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ABSTRACT

In models of trading with heterogeneous beliefs following Harrison-Kreps, short sell-
ing is prohibited and agents face constant marginal costs-of-carry. The resale option
guarantees that prices exceed buy-and-hold prices and the difference is identified as
a bubble. We propose a model where risk-neutral agents face asymmetric increas-
ing marginal costs on long and short positions. Here, agents also value an option to
delay, and a Hamilton-Jacobi-Bellman equation quantifies the influence of costs on
prices. An unexpected decrease in shorting costs may deflate a bubble, linking finan-
cial innovations that facilitated shorting of mortgage-backed securities to the collapse
of prices.

As KINDLEBERGER AND ALIBER (2005) OBSERVE, many classical economists ar-
gued that the purchase of securities for resale rather than for investment
income is what drives asset price bubbles. To explain such speculation in a dy-
namic equilibrium model, Harrison and Kreps (1978) study risk-neutral agents
with fluctuating heterogeneous beliefs. In their model, long positions can be fi-
nanced at a constant interest rate and short selling is ruled out. The buyer
of an asset thus acquires both a stream of future dividends and an option
to resell, which together with fluctuating beliefs guarantees that speculators
are willing to pay more for an asset than they would pay if they were forced
to hold the asset to maturity, that is, what risk-neutral investors are will-
ing to pay to be able to speculate. Scheinkman and Xiong (2003) consider
a model in which heterogeneous beliefs result from agents’ overconfidence
on different public signals and added trading costs. They show that these
models generate a correlation between trading volume and overpricing,! a

*Marcel Nutz is with Columbia University. Jose Scheinkman is with Columbia University,
Princeton University, and NBER. We are indebted to Pete Kyle and Xunyu Zhou for fruitful
discussions and to two referees, an Associate Editor, and Stefan Nagel, the Editor, for comments
and suggestions that greatly improved the paper. An earlier version was entitled “Supply and
Shorting in Speculative Markets.” Nutz’s research is supported by an Alfred P. Sloan Fellowship
and NSF Grants DMS-1512900 and DMS-1812661. We have read The Journal of Finance disclosure
policy and have no conflicts of interest to disclose.

Correspondence: Jose Scheinkman, Department of Economics, Columbia University, 420 West
118th Street, New York, NY 10027; e-mail: js3317@columbia.edu.

1 See also Berestycki et al. (2019).

DOI: 10.1111/0£1.12871

© 2020 the American Finance Association

995


mailto:js3317@columbia.edu

996 The Journal of Finance®

characteristic associated with several major bubble episodes over the last three
centuries.?

Another stylized fact is that bubble implosions often follow increases in sup-
ply. For instance, the implosion of the dotcom bubble was preceded by a massive
increase in the float of Internet shares.? Similarly, while the South Sea bubble
lasted less than one year, the amount of outstanding shares of the South Sea
Company (SSC) more than doubled during that period and many other joint-
stock companies were established.* However, the assumption of risk-neutral in-
vestors facing constant marginal costs in the earlier literature on disagreement
and bubbles implies that supply is irrelevant for pricing.? Hong, Scheinkman,
and Xiong (2006) analyze a two-period model with risk-averse investors in
which unexpected increases in supply can deflate bubbles. The economics are
straightforward—when agents are risk averse, their marginal valuation for a
risky asset decreases with the amount they hold.

Short selling an asset can be seen as a source of additional supply. The col-
lapse of prices for mortgage-backed securities (MBSs) in 2007 was preceded by
a series of financial innovations that facilitated shorting: the creation of stan-
dardized credit default swaps (CDS) for MBS in 2005, the introduction of traded
indexes for subprime mortgage-backed credit derivatives in 2006, and the use of
CDS to construct synthetic collateralized debt obligations (CDOs) that allowed
Wall Street to satisfy the global demand for U.S. AAA mortgage bonds with-
out going through the relatively slow process of originating new mortgages.®
The amounts shorted were substantial. Cordell, Huang, and Williams (2011)
estimate that synthetic CDOs, issued mostly after 2005H2, more than doubled
the amount of BBB Home Equity Bonds placed in CDOs between 1998 and
2007.7 It is unlikely that this supply would have been absorbed without any
price impact. In any case, starting in the second half of 2007, prices appear to
exhibit substantial discounts relative to fundamentals.®

2 See, for example, Carlos, Neal, and Wandschneider (2006) on the South Sea bubble, Hong and
Stein (2007) on the Roaring Twenties, Ofek and Richardson (2003) and Cochrane (2002) on the
Internet bubble, and Xiong and Yu (2011) on the Chinese warrant bubble.

3 See Ofek and Richardson (2003).

4 The directors of the SSC understood that bubble companies competed with the SSC’s conversion
scheme and could deflate its own bubble. Harris (1994) documents that the Bubble Act of 1720,
which banned joint-stock companies unless if authorized by Royal Charter, was issued at the behest
of the company to limit the competition for capital.

5 Except for the assumption of positive net supply, questions concerning the supply of the asset
subject to bubbles are also ignored in the rational bubbles literature (Santos and Woodford (1997)).

6 See Scheinkman (2014) for a summary or Lewis (2015) for an excellent detailed account.

7BBB tranches of Home Equity Bonds were an important part of the CDO machine that trans-
formed subprime mortgages into AAA-rated bonds.

8 Beltran, Cordell, and Thomas (2017) provide a methodology to calculate the intrinsic value of
a CDO and apply it to market data (see their Appendix A). They attribute the low prices to the
increase in information asymmetry between buyers and sellers who followed the downgrades of
MBS securities by rating agencies in summer 2007. Analyzing the pricing of index CDS postcrisis,
Stanton and Wallace (2011) suggest that the pricing reflected a limited supply of insurance of
asset-backed securities, presumably relative to demand.
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In this paper, we propose a finite-horizon continuous-time model with n types
of investors who trade a single asset and aim to maximize expected cumula-
tive net gains from trade. These investors are risk neutral, face a constant
interest rate, and have fluctuating heterogeneous beliefs about the evolution
of a Markov state that determines the asset’s payoff. In contrast to previous
literature, shorting is allowed. Investors pay costs that are proportional to the
square of their positions but the constant of proportionality that defines the cost
of going short may be larger than the corresponding constant for going long.
This asymmetry between the costs of going short and long is a well-known
feature of financial markets (see, e.g., D’Avolio (2002)). The assumptions in the
earlier literature correspond to infinite costs for short positions and constant
marginal costs for long positions. The costs in our model, by contrast, can be
thought of as capturing the monetary costs of holding a position (in particular,
increasing costs of capital), as well as risks that we do not explicitly model,
such as market-wide liquidity shocks that would force agents to liquidate their
positions at unfavorable prices or the recall risk faced by short sellers.

Since costs are quadratic, an agent’s marginal valuation of an asset will de-
crease as their position increases, as would be the case for risk-averse agents.
We therefore view our setup as an alternative to a much less tractable model
with risk aversion, with many of the same forces present.® In particular, we
show that an increase in the aggregate supply of the asset decreases equilib-
rium prices. Importantly, using the two cost coefficients as separate parameters
allows us to impose asymmetric costs and study the impact of changes in rel-
ative costs on prices. By contrast, traditional models with risk aversion treat
longs and shorts symmetrically or rule out shorts by imposing portfolio con-
straints.

We model the asset’s equilibrium price as a function of time and the current
state. Types that expect prices to increase on average over the next instant
choose to go long, with the size of their position depending on the difference
between their expected price changes and the marginal cost of carrying long
positions. The other types choose to go short, by amounts that depend on their
expected price changes and the cost of carrying short positions. Equilibrium
requires that the longs absorb the shorts plus an exogenous supply. Theorem 1
below shows that there exists a unique equilibrium price function and that it
can be characterized by a partial differential equation (PDE). This equation is
of Hamilton-Jacobi-Bellman type with a novel form. In particular, the optimiza-
tion runs over the ways to divide agents into two groups at any time and state;
at the optimum, these are optimists (holding long positions in equilibrium) and
pessimists (holding shorts). A noteworthy feature is that supply enters math-
ematically as a running cost (i.e., like intermediate consumption in Merton’s
problem). Theorem 1 also quantifies how these costs influence the effect of

9 One difference from models of disagreement that use risk aversion to avoid no-shorting con-
straints is that the presence of holding costs allows an equilibrium to exist even when agents
disagree about perceived arbitrage opportunities.
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optimists’ and pessimists’ views. For instance, as shorting gets more expensive
relative to being long, optimists have a larger effect on the asset’s price.

We show that an increase in supply decreases the equilibrium price and
that a decrease (increase) in the cost of long (short) positions increases the
price. We also show that as the cost of long positions converges to zero,
the equilibrium price function converges to a function that does not depend
on the cost of holding a short position or the amount supplied. In contrast,
as the cost of shorting becomes prohibitive, the equilibrium price converges to
a function that depends on the cost of carrying long positions as well as the
exogenous supply of the asset.

To discuss the impact of speculation, we first characterize the static equilib-
rium price, that is, the price that prevails when retrading is not allowed and
agents are forced to use buy-and-hold strategies. Previous literature identifies
the difference between the dynamic price (where retrading is possible) and the
static price as the size of a bubble.

A buyer of the asset today may forecast that at some future date, she would
be able to sell at a price that would exceed her own valuation of the asset at that
date. Because of this resale option, she may be willing to pay more than what
she believes is the discounted value of the payoff of an asset. In the classical
models, this option leads equilibrium prices to exceed the price that would
prevail if retrading were ruled out. In addition, there is an option to delay, an
option that is not highlighted in the earlier literature on heterogeneous beliefs.
A speculator may plan to buy additional units of the asset in future states of
the world with a larger difference between the asset price and her marginal
valuation. However, if the marginal cost of holding a long position is constant,
this delay option has no impact in equilibrium. The intuition is that, since
agents are risk neutral and the marginal cost-of-carry is constant, a buyer of a
positive amount of the asset must be indifferent as to the amount of the asset
she buys. Hence, the delay option has no value for this buyer and the dynamic
equilibrium price cannot be smaller than the static price. We prove that this
comparison holds even if shorting is allowed (see Proposition 7). We further
show that in the presence of increasing marginal costs of going long, the option
to delay may outweigh the resale option and cause the dynamic price to be
lower than the static one, even when shorting is prohibited (see Example 1).
Thus, the assumption in the earlier literature that delivers the result that
speculative prices exceed static prices is not the prohibition of short sales, but
rather the assumption of constant marginal costs for carrying long positions.

When shorting is allowed, the short party has corresponding options. An
agent who acquires a short position today may forecast that at some future
date, he would be able to repurchase the asset at a price below his own valuation
at that date. This option to resell a short position, that is, the option to cover
shorts, decreases the minimum amount that pessimists would be willing to
receive for shorting the asset, and thus put downward pressure on prices. The
short party also enjoys an option to delay. In Example 2, we show that when
the cost of holding a short position is close to the cost of holding a long position,
the equilibrium price may be less than the static price. We argue that this
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may occur because the long party values the resale option less than the short
party values the repurchase option. Example 2 can also be used to illustrate
that an unexpected decrease in the cost of shorting can lead to a collapse of an
asset price bubble, thus rationalizing a link between the decrease in the cost of
shorting in the MBS market from 2005 to 2007 and the collapse of CDO prices.

The equilibrium in our model is not first-best except in the limit case of homo-
geneous beliefs. We show that the equilibrium price and allocations obtain as
solutions to the problem of a time-consistent planner who subsidizes and taxes
the cost-of-carry to maximize the initial price. We use this planner’s problem
to explain the structure of the PDE that characterizes equilibrium prices.

Our paper connects to a number of other contributions in the literature.
In a pioneering study that accounts for short-sales and risk aversion in a
continuous-time setting of heterogeneous beliefs, Dumas, Kurshev, and Uppal
(2009) consider a “complete markets” model with two classes of agents, one of
which is overconfident about a public signal. Overconfident investors’ reaction
to the signal introduces a risk factor—sentiment risk—which carries a risk
premium and causes stock prices to be excessively volatile. In their model, the
delay option must be valuable and supply affects equilibrium prices, but these
effects are not explicitly analyzed. Instead, Dumas, Kurshev, and Uppal (2009)
focus on identifying the trading strategy that would allow a rational investor to
take advantage of excessive stock price volatility and sentiment fluctuations.
The authors show that rational investors choose a conservative portfolio that
is sensitive to their predictions about future realizations of sentiment. A re-
lated paper by David (2008) assumes the existence of distinct processes for
output and dividends of a stock in zero net supply. The drifts of these pro-
cesses are given by an unobserved, finite-state, continuous-time Markov chain.
Agents agree to disagree on the probabilities of transitions across states and use
the zero-supply stock to speculate against each other—creating an additional
source of risk. David (2008) focuses on the relationship between the equity pre-
mium and the time variation in agents’ consumption. In these papers, the costs
of going short and long are symmetric (the short party receives the equilibrium
price and must pay the dividends that accumulate until the position is closed),
and thus, one cannot examine the effect of changes in shorting costs, the main
object of interest in our paper.

The literature on asset pricing with search frictions that follows Duffie,
Garleanu, and Pedersen (2005) assumes that agents have fluctuating private
benefits from holding an asset and that opportunities for trading are randomly
distributed. Strict concavity of private benefits implies that the supply of the
asset affects equilibrium prices. Our assumption of quadratic costs of holding
a position could be similarly motivated as private benefits (but in our case,
the differences come from heterogeneity of beliefs rather than benefits). Fluc-
tuating private benefits also generate options to resell and to delay trading,
options that are discussed in Lagos and Rocheteau (2006), Feldhiitter (2012),
and Hugonnier, Lester, and Weill (2018). These authors point out that, depend-
ing on the curvature of private benefits, an increase in trading opportunities
may increase or decrease the price of the asset. In particular, the comparison
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between prices that would prevail when retrading opportunities are more or
less frequent is ambiguous. However, short selling or changes in shorting costs
are not emphasized in this literature.

Duffie, Garleanu, and Pedersen (2002)!° highlight the mechanics of short-
ing that prevails in markets in which shorts pay a fee to borrow assets from
longs.'! Agents disagree on the expected final payoff of an asset but there is no
fluctuation of beliefs and hence no speculative behavior—all purchases are buy-
and-hold. The dynamics arise because pessimists must meet longs and borrow
their shares and these meetings occur with an intensity of A per unit of time.
In the model of Duffie, Garleanu, and Pedersen (2002), an increase in supply
decreases equilibrium prices (see Proposition 5). There are no explicit costs of
shorting, but an increase in the intensity of meetings, A, has an ambiguous
effect on prices—it decreases prices because the supply of shorts increases but
it increases prices because longs are more likely to lend their shares.

Cvitani¢ and Malamud (2011) also study heterogeneous agents in an equi-
librium model, with a focus on survival and market impact. They find that
long-run price and portfolio impact are equivalent to the survival of an agent
under different measures. Again, there is no fluctuation of beliefs—agents are
optimists or pessimists because they over- or underestimate the (constant) drift
parameter of dividends. By contrast, in our model, the notion of optimism is
endogenous and state-dependent.

Fostel and Geanakoplos (2012) study a collateral equilibrium'? in a model
of financial innovation with heterogeneous beliefs. The introduction of a CDS
leads to a decrease in the price of the underlying security, with the decrease
being more dramatic if tranching of the security is already present. The intro-
duction of this new derivative affects equilibrium prices, but in the model of
Fostel and Geanakoplos (2012), the initial beneficiaries of the new contract are
the optimists, who in the language of Fostel and Geanakoplos (2012) benefit
from “tranching cash.” By contrast, in our model, the initial beneficiaries of
this cost decrease are the pessimists. Lewis (2015) documents that starting in
early 2005, a small group of traders who had pessimistic views on the housing
market lobbied International Swaps and Derivatives Association (ISDA)—the
trade organization for over-the-counter market participants—to create stan-
dardized CDS contracts on mortgage-market securities that facilitated short-
ing.’®*Oehmke and Zawadowski (2016) also examine the effect of introducing
a CDS in a model in which traders differ on their horizons and beliefs. They
postulate a per-unit cost for trading bonds that affects long and short positions
equally, while CDS trading is free. Thus, the introduction of a CDS decreases
the cost for both longs and shorts. It leads former bond buyers to switch to
protection selling and former bond shorters to buy protection. Moreover long-
horizon traders now hold a long position on the bond while buying protection.

10 See also Vayanos and Weill (2008).

1 Synthetic CDOs allowed pessimists to short CDOs without borrowing the underlying
securities.

12 See Geanakoplos and Zame (1997).

13 See, for example, Lewis (2015, pp. 48-50) on the creation of standardized CDS.
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The net effect may be an increase in bond prices. Although the mechanism
described in Oehmke and Zawadowski (2016) may have played a role in the
CDO market, the sharp drop in the prices of CDO tranches suggests that it
was overwhelmed by the decrease in the cost of shorting.

The paper is organized as follows. Section I describes the problem and char-
acterizes the equilibrium as the solution to a Hamilton-Jacobi-Bellman equa-
tion. Section II presents comparative statics and limiting results. Section III
discusses the role of speculation, while Section IV addresses the planner’s
problem. Section V concludes. The appendices provide the proofs and several
extensions of our model.

I. Equilibrium Price

In this section, we describe our formal setup and show that it leads to a
unique equilibrium. The equilibrium price is described by a PDE of Hamilton-
Jacobi-Bellman type.

A. Definition of the Equilibrium Price

We consider n > 1 types, each with a unit measure of agents, which trade a
security over a finite time interval [0, T']. For brevity, we often refer to a type
as an agent. The security has a single payoff f(X(T')) at horizon T, where [ :
R? — R is a bounded continuous function and X(w), w € €, is the d-dimensional
state process.!* While there is no ambiguity about f, agents agree to disagree
on the evolution of the state process. The views of agent i are represented by a
probability measure @; on © under which X follows the stochastic differential
equation (SDE)

dX(t) = b;i(t, X@)dt + 0,(t, X)) dW;(t), X(0) =x, (1
where W; is a Brownian motion of dimension d’ and the functions
b :10,T1 xR - RY, 0, :[0, T] x RY - R&>?

are deterministic. We assume throughout that (the components of) b; and o;
are in C}?, the set of bounded continuous functions g : [0, ] x R¢ — R whose
partial derivatives d;g, 0., and d.,,,g exist and are continuous and bounded on
[0, T) x R9.15 Moreover, we assume that o is uniformly parabolic, that is, its
eigenvalues are uniformly bounded away from zero.'® These conditions imply
that the SDE (1) has a unique (strong) solution.

14 More precisely, we take X to be the coordinate-mapping process on the space Q@ = C([0, T'], R%)
of continuous d-dimensional paths, equipped with the canonical filtration and sigma field. In what
follows all processes are assumed to be progressively measurable.

15 These conditions could be relaxed considerably. The present form avoids issues of techni-
cal nature.

16 Given a matrix A, we write A2 for the product AAT of A with its transpose A.



1002 The Journal of Finance®

Notice that we allow the differences in beliefs to affect both drift and diffusion
coefficients. As volatility is more amenable to statistical estimation than the
rate of return, the differences on drifts will typically be more significant. While
much of the literature on disagreement in asset markets focuses on constant
volatility processes and thus naturally assumes perfect agreement on volatili-
ties, ample evidence suggests that more complex processes involving stochastic
and time-varying volatility are necessary to understand empirical features of
asset prices. In this context, it is quite plausible, as Epstein and Ji (2013) ar-
gue, that agents also differ in their forecasts for volatility.!” It therefore seems
worthwhile to establish that our equilibrium is robust to such differences. We
note, however, that all of our results have interest, and all of our examples
remain valid, when agents disagree only about drifts.

Agents trade the security throughout the interval [0, T'] at a time ¢ price P(¢)
to be determined in equilibrium. The agents are subject to an instantaneous

cost-of-carry c that differs across long and short positions,'®
wy’ ¥=0,
c(y) = (2)
—y% y<0.

Here, the (inverse) cost coefficients .. are given constants that satisfy'®
0<o_ <ag,

which means that the cost of shorting is higher than the cost of going long.
An admissible portfolio for an agent is a bounded process ®.2° We write A for
the collection of these portfolios. The value ®(¢) indicates the number of units
the agent holds of the security at time ¢, where the number can be negative in

17 Note that while the past trajectory of o (¢, X(t)) can be inferred from the observation of X(¢),
agents may very well differ in their forecasts. This is obvious if ¢ depends on time ¢, but even if not,
the past observation of o (¢, X(¢)) will typically reveal little of the function o when Xis nonrecurrent
(e.g., of dimension larger than two). We will see in Theorem 1 below that the pricing of the security
does indeed depend on the future volatility over the entire time interval. This is quite natural
as the same would be true in standard risk-neutral pricing when f is a derivative on a stock,
for instance.

18 The assumption that costs are proportional to the square of the position does not accommodate
the fact that borrowers of the stock may pay a fee quoted as an annualized percentage of the value
of the loaned securities (the rebate rate). This assumption is made to simplify the exposition and
to allow us to concentrate on the effects of the size of a position on an agent’s marginal valuation.
In Appendix A, we discuss how our results can be generalized if an additional linear term is added
to the costs-of-carry. In addition, for tractability, we assume that costs are a function of the size
rather than the value of the position. See Appendix C for a discussion of costs as a function of
position values.

19Tn Appendix B, we examine how the model changes if costs of going long and/or short vary
across agents.

20 Boundedness could be replaced by suitable integrability conditions without affecting our re-
sults.
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the case of a short position. Given a (semimartingale) price process P, agent i
seeks to maximize the expected net payoff 2!

T T
Ei|: / () dP(t) — / c(d>(t))dt:|, 3)
0 0

where the first integral represents the profit or loss from trading and the
second integral is the cumulative cost-of-carry incurred. Criterion (3) can be
rationalized by assuming that agents can borrow and lend at an interest rate of
zero and that the cost function ¢ is measured in the unit of account but can also
be taken as a primitive utility function. We take interest rates to be exogenous
because most bubbles affect only part of the capital market and hence have
little effect on risk-free rates. The assumption that this exogenous rate equals
zero is made to simplify the notation. To account for this in our discussions, we
refer, for instance, to the case where c(y) =0 for y > 0 as a constant (rather
than zero) marginal cost of being long. An admissible portfolio ®; is optimal
for agents of type i if it maximizes (3) over all ® € A. We examine symmetric
equilibria in which agents of the same type choose the same portfolio.

As the final input of our model, we introduce a nonnegative supply function
s € C;*.22 The supply S(t) = s(¢, X(¢)) is owned by third parties that supply the
asset inelastically.?® Notice that this formalism allows the payoff f(X(T)) to
depend on S(T'). An equilibrium price is a process P satisfying P(T') = f(X(T))
a.s. under all ; for which there exist admissible portfolios ®;, i € {1,...,n},
such that ®; is optimal for agent i and the market-clearing condition

> @) =S®)

i=1

holds.?* We are interested in Markovian equilibria, that is, equilibrium prices
of the form P(¢) = v(¢, X(¢)) for a function v, which we refer to as an equilibrium
price function.

21To ensure that the expectation is well defined a priori, we set E;[Y]:= —oco whenever
E;[min{0, Y}] = —oco for any random variable Y. For the processes P that occur in our results
below, (3) will be finite for any ® € A.

22 Our results could be extended to a discontinuous supply shock as in Hong, Scheinkman, and
Xiong (2006) using backward induction.

23 Since the utility function in (3) is separable, the equilibrium price is invariant to endowments.
Hence, we could have alternatively assumed an arbitrary ownership structure for the endowment
across investor types—we opted for the simpler presentation.

24 More precisely, P is a continuous semimartingale, which ensures that the integrals of ®; are
well defined. This is automatically satisfied for the processes considered below.
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B. Existence and PDE for the Equilibrium Price

The following notation will be useful to state our first result. Given v € C;2,
we define the function £'v by

. 1
L, x) = dv(t, x) + b0, v(E, x) + 3 Tr 029, v(¢, x). 4)

Here, 9,v denotes the gradient vector, d,,v the Hessian matrix, and Trcrizaxxv
the trace of the matrix ofaxxu, that is, the sum of the entries on the diagonal.
One can interpret £'v(¢, x) as the change in v that agents of type i expect over
an infinitesimal time interval after ¢.

Before stating the general characterization of equilibria in Theorem 1 below,
we develop the heuristics in two particular cases. We suppose that X is one-
dimensional and the coefficients b; and o; are constant.

We first derive the first-order conditions for the portfolios. Suppose that we
are in an equilibrium with price P(¢) = v(¢, X(¢)). It6’s formula states that under

Q,
1
dP(t) = 0,v(t, x)dt + b;0,v(¢, x)dt + Qaizaxxv(t, x)dt + 0;0,v(t, x) dW;(t)

= Li(t, x)dt + 0;0,v(E, x) AW;(#).

Thus, the expected final payoff (3) for a portfolio ® is
T T T '
E, [/ ®(t)dP(t) — / c(®()) dt:| =E; [/ {O@) L, X)) — c(D(2))} dt:|,
0 0 0

where we have used the fact that the dW-integral has zero expectation. To
optimize this quantity, we simply maximize the integrand with respect to ®(¢)
at every ¢, that is, we set the marginal expected gain Liv(t, X(t)) — c/(®(t)) = 0.
The latter formula shows that the equilibrium holding premium for type i,
which equals the expected price change £'v since the interest rate is zero, is
generated by the holding cost. Using the quadratic form (2) of ¢, we derive the
optimal portfolio

®;(t) = ¢;(t, X(#)), where ¢;(t,x)= Oésign(giv(t’x))ﬁiv(t, x).

In particular, agents are myopic given the price function and its derivatives
(whereas the price itself incorporates agents’ expectations about the future of
the state process X).

Next, we derive an equation for v in two special cases. First, in the homoge-
neous case in which all agents have the same views: b; = b and 0; = . Thus,
Liv(t, x) = Lv(¢t, x) is also independent of i and the optimal positions are identi-
cal across agents; in particular, there is no short selling in equilibrium and the
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first-order condition becomes ®;(¢) = o, Lv(t, X(¢)). Market clearing requires
that o, Lv(t, X(¢)) = S()/n, or

s(t, x) _
no. o

1
o;v(t, x) + bo,v(t, x) + EJZBxxv(t,x) — 0.

This PDE is linear and supply enters as a running cost: the equilibrium price
must compensate for the cost-of-carry.

Second, consider n = 2 types of agents who disagree on the drift coefficient
wu; but agree on the volatility o := 01 = 03. To further simplify the derivation,
consider the case of zero net supply. Market clearing requires ¢, + ¢ = 0, and
thus one type must be long while the other must be short. Therefore, there are
two possibilities at each (¢, x):

LY, x) <0 and £L%v(t, x) > 0, thus o Lv(t, x) + o L?v(E, x) = 0, or
LYv(t, x) > 0 and £L%v(¢, x) < 0, thus o, Lu(t, x) + o L%v(E, x) = 0.
Recalling that o < oy, it follows that
if £1v(¢, x) < 0 and £2v(¢, x) > 0, then o, L v(t, x) + o L%v(t, x) < 0;
if £1v(¢, x) > 0 and £2v(¢, x) < 0, then oL v(t, x) + o L2v(E, x) < 0.
Hence, in all cases, it holds that
max {o_ L1, x) + o L2, x); o L10(E, x) + o LP0(t, 1)} = 0.

Next, divide the equation above by o« + «, and plug in the definitions of £!
and £2. After rearranging terms, one obtains

_ 1
du(t,x)+ max {( o b —F bj)i)xv(t, x)} + 20200t x) = 0.
G.)=1.2.210 | \a- + ay a_ +ay 2

Disagreement about drifts causes a nonlinearity in the first-order term.
Similarly, disagreement about volatilities would cause a nonlinearity in the
second-order term. The next theorem states that an analogous PDE uniquely
characterizes the equilibrium price function in our model. In general, the
maximization above over two possibilities is replaced by a maximization over
“groups” I C {1,...,n} of agents; we denote by |I| the number of agents in I
and by I = {1, ..., n} \ I the complementary group.

THEOREM 1: (i) There exists a unique equilibrium price function v € C;‘Z. The
corresponding optimal portfolios are unique and given by ®;(t) = ¢;(¢, X(t)),?®
where

i (t, %) = dsign(civ(e.n L V(E, ). (5)

25 Uniqueness is understood up to (@; x dt)-nullsets.
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(it) The function v € C,}’z can be characterized as the unique solution of the
PDE

1
o v(t,x) + sup <u1(t, x)0,v(¢, x) + 3 Tr E%(t, %), V(E, x) — Kk (2, x)) =0

Ic(1....n}

(6)
on [0, T') x R? with terminal condition v(T, x) = f(x), where the supremum is
taken over all subsets I C {1, ...,n} and the coefﬁcients are defined as

o_

uit, x) = —————— bit,x) + ——m—— bi(t, x), (7

! Tla_ + [I[oy ; o+ |Ic ;
24t x) = ol(t, x ol(t, x), (8)

! [Tl + |IC Z —+ |IC ZI

s(t, x)
tx) = —"—. 9
<16 = T+ s ©
Moreover, a maximizer for the supremum in (6) is given by

Lt x)={ie(l,...,n}: L'vE x) <O). (10)

In equilibrium, group I, of (10) corresponds to the more pessimistic agents
(those holding shorts), whereas I¢ corresponds to the optimists (those holding
long positions). Formulas (7) and (8) for x; and ¥; can be seen as a weighted
average of the agents’ drift and volatility coefficients. The weights imply that
when shorting is more expensive than being long (i.e., «_ is small relative to
o), optimists have a larger impact on the equilibrium price. In Section II,
we show that when a_ — 0 or o, — oo, the more pessimistic views are not
reflected in the equilibrium price at all. The running cost «; of (9) depends
linearly on the exogenous supply s, which is divided by a weighted sum of the
cost coefficients, the weights being the size of the set I and its complement I¢,
respectively. Since o < o, this cost increases with the number |I| of types in
group 1.

We will see in Section IV that the precise form of the PDE (6) with a supre-
mum can be explained through the problem of a planner with limited instru-
ments. To obtain an initial intuition, note that using (4), the left-hand side of
the PDE can be read as the difference between two quantities. The first is a
weighted average over the instantaneous holding premia. The second quantity
is related to the instantaneous marginal cost of carrying positions. The PDE
sets this difference to zero when the weights correspond to the particular group
I=1.

Mathematically, the PDE (6) is of Hamilton-Jacobi-Bellman type, which im-
plies that v can be represented as the value function of a stochastic optimal
control problem. This is useful for our derivation of comparative statics and
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limiting results presented below but has no obvious economic interpretation.
The control problem is presented in Appendix D.

REMARK 1: The equilibrium price v(t, x) is 0-homogeneous in («_, o, s), which
suggests that supply and costs are closely linked in our model. That is, if these
parameters are replaced by (ha_, la,, rs) for some A > 0, the price does not
change. This follows from Theorem 1 (ii) after observing that the coefficients i,
21, and kj are invariant under this substitution. In the special case s = 0, the
homogeneity implies that the price depends on (a_, a,) only via the ratio a. /o_.

II. Comparative Statics and Limiting Cases

In the first part of this section, we establish comparative statics with respect
to the supply and cost parameters. In the second part, we analyze the limit
a, — oo when there is no cost-of-carry for long positions, as well as the limit
a_ — 0 when short positions are ruled out.

A. Comparative Statics
We start with the dependence on supply.

PROPOSITION 1: The equilibrium price function v is monotone decreasing with
respect to the supply function s: prices decrease with an increase in supply.

Next, we turn to the cost parameters «_ and «.. The following proposition
shows that the equilibrium price is decreasing with respect to the cost-of-carry
for long positions and increasing with respect to the cost for short positions.

PROPOSITION 2: The equilibrium price function v is

(i) increasing with respect to o,
(i) decreasing with respect to a_, and
(iit) increasing with respect to the quotient o, /a_ if s = 0.

The proof uses our PDE characterization of the price and a comparison the-
orem from the theory of parabolic PDE.?6

The following is a partial extension of (iii) to the case of nonzero supply, which
is useful if «_ and «, are varied simultaneously.

REMARK 2: Let a_ < a, and a’ < o be two pairs of cost coefficients and let v
and v’ be the corresponding equilibrium price functions. If the coefficients satisfy
oap/a_ <o /o’ and a_ <o, thenv <V

26 Comparison theorems are useful to show that two functions satisfy an inequality on their
domain if they are known to satisfy an (in)equality on the boundary. In our context, we may think
of the equilibrium price function as satisfying the PDE F(v, 8) = 0, where 8 is a parameter. If v,
and ve are price functions corresponding to different parameters g1 and B2, we know that they are
equal at the boundary ¢ = T since they satisfy the same terminal condition f. If vy is a subsolution
of the PDE for vy, that is, F(vg, 1) > 0, the comparison theorem implies that v; > ve. See, for
example, Fleming and Soner (2006).
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For instance, it follows that if the costs-of-carry for long and short positions
are increased by a common factor, then the price decreases.

B. Limiting Models

We discuss two limits for the cost coefficients that shed light on the relation-
ship between our model and the earlier models discussed in the introduction.
To make the dependence on the parameters explicit, we denote by v*—*+(¢, x)
the equilibrium price function v(¢, x) for a_, o .

B.1. Zero Cost for Long Positions

We first consider the limit o, — oo when the cost-of-carry for long positions
tends to zero.

PROPOSITION 3: As oy — 00, the function v*—%+ converges to the unique solution
v™ € C}? of the PDE

1
ov+ sup <bi8xv + 3 Trgizaxxv) =0 (11)

with terminal condition v(T,x) = f(x). In particular, v™*° is independent of o_
and s. The convergence is locally uniform in (¢, x) and is monotone increasing if
oy T Q.

We now discuss the limiting model that arises in Proposition 3, that is, with
no cost-of-carry for long positions. We state these results without proofs since
the arguments are very similar to the proof of Theorem 1.

The limiting model has an equilibrium price function v := v*> that is unique
and independent of the supply s and the cost coefficient «_ for short positions.
Thus, we obtain the results of previous models with risk-neutral agents in
this limiting regime. The intuition for equation (11) is straightforward. In any
equilibrium, if j is one of the most optimistic types, we must have £/v(¢, x) > 0.
However, if the marginal cost of going long is zero, £/v(¢, x) = 0 must hold. In
particular, j is indifferent with respect to nonnegative positions and equilib-
rium prices are independent of both the supply of the asset and the demand
for shorting. However, in equilibrium, the optimal portfolios ®;(¢) = ¢;(¢, X(¢))
do depend on s and «_. Given (¢, x), if i is not a maximizer, £v(t, x) < 0 and

¢i(t, x) = a_Llu(t, x)

as in (5); in particular, agent i holds a short position. In equilibrium, the
aggregate amount held by the most optimistic types is set by the market-
clearing condition—they must hold the sum of the exogenous supply and all
amounts shorted. If there is more than one maximizer i, then any distribution
of the available amount (supply plus short positions) over these maximizers
gives an optimal allocation.?’

27 See Muhle-Karbe and Nutz (2018) for an analysis of this case when shorting is constrained.
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The properties described above for o, = co continue to hold in the limiting
case «_ = 0, that is, when there is no cost for long positions and short positions
are prohibited. In particular, all but the most optimistic agents hold a flat
position, and only the most optimistic characteristics play a role in determining
the price. We therefore obtain the results of previous models with risk-neutral
agents in this limiting regime.

REMARK 3: The results for a, = oo may be contrasted with the opposite extreme
case in which the cost coefficients a, and o_ are equal. Then, the drift and
volatility coefficients

1< 1«
M3:MI=ﬁZbi7 %7 = E?ZZZULZ
i=1 i=1

are independent of I and equal to the arithmetic average of the coefficients in
the agents’ models, meaning that all agents contribute equally to the price. The
running cost is k ‘= k; = s/(na ). Thus, (6) becomes the linear PDE

1< 1 & s
v + — Zbiaxv(t,x) + — Z'I‘I'ai28mv —— =0,
i3 2n i=1 ey

and by the Feynman-Kac formula, the equilibrium price is

T
v(t,x)zE[f(Xt’x(T))—/ s(r, Xt’x(r))/(noz+)dr],

t
where X'* is a diffusion with drift u, volatility ¥, and initial condition X*(t) =
x (see Appendix D). That is, the equilibrium price is simply the expected value

of the security under the averaged coefficients of the agents, minus a cost term
related to the supply.

B.2. Infinite Cost for Short Positions

We now discuss the limit «_ — 0, that is, the cost-of-carry for short positions
tends to infinity.

PROPOSITION 4: As a_ — 0, the function v®—% converges to the unique solution
v e Cp* of the PDE

1

1 1 s
v+ su — Y b v+ =Tr— ) 020,v— =0 12)
’* Mqﬁ,n,<|J|; 2 |J|; P |J|a+)

with terminal condition v(T, x) = f(x). In the special case s = 0, this PDE co-
incides with (11) and in particular the solution v**+ = v is independent of ..
The convergence is locally uniform in (¢, x) and is monotone increasing if a_ | 0.

The limiting model that arises in Proposition 4 corresponds to a prohibi-
tion of shorting. This model has a unique equilibrium price function v := v%%
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that depends on the supply s and the cost coefficient . for long positions. At
each state (¢, x), we can think of the types as being divided into relatively op-
timistic agents, J = {i € {1,...,n}: L'v(t,x) > 0}, and pessimists, J°. We have
J # ¢ by market clearing. While the agents in o hold positions o, £ v(¢, x) of
different magnitude depending on how optimistic they are, the entire group </
determines the price. Agents in J¢, however, hold zero units and their precise
characteristics do not enter price formation. For instance, if we replace a pes-
simistic typei € J¢ by an even more pessimistic type, the equilibrium price will
not change.

II1. Speculation

In this section, we highlight the impact of nonlinear costs-of-carry and short
selling on the pricing mechanism by comparing the above “dynamic” equilib-
rium price at time ¢ = 0 with a “static” equilibrium price, that is, an equilibrium
without speculation. We shall see that, as in previous models, the dynamic price
dominates the static price when cost-of-carry and short selling are removed
from our model. This can be attributed to the resale option. However, we show
that the cost-of-carry (i.e., risk aversion) gives rise to a delay option that may
act in opposition to the resale option and in extreme cases may reverse the
order of the prices—even if short selling is prohibited. Moreover, we illustrate
that the possibility of short selling tends to depress the dynamic price as it
gives rise to a repurchase option for pessimists.

A. Equilibrium without Speculation

Consider a situation in which trading occurs only at the initial time ¢ = 0,
that is, agents are forced to use buy-and-hold strategies and speculation is
ruled out. The agents use the same models @; for the dynamics (1) of the
state process X and maximize the same expected net payoff (3). However, the
admissible portfolios ® are restricted to be constant; we use the letter g to
denote a generic portfolio. This market can clear only if the exogenous supply
S = s is constant, so we restrict our attention to that case. A static equilibrium
price is defined like the dynamic equilibrium price above, except that we only
look for a constant pg, € R at time ¢ = 0 at which the trading happens.

PROPOSITION 5: (i) There exists a unique static equilibrium price and it is given
by

o oy sT
=max ([—— Y e+ — Y ;,———— |, (13)
Psta = 8% (|I|a + | I¢|ay Zd: o— + |I¢|oy ; Io_ + |I"’|a+>

where e; = E;[ f(X(T))]. The corresponding optimal static portfolios are unique
and given by

qi = O[sigrn(e,:—psta)T71(‘31‘ — DPsta)- (14)
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The formula for the static price is the direct analog of the PDE (6) for the
dynamic price. Indeed, the PDE considers the difference between a weighted
average of instantaneous holding premia and the instantaneous marginal cost
of carrying positions. Equation (13) can be read in the same way, after bringing
Psta to the right-hand side: it considers the difference between the weighted
average of the holding premia e; — psia = E;[f(X(T'))] — psta over the whole in-
terval and the marginal cost of carrying positions over that same interval.
Informally, we may think of the PDE as describing a repeated version of the
static problem over infinitesimal intervals.

Following our analysis above, we consider limiting cases for the cost coeffi-
cients in the static case. We denote by pg”* the static equilibrium price for
cost parameters o_, o, and initial value X(0) = x as given by (13).

PROPOSITION 6: (i) In the limit ay — oo with zero cost for long positions, the
price pea  converges to

Deta = r{rllax E; [f(X(T)). (15)

(ii) In the limit a_ — 0 with infinite cost for short positions, the price peg
converges to

O,y _ sT
Psia' = max (| J|ZE LA - - J|a+)' (16)

ied

The intuition is the same as in Section B. Without a cost for holding long
positions, optimists are indifferent with respect to nonnegative portfolios and
the price is determined solely by the most optimistic agents. When shorting is
ruled out, the price is determined as an average over a group of relatively more
optimistic agents, while the complementary group of more pessimistic agents
does not influence the price directly. We omit the proof of Proposition 15 since
it is similar to those in Section B.

B. Resale and Delay Options

Next, we compare the dynamic equilibrium price pgy, := P(0) at time ¢ =0
with the static equilibrium price pg,. For the latter to be well defined, we
assume that the supply s is constant. We discuss two options that are present
under dynamic trading and that are valued by agents—the resale and delay
options—and the effect on prices of eliminating these options by forcing agents
to trade only at time zero. In particular, we shall see that the ordering of payn
and pgi, may be different than in earlier models.

Previous papers, starting with Harrison and Kreps (1978), consider models
with risk-neutral agents who face a constant marginal cost-of-carry for long
positions (the interest rate) and cannot sell short. In such models, the dynamic
equilibrium price exceeds the static one, with the difference attributed to the
“resale option.” The possibility of reselling the asset increases the price—agents
may want to buy today in order to resell to agents who are more optimistic
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tomorrow. In these “classical” models, agents may also plan to buy additional
units of the asset in some future states of the world. This possibility, however,
does not alter the ranking between the dynamic and static equilibrium prices.
Indeed, since agents are risk neutral and the marginal cost of carrying a long
position is independent of the size of the position, we may assume generically
that only one type i would acquire the asset in the static equilibrium and pay
its marginal valuation at time zero. When retrading is allowed, i’s marginal
valuation for holding the full supply of the asset at time zero is at least as large,
since an agent can always choose a buy-and-hold strategy. As the market price
must exceed the marginal valuation of any type, the dynamic equilibrium price
must exceed the static equilibrium price.

The next two results confirm this intuition by showing how this mecha-
nism carries over to limiting cases of our model. First, we show that when the
marginal cost of long positions is constant, the dynamic price exceeds the static
one. This holds even when shorting is allowed because in this extreme case,
only the most optimistic agents contribute to the price formation, just as in the
classical models (see also Propositions 3 and 6).

PROPOSITION 7: In the limit o, — oo, the dynamic equilibrium price dominates
the static price: pg;, > Pga-

Next, we show that if short-sales are prohibited and if in the static equi-
librium, only one type holds the asset,?® the dynamic equilibrium price again
exceeds the static price, even when longs face an increasing marginal cost-of-
carry.

PROPOSITION 8: In the limit o — 0 with no short selling, suppose that type i
holds the entire market in the static equilibrium, that is, q; = 0 for all j # 1.

Then the dynamic equilibrium price dominates the static price: pg;fj > pgt’g*.

We now turn to the case in which both marginal costs are increasing and
finite. Here, the same options to resell and to delay are present, but the ef-
fects are more subtle. The option to delay now affects equilibrium prices be-
cause the marginal valuation of buyers varies with the size of their position.
More importantly, trading may occur in the dynamic equilibrium even though
one type remains the most optimistic. Indeed, in the classical models (and
the limiting model of Proposition 3), the most optimistic type always holds the
full supply and trading requires that relative optimism changes sign. When
the marginal cost-of-carry for long positions is increasing, the magnitude of
relative optimism determines equilibrium holdings—it is no longer true that a
less optimistic type would always hold a nonpositive amount. Example 1 below
illustrates that the delay option may have an important effect on prices and
even reverse the ordering of dynamic and static prices.

If shorting is allowed, buying today in order to resell tomorrow needs to be
compared with entering a short position tomorrow. The choice will depend on,

28 Only one type will hold the asset if that type is sufficiently more optimistic than the others
and the supply is small enough.
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among other factors, the costs-of-carry for long and short positions. The option
to resell a short position, that is, the option to cover shorts, and then decreases
the minimum amount that pessimists would be willing to receive to short the
asset, and this puts downward pressure on prices. Shorts may also exercise
the option to delay by building up a short position over time. Example 2 below
illustrates how the ordering of dynamic and static prices can be reversed if the
cost of shorting is sufficiently low.

REMARK 4: In the remainder of this section, we use a quadratic payoff function
f to obtain explicit formulas. This violates our assumption that [ is bounded
but our results still apply with the appropriate modifications. In particular, the
equilibrium price function v and the admissible portfolios ¢; exhibit polynomial
growth instead of being bounded. The formulas in our examples can also be
verified by direct calculation.

C. Illustrating the Effect of the Delay Option

In this section, we show that the static price may dominate the dynamic
price even when short selling is prohibited. This cannot be explained with a
resale option; instead, it highlights the delay option. Consider first the dynamic
equilibrium and suppose that type i expects their portfolio ®;(¢) to increase over
time with high probability. If only buy-and-hold strategies are allowed, an agent
of type i would consider anticipating the increase of the portfolio at time # = 0,
and if the additional expected gains outweigh the additional costs-of-carry, the
agent would have higher buy-and-hold demand at the previous equilibrium
price pgyn. Other types may reduce their positions at the price pgyn because
they are anticipating a decrease in position or because they are indifferent to
the amount they are holding (see also Example E2 in Appendix E).

To show that the static price may exceed the dynamic price even when short
selling is prohibited (¢ = 0), we impose a positive cost for long positions
(¢y = 1) and construct an example in which some agents expect to increase
their positions over time but no agent expects to decrease their position.?? To
obtain explicit formulas despite the nonlinear context, we consider the limiting
case of zero volatility but show later (Proposition 9) that this is indeed the con-
tinuous limit for equilibria with small volatility coefficients o;. In particular,
the qualitative conclusions of the example extend to examples with diffusion
risk. The zero-volatility case violates our assumption of uniformly parabolic
coefficients (indeed, v is not smooth in this example) but the formulas can be
verified by direct calculation.

ExaMmpPLE 1: Consider n = 2 types with volatility coefficients o; = 0 and con-
stant, opposing drifts

b =1, by = —1.

29 Since types disagree, it may indeed be the case that all agents expect to increase their positions
over time in the dynamic case, without contradicting the market-clearing condition.
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The payoff function is f(y) = y? and supply s > 0 is constant. Moreover, o = 0
and o, = 1. Then, as we show in Appendix E, the static equilibrium price
exceeds the dynamic price. More precisely,

T2, lx| <s/4-T/2,
Dsta — Pdyn = § (s/2 = 2|xDT', s/4—-T/2 < |x| <s/4,
0, lx| > s/4.

In the regimes s/4 — T /2 < |x| <s/4 and |x| <s/4 — T /2, at least one of
the types has a dynamic portfolio that is increasing over time. These agents
exercise the delay option when retrading is allowed and have an anticipatory
motive when they can trade only at ¢ = 0. A price increase is necessary to clear
the static market, leading to psta > payn. In Appendix E, we detail the asset
allocation in all regimes and show how the delay option explains the difference
Dsta — Pdyn-

It remains to prove that the conclusions of the example also hold when
volatilities are small but positive, rather than vanishing.

ProOPOSITION 9: Consider the setting of Example 1 with constant volatilities
o := 01 = o9 > 0 and denote the corresponding static and dynamic equilibrium
prices by pg, and p3,,, respectively. Then pg, | ., and Diyn + pgyn as o | 0.
As a consequence, we have

T2, x| <s/4—T/2,
Dita — Payn —> (/2 =21xDT, s/4-T/2 < |x| <s/4,
0, x| > s/4.

The above example of the delay option effect should be contrasted with Propo-
sition 7, where we have seen that when there is no cost-of-carry for long posi-
tions («; = o0), the dynamic equilibrium price always exceeds the static one,
even if short selling is possible. Example E2 in Appendix E illustrates the me-
chanics of the delay option in the latter situation. In Example E2, pessimists
plan to close their short position over time in the dynamic equilibrium. When
forced to buy-and-hold, they decrease their initial short position. However, in
contrast to Example 1, this has no effect on the static price because, as we have
argued, optimists are indifferent to the size of their own position in the absence
of increasing marginal costs.

D. Illustrating the Effect of Shorting

The following example illustrates that when shorting is allowed, the static
price may exceed the dynamic price—this is quite natural once we observe the
symmetry between optimists and pessimists in the extreme case «_ = «, . The
difference between the dynamic price and the static price has been identified in
the previous literature as the size of the “speculative bubble.” If we maintain
this identification, the example can be used to illustrate how decreasing the
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cost of shorting can lead not only to a bubble implosion but also to a negative
bubble.

ExaMmpLE 2: To facilitate computations, we assume symmetric costs-of-carry
a_ = a, = 1. Consider n = 2 types with constant coefficients ; € R and o; > 0,
and an asset in zero aggregate supply with payoff f(y) = y?. Writing X2 :=
(02 +02)/2 and p := (b1 + by)/2, the dynamic and static equilibrium prices at
t = 0 for the initial value X(0) = x are

by +bs\?
pdyn:x2+2qu+22T+< 1; 2) T2,

b? + b3
Dsta = %%+ 2xuT + Z°T + %Tz;

see Appendix F for the calculations. In particular,

2 2 2
b b
DPdyn — Psta = |:(b1;b2) — 1—; 2:|T2SO.

The optimal dynamic and static portfolios are given by

1 1
9i(t,0) = x(bi = b)) + S(T =D} = b)) + (o — o),

g = x(b ~ b))+ T )+ (07 — o)),
where j = 2ifi = 1 and vice versa; in particular, the demands at ¢ = 0 coincide.
In the special case in which all agents agree on the drift, b1 = by, we have pgyn =
Psta and the demands coincide at all times. Whenever b; # by, a continuity
result similar to the results established in Section B guarantees that payn < psta
for cost parameters close to o = a, = 1.

To obtain some intuition for this example, consider the case in which o7 = o9,
b1 >0, and b, = 0. If x > 0, type 1 is long and type 2 is short when retrading
is allowed. Notice that an agent who is short expects on average to cover some
of her shorts in the future. When retrading is ruled out, she prefers to cut her
short position at time 0. This would place upward pressure on the static price.
The long party also expects to reduce his position if X(¢) were to stay constant,
but because b; > 0, he expects the state X(¢) to grow, dampening his need to
anticipate the reduction when retrading is ruled out. In other words, the long
party values the resale option less than the short party values the repurchase
option. As a result, the static market presents excess demand at price pgyn, and
thus, the static price must rise to clear the market.

IV. A Planner with Limited Instruments

In this section, we show that our equilibrium can be explained through a
planner’s problem that sheds light on the PDE for the equilibrium in Theorem 1.
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We first explain why this requires a planner with limited instruments. Consider
a planner that can allocate the supply arbitrarily across types at any time
and state. In addition, she can make arbitrary lump-sum numeraire transfers
0;(T, w) to agents of typei = 1, ..., n as well as a transfer 0y(T', w) to the agents
who are originally endowed with the supply, provided that these transfers add
up to zero. Criterion (3) implies that the traders’ utility functions are separable
and linear in numeraire transfers. Hence, the convexity of the cost function for
holding assets guarantees that the supply is equally distributed across types in
any Pareto optimum, that is, y;(¢, x) = % This property of the asset allocation
holds in the equilibrium of Theorem 1 when traders have homogeneous beliefs
(@1 = -+ = @,). Inthis case, it is clear that the equilibrium allocation is actually
a Pareto optimum; the functional form of the utility function compensates for
the lack of complete markets. However, this optimality does not hold when
traders are heterogeneous and hold different asset positions in equilibrium—
gambling using the asset has real costs and a social planner would like to rule
them out. This general nonoptimality of our equilibrium also holds if we use
the “belief neutral” Pareto inefficiency criteria in Brunnermeier, Simsek, and
Xiong (2014).

Although our equilibrium is not Pareto optimal, we can characterize the
equilibrium price as the optimal value for a planner with limited instruments
and the equilibrium allocations as the associated allocations induced by this
planner. Consider a planner that can use two instruments. The first is to as-
sign “total cost coefficients” «;(¢, x) € [@_, «,] for each type i at each date and
state (¢, x). If agent i decides to go short y units, she will be subsidized so that
her effective cost is ¢;(t, x, y) = myz, whereas if she goes long, she will be
taxed to have the same effective cost. The second instrument is to give lump-
sum numeraire subsidies or charge lump-sum taxes 6,(T,w), i =1,...,n to
each type. The planner must break even so that any aggregate taxes collected
must equal the net subsidies provided.

Given the assigned cost coefficients and lump-sum transfers, agents choose
asset positions taking prices as given and the market settles on prices
that equilibrate supply and demand. Since the objective function is separa-
ble in the numeraire, the optimal positions are independent of the lump-
sum transfers: agent ; maximizes the expected net payoff E;[ fOT d(t)dP(t) —

fOT c;(t, X(t), ©(t))dt] from trading, which is analogous to (3) except that the
cost is now given by c;.

Recall that I, denotes the group of agents who go short in the equilibrium of
Theorem 1; see (10).

THEOREM 2: (i) For any sufficiently regular assignment a = (a1, ..., o) of the
planner, 30 there exists a unique equilibrium with a price function v, € Cl}‘z.
This function can be characterized by a linear PDE and by a Feynman-Kac
representation; see (F12) and (F13) in Appendix F.

30 See Appendix F for further details. In particular, the assignment defined in (ii) is sufficiently
regular in this sense.
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(i) The planner can maximize the initial price by choosing a;(¢, x) = a_ when
i € I(t,x) and «;(t, x) = oy when i € I{(¢,x). Under this assignment, the price
and the asset allocation coincide with the equilibrium of Theorem 1. Agents
assigned o choose to go long and agents assigned a_ choose to go short, so that
no taxes, subsidies, or transfers are collected.

This theorem states that a planner who faces the constraint «; € [@_, o, ] on
the total cost coefficients and who wishes to maximize the initial price of the
asset (or, when s > 0, wishes to maximize the welfare of the initial asset holders)
would assign «; = «_ to the agents who in our original equilibrium choose to go
short and o to the remaining agents. Given the assignment, equilibrium prices
will be identical to those obtained in our original equilibrium. This confirms
the intuition from Proposition 2, which states that the price rises if costs for
optimists (longs) are reduced and costs for pessimists (shorts) are increased:
within the constraint, this allocation is the most favorable for the optimists
and the least favorable for the pessimists. If the planner were not constrained
to the interval [, o, ], she could typically attain an even higher initial price—
she would put a tax on the pessimists and subsidize the optimists. In fact,
Example 3 below shows that unless the planner is constrained to [«_, a, ], she
can make all agents, including the initial asset holders, better off.

In the proof, we show that the assertion of the theorem holds not only for the
initial price but also for the price v(¢, x) at any time and state: the planner is
time-consistent, that is, there is no need for a commitment device.

REMARK 5: The planner’s problem helps explain the PDE for the equilibrium in
Theorem 1. Indeed, (6) can be seen as a supremum of linear PDEs parameterized
by the groups I. The linear PDE for a fixed group I is exactly the equation for
the equilibrium price v, resulting from the assignment given by o; = a_ when
i €I and af = a_ when i € I°. Thus, (6) can be understood as an optimization
over assignments of a_ and . to the different types.

The following example shows that without the constraint «; € [a_, @], the
planner may be able to improve the utility of all agents relative to the equilib-
rium utility.

ExaMPLE 3: Consider n = 2 types in a market with constant supply s = 0. The
equilibrium portfolios satisfy ¢1 = —¢3 by market clearing, and we may assume
that they are not identically equal to zero. The precise views and costs are not
important for this example; for instance, we can take by = —by > 0,01 = 09 > 0,
ando :=a; =a_ > 0.

Consider a planner who can charge a tax on all types so that the agents
face an effective cost coefficient @ = «/2. It follows from Remark 1 that the
equilibrium price is unaffected by this symmetric scaling: ¥ = v. In particular,
the portfolios are related by ¢; = &L = (a¢/2)L'v = ¢; /2. As a consequence, the
trading gains of type i, X; = fOT ®;(t)dP(t), become X; = X;/2 in the new equi-
librium. Moreover, as &(¢;) = 5=¢? = 1 - ¢? = c(¢;)/2, the holding costs are also
cut by half. As ¢; = —¢2, we have that X; = —X, and X; = —X,. In particular,
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the difference A; = X; — X; satisfies A; = —A,. As a result, the planner can
transfer A; to agent i at a zero net cost. After taking this transfer into account,
the utility of both types is increased since the total gains are the same as be-
fore but the holding costs are cut by half. Moreover, the planner is left with the
revenue from the taxes. She may, for example, distribute the revenue to the
agents as an additional lump sum.

Using a continuity argument, a similar example can be constructed with
supply s > 0. In that case, the planner may distribute some of the revenue
to the agents initially endowed with the supply to ensure that their utility is
also increased.

V. Conclusion

In this paper, we consider a continuous-time model of trading among risk-
neutral agents with heterogeneous beliefs. Agents face quadratic costs-of-carry,
and as a consequence, their marginal valuation of the asset decreases when
the magnitude of their position increases, as would be the case for risk-averse
agents. In previous models of heterogeneous beliefs, it was assumed that agents
face a constant marginal cost-of-carry for a positive position and an infinite cost
for a negative position. As a result, buyers benefit from a resale option and are
willing to pay for an asset in excess of their own valuation of the dividends of
that asset. Moreover, the supply does not affect the equilibrium price. We show
that when buyers face an increasing marginal cost-of-carry, in equilibrium,
they may also value an option to delay. We illustrate with an example that
even when shorting is impossible, this delay option may cause the market to
equilibrate below the price that would prevail if agents were restricted to buy-
and-hold strategies. We introduce the possibility of short selling and show that
this gives pessimists the analogous options. In our model, the price depends on
the supply.

We characterize the unique equilibrium of our model as the solution to a
Hamilton-Jacobi-Bellman equation of a novel form and use this to derive sev-
eral comparative statics: the price decreases with an increase in the supply of
the asset, with an increase in the cost of carrying long positions, and with a
decrease in the cost of carrying short positions. The conclusions of earlier mod-
els are shown to hold in the limiting case in which the quadratic cost-of-carry
for long positions converges to zero. An example shows that a decrease in the
cost of shorting and the consequent increase in the supply of shorts can deflate
the bubble.

In our model, the demand for the asset is satisfied by the sum of the exoge-
nous supply and the short positions of market participants. While the shorts
are determined endogenously, supply is independent of the current price and
agents’ beliefs. The data in Cordell, Huang, and Williams (2011) suggest that
shorting played the dominant role in pricking the CDO bubble, but in other
episodes, such as the Internet bubble, investments in projects underlying the
asset class and sales by insiders played an important role in satisfying the
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demand by optimists. For such episodes, one would need to supplement the
theory in this paper with an equilibrium model of supply.

Critics have indicted synthetic CDOs for the inordinate damage caused by
the subprime implosion, but it is not obvious what would have happened if
synthetics had not been created. The spreads in the “safe” tranches of cash
CDOs would have been even more compressed. More ominously, the numbers
reported in Cordell, Huang, and Williams (2011) suggest that generating the
amount of BBB Home Equity (HE) bonds referenced in the synthetic CDOs
would have required making an additional 2.5 ¢rillion dollars of subprime
mortgage loans. This would have probably resulted in substantially more new
house construction and mortgage defaults. The model in this paper suggests
that if a mechanism for shorting BBB HE bonds and CDO tranches had been
created earlier, the subprime bubble would have been smaller.

Initial submission: September 2, 2018; Accepted: July 15, 2019
Editors: Stefan Nagel, Philip Bond, Amit Seru, and Wei Xiong

Appendix A: Adding Linear Costs

In this section, we generalize the cost-of-carry by adding linear terms and
we discuss the corresponding changes in our main results. Broadly speaking,
the generalized model does not affect the economic conclusions.

Let

%Y+ By, ¥y=0,
cly) = (A1)
=—y>+B-lyl. ¥y <O,

where B_, B, > 0 are constants; as discussed in the introduction, the main case
of interest is 8_ > 0 and B, = 0. While this cost function is still strictly convex,
it fails to be differentiable at y = 0 unless B_ = 8. = 0.

Following the proof of Lemma F2, the optimal portfolio (F1) becomes

O[+(£iv(t, x) - ﬁ+), ‘Clv(tv x) 2 ﬁ+’
¢i(t,x) = {a_ (Lo, x)+ p-), LivE,x)<—p_, (A2)
0, otherwise.

That is, there is an interval [-8_, B.] of values of Liv(¢,x) over which it is
optimal to have a zero position, due to the kink in the function c.

The main PDE (6) needs to be adapted correspondingly. Indeed, instead of
considering only the group I of agents who hold a short position, we now need
to distinguish a group J of agents who hold a (strict) long position—the group
J may be smaller than the complement I¢. More precisely, the generalized
PDE (6) reads as follows (the proof is analogous to that of Theorem 1).
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THEOREM Al: The unique equilibrium price function v € Cbl’2 can be character-
ized as the unique solution of the PDE

1
dv(t, x) + sup (MLJ(t, )0, v(t, x) + 3 Tr 27 ;(t, )3 v(t, x) — k1 (&, x)) =0

Ing=¢
(A3)
on [0, T) x R? with terminal condition v(T,x) = f(x), where the supremum is
taken over all disjoint subsets I, J C {1, ..., n} and the coefficients are defined
as
(07
gt x)=—"—"— ) bit,x)+ ———— Y bi(¢, x),
e o +|J|+Z 1] +|J| Z

o

_ o
2 (tx)= — " o2(t, x) + 7t o2(t, x),
LJ o + | o Z, ‘ T + | e ZJ ‘

s, x) — Lo B+ |J]oi By

t,
k1.t %) = Tl + [ |as

In particular, the additional constants 8_, 8, enter only through the running
cost k7. It follows that the results on the comparative statics in Propositions 1
and 2 remain valid, and in addition, the equilibrium price function v is increas-
ing with respect to 8_ and decreasing with respect to g..

In the limiting case of zero cost for long positions, we now need to send
ay — oo and B, — 0. The result of Proposition 3 is unchanged, that is, the
limiting equilibrium price function is the solution of

1
dv+ sup (biaxv + 3 Traizaxxv) =0.

On the other hand, for the limit @ — 0 of infinite cost for shorting, the result
of Proposition 4 changes slightly because the long positions are subject to 8.,
which becomes an additional running cost in the limiting equation

1 1 1 s
3 N b =Tr— Y 02— —— — B, ) =0.
e (|J|i§, '3 |J|i€ZJ(’L ' T ﬂ*)

PAIC{L,...n)

The results for the static equilibrium problem can be generalized with analo-
gous changes.

Appendix B: Heterogeneous Costs

In this section, we show how the equilibrium of Theorem 1 changes if the
cost coefficients o, @, depend on the type rather than being the same for all
agents. We write o’ , ai for the coefficients of type i. The following result shows
that while the structure of the equilibrium remains similar, agents with lower
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costs have a larger influence on the coefficients of the PDE that determines the
equilibrium price.

THEOREM B1: The unique equilibrium price function v € C;‘z can be character-
ized as the unique solution of the PDE (6) with coefficients

1 ip. i b
wr(t, x) = Zigjai—+2ielf’ o (Zabl(t, X)+Za+bl(t’ x)),

+ \iel iele

1 . )
E%(t, x) = . . o o2(t, x) + o o(¢, x)),
Dier @t + D e oy (; ; o
s(t, x)

Yierdl + e dl

The proof is analogous to Theorem 1. As in Lemma F2, the optimal port-
folios are given by o’ L'v(¢, x). Thus, as expected, types with lower costs hold
larger positions.

ki(t, x) =

Appendix C: Quadratic Costs on Values of Positions

In this section, we briefly explain what changes if costs are quadratic in the
monetary value of the portfolio rather than the size, that is, the instantaneous
cost-of-carry is

c(P(t)®(t)) instead of c(d(t)),

where ¢ is quadratic as in (2). If the price P(¢) becomes zero, these costs become
zero, which leads to infinite demand by the agents and thus to nonexistence
of equilibria. This discussion therefore pertains to assets with a strictly posi-
tive price.

As in Lemma F2, we can derive the first-order condition of optimality for the
portfolio function ¢; of agent i as

Asign(Liv(t,x) pf
¢i(t, x) = %Elv(t, x),
which is similar to the expression in Lemma F2 except for the additional divi-
sion by v2. Using market clearing as in the proof of Theorem 1 then produces
a PDE where the term «; in (9) receives an additional factor v2. This new term
can no longer be interpreted as a running cost and, in general, the PDE cannot
be written as an Hamilton-Jacobi-Bellman equation similar to (6) because in
such an equation, the maximization is necessarily carried out over terms that
are linear in the v-variable. Thus, we do not expect to have an interpretation of
equilibria through a stochastic control problem or a social planner. A remark-
able exception is x; = 0, which occurs in the case of zero net supply. In that
case, the PDE is exactly the same as (6), and hence, the equilibrium price is
also the same. The actual portfolios of the agents are not identical, but they
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differ only by the factor v2. (To ensure a priori that equilibrium prices are posi-
tive, it suffices to assume that the payoff f is positive and bounded away from
zero. The comparison principle then shows that prices remain bounded away
from zero at all times.)

Appendix D: Optimal Control Representation

The PDE (6) is the Hamilton-Jacobi-Bellman equation of a stochastic op-
timal control problem where the controller can choose a subset I C {1, ..., n}
at any time and state, and that choice determines the instantaneous drift and
volatility coefficients u; and X; as well as the running cost «;.

To formulate this problem precisely, consider a filtered probability space
carrying a d’-dimensional Brownian motion W and let ® be the collection of all
(progressively measurable) processes Z with values in the family of all subsets
of {1,...,n}.3! For each T € ©, let X;*(r), r € [t, T be the solution of the SDE

dX(r) = puzoy(r, X(r)) dr + Z169(r, X)) dW(r), X&) =x (D1

on the time interval [¢, T']. It follows from the assumptions on the coefficients
b;, o; that this SDE with random coefficients has a unique strong solution.??
Therefore, we may consider the control problem

T

Vit x)= supE|:f(X;x(T)) —/ /q(,)(r,X%x(r))dr:| (D2)
Te® t

for (t,x) € [0, T] x R?, which gives rise to a second characterization for the

equilibrium price function v.

PRrROPOSITION D1: The equilibrium price function v from Theorem 1 coincides
with the value function V of (D2). Moreover, an optimal control for (D2) is given
by Z.(t) = L(t, X(¢)), where, as in (10),

Lit,x)={ie(l,....n: Ll x) <O} (D3)

ProOF: By Theorem 1, the function v € C}? is a solution of the PDE (6), which is
the Hamilton-Jacobi-Bellman equation of the control problem (D2). Moreover,
L.(¢, x) maximizes the Hamiltonian as noted after (F4). Thus, the verification
theorem of stochastic control (see Fleming and Soner (2006, Theorem IV.3.1,
p. 157)) shows that v is the value function and Z, is an optimal control. |

31 While this collection of control processes appears somewhat nonstandard, there is no difficulty
involved in defining it—this family of subsets is simply a discrete set with 2" elements; it can be
identified with {0, 1}".

32 The coefficients ;7 and Y7 may be quite irregular as stochastic processes but the dependence
with respect to the x-variable is Lipschitz continuous. See Krylov (1980, Theorem 2.5.7, p. 82) for
a general result on existence and uniqueness under Lipschitz conditions.
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Appendix E: Examples

In this section, we discuss two examples in more detail. The calculations
are provided in Appendix F, together with the rest of the proofs.
The first example, already outlined in Example 1, shows that the static price
may exceed the dynamic price, even when short selling is prohibited.

ExampLE E1: Consider n = 2 types with volatility coefficients 0; = 0 and con-
stant opposing drifts

b =1, by =—1.

The payoff function is f(y) = y* and supply s > 0 is constant. Moreover, «_ = 0
and o, = 1. Then the dynamic equilibrium price is

x2 —sT/2, lx| +T/2 < s/4,

P =V (| + TR —sT, |x|+T/2 > s/4,

and corresponding optimal portfolios in feedback form are given by

0, x| + (T —¢)/2 > s/4, x <0,
d1t,x) = 1s/2+2x, |x|+(T —t)/2 < s/4,

s, x| +(T —8)/2 > s/4, x > 0,

s, x| +(T —t)/2 > s/4, x <0,
Polt, x) = 318/2 —2x, |x|+(T —1t)/2 <s/4,

0, x| + (T —¢)/2 > s/4, x > 0.

The static equilibrium price is

x>+ T?%—sT/2, x| <s/4,

Psta =) 2 +T?2 4+ 2|x|T —sT, |x| > s/4,

and corresponding optimal portfolios are given by

0, x < —s/4, s, x < —s/4,
q1=18/2+2x, |x|<s/4, Q2= 18/2—2x, |x|<s/4,
s, x > s/4, 0, x > s/4.

The static equilibrium price exceeds the dynamic price, more precisely,

T?, x| <s/4—T/2,
Dsta — Pdyn = (3/2_2|x|)T, 8/4—T/2<|x|<8/4,
0, x| > s/4.

Next, we discuss in more detail how the delay option effect explains the
difference psta — payn in this example. To that end, it will be useful to record



1024 The Journal of Finance®

the portfolios as expected by the agents: since X(#) = x + b;t @;-a.s. and ®;(t) =
¢ (¢, X(2)), we have

0, lx+¢t|+(T —¢)/2>s/4, x+t <0,
Qi-a.s., D1(8)=1s/2+2t+2x, |x+t|+(T —t)/2<s/4,

s, lx+¢t|+(T —¢)/2>s/4, x+t>0,

s, lx —¢t|+(T —t)/)2 >s/4, x —t <0,
@e-as., Oot)=1s/2+2t—2x, |x—t|+ (T —t)/2 <s/4,

0, lx —t|+(T —¢)/)2 >s/4, x —t > 0.

Below, we abuse this notation and simply write ®;(¢) and ®,(¢) for the ex-
pressions on the right-hand side. We consider various intervals for the initial
value x; by symmetry, we may focus on x > 0 without loss of generality. We also
assume that s > T', mainly to avoid distinguishing even more cases.

Case I: x > s/4 + T. In this regime, the expected dynamic portfolios ®; and
®y are constant, and thus, the delay option is never exercised. The
static portfolios coincide with their initial values, g; = s = ®1(0) and
g2 = 0 = ®5(0), and the static and dynamic prices are equal: pg, =
Pdyn-

Case 2: s/4 <x <s/4+T. As before, g =s = ®;(0) and ®; is constant.
However, ®5(¢) equals zero initially but may become positive for
t close to T (for suitable parameter values). Nevertheless, type
2 does not choose to anticipate her trading in the static case be-
cause the cost-of-carry outweighs the expected gains—we still have
q2 = 0= q>2(0) and Dsta = Pdyn-

Case 3: (s/4—T/2)" <x <s/4. Once again, ®; = s is constant, ®2(0) = 0,
and @, increases for some ¢ > 0. Furthermore, the increase in type
2’s position is larger for smaller x. Type 2 now does anticipate some
of that increase in the static case and for this reason pgyn is now
too low to be an equilibrium price. The increase in price changes
the optimal portfolio for agents of type 1. We are in the mixed case
where portfolios and prices adjust. Type 1 decreases his initial posi-
tion to q1 = s/2 4+ 2x < s = ®1(0) and type 2 increases her position to
g2 =8/2 — 2x > 0 = ®5(0). At the same time, the static equilibrium
price is raised, psta — payn = (2x —s/2)T > 0. As x decreases from
s/4 to s/4 — T /2, this difference increases linearly from zero to 72,
and the portfolios (g1, g2) change linearly from (s,0) to (s — T, T).
In summary, the elimination of the delay option in the static case
results in portfolio adjustments and a price increase.

Case4: 0 <x <s/4— T /2. In this last regime, both ®; and &, are increas-
ing in time, so both types exercise the delay option when retrading
is allowed and have an anticipatory motive when they can trade
only at ¢ = 0. The initial dynamic portfolios are ®1(0) =s/2+2x > 0
and ®5(0) =s/2 — 2x > 0. Since both types want to anticipate in the
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static case, the static price must be higher. More precisely, the aggre-
gate excess demand at price pay, equals 272 and thus is independent
of x. Since we are in the region in which both types have positive
demand, the marginal effect of an increase in price is —1, for each
type. Thus, the price adjustment that is necessary to clear the static
market is exactly T'2 for each value of x in this region.

The next example illustrates the mechanics of the delay option when there
is no cost-of-carry for long positions: the most optimistic agent holds the entire
market and the dynamic equilibrium price always exceeds the static one.

ExampLE E2: Let o, = co and o = 1. We consider n = 2 types with drift coef-
ficients

b =1, by=0

and volatility coefficients o1 = 0 = 0. The payoff is f(y) = y? and the initial
value is x = 0, so that the first type is more optimistic at any time.

As in Proposition 6, the static equilibrium price is given by the optimist’s
expectation e; = E{[f(X(T))] = T?. Following Proposition 3, the same holds
for the dynamic price, so that psia = payn. The static and dynamic portfolios of
the pessimist are given by

@2 =T ez — pua) = T,  ¢ot,x) = dv(t,x) = —2x + T —¢).

Under @q, the state process X =0 is constant, so that ®y(t) = ¢o(t, X(#)) =
—2(T —t) a.s. Thus, the static position qo = —T anticipates some of the in-
crease from ®5(0) = —2T to ®o(T') = 0. However, this does not affect the static
equilibrium price because an optimistic agent is indifferent to the size of her
(nonnegative) position—the absence of a cost-of-carry for long positions allows
the portfolios to adjust without affecting the prices.

Appendix F: Proofs
This appendix combines the proofs for Sections I through IV and Appendix E.

A. Proofs for Section 1

Before proving the main result of Theorem 1, we record two lemmas for later
reference. The first one guarantees the passage from almost-sure to pointwise
identities.

LEMMA F1: Foralli € {1,...,n}and all t € (0, T'], the support of X(¢t) under @;
is the full space R

ProoF: Recall that X is the coordinate-mapping process on Q = C([0, T'], R%).
Since b; is bounded and o is uniformly parabolic, the support of @; is in the set
of all paths w with @(0) = x (see Stroock and Varadhan (1972, Theorem 3.1)).
The claim is a direct consequence. |
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The second lemma provides an expression for the optimal portfolios.

LEMMA F2: Let v € C;’Z and consider the (price) process P(t) = v(t, X(t)). The
portfolio defined by ®;(t) = ¢;(t, X(¢)), where

¢i(t7 x) = asign(ﬁiv(tx))»civ(t’ x) (F1)

is the unique optimal portfolio for type i.33

ProOF: We note that ®; is admissible since v € C;. Let ® be any admissible
portfolio. By It6’s formula,

T T T
/ ot dP(t) — / C((8) dt = / (@OOLIvE, X)) — c(D@)) dt + M(T),
0 0 0

where M;(T') is the terminal value of a (true) martingale with vanishing
expectation—recall that o; and d,v are bounded. Thus, the expected final pay-
off (3) is given by

T
E; |:f {D@)L v, X(8) — (D))} dt:|.
0

As a result, @ is optimal if and only if it maximizes the above integrand (up
to (@; x dt)-nullsets). The unique maximizer is given by ®;, and the claim
follows. u

We can now prove the main result on the pricing PDE.

ProOOF OF THEOREM 1:
(a) We first show that a given equilibrium price function v € C;*2 solves the
PDE. Since v(T', X(T)) = f(X(T)) @;-a.s. for all i, the terminal condition

(T, ) = f follows from Lemma F1. At any state (¢, x), we introduce the
set

Lt x)=1{ie{l,...,n}: L x) <0} (F2)

Next, we recall the unique optimal portfolios ®; from Lemma F2. Using
again Lemma F1, the market-clearing condition ) ; ®; = S can be stated
as

a,Z£iv+a+Z£iv=s. (F3)

iel, ielt

Ifi € I, then £'v < 0 and o_ < o, implies a_L'v > o, L'v. Conversely, if
i el then L'v>0and o, L'v > a L. It follows that the set I, of (F2)

33 We recall that uniqueness is understood up to (@; x dt)-nullsets.
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maximizes the left-hand side of (F3) among all subsets I C {1,...,n}.
That is,

max < Zﬁlv+a+Z£‘v—s>—0 (F4)

""" iel iele

and the set I, is a maximizer, or equivalently,

refi m( Zﬁ”*"‘+zﬁv—s>—o (F5)

ielc

After plugging in the definition of £v and using the definitions of 7, X7,
and «7 in (7) to (9), which is the desired PDE (6).

(b) Conversely, let v € C;* be a solution of the PDE (6) with terminal con-
dition f and define ®;, ¢; as in part (i) of Theorem 1. Then the termi-
nal condition v(7T", X(T')) = f(X(T)) is satisfied and ®; are optimal by
Lemma F2. Since v is a solution of the equivalent PDE (F4) and I, of (F2)
is a maximizer, we have that

Z b =0LZ£iv+a+Z£iv=s,

1<i<n iel, iel

that is, the market clears. This shows that v is an equilibrium price
function.

(c) Since (a) and (b) established a one-to-one correspondence between equi-
libria and solutions of the PDE (6) with terminal condition f, it remains
to observe that the latter has a unique solution in C;’Q. Indeed, existence
holds by Krylov (1987, Theorem 6.4.3, p. 301);3* the conditions in the
cited theorem can be verified as in Krylov (1987, Example 6.1.4, p. 279).

Uniqueness holds by the comparison principle for parabolic PDEs. See Flem-
ing and Soner (2006, Theorem V.9.1, p. 223). |

B. Proofs for Section 11

We start with the comparative statics for the dependence of the price on sup-
ply.
ProoF OF PROPOSITION 1: Since the function s enters linearly in the running
cost (9) of the control problem (D2) and nowhere else, it follows immediately
that the value function V is monotone decreasing in s. The claim then follows
from Proposition D1. |

Next, we consider the dependence on the cost coefficients.
34 The gist of this rather technical result is that a second-order parabolic PDE of Hamilton-

Jacobi-Bellman type has a solution in 05.2 as soon as the second-order term is uniformly parabolic
and all coefficients and boundary conditions are sufficiently smooth and bounded.
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ProOOF OF PROPOSITION 2 (and Remark 2): Let o <« and o’ <« be two
pairs of cost coefficients and let v and v’ be the corresponding equilibrium price
functions. Let I, be the optimal feedback control for o as defined in (F2). Then
by (F4), we have

a,ZEiv+a+Z£iv—s=0.

iel, el
Ifo/ <o anda), >ay,then); ; L'v<0and ), . L'v>0yield
aLZEiU +a;Z£iv —s>0.
el iel¢

For the special case in which s = 0, this conclusion also holds under the weaker
condition that o, /o < o/, /o’ , which covers case (iii), and the same holds under
the conditions of Remark 2. It then follows that

max [o Lv+d Liv—s] >0,
1<1,.n) < - %: - Z -
l

iel¢

which is a version of (F4) with inequality instead of equality, for the coefficients
o/,. Following the same steps as after (F'4), we deduce that

1 ’

v+ sup (u’laxv + 3 Tr 2123xxv — K}) >0,
IC{1,...,n}

where 1}, X7, k; are defined as in (7) to (9) but with o/, instead of a.. In other

words, v is a subsolution of the PDE satisfied by v".3> As v and v’ satisfy the

same terminal condition f, the comparison principle (see Fleming and Soner
(2006, Theorem V.9.1, p. 223)) implies that v < v'. |

We continue with our result on the limit o, — oc.

PrOOF OF PROPOSITION 3: We first notice that since s > 0, the optimal set I,
of (F2) for the Hamiltonian of the PDE (6) must satisfy |I.| < n due to the
market-clearing condition—at least one agent has to hold a nonnegative posi-
tion. As a result, the PDE (6) remains the same if the supremum is taken only
over sets I with |I¢] > 0.

Taking that into account, the limiting PDE for (6) as o, — oo is

1

1
v+  sup —Z(bifixv+2

TI‘cri28xxv> =0. (F6)
Il |1 =

Notice that given a set of real numbers, the largest average over a subset is, in
fact, equal to the largest number in the set. As a result, (F6) coincides with (11).
Using again Krylov (1987, Theorem 6.4.3, p. 301) and Fleming and Soner (2006,

35 Note that the sign convention chosen here is opposite to that of Fleming and Soner (2006), so
that a subsolution corresponds to the inequality > 0 in the PDE.
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Theorem V.9.1, p. 223), this equation has a unique solution v* € C;’z for the
terminal condition f, and the solution is independent of «_ and s since these
quantities do not appear in (11).

To see that v*—%(¢, x) — v™> (¢, x), one can apply a PDE technique called the
Barles-Perthame procedure to the equations under consideration; see Fleming
and Soner (2006, Section VII.3). Alternatively, and to give a more concise proof,
we may use the representation (D2) of v*—%+ as a value function as well as the
corresponding representation for v>°. A result on the stability of value functions
(see Krylov (1980, Corollary 3.1.13, p. 138)) then shows that v*—*+ — v*> locally
uniformly, that is,

sup [v* % (¢, x) — v, x)] = 0
(t.x)el0.T1xK

for any compact set K € R%. The monotonicity property of the limit follows from
Proposition 2. ]

Finally, we turn to the limit o — 0.

PRrROOF OF PROPOSITION 4: The arguments are similar to those for Proposition 3.
In this case, the limiting PDE for (6) as - — 0 is (12). As in the proof of
Proposition 3, we have that the limiting PDE has a unique solution v%%+ ¢ Cl}'2
and v % (¢, x) — v (¢, x) locally uniformly, with monotonicity in «_. In the
special case in which s = 0, the PDE (12) coincides with (F6), and thus, with (11)
as shown in the proof of Proposition 3. |

C. Proofs for Section III and Appendix E
We first prove our formula for the static equilibrium price.

PrOOF OF PROPOSITION 5: We set e¢; = E;[f(X(T'))]. Given any price p, the ex-
pected net payoff for agent ; using portfolio q is

2

k]

qle; — p) —
ZaSign(q)

and the unique maximizer is g; = tsign(e,— p>T*1(ei — p) as stated in (14).
Let p be a static equilibrium price. Setting I, = {i € {1, ...,n}: ¢; < p}, the
market-clearing condition ), ¢; = s for these optimal portfolios yields

a Y ei—p)+a;y (e—p) =sT, (F7)

iel, ielt

and we observe that I, maximizes the left-hand side; that is,

IEI{I}aXn} (a Z(ei —p)+oa, Z(ei —p)— sT) =0.

""" iel icle

This is equivalent to the claimed representation (13) for p.
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Conversely, define p by (13) and ¢; by (14). Then ¢; is optimal for agent i
as mentioned in the beginning of the proof. Moreover, reversing the above, p
satisfies (F'7), and thus,

Zqi =o_ ZTﬁl(ei —p)+oay ZTﬁl(ei —p)=s,
=1

iel, iel¢
establishing market clearing. |

We can now deduce the formulas for the limiting cases of the static equilib-
rium.

ProOF OF PROPOSITION 6: Equation (15) follows by taking the limit o, — o0
in (13). Similarly, (16) is obtained by taking the limit «_ — 0 in (13). |

Next, we show that in the limit o, — oo with no cost on long positions, the
dynamic price exceeds the static price.

PROOF OF PROPOSITION 7: By equation (15) for pS,, it suffices to verify that
E[f(X(T))] < p§, for fixedi € {1,...,n}. Letu=u; € C;’Z be the unique solu-
tion of

1
oru + b; 0 u + ETraizaxxu =0, wT,)="F.

Then by the Feynman-Kac formula (Karatzas and Shreve (1991, Theorem 5.7.6,
p. 366)), we have u(0, x) = E;[f(X(T))]. Moreover, u is clearly a subsolution of
the PDE (11) for v*°, and now the comparison principle (Fleming and Soner
(2006, Theorem V.9.1, p. 223)) yields that E;[f(X(T))] = u(0, x) < v*>°(0,x) =
Dayn @s claimed. [ ]

In what follows, we show that in the limit «. — 0 where short selling is
prohibited, the same inequality holds, provided that one agents holds the
static market.

0,04

PrROOF OF PROPOSITION 8: In view of (16), we have pg," = E;[f(X(T))] — %

since the maximizing set is J = {i}. Using again the Feynman-Kac formula
(Karatzas and Shreve (1991, Theorem V.9.1, p. 223)), we deduce that pgt';’* =
(0, x), where u € C}? is the solution of

1 T
du+bideu+ = Tro2duu—— =0, wT,)=f.
2 oy
In particular, u is a subsolution of the PDE (12) for v*“+, and now the compar-
ison principle (Fleming and Soner (2006, Theorem V.9.1, p. 223)) yields that

pot = w0, x) < 12 (0, x) = pg’y‘;* as desired. m

We next turn to our example in which the static price exceeds the dynamic
price due to the delay option effect.
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Proors ror ExamMPLE 1 (Example E1): We begin with the static case. For
later use, we consider the more general situation in which o := 67 = o3 may
be positive (but constant). We havee; = E;[ f(X(T))] = x? + 2xb;T + T? + o*T,
and thus, as in (16), the static price pg, is

1 sT
Pota = 2 (E 2 e~ m>

ied
=x”+0°T + max {T? - sT/2,T* +2[x|T —sT}

or

2 2 2
+0°T +T=—-5sT/2, <s/4,
psta—{x o st/ Il < s/ (F8)

22+ 02T +T? +2\x|T —sT, |x| > s/4,

and the portfolios g; are as stated in Example E1.
Turning to the dynamic case, we restrict attention to o = 0. The limiting
equation for (12) is

v +max (|o,v| —s, —s/2)=0, u(T,-)=f. (F9)

In analogy to Proposition D1, this can be seen as the Hamilton-Jacobi equation
of a deterministic control problem where the drift « of the controlled state
dX(t) = u(t, X(¢)) dt can be chosen to be +1 or 0 and the running cost is s or s/2,
respectively. We can check directly that an optimal control for this problem is

sign(x), |x|+ (T —¢t)/2 > s/4,

uit, x) = [0’ lx| + (T —¢)/2 < s/4,

in which case the value function is found to be

ot %) = (x| +T —t)?> =s(T —1¢), |x|+(T —¢t)/2 > s/4,
T2 _s(T — )2, |+ (T —1)/2 < s /4.

Indeed, v is continuous and the unique viscosity solution of (F9).2¢ The indi-
cated formulas for pgm — psta = v(0, x) — psta and for the optimal controls ¢;
follow. |

Next, we prove the continuity of the prices in the small volatility limit.

Proor orF PrRoPOSITION 9: For the static case, the formula for pg, stated in (F8)
shows that p%, — p%, = 02T | 0. Turning to the dynamic case, we first show
that pg,, = v?(0,x) is monotone with respect to o. Since f is convex, x >
v (¢, x) is convex and thus 9,,v° > 0. Given o7 > o9 > 0, it follows that v’ is
a subsolution to equation (12) for v°!, and thus, the comparison principle for
parabolic PDEs implies that v* > v°. To see that v7(¢,x) — v°(¢,x), and in

36 As is often the case for deterministic control problems, the value function is not C1-1 and (F9)
has no classical solution.
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particular pg , — pgyn, we may again use a general result on the stability of
value functions (see Krylov (1980, Corollary 3.1.13, p. 138)). [ ]

It remains to provide the calculations for our symmetric example with o =
oy = 1

Proors FOR EXAMPLE 2: Following Remark 3, the equilibrium price function in
the dynamic case is

v(t,x) = E[f(x + ut + XB,)], where 7:=T —t¢,
and B, is a centered Gaussian with variance t. As f(y) = y2,
v(t, x) = x% + 2xput + p?c? + =%,
and the optimal portfolios in feedback form are given by
i I o 90, 1 5
¢i(t,x) = L'v(¢, x) = x(b; — b)) + ér(bi -b)+ 5(61- —0;).
For the static case, we have
e =x? +2xb;T +b}T? + 07T,
and thus,

e1t+eg

b2 + b2
Dsta = =x% 4+ 2xuT —i—%Tz—i—EZT

as well as

i—ej 1 1
G =T i = paa) = T 15 = (b — b))+ ST} = b9 + S (o7 — ).

D. Proofs for Section IV
In this section, we discuss the planner’s problem.

ProoF oF THEOREM 2: Let A be the set of all assignments, that is, all measur-
able functions a(t, x) = (a1(¢, x), ..., au(t, x)) with o < o; < .

(i) Fixa € Aanddenote |la|| = Y ; o;. Suppose first that w € C,}'Z is a given
equilibrium price function for «. As in Lemma F2, the unique optimal

portfolio for agent i is ®;(¢) = ¢;(¢, X(¢)), where

¢i(t, x) = a; (¢, X)L w(t, x). (F10)



(ii)
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The market-clearing condition then implies Y " ; ;L'w = s, which is
equivalent to

1 (&
m(Zme—s) =0 (F11)
i=1

or

n

1 s
w4+ — abaw—i— @020, W — — = 0. (F12)
ot ||Z o Tk el & Y

Together with the terminal condition w(T,-) = f, this implies by Itd’s
formula that w has the Feynman-Kac representation

t

T
w(t,x)=E[f(X2x(T))—/ Ko (T, Xﬁ;x(r))dr}, (F13)

where k, = s/|l| and X"* is a diffusion with initial condition X"*(¢) = x,
drift p, = ﬁ Yo", aib;, and volatility o, = m Yo aio;.

Conversely, suppose that « is sufficiently regular so that (F12) has a
solution w € Cbl’Q. Then reversing the above arguments shows that w is
an equilibrium price function given the assignment «. For examples of
sufficient regularity conditions on «, see, for example, Friedman (1975,
p. 147).

Consider the nonlinear PDE

sup Z alLlw=s.
aeA

Noting that the supremum is attained for o; = agign(zin), We observe that
this is the same PDE as (F3). To wit, after stating it in the equivalent
form

up—(Zalﬁ w— ) =0, (F14)

wed llall

we see that this is just a rewriting of (6). In particular, for the terminal
condition f, the unique solution of (F14) in C;} is given by the equilib-
rium price function v of Theorem 1, and the stated assignment associated
with I, attains that price. (As v € C; 2. this assignment is indeed “suffi-
ciently regular” in the sense used in (i) above.)

To see that any other assignment leads to a lower price, consider a fixed
(and sufficiently regular) assignment o = («y, ..., @) and its equilibrium
price v,. As v, solves (F11),

pi(i o L, —s>>m<2 Elva—s>_0

wea T\ &=
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This shows that v, is a subsolution of (6), and hence, v, < v by the com-
parison principle of Fleming and Soner (2006, Theorem V.9.1, p. 223). B

REMARK F1: The difference for a general (measurable) o is that the smoothness
of the solution to the PDE (F12) is not clear. However, one may substitute the
classical solution of the PDE by a suitable weaker concept to derive the conclu-
sions of Theorem 2. We sketch this for the case when the types disagree on the
drift but agree on the volatility o := o0;. Let @y be a probability under which

dX@) = o(t, X)) dW°(@),

where W° is a Qo-Brownian motion. For 1 <i <n, let @, be an equivalent
probability such that dWi(t) := dW°(¢t) — o~ 1(¢t, X(¢))b;(t, X(¢))dt is a Brownian
motion under @; and thus dX(t) = b;(t, X(¢))dt + o(t, X(t)) dWi(t) under @; as
desired for type i. Consider under @ the linear backward stochastic differential
equation (BSDE)

dY (t) = g(t, X(t), Z(t))dt + Z(t)dW°(t), Y(T)= f(X(T)),
where
g(t,x,z) = k,(t, x) — ua(t, x)o(t, x)" Lz

This equation has a unique square-integrable solution (Y, Z) (see El Karoui,
Peng, and Quenez (1997, Proposition 2.2)), and, in fact, Y is bounded in
the present case. We remark that this solution corresponds to (F12) in the
sense that if (F12) has a smooth solution w, then Y (¢) = w(t, X(¢)) and Z(t) =
o(t, X))o, w(t, X(¢)). Under the measure Q; of agent i, we have

dY (t) = [g(t, X(t), Z(t)) + Z(t)o ~1(¢t, X(t)b;(t, X)) dt + Z(t)dW'(t). (F15)

Similarly as in (F10), this implies that if Y is the price process, the optimal
portfolio for agent i is

D;(t) = o;(¢, X0))g(t, X(t), Z(t) + Z(t)o (¢, X(£)b; (¢, X()].

Moreover, the definition of g yields that these portfolios satisfy the market-
clearing condition ), ®;(t) = S(), that is, P :=Y is an equilibrium price pro-
cess. Conversely, any bounded equilibrium price process P’ induces a square-
integrable solution of (F15) and hence P' =Y by uniqueness.

Since the BSDE is Markovian, one can show that the process Y is necessarily
of the form Y () = v,(¢t, X(¢)) for a deterministic function v,. Even if v, is not
necessarily smooth, it is still a viscosity solution of the related PDE, which is
sufficient to apply the comparison principle as in part (ii) of the above proof to
see that the equilibrium price of Theorem 1 dominates Y (0). Alternatively, one
can apply the comparison principle of BSDEs (see El Karoui, Peng, and Quenez
(1997)).
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