, one of the richest motivic measures is
Kapranov’s motivic zeta function

K0(Vk) // W (K0(Vk))

[X] 7→
∞∑
i=0

[Symi(X)]ti.

Question 7.6. Derived motivic zeta function. Does Kapranov’s motivic zeta function lift to
a map of K-theory spectra?

For motivation, recall that Weil’s realization that the classical zeta function of a variety over a
finite field can be obtained cohomologically provided a robust strategy for proving that the zeta
function of such varieties is rational. Similarly, a lift of Kapranov’s motivic zeta function to a
map of K-theory spectra might be expected to go a long way toward proving that the motivic
zeta function is rational, in an appropriate sense.

Recall, however, that purely as a map out of K0(VC), Kapranov’s motivic zeta function is not
rational. This was proven by Larsen and Lunts [LL03], and the key tool in their proof was a
motivic measure

µLL : K0(VC) // Z[SBC]

taking values in the free abelian group on stable birational equivalences classes of complex vari-
eties. Note that, since P1 ∼SB ∗, Larsen and Lunts’ measure takes the class of the affine line to
0. In particular, it still may be the case that Kapranov’s motivic zeta is rational after inverting
the affine line, or performing some other modification of K0(Vk) (cf. [LL04]). This underpins the
“in the appropriate sense” above.

Question 7.7. Derived Larsen–Lunts. Does the Larsen–Lunts measure lift to a map of K-theory
spectra? Using the formalism of assemblers, the third-named author was able to accomplish this
[Zak17b]. However, it would be desirable to have a direct construction of this motivic measure.
For this, one would need an SW-category which naturally encodes stable birational equivalence
of projective varieties.

Appendix A. Functorial factorization of weak cofibrations

In this appendix, we define and verify in the cases of interest the technical condition “functorial
factorization of weak cofibrations” defined in [BM08]. The condition is meant to be a weakening
of Waldhausen’s cylinder functors [Wal85, Sect. 1.6].

Definition A.1. Let [1] denote the ordered set 0 < 1 considered as a category, and let [2] the
ordered set 0 < 1 < 2, also considered as a category. A functorial factorization is a functor
ϕ: Fun([1], C) // Fun([2], C) such that (d1)∗ ◦ ϕ = 1Fun([1],C). Here, d1: [1] // [2] takes 0 to 0 and
1 to 2.

Definition A.2. Let C be a Waldhausen category. A weak equivalence between morphisms
f :A // B and g:C // D is a diagram

A
f

//

∼
��

B

∼
��

C
g

// D

A weak cofibration is a map A // B that admits a zig-zig of weak equivalences to a cofibration
A′ ↪→ B′.
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Definition A.3. [BM08, Definition 2.2] Let C be a Waldhausen category. Write Funwc([1], C) for
the full subcategory of Fun([1], C) consisting of the functors whose image is a weak cofibration.
Let Func,w([2], C) be the full subcategory of Fun([2], C) consisting of those diagrams which are a
cofibration followed by a weak equivalence. A functorial factorization of weak cofibrations is a
functor ϕ: Funwc([1], C) // Func,w([2], C) such that (f1)∗ ◦ ϕ = 1Funwc([1],C).

Let C be a cofibrantly generated model category. We thus have a functorial factorization

Fun([1], C) // Func,w([2], C),
given by the functorial factorization of morphisms into a cofibration followed by an acyclic fibra-
tion. If a Waldhausen category arises as a subcategory of a model category, we can often leverage
this factorization to obtain functorial factorizations inside the Waldhausen category. The main
problem is that objects in a Waldhausen category need to be small (in some sense), whereas
functorial factorizations often produce very large objects. However, in Example 2.7 we showed
that being homologically small is sufficient; when weak equivalences are quasi-isomorphisms this
is therefore sufficient.

To produce the functorial factorizations that we need we appeal to a theorem of Hovey [Hov01]
which produces model category structures on categories of chain complexes.

Theorem A.4. [Hov01, Theorem 2.2] Let A be a Grothendieck abelian category. Then Ch(A)
admits a cofibrantly generated model structure where

• weak equivalences are quasi-isomorphisms
• cofibrations are injections
• fibrations have the right lifting property with respect to trivial cofibrations

This theorem is also proved in [Bek00, Proposition 3.13] with a convenient characterization of
Grothendieck abelian categories [Bek00, Proposition 3.10].

Theorem A.5. The category Chb(Repcts(Gk); `) satisfies FFWC.

Proof. As noted in Proposition 3.1, the category Repctscts(Gk; `) is equivalent to the category
Shet(Spec(k); `). This is the category of sheaves of an abelian group on a ringed site, as such, it is a
Grothendieck category. By Hovey’s Theorem, Ch(Repctscts(Gk; `) admits a cofibrantly generated
structure. Thus, all morphisms in Ch(Repctscts(Gk; `) have functorial factorizations. Given a weak
cofibration A //B factor it as A ↪→ C //B; it remains to show that C ∈ Chb(Repctscts(Gk; `)).
However, since C // B is a weak equivalence and B is homologically bounded, C must be as
well. �

Theorem A.6. The category Chb(R) satisfies FFWC.

Proof. The category ModR is a Grothendieck abelian category. As such, Ch(ModR) has a cofi-
brantly generated injective model structure. Thus, the category of all maps X //Y in Ch(ModR)
has a functorial factorization of the required form. Restricting to Chb(ModR), as in the previous
proof, we see that Chb(ModR) does as well. �

Appendix B. The proof of Axiom (5)

Axiom (5) states the following. Suppose that we are given a cartesian diagram

(X,X) � �
i //

� _

f
��

(Z,Z)� _

g

��

(Y, Y ) � �
j

// (W,W ).
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We must show that

Fn(X,X)
F !
n(i)

// Fn(Z,Z)

Fn(Y, Y )
F !
n(j)

//

F !
n(f)

OO

Fn(W,W )

Fn
! (g)

OO

commutes. Note that since f and g are both closed, we know that on sheaves f∗ = f! and g∗ = g!.
First, note that the following diagram (in Chb(RepAR

cts (Gal(ks/k)); `)) commutes.

SY γY !A
n
Y

SY γY !η

��

jΓ // SWγW !j!A
n
Y

SW γW !j!η

��

∼= // SWγW !j!j
∗AnW

SW γW !j!ηj∗

��

SY γY !f∗f
∗AnY

jΓ //

∼=

��

SWγW !j!f∗f
∗AnY

∼=

��

∼= // SWγW !j!f∗f
∗j∗AnW

∼=
��

SWγW !j!f∗i
∗g∗AnW

∼=
��

SY γY !f!A
n
X

jΓ //

f
−1
Γ

��

∗

SWγW !j!f!A
n
X

∼=
��

∼= // SWγW !j!f!i
∗AnZ

∼=
��

SWγW !g!i!A
n
X

g−1
Γ

��

∼= // SWγW !g!i!i
∗AnZ

SW γW !g!ε
//

g−1
Γ

��

SWγW !g!A
n
Z

g−1
Γ

��

SXγX!A
n
X

iΓ // SZγZ!i!A
n
X

∼= // SZγZ!i!i
∗AnZ

SZγZ!ε
// SZγZ!A

n
Z

The pentagon marked ∗ commutes because of the naturality of (−)Γ. The composition around
the bottom is F !

n(i) ◦ Fn! (f).
Now consider the following diagram in Sh(W ×k ks):

j!j
∗AnW

= //

j!ηj∗

��

j!j
∗AnW

ε //

j!j
∗η

��

AnW

η

��

j!f∗f
∗j∗AnW

∼=
��

?

j!j
∗g∗g

∗AnW
ε //

∼=

��

g∗g
∗AnW

∼=

��

j!f∗i
∗g∗AnW

j!αg∗

66

∼=
��

j!f!i
∗AnZ

∼=
��

j!α // j!j
∗g!A

n
Z

ε // g!A
n
Z

∼=
��

g!i!i
∗AnZ

g!ε //

†

g!A
n
Z

Here, it is important to keep in mind that since the original diagram of varieties is Cartesian (and
since f∗ = f! and g∗ = g!), there is a natural isomorphism

α: f!i
∗ ∼= f∗i

∗ =⇒ j∗g∗ ∼= j∗g!.
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The only two parts of this diagram which do not commute by definition are the two pentagons
marked ? and †. To see that these commute, it suffices to check that the two diagrams

f∗f
∗j∗AnW

∼=
��

j∗AnW
η(f)j∗

oo

j∗η(g)

��

f∗i
∗g∗AnW

αg∗
// j∗g∗g

∗AnW

and

j!f!i
∗AnZ

j!α //

∼=
��

j!j
∗g!A

n
Z

ε(j)

��

g!i!i
∗AnZ

ε(i)
// g!A

n
Z

commute. That these commute follows directly from the definition of the base change homo-
morphism (see e.g. [FK80, p. 60]). More conceptually, base change (and proper push forward)
preserves the base change isomorphism.

After applying SWγW ! to this diagram, it fits into the rectangle in the upper-right in the above

diagram; then the composition around the top is Fn! (g) ◦ F !
n(j). This proves Axiom (5).
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