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Abstract

Motivated by analogies with basic density theorems in analytic number theory, we
introduce a notion (and variations) of the homological density of one space in another.
We use Weil’s number field/ function field analogy to predict coincidences for limiting

homological densities of various sequences ZT(Ldl""’d’")(X ) of spaces of O-cycles on man-
ifolds X. The main theorem in this paper is that these topological predictions, which
seem strange from a purely topological viewpoint, are indeed true.

One obstacle to proving such a theorem is the combinatorial complexity of all possible
“collisions” of points. This problem does not arise in the simplest (and classical) case
(m,n) = (1,2) of configuration spaces. To overcome this obstacle we apply the Bjorner—
Wachs theory of lexicographic shellability from algebraic combinatorics.

1 Introduction

The purpose of this paper is to introduce the notion of the “homological density” of one
space in another, and to prove coincidences for limiting densities for various sequences of
spaces of 0-cycles on manifolds. We were led to such coincidences by analogy with classical
density results in analytic number theory. We do not yet understand why these topological
predictions end up being true.

Spaces of 0-cycles. Let X be a connected, oriented, smooth manifold with dim H*(X; Q) <
oo (this is a standing assumption throughout this paper). Fix m,n > 1. Let d denote a tuple
of non-negative integers (di, ..., dy) € Z%, and let |d| := 3, d;. Let Sym?(X) := X%/S, be

the d'* symmetric product of X; more generally, let Syma(X ) := [1; Sym%(X). Consider

the space Z,‘?(X ) < Sym&(X ) of sets D of |d| (not necessarily distinct) points in X such
that:

1. precisely d; of the points in D are labeled with the “color” ¢, and
2. no point of X is labelled with at least n labels of every color.
Such spaces of 0-cycles include several basic examples in topology and geometry. For example:

° Zgl(X ) is the configuration space of unordered d-tuples of distinct points in X.



m

d d
. Zl( B )(C) is the space of degree d, based rational maps f : CP! — CP™! with

floo)=[1:---:1].

The space ZS(X ) is a topological analogue of the set of “relatively n-prime” m-tuples of
ideals in the ring of integers in a number field K.

Homological densities. The density of one set in another (e.g. square-free integers in the
interval [1,d]) is a basic concept in analytic number theory. Motivated by the framework of
the Weil conjectures, we propose the following notion of “homological density”.

Recall that the Poincaré polynomial Px(t) € Z[t] of a space X with finite-dimensional
rational cohomology is defined by

Px(t) := ). dimg H'(X; Q)t'.
120
Definition 1.1. Let Y < Z be spaces with finite-dimensional rational cohomology. We

define the homological density of Y in Z to be the ratio of Poincare polynomials

Coincidences of limiting densities. Results going back to the 19th century imply that
the limiting density of the set of relatively n-prime m-tuples of ideals in a ring of integers O,
considered within the set of all m-tuples of ideals, converges to (x(mn)~! (see §2 below);
in particular, the limiting density only depends on the product mn and the number field
K. By considering this in connection with topological results of Arnol’d [Arn70], Segal
[Seg79], Cohen—Cohen-Mann-Milgram [CCMM91], Vassiliev [Vas92] and others, we were
led to predict that analogous coincidences should hold for limiting homological densities for
spaces of 0-cycles. That these predictions are true is the main result of our paper.

Theorem 1.2 (Coincidences between limiting homological densities). Let X be a
connected orientable smooth manifold with dim H*(X;Q) < oo such that the cup-product of
any k compactly supported cohomology classes is 0. If mi,n1, ma,ny are positive integers
with miny = mang = k then
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(1.1)
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where the limits are in t-adic topology on the ring Z[[t]] of formal power series; in particular
these limits exist as all d; — o0, at any rates.

In Remark 3.5 we verify that the hypotheses of Theorem 1.2 hold in the following exam-
ples.

Corollary 1.3. Let X be a connected manifold with dim H*(X; Q) < co. The conclusion of
Theorem 1.2 holds when:

1. X a smooth affine variety over C and k = 3; or

2. X an open submanifold of C" and k = 2; or



3. X an orientable, noncompact, smooth manifold and k > dim X.

For each fixed N > 0, Theorem 1.2 asserts that the limiting homological densities are the
same for all spaces with mn = N. This gives many coincidences of homological densities,
one for each divisor of N. For example when mn = 2, one sees that the following different
kinds of configuration spaces have the same limiting homological densities: 1)the space of
indistinguishable particles on X with no two in the same location, and 2) the space of red and
blue (otherwise indistinguishable) particles on X where no location has both a red and blue
particle. The main point of this paper is that these coincidences in topology exist, and that
one needs to consider homological density to see them. To prove Theorem 1.2, we in fact
compute the Poincare polynomials explicitly for every X, &, m,n; see (3.2) and Theorem 3.6.

For odd-dimensional manifolds we prove a stronger statement. While extending the
coincidences of Theorem 1.2, it also makes clear that, for odd-dimensional manifolds, the
limiting homological densities are less interesting.

Theorem 1.4. Let X be a connected, oriented, smooth, manjfold of dimension 2r +1 > 3
with dim H*(X;Q) < 0. Then the inclusion Z3(X) < Sym4(X) induces an isomorphism
on rational cohomology. In particular the limit (1.1) exists and equals 1.

Theorem 1.4 appears as Statement 1 of Theorem 3.1 below. Theorem 1.4 extends previous
results of Felix-Tanre! [FT05, Theorem 4] who proved Theorem 1.4 for configuration spaces,
i.e. the case (m,n) = (1,2).

The following is an illustration in a simple case of the content of Theorem 1.2.

Example 1.5. Consider the case when X = C* and mn = 2. A variation on theorems of
Arnol’d and Segal (using Theorem 3.1 below) gives:

lim Py (t) =1+ 2t + 22 4 2t3 4 - .. (1.2)
and
Bm P o) (t) = 143t + A% + 483 + - - (1.3)

An easy computation gives Py acx)(t) =141 for d > 2. So while (1.2) and (1.3) are
not equal, we find that:

i Pzge)() 14264202 423 ..
11m =

=1+t+t2 63+
d—o0 PSymd(CX)(t) 1+t

and
Papae)® 1430442+ 48

8 (Peyaiony ()7 1+ 1)
Sym®(C>)
are equal. This illustrates why one must take a quotient in Theorem 1.2. We remark that
Zfd’d) (X) in this example can be replaced by Zl(dl’dQ)(X) for any (di,ds) — o0.
!See also Bodigheimer—Cohen-Taylor [BCT89].
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Remark 1.6. The assumption that mn > 2 when X is an affine variety is sharp (and
similarly in (3) of Corollary 1.3): let X = T? — % be the punctured torus. For mn = 2, one
can compute using Theorem 3.1 below that:

lim PZg(TQ—*) (t)

=143 -3+
d—> 0 PSymd(TQ—*) (t)

while

izt

d— (PSymd(T2f*) t))

=1+ +55 4+

Homological Stability. We deduce the existence of the limits in Theorem 1.2 from the
following. For an m-tuple d = (dy,...,dy,), defined + 1; := (dy,...,d; + 1,...,dp).

Theorem 1.7 (Rational homological stability for spaces of 0-cycles). Let X be a
smooth, orientable, connected manifold with dim(X) > 2. For each 1 < i < m, there exists a
natural (in X ) map

H*(Z3(X); Q) — H*(Z2774(X);: Q)

n

that is an isomorphism for = < d; when either r = 2, m > 2 orn = 3, and * < d;/2 when
(r,m,n) = (1,1,2), this last case being the case of configuration spaces on surfaces.

In light of Theorem 1.4, the content of Theorem 1.7 is for dim(X) even.
Remark 1.8.

1. For X = C", the special case d= (d,...,d)of Theorem 1.7 is a consequence of Theorem
1.2(2) of [FW16]. For X = C" and general d, Theorem 1.7 was first proven by Gadish
[Gad, Theorem 6.13] as a special case of his theory of finite generation for families of
linear subspace arrangements.

2. For general X, Theorem 1.7 gives a simultaneous generalization of stability for config-
uration spaces [Chul2],[RW13], [BM14], [Knu] (the (m,n) = (1,2) case, proved only
recently), for bounded symmetric powers [Vas92, KM] (the (m,n) = (1,n),n > 2 case),
and for spaces of rational maps [Seg79] (the (m,n) = (m, 1), m > 2 case).

3. Arabia [Aral6] has considered a different generalization of (ordered) configuration
spaces than the kind we consider here, and defined a notion of i-acyclic, which is
equivalent to requiring that the cup product of any 2 compactly supported cohomology
classes is 0. For i-acyclic spaces, he gives formulas for the Poincaré polynomials of his
generalized ordered configuration spaces in terms of the Poincaré polynomial of X, in
the same spirit as the formulas we give in (3.2) and Theorem 3.6.

4. The main difference between Theorem 1.7 and these previously studied cases is the
greater complexity of the allowed collisions of the particles. Regardless of which topo-
logical method one uses to compute cohomology (we use the classical Leray spectral
sequence), one needs to keep track of this combinatorics, and to interface this informa-
tion with the topological tools used. This is the bulk of the proof of Theorem 1.2. A
crucial ingredient is the the Bjorner-Wachs theory of lexicographic shellability.



5. The shellability point-of-view shows why the case of configuration spaces is particularly
simple: the associated partition lattice is a pure poset.

Two variants. We prove Theorem 1.2 as an application of an explicit computation (The-
orem 3.1) of the Ey-page and first non-trivial differential of the Leray spectral sequence for
the sheaf Q and the inclusion Z9(X)— Sym?(X). The failure of this differential to vanish
is responsible for the failure of the coincidence in the example T? — % and mn = 2 above. We
now state two variants of Theorem 1.2 that bypass this differential.

Note that Px(—1) = x(X) for any space X. Further, recall that when X is also an
algebraic variety, it comes equipped with a mixed Hodge structure, giving Hodge-Deligne
numbers hP4(X) > 0 (see §3.5 below). These numbers can be concisely packaged into the
Hodge-Deligne polynomial %

HDx (u,v) := Z RPY( X )uPvl € Z[u,v]

p,g=0
and if X is a smooth projective variety then HD x (¢,t) = Px(t).

Theorem 1.9. Fizm,n > 1 and letd = (d1,...,dm), and letlimg  _ mean “as all d; — 007,
at any rates.

1. For X a connected, oriented, smooth, even-dimensional manifold with dim H*(X; Q) <
3
w7
Za’ezgo X(Zr(zl (X))x|d‘

-

ez, X(Sym(X))zld

In particular, this only depends on the product mn and on x(X).

(1= gm0,

2. For X a connected, smooth complex-algebraic variety, the limit

200 ()

HD
1lim

1.4
d—oo HD ( )

Syma(X) (U, U)
exists in the adic topology on Z[[u,v]], and depends only on the product mn, the mized
Hodge structure on H*(X;Q), and dim X.

Theorem 1.9 avoids the assumptions of Theorem 1.2 because the Euler characteristic
and the Hodge—Deligne polynomial do not distinguish between the Fs and E-pages in a
spectral sequence. It would be interesting to extract appropriate “correction terms” from the
differentials so that the (corrected) limiting homological densities coincide in general. Getzler
[Get96] has given generating function formulas for the Hodge—Deligne polynomials of ordered
configuration spaces, and as a corollary one has that the limit (1.4) in the case m = 1 is as
predicted by the analogy with arithmetic. The second part of Theorem 1.9 would also follow
from an analogous statement in the Grothendieck ring of varieties. We conjecture the limit

2This is slightly nonstandard usage: the Hodge-Deligne polynomial is more commonly defined using com-
pactly supported cohomology.
3For example, X is compact or is the interior of a compact manifold with boundary.



(1.4) lifted to the Grothendieck ring of varieties is (x ([A']~™")~1, where (x is Kapranov’s
motivic zeta function. The m = 1 case of this conjecture, as well as similar results for other
generalizations of configuration spaces is proven in [VW15, Theorem 1.30].

How arithmetic predicts the coincidences in Theorem 1.2. We originally conjectured
the coincidences of Theorem 1.2 by analogy with density results in arithmetic. As a simple
example, consider the following heuristic for the density of the set of square-free integers
among the set of all integers:

#{ne[l,d]:n # p*} _

lim = lim H Prob(p? { n)
d—0 #{n € [1,d]} d—»oop prime<d
1 _
= [Ja-5=c™
p prime p

where ((s) 1= Y| & is the Riemann zeta function. A heuristic for the density of pairs of

relatively prime integers among all pairs of integers is given by:

#{(m,n) € [1,d]? : gcd(m,n) = 1}

S #{(m,n) € [1,d]2} = C}Lnéop pﬂe< d[l — Prob(pim and pin)}]
1
- [l a-p -
p prime

Both heuristics above are accurate: it has been known since the 1800s [Geg85, Mer74]
that each density is indeed ¢(2)~!. This is a well-known coincidence. Note that in the two
limits we divide by d and d?, respectively, corresponding to the cardinality of the “background
spaces” [1,d] and [1,d]?.

Weil espoused a powerful analogy between number fields and function fields (over C and
over finite fields). This analogy gives in particular the following correspondences:

Number field Function field
[1,d] Pol, := {monic f € C[t] : deg(f) = d} = Sym?(C)
{square-free n € [1,d]} {square-free f € Poly} = Z4(C)
{(m,n) € [1,d]? : ged(m,n) = 1} {(fo, f1) € Pol2 : ged(fo, f1) = 1} = 244(C)
# (co)homology

Taking this analogy seriously, from the two examples above one might guess two things:
first, that limg .. Hy(Z$(C);Z) and limg H*(Zf’d(C);Z) exist; and second, that these
limits are equal. This is true: in two highly influential papers, Arnol’d [Arn69] and Segal
[Seg79] proved existence of these limits, and showed that they each equal H,(Q3CP';Z), the
basepoint component of the second loop space of the 2-sphere. *

4There are many other such coincidences. For example, generalizing the above, for any fixed n > 2 the
density of “n-power-free integers” among all integers equals ¢(n)~", which also happens to be the density of
n-tuples of integers with common ged 1 among all n-tuples of integers. See Section 2 for more details on the
analogy in number theory. The topological analogs were proved by Vassiliev [Vas92] and Segal [Seg79], with
limiting homology that of Q3CP"~!.



One might try to push the analogy further, replacing C with other open manifolds X.
However, as we see from Example 1.5 for X = C*:

lim H;(Z4(C*);Q) # lim H;(Z49(C); Q).
d—0o0 d—0

What went wrong? The answer lies in the fact that we didn’t take Weil’s analogy seriously
enough: we need to somehow “divide” by the spaces corresponding to [1,d] and [1,d]?,
namely Sym?(X) and Sym?(X)2. As indicated by Theorem 1.2, interpreting this division
as division of Poincaré polynomials gives a correct theorem in many examples. Note that
the necessity of dividing was not visible in the example when X = C since, by Newton’s
Theorem, Sym?(C) =~ C¢, and so Pymicy(t) =1 = (Pyyma(cy (1))2.

One can ask what exactly about cohomology should arise in the analogy above. The idea
that the function field analog of counting is an Fuler characteristic or Hodge-Deligne poly-
nomial is suggested by the Grothendieck-Lefschetz trace formula. This is a well-understood
analogy, and via this analogy Theorem 1.9 is predicted. In [VW15], based on theorems about
Hodge-Deligne polynomials motivated by arithmetic, Vakil and the third author posed many
questions about about actual Betti numbers, asking how far this analogy might extend to
topology and to what extent it can predict not just Euler characteristics but Betti numbers.
One point of this paper is that these analogies from arithmetic can be extended to topol-
ogy beyond just Euler characteristics, as seen in Theorem 1.2, but this extension is more
mysterious than the well-understood analogy with Euler characteristics or Hodge-Deligne
polynomials, as seen by Remark 1.6.

Outline of the proof of Theorem 1.2. We deduce Theorems 1.2 and 1.4 from an ex-
plicit description of the Es-page of the Leray spectral sequence for the inclusion Z9(X) <

Syma(X ); this description is the content of Theorem 3.1. The proof of Theorem 3.1 is quite
involved and takes up Sections 4-7. In outline, the proof of Theorem 3.1 proceeds as follows.

1. We start by considering an ordered version ZP(X) of ZS(X ), defined for any “m-
colored” set D, on which a product of symmetric groups Sp = Sg4, x ---Sg,, acts with

quotient ZE(X ). Our first goal is to analyze H*(Z2(X); Q) by using the Leray spectral
sequence for the inclusion 7 : ZP(X) — XP ~ xdI,

2. The FEs-page is given by HP(XP; Rir,Z). We must therefore understand the coeffi-
cient sheaves Rim,Z. In §5, we reduce this, using the Goresky-MacPherson formula,
to a combinatorial problem expressed in terms of the homology of order complexes
associated to certain posets of so-called “colored n-equals partitions”. In contrast to
configuration spaces (the case (m,n) = (1,2)), the possibility of particle collisions leads
to much greater combinatorial complexity of the relevant partition lattices.

3. To handle this complexity, we make critical use of Bjorner—Wachs’ theory of “lexico-
graphic shellability” [BW96, BW97]. This theory gives a method for proving that cer-
tain combinatorially-defined complexes are homotopy equivalent to a wedge of spheres,
and we show in Section 4 that it holds for the order complexes of posets of colored
n-equals partitions. We first use this to give a qualitative description of the Ey-page of
the ordered case in terms of sheaves supported on diagonals in X9l (Theorem 5.6).



4. The next ingredient for the computation of H* (Zf;i (X); Q) is the “local case” X = RY.
In §6 we give (Theorem 6.1) an explicit computation of H*(Z¢(R™); Q) . The key idea
is to consider a filtration of the “discriminant locus” in Sym9(RY), whose complement

is ZE(RN ), and then to use associated cofiber sequences in an inductive argument.
This is similar to the work of Farb-Wolfson [FW16], which in turn built on work of
Segal [Seg79] and Arnol’d [Arn70].

5. In §7 we combine the local computation with the combinatorial results of Section 4 to
obtain a quantitative description of the Sp-invariants of the Ea-page; by transfer this
gives Theorem 3.1.

6. In Section 3, we use the description of the Ej-page to obtain information about
H*(29(X); Q) and prove Theorem 1.2.

2 Analogies in number theory

In this section we indicate the statements in number theory that led us to the statement of
Theorem 1.2.

Given integers ai,...,an, we say they are relatively n-prime if there does not exist an
integer b > 2 such that b" | a; for all 4; in other words, if ged(ay, ..., an,) is n-power-free. Let
((s) be the Riemann zeta function. The following is a standard result in number theory.

Theorem 2.1 (see, e.g. [Ben76]). Given positive integers m and n, the limit

lim #{(a1,...,am) € (Ngg)™|a1, ..., an relatively n-prime}
d—o0 #{(al, cey am) € (Ngd)m}

exists and equals ((mn)~t. In particular, this limit only depends on the product mn.

Moreover, such a statement holds if we replace Z with the ring of integers O in an
number field K, the set N¢y with the set of ideals of Ox of norm at most d, the function
((s) with the Dedekind zeta function (x(s), and relatively n-prime with the requirement
that there be no non-trivial ideal b € Ok such that ™ | a; for all i.

In the usual analogy between number fields and function fields, we can also replace Z
with the ring of integers in a function field over a finite field such as F,[t]. Let Sy be the set
of monic polynomials of degree d in Fy[t]. A set of polynomials is relatively n-prime if there
does not exist a non-constant polynomial b that divides all of them.

Theorem 2.2 (see, e.g. [MD]). Given positive integers m and n, the limit

lim #{(a1,...,am) € (Sq)"|a1,...,an relatively n-prime}

d—0 #{(al,...,am) € (Sd)m}
exists and equals (g, (4] (mn)~L. In particular, this limit only depends on the product mn.

Similarly to the above, the analogous version is also true when we replace F[t] with the
ring of integers in any function field over any finite field. The function field statements can
also be interpreted geometrically as the following.



Theorem 2.3. Let X be a curve (not necessarily complete or smooth) over a finite field F,
with local zeta function (x(s). Given positive integers m and n, the limit

b #EAX)(E)
e (#Sym (X) (F,))

(2.1)

exists and equals Cx(mn)~t. In particular, the limit only depends on the product mn.

The number field version “with punctures” holds as well, taking the zeta function without
the factors in the Euler product corresponding to the punctures. In fact, Theorem 2.3
holds for any connected variety X, not just one-dimensional X, with x(mn)~! replaced by
Cx (mndim X)L

3 The Leray spectral sequence for H*(Zg(X); Q), and
applications

In this section we state our main technical theorem, Theorem 3.1 below, which gives the E
page of a spectral sequence converging to the cohomology of Z4(X). We then apply this
theorem as a black box to prove Theorems 1.2, 1.4, 1.7 and 1.9 given in the introduction.
The proof of Theorem 3.1 will then take up the rest of the paper.

3.1 Statement of the main technical theorem

We want to understand the cohomology of the space Zg (X) for X a smooth manifold with
dim H*(X;Q) < o. To this end, we consider the Leray spectral sequence for the inclusion

z4(X) c Symd(X) and the constant sheaf Q. We denote the (p, q) term of the j** page of
this spectral sequence by E99(X, d, n). Note that Ej**(X ,d, n) is a bigraded algebra, graded
by (p,q).

We will need some notation for certain bigraded vector spaces. Denote by Q[i] the rank 1
vector space of bidegree (0,7), and by H’(X;Q[i]) the vector space H’(X;Q) with bidegree
(j,4). Given any bigraded vector space V, the symmetric group Sy acts on V®* in the graded
way with respect to the total grading, i.e. as in the Kiinneth formula. Let Symlgr V' denote
the trivial S), subpresentation of V®*.

The following theorem is the main technical result of this paper. For the definitions from
mixed Hodge theory necessary to understand part (2) of the theorem, see §3.5 below.

Theorem 3.1 (Cohomology of spaces of 0-cycles). Let X be a connected, smooth,
orientable manifold. Fix d € N and n > 0.

1. If dim(X) = 2r + 1,7 > 0, then the inclusion ZE(X) — Sym&(X) induces an isomor-
phism on rational cohomology.

2. If dim(X) = 2r,r > 0, then Eg’q(X,a,n) = 0 unless p+q < 2r|d| and ¢/(2r(mn—1)—
1) e N_ . a;, in which case it is isomorphic to the degree (p,q) part of :
Symg > == B (X Q[2r(mn — 1) — 1]) © ) Symg, "¢/ Crtme=D=0 1 (X; Q[0])

i=1
(3.1)



where HP(X;Q[q]) has bidegree (p, q), and where bidegrees are additive under symmet-
TiC POwWers.

3. If X is a smooth complex variety with dimc(X) = r > 0 then EYY(X, d,n) is isomor-
phic, with its mixed Hodge structure to the degree (p,q) part of:

Symgé(%(m"_l)_l) H*(X;Q[2r(mn — 1) = 1](r(mn — 1),r(mn — 1)))

® (9 Symgs ¢/ Cremn=H=1 j*(X;Q[0](0, 0)).
i=1
where Q[i](c, c) denotes the rank 1 vector space of bidegree (0,i) and pure Hodge struc-
ture of weight 2c.

Remark 3.2. Theorem 3.1 only gives the additive structure of H*(Z4(X),Q). The precise
multiplicative structure seems more subtle. ® However, after passing to an associated graded
of a certain filtration, H*(Z3(X),Q) has a particularly nice multiplicative structure which
we hope to address in forthcoming work.

3.2 Application 0: Homological stability

In this subsection we deduce Theorem 1.7 from Theorem 3.1. When dim(X) is odd, the
theorem follows from Statement 1 of Theorem 3.1 together with classical rational homological
stability for symmetric powers. We thus assume that dim(X) is even.

Given &, n and X, consider the Sj-equivariant map between the spaces of ordered 0-
cycles 2,‘3“1' (X )—)ZNS(X ) given by forgetting the last point of color i. This map induces an
Sg-equivariant map between the associated Leray spectral sequences for the inclusion into the
ordered products. Transfer gives a corresponding map U : EP4(X,d, n)— EPY(X,d + 1;,n)
between the Leray spectral sequences computing H*(Z2(X); Q) and H*(Z3+1(X); Q). The
E5 pages of these spectral sequences are given explicitly by Statement 2 of Theorem 3.1.
The proof of Theorem 3.1 will show that for ¢ < d; - (2r(mn — 1) —1)/n and p + ¢ < 2r[d]|
the map W is given by the tensor product of the identity map on the first big factor of
(3.1), the identity map on all but the i*" factor of the second big factor, and the inclusion
Symg?n_nqﬂzr(mn_l)_l) H*(X;Q[0])— Symgfl_nqﬂzr(mn_l)_l) H*(X;Q[0]) on the remain-
ing factor. Applying classical rational homological stability for symmetric products gives the
desired result and the stated stable range.

3.3 Application 1: Coincidences between limiting homological densities

In this subsection we apply Theorem 3.1 to deduce Theorem 1.2. To understand the differ-
ential in our spectral sequence, we will recall some basic facts about the differential in the
Leray spectral sequence for the complement of a closed submanifold.

Lemma 3.3. Let Y be a smooth manifold and let Z be a smooth, closed submanifold with
orientable normal bundle. Let k = 1 be the codimension of Z in'Y . There is a map

H*(Z;Q) —» H***(v; Q)

5This question has been addressed in a recent work of Ho [Ho].
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described in any of the following equivalent ways.

1. The differential dy, : H*(Z;Q) = E;’k_l — E§+*’O ~ H***(Y; Q) in the Leray spectral
sequence for the inclusion Y\Z — Y with Q coefficients.

uTh
2. The composite H*(2;Q)  —3"" H*™**(Nyy, Nyp\0:Q) = H*H(Y,Y\Z:Q) — H**(Y;Q)
of the Thom isomorphism for the normal bundle Ny, an isomorphism from the tubu-
lar neighborhood theorem and excision, and the map from relative cohomology to coho-
mology.

3. The composite H*(Z;Q) =~ Hom(HI™?~*(Z;Q),Q) — Hom(HI™Z—*(V;Q),Q) =
H***(Y:Q) of the Poincare duality map for Z, the map from the usual pull-back of
compactly supported cohomology and the the Poincare duality map for Y.

4. When Z is connected and orientable, and Y = Z% with Z < Y the diagonal, and
e; 15 a graded basis for H¥*(Z;Q) and é; is a Poincaré dual basis for H*(Z;Q) and
T:HY™Z(7:Q) = Q, the map

o — Z T(eil U g, ua)éil®--~®éi[
Tl yeenylp

Proof. The equivalence of 1 and 2 follows by a similar argument as the identification of the
differential in [BT82, p.177-178]. The equivalence of 2 and 3 is explained in [BT82, p.65-69].
It is easy to work out 4 as an explicit version of 3; see for example Chapter 11 of [MS]. O

Theorem 3.4. Let X be a connected orientable smooth manifold such that the cup-product
of any mn compactly supported cohomology classes is 0. Then all the differentials of the

Leray spectral sequence for the inclusion Zg(X) c Sym%(X) vanish.

Remark 3.5. Note that when X = R” the hypothesis of Theorem 3.4 holds by [Aral6,
Lemma 1.2.4], and thus it similarly holds for any open submanifold of X = R" by loc. cit.. If
X is an affine variety over C, then each non-zero e; € H¥(X, Q) has degree > § dim X (by the
Andreotti-Frankel Theorem [AF59]), and e Ueg Ues is thus 0. As another example, if X is a
connected orientable non-compact smooth manifold, then since each non-zero e; € H* (X, Q)
has degree at least 1 (by X non-compact) we have e; U---Ueg = 0 for & > dim X . This proves
Corollary 1.3. In general, if X is a connected orientable non-compact smooth manifold, and
s is the highest degree in which X has non-vanishing cohomology, then for k > dﬁ;‘}{ S, the

hypothesis of Theorem 3.4 holds by a similar argument.

Proof. We have the complement of the diagonal j : X™\X — X" We claim that the
differential dgiy, x (mn—1) vanishes on EOdim X(mn—1)—1 {4 the Leray spectral sequence for j
with rational coefficients. The differential is given by Lemma 3.3 (4) and is clearly seen to
be 0 if and only if the cup-product of any mn compactly supported cohomology classes is 0.

Define Z{? (X) < XP to be the space of tuples of (not necessarily distinct) points in X
labeled by the elements of D such that no point of X has at least n labels of each color.
For any choices of n integers from 1 to d; for each i from 1 to m, we have a morphism from
m: ES(X) — X4l to the inclusion j that projects X9l to the mn chosen coordinates.
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From Theorem 5.6 and Lemma 4.8, we have that in the Leray spectral sequence for m,

Eg,dimX(mn—l)—l _ D H(X;,7)

Iell?
I singletons except one subset of size mn

and E;th(mn_l)’l = HdimX(mn—l)(X“i';Z). Moreover, we can see dgim x (mn—1) 18 trivial on
H°(X[,7) here because it pulls back from the Leray differential for the inclusion j via the
choices of coordinates given by I.

Consider the subalgebra A of the Fo page generated by the bottom row and E'g dim X (mn—1)—-1
By the above dgiy x (mn—1) vanishes on A. All lower or higher differentials then also vanish
on A because they are forced by degree to vanish on the generators of A. By Theorem 5.6,
Lemma 7.1, and the proof of Theorem 3.1 (specifically (7.8)), the algebra A includes all the
Sp invariants of the Ey page, and thus all differentials vanish for the Leray spectral sequence

for ZS(X) c Sym94(X), as desired. O

Thus under the hypothesis of Theorem 3.4, for with mn > k, we have, by Theorem 3.1

M [H*(Z3(X)] = [Sym, H*(X, Q)] | [[Sym?, H*(X,Q)] (3.2)
deNm i=1

is an equality in the Grothendieck ring of Z(™*1 graded vector spaces (replacing the bi-

grading above), where H7(Z4(X)) has grade (j,di,...,dy,) and the first H*(X,Q) has
grade (* +2dim X (mn — 1) —1,n,...,n) and the ith H*(X,Q) in the product has grade
(%,0,...,0,1,0,...,0), where the 1 is in the ¢ + 1 coordinate, and the grading used in the
definition of Sym,, is given by the first coordinate. Since

m

>, [H*(Symd(X))] = | [[Symj, H*(X,Q)],
denm i=1
with the analogous gradings, we can conclude the following result about the limits in Theo-

rem 1.2.

Theorem 3.6. Fix positive integers m,n with mn = 2. Let X be a connected, smooth
orientable manifold with dim H*(X;Q) < oo. Suppose that the Leray spectral sequence for

the inclusion ZE(X) c Sym%(X) and the sheaf Q degenerates on the Ey page. Let b;j(X) :=
dim H'(X; Q). Then

. i r(mn—1)—1\—(— i+2r(mn—1)—1p. iN—(— ir.
lim Pog oy (t) = H(l — (—t)it2r(mn—1)—1)=(-1)" bi(X) (H(l — (=t)H)~D m(X))
d—w i>0 is1

n

and

P_g (1 _
lim Z:i‘qX)( ) _ H(l _ (_t)i+2r(mn—1)—1)—(—1)1+27'(m"*1)*1bi(X)'

d—owo (PSymd(X) (t)) i=0
Here limg_ _ means “as all d; — o0” (at any rates), and we take the limit in the ring of

formal power series Z[[t]] with the usual t-adic topology.
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Proof. The E5 page of the Leray spectral sequence computing H* (ZE(X ),Q) is given by
Theorem 3.1. The assumption that this spectral sequences degenerates on the Fs page
thus implies that for & > 0, when all the d; are sufficiently large (given m,n,r, k), then

dimg H k(Zg (X),Q) is the dimension of the of total degree k part of
Sym?, H*(X; Q[2r(mn — 1) — 1]) ® () Sym?, H*(X; Q[0]).
i=1
Recall that for a positively graded vector space V with V; the degree i part, that the Poincaré
series of Symy, V' is
1_[(1 - (71)2'251')—(—1)’ dimVi‘
=1

The theorem then follows from the multiplicativity of Poincaré series under tensor product.
O

Theorem 1.2 then follows from Theorems 3.6 and 3.4.

3.4 Application 2: Coincidences for Euler characteristics

In this subsection we apply Theorem 3.1 to deduce Claim 1 of Theorem 1.9. By Hopf’s
Theorem that the Euler characteristic of a complex is the Euler characteristic of its homology,
we have, for any m,

X(Z1(X)) = x(B3™(X,d.n)).

When dim X = 2r is even, let g = 2r(mn — 1) — 1, and Theorem 3.1 gives

m

> PEH X d et el = [ [0 = (—0) () OO T = (1) ) 07000,

dezm, i=0 k=1i>0

where b;(X) = dim H*(X, Q). Setting ; = x and t = —1 gives

Z X(ZS(X))x\&I — H(l _ xmn)(ﬂ)ibi(){) ﬁ H(l B $)(,1)i+1bi(x)'

dezm, i=0 k=11i>0
It is standard that

D x(Sym? X)at = (1 — )X,
>0

and thus Claim 1 of Theorem 1.9 follows.

3.5 Application 3: Coincidences for Hodge-Deligne polynomials

Mixed Hodge structures and Hodge-Deligne polynomials. We will need some of the
basics of mixed Hodge structures; see, e.g., Chapters 3 and 4 of [PS08]|, as well as [Sai90].
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Let V' be a finite-dimensional vector space over Q. A (rational) pure Hodge structure of
weight n on V is a decomposition

Ve ::V®QC: (—B VP4

ptg=n

so that V%P = VP4, This decomposition gives a decreasing Hodge filtration F'Vp := Dp=i VP
of V. Classical Hodge theory shows that for any smooth, projective (complex) algebraic
variety X, the vector space H"(X;Q) has a pure Hodge structure of weight n.

Even when X is not compact (and in fact not even assumed to be smooth), Deligne
proved that for each i > 0, the vector space H'(X;Q) comes equipped with a mired Hodge
structure : there is an ascending weight filtration

0=W_1cWy<--- < Wy =Hi(X;Q)
and a descending Hodge filtration
H(X;C)=F'2F'2...2F"2F™" =0

with the property that the filtration induced by F on each graded piece Gry, (W) := W, /W,,_1
is a pure Hodge structure of weight n. Define h?%%(X) to be the dimension of the p*" graded
piece of this F-induced filtration on Grp;4(W). The Hodge-Deligne number hP4(X) is then
defined as hP9(X) := >, h»%(X). Each of these numbers is finite, and only finitely
many of them are nonzero. The Hodge-Deligne polynomial HD x (u,v) of X is the generating
function :

HDx (u,v) := Z hPY( X )uPv? € Zlu,v].
P,q=0

It is more common to define the Hodge-Deligne polynomial with compactly supported
cohomology, but we use regular cohomology here for simplicity. Since we consider smooth
varieties, by Poincaré duality the data in the polynomial is the same as in the usual definition.

Deligne proved that mixed Hodge structures are functorial : for any algebraic map f :
X — Y between varieties, the induced map f* : H*(Y;Q) — H*(X; Q) strictly preserves
mixed Hodge structures. Deligne also proved that the Kunneth isomorphism H*(X x Y) =
H*(X)® H*(Y) is compatible with mixed Hodge structures, as are cup products.

Corollary 3.7. Fix positive integers m,n with mn > 2. Let X be a smooth, connected
complex variety. Then
li HD H H z+27‘ (mn—1)—1, p+r(mn—1) q+r(mn 1)) (—1)it+2r(mn—1)~1pp.q.i( X)
im U
d—o HD md ( )

(X) p,g=0i=0

In particular, this limit depends only on the product mn and on the mired Hodge structure
on H*(X;Q). Herelimy means “as all d; — c0” (at any rates), and we take the limit in
the ring of formal power series Z[[u,v]] with the usual adic topology.

Proof of Corollary 3.7. We first claim that

lim HD, U,V lim HD < (u,v 3.3
d—w (X)( ) d—w (X’d’n)( ) ( )
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in Z[[u,v]]. To see this, first note that the associated graded (with respect to the two
filtrations of the mixed Hodge structure) spectral sequence EL(X, (_i, n) breaks up as a direct
sum of spectral sequences according to weights (r, s). Corollary 3.2.15 of [Del71] implies that
for any fixed weights (r, s), only finitely many terms of the FEy page of the (r, s)-weight part
of EPI(X ,&,n) are nonzero. Thus the F., page of this part equals the Ey page for some
N. We can thus apply Hopf’s theorem for finite chain complexes, that the alternating sums
of the ranks of the i-chains equals the corresponding sum for the ranks of the i-dimensional
homology groups. Apply this to each page gives the claim for each weight (r,s). Applying
this one weight at a time, the definition of the adic topology on Z[[u, v]] gives (3.3).
Equation (3.3) implies that :

HD _j, . (u,v) HD = (u,v)
Jim —— =) — lim - 2(Xdn) (3.4)

d— HDSym&(X) ('LL, U) HH(X) HDSyma(X) ('LL, U)

We thus need to understand HDEg’q(X,&,n) (u,v). We will do this by quoting Statement 3
of Theorem 3.1. We will build up to this, starting with a general statement.

Let V be a graded vector space endowed with a rational mixed Hodge structure. Then
we can write the associated graded of V' with respect to the two filtrations as :

gV =P P(Qp,qli]) e (3.5)

p,q=01i=0

for some v, 4; = 0. The mixed Hodge structure on V' induces a mixed Hodge structure on
the symmetric algebra Sym* (V). Its Hodge-Deligne polynomial can be written :

HDgypmx vy (u,v) = H H(l — (—1)iupvq)*(*1)i”1’qui. (3.6)

»,q=01:=0

We now apply this general reasoning to
V = H*(X;Q[2r(mn — 1) — 1](r(mn — 1), r(mn — 1))).

To this end, we first need to express V as in (3.5). Keeping track of weights and degrees,
and using the fact that h?7(X) =0 for p < 0 or ¢ < 0, we obtain:

V = H*(X;Q[2r(mn —1) —1](r(mn —1),r(mn — 1))
= @y g0 DL Wr DD (X Q)20 (mn — 1) — 1))

2dim X +2 —-1)—-1 . —r(mn—1),g—r(mn—1),i—2r(mn—1)—1
= @z Ot QT o

Now Statement 3 of Theorem 3.1 gives EY?(X, d, n) as a tensor product of two symmetric
algebras. As d— o0, the Hodge-Deligne polynomial of the first of these algebras converges
to HDgypx(vy(u, v), while for the second of these algebras the Hodge-Deligne polynomial
converges to (HDgym»(x)(u,v))™. Since

HDygw (u,v) = HDy (u, v) HDy (u, v)
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for mixed Hodge structures U and W, the right-hand side of (3.4) equals HDgyx (v (u, v).
Plugging the formula we just obtained for V in (3.6) gives:

i1=2dim X +2r(mn—1)—1
l ipp—r(mn—1),g—r(mn—1),i—2r(mn—1)—1
HDsymrey(w0) = ]| [ (1= (1))~ (DM )

p,g=r(mn—1) 1=2r(mn—1)—1

which by re-indexing equals

2dim X ] )
H H z+2r(mn 1)— lup-i-r(mn 1)vq+7"(mn 1))—(—1)1+2T<m"’1)*1h1”q*1(X)
p,q=0 =0

thus giving the theorem.
O

4 The poset of colored n-equals partitions and its homology

The goal of this section is to prove Proposition 4.13 and Theorem 4.9 below. These purely
combinatorial results are the first of three main ingredients in our proof of Theorem 3.1.

Fix throughout this section an integer m > 1 and m colors. Let D be a finite colored set;
that is, a finite set D and function D — {1,...,m} which we think of as “coloring” each
point of D by one of the colors 1,2,...,m. Let D(i) denote the subset of D consisting of all
elements with color i. For any set S denote the cardinality of S by |S|. Let

Sp := {color preserving self-bijections of D}
Definition 4.1 (n-equals partition).

1. Fix m colors. Let D be a finite colored set. A partition of D is an n-equals partition
if each block of the partition either has size 1, or contains at least n elements of each
of the m colors.

2. Denote by IIZ the poset of n-equals partitions of the colored set D, ordered by refine-
ment: I < J if and only if I refines J.

For m = 1, the lattice IT¢ has been intensely studied by Bjorner and his collaborators,
under the name of “n-equals” arrangement. Recall that elements of Hfll are partitions I of
{1,...,d} such that all blocks in the partition have size 1 or size at least n.

We record the following elementary observation. For a poset P, denote by P(< x) the
subposet of P consisting of all elements of P that are < z.

Lemma 4.2. Let J € IP. Let Ji,...,Ji denote the blocks of the partition J. Letstab;  Sp
be the stabilizer of J. There exists a stab j-equivariant isomorphism of posets

P (< ) HHJ

Proof. Refinements of J are equivalent to a choice of n-equal partitions of J; for each 7. The
claim follows. O
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We will need the following.

Definition 4.3 (0 and 1). Given a poset P with an initial object 0 and a terminal object
1, define P := P\{0,1}.

Definition 4.4 (The order complex A(P) of a poset P). For a poset P, the order
complex A(P) associated to P is the simplicial complex whose k-simplices are the chains
xo < x1] < -+ < xp (i.e. the totally ordered subsets of P).

gonvention 4.5. Note that if P is the poset with two elements (O, i) then P is empty, so
H.(A(P);Z) = Z in degree —1. As a special convention, if P is the poset with one element
then we will say that H,(A(P);Z) = Z in degree —2.

4.1 EL-shellability of the colored n-equals lattice

We quickly recall the theory of lexicographic shellability, first developed by Bjorner-Wachs;
see, e.g., Section 5 of [BW96].

For a poset P let E(P) denote the set of edges of P, i.e. pairs a,b € P with a < b and
no ¢ such that a < ¢ < b. For a < b in P, the (closed) interval is defined as [a,b] := {x € P :
a < x < b}; the open interval (a,b) is defined similarly. The poset P is bounded if it has a
greatest element 1 and a least element 0. A chain of length r in P is a string ag < - -- < a,
with a; € P. A chain is mazimal if it is not a proper subchain of any chain in P. A chain
ay < -+ < a, is unrefinable if it is maximal in the interval [aq, a,].

An edge-labelling of P is a map A : E(P)— A for some poset A. Given an edge-labelling
A, for a chain ¢ of length r we write A(c) € A” for the ordered tuple of the labels of the edges
of c¢. A rising chain in an interval [a, b] is a chain ¢ with the property that it is a maximal
chain in [a, b] with A(c) = (41,...,¢,) satisfying {1 < --- < £, in A.

Definition 4.6 (EL-labelling and EL-shellability). An edge-labelling A of a poset is
called an EL-labelling if :

1. Every interval [a, b] has a unique rising chain ¢, and

2. this unique rising chain is lexicographically strictly first among maximal chains: A(c) <
A(c’) for all other maximal chains ¢ in [a, b].

A bounded poset that admits an EL-labeling is called EL-shellable.

The property of EL-shellability is preserved by several standard properties of posets. In
particular, as given in Theorem 10.16 of [BW97]: if P and @ are bounded posets then P and
Q@ are EL-shellable if and only if P x () is EL-shellable. The importance of EL-shellability
comes from a theorem of Bjorner-Wachs stating that if a bounded poset P is EL-shellable
then A(P) has the homotopy type of a wedge of spheres, indexed as follows.

Definition 4.7 (Falling chains). Let P be a poset with an edge-labeling. A chain a¢ <
-+ < ap of Pis falling if it is maximal and for all 0 < ¢ < r the label ¢; of a;_1 < a; is not
less than the label ;1 of a; < a;1.

Lemma 4.8 (Theorem 5.9 of [BW96]). If a poset P is EL-shellable then
ﬁT(A(F), Z) ~ Z{falling chains of P of length 7"+2}‘
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The main result of this subsection is the following.
Theorem 4.9 (II2 is EL-shellable). The poset 1Y is EL-shellable.

Remark 4.10. Bjérner-Wachs [BW96, Theorem 6.1] give an EL-labelling for IT¢ for a single
d (i.e. in the case m = 1). By refining their construction, we give an EL-labelling of T2 in
all cases m > 1. Our labelling (and proof) reduces to theirs in the case m = 1. The case
m > 1 is considerably more delicate.

Proof of Theorem 4.9. If m = n = 1, note 112 is the same as if m = 1 and n = 2, so without
loss of generality, we assume mn > 2. First, we determine all the edges in I1”. Extending
Bjérner-Wachs, we introduce three types of edges in IT2, which we will show are exhaustive.
Whenever we write a; € D it denotes that a; is an element of D of color i.

Block creation: A new non-singleton block B with n elements each of the m colors is
created from singletons. Let B; be the set of elements of color ¢ in the block.

Singleton adding: A singleton block {a;} is merged with a non-singleton block.

Block merging: Two non-singleton blocks B (whose subset of color ¢ elements is B;) and
C' (whose subset of color i elements is C;) are merged.

By induction, we can show that the first two types of edges are sufficient to generate
every element of I1”. However, the first two types of edges do not give all edges.

To see that the 3 types above exhaust the list of edges, suppose that I < J is an edge.
Consider a non-singleton block of J that is not a block of I. The block of J is either (1)
entirely singletons in I, (2) contains a non-singleton block of I and a singleton of I, or (3)
contains at least two non-singleton blocks of I. In each case, there exists I’ with I < I' < J
and I < I’ of the corresponding type, and so I’ = J since I < J is an edge.

For each 1 < i < m, we pick a linear ordering on D(7) so that it is an ordered set. Let
d; := max D(i). We let D(1) be an isomorphic copy of the ordered set D(1) with elements a
for a € D(1). Let D(1)€ be the ordered set whose elements at a € D(1) and a —e for a € D(1)
with the obvious ordering (a — € < a and if @ > b for a,b € D(1), then a — e > b ). Let A be
the poset

K :=D(1) uD(1) x D(2) x D(3) x ... x D(m),

where D(1)€ x ... x D(m) is ordered lexicographically, and where a < « for all a € D(1) and
all ye D(1)¢ x ... x D(m).
We now define an edge-labeling of IT2 with labels in A:

1. For block creation of a block B, we assign the label (max By, ..., max By,).
2. For adding a singleton a; of color ¢ > 1 to a block B, we assign the label
AMBu{a;}) := (max By,...,max B;_1,a;,dijt1,...,dn).
For adding a singleton a1, we assign the label
AB u{ai}) := (a1 — de,da, ..., dn)

where § = 0 if a1 > max B and § = 1 if a < max Bj.
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3. For block merging, we assign the label max{B; u C1}.

We now prove that this edge-labeling is an F'L-labeling. Note that for an edge-labeling
to be an EL-labeling, it suffices to require that every interval [z, w] has a unique rising chain,
and that the first edge x < y of that rising chain has label less than any other edge x < z
with z < w. We will prove this stronger condition of our edge-labeling. We first prove this
condition for terminal intervals [z, i] in IT2, and then prove it for general intervals.

Step 1: Terminal Intervals. Let z € IIY be any element. We will show the condition
above for [z,1]. We will consider three cases based on the number of non-singleton blocks of
T.

Case I: We first consider the case that x has a single non-singleton block B. By our
edge-labeling, in a rising chain, block merging can never occur after block creation. Yet, any
maximal chain of [, 1] that creates a block must later merge it with the block of 2. Thus,
any rising chain in [z, i] can only consist of adding singletons.

Claim 1. There is a unique rising order in which singletons can be merged to B.

Proof of Claim 1. Let Scp < D\B consist of all singletons a; (for 1 < i < m) such that
a; < maxB;. Let Ssp < D\B consist of all singletons a; (for 1 < i < m) such that
a; > max B;. Note that Scp u S=p = D\B. We first will prove that in a rising chain in
[z, 1] singletons in S—p must be added before singletons in S p.

For any subset C' of D, we can partition D\C into Sc¢c U S~¢ as above. If we have a
block C and add a singleton a; € S<¢, we call that a low singleton add, and if we have a
block C and add a singleton a; € S~¢, we call that a high singleton add. Note that the label
A(C U {a;}) of a high singleton add to form a block C’ = C' U {a;} is greater than or equal to
the label of creating the resulting block C’. However, the label A(C’ U {b;}) of a low singleton
add of b; € S_¢ to a block C’ to form a block C” = C" U {b;} is less than the label of creating
the starting block C’. Thus, in a rising chain, a high singleton add can never be followed by
a low singleton add. Starting at x, the first singleton add from S~ p will be a high singleton
add (even if it occurs after some low singleton adds), and any singleton add from S.p at any
point will be a low singleton add. Thus, in a rising chain in [z, i] singletons in S.p must be
added before singletons in S p.

Next we will show there is at most one rising order to merge singletons in S<p, and at
most one rising order to add singletons in S~ p to B.

Singletons in S_p: We claim there is a unique rising order in which singletons in S<p
can be added to B. If we have added some singletons from S_g to B to form a block B’,
then note that max B; = max Bj for all <. Thus, whenever we add a singleton a; to a block
formed from adding singletons from S<p to B, the label will be

(maxBl, ce ,maXBi_l, a; — 56, di+1, e 7dm> (41)
(where § =0ifi>1and § =1ifi=1). If i <’ and a;, by € S<p, then since a; < max B;,
(max Bi,...,max B;_1,a;—0€,d;+1,...,dp) < (max By, ...,max By_1,by—0€,djry1,...,dp).

So if i < 4/, in a rising chain all singletons of color i in S—p must be added before any
singletons of color i’ in S_p. Among singletons of a given color in S< g, we note by the labels
as given in Equation (4.1), in a rising chain they must clearly be added in increasing order.
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Singletons in S. g: After adding all the singletons in S_.p to B to form a block B’, we
will show that there is a unique rising order in which to add the singletons of S.p = S.p.
The first singleton add from S~ p will be a high singleton add, and so by our observation
above, all further singleton adds in a rising chain must be high singleton adds. When we add
a singleton a; from S~ g to block C to form block C’ the label will be

(maxCl,...,maXC’i_l,ai,dHl,...,dm). (4.2)

(Note we do not have to consider subtracting € since that is only required for low singleton
adds.) We have max Cj; = max C’J‘ for j # ¢ and max C] = a; because adding a; was a high
singleton add. Suppose for the sake of contradiction that in a rising chain we add a; of color
1 followed by b; of color ¢/ with 7 < 4’. Then the label of adding b; to C” is

(max C1q,...,max Ci_1,a;,max Cii1,..., by, diyi1,...,dn).

Since every entry past the ¢th in this label is at most the corresponding entry in the label
of Equation 4.2 above, the chain cannot be rising and we have a contradiction. Thus, for
1 < i in a rising chain we have to add all elements from S- g of color i’ before each of color
1. Within a color, in a rising chain singletons clearly have to be added in increasing order.
So far, we have shown that in any rising chain in [z, 1], we have to add in singletons from
S<p in a unique order, and then add in singletons from S~ p in a unique order. It remains
only to check that adding the singletons in this order does indeed give a rising chain. It is
easy to check that adding singletons from S-p in the required order is rising, and the final
label is less than the label of the block creation of B. The first addition of a singleton from
S~p to B u Scp has label greater than the label of the block creation of B. Finally, it is
easy to check that adding singletons from S~ p to a block B u S_p in the required order is
indeed rising. O

We we have shown that when x has a single non-singleton block B, there is a unique
rising chain in [z, 1]. Next we will show that the first edge & < y of this chain has label less
than any other edge x < z. Suppose, for the sake of contradiction, that there is some edge
x < zwith z #y and ANz < 2) < Mz < y).

1. First we consider the case that x < z is a block creation of a block C (disjoint from
B). Then max Cy € D\B.

a. We consider the case that x < y has label with first coordinate < max Bj, then we
have max C7 < max Bi, which implies max C; < max B;. Thus, from our description of the
unique rising chain in [z, i] above, since S—p has some element of color 1 in it, the edge
x < y adds the smallest singleton of color 1 to B. Thus since max C is some singleton of
color 1 in S—p, the first coordinate of A\(z < y) is at most max C — €, which contradicts the
hypothesis that A\(z < z) < Az < y).

b. We consider the case that A(z < y) has first coordinate > max By, i.e. <y is a high
singleton add of a singleton of color 1, and by our above analysis of the unique rising chain
in [z, 1], it must be adding the smallest singleton s; of color 1 in D\B and D\B must have
no elements of any color > 2. If m > 2, then there can be no block C' in D\B to create.
If m = 1, then since n > 2, we have max(Cy > s;. Then A(xz < y) has first coordinate
s1 < max (7, which is a contradiction since C} is the first coordinate of A(x < z).

2. Second, we consider the case that x < z adds a singleton b; to B.
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a. We consider the case that b; € Scg. Then S.p is non-empty, and we see from our
analysis above of adding singletons in S—p that the label of x < z is the same as the label
of the edge that adds b; in the rising chain, which is greater than A(z < y), which is a
contradiction.

b. We consider the case that b; € S~ p, i.e. < z is a high singleton add. Then A(z < z)
is greater than the label of the block creation of B. If z < y was a low singleton add, then
A(x < y) is less than the label of the block creation of B, and so we conclude x < y must be
a high singleton add. From our analysis above of the unique rising chain, we then have S.p
is empty and x < y adds the minimal element a; of the maximal color ¢ of S=p. Thus j < i,
and if j =4 then a; < b;. Since x < z and x < y are both high singleton adds, we see from
the definition of the labels that A(z < y) < Az < z).

Thus in every case, we conclude that the first edge x < y of the rising chain in [z, 1] has
label less than any other edge = < z.

Case II: Suppose = had no non-singleton blocks, i.e. = 0. Then the only edges = < y
are block creations. Consider a rising chain ¢ in [z, i] that starts with an edge x < y that
creates a block B. From the above, we see there is a unique rising chain in [y, i] that we
can append to x < y to obtain c¢. If S—p is not empty, then the rising chain in [y, i] starts
with a low singleton add whose label is less then the label of the block creation of B, which
is a contradiction. Thus S.p is empty, and we have that B must consist of the n smallest
elements of each color. Thus any rising chain in [z, i] must start with a specified block
creation = < y, and from there continue with the unique rising chain in [y, 1]. This shows
there is at most 1 rising chain in [z,1]. Also, note that if we form the block B of the n
smallest elements of each color in z < y, then S.p is empty, and the first edge in the rising
chain of [y, 1] is a high singleton add, which implies its label is greater than the label of the
block creation of B. So, we can concatenate < y with the rising chain of [y, i] to get a
rising chain of [y,1]. Since any edge = < y is a block creation, and the block of the n least
elements of each color has label less than any other block creation, the first edge of the rising
chain in [z, 1] has label less than any other edge = < z.

Case III: Suppose x has more than one non-singleton block. Then in any maximal chain
of [z, i], there must be some block merging, and in a rising chain, all block merging must
happen before any block creation or singleton adding. So any rising chain must start with
block merging until there is only one block. If there are k blocks, and the maximal elements
of color 1 in them are a(1); < --- < a(k)1, then note that {a(j),} are the only possible labels
of block merges starting from these blocks into a single block. Further, @1 can never be
one of the labels of the block merges. Thus, since k—1 block merges are required with strictly
increasing labels, a rising chain must first merge the blocks containing a(1); and a(2);, and
then merge the result with the block containing a(3)1, and so on. Once we have one block
in a partition w, there is a unique rising chain in [w,1] from the above that only involves
singleton adds. Therefore there is at most 1 rising chain in [z,1]. Further, we note that
if we merge blocks in the order described above, that part of the chain is rising, and the
unique rising chain in [w, i] only involves singleton adds, whose labels are all greater than
block merge labels, and thus there is a rising chain in [z, i]. Finally, we consider the first
block merge x < y in this rising chain and any other edge = < z. If z is not a block merge,
then clearly AM(z < z) > Az < y), and if z is a block merge other than that of the blocks
containing a(1); and a(2)1, then A(x < z) > A(z < y). So, the first edge of the rising chain
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in [z,1] has label less than any other edge = < z.

Step 2: General Intervals. Let z < w € ITY be a general pair of elements. Let the non-
singleton blocks of w be D,, indexed by . Then, Lemma 4.2 gives that 11D (< w) ~ [, 5.
Each edge in IT? (< w) only modifies blocks that are subsets of a single D,. For each D,, let
o be the partition of D, obtaining by taking the blocks of x that are subsets of D,. Then,
for each a, we know there is a unique rising chain in [z4, 1] < ITP?. Note that edge labels
only depend on the blocks that are being modified by an edge. If we have a rising chain
of [z,w], for any «, we can take the subset of edges that involve modifying subsets of D,
and obtain a rising chain of [z, 1] < IIP* (which must be the unique such chain). Further,
the first coordinate of the label of any edge gives an element in a block (singleton or non-
singleton) being modified by that edge. Thus if a # 3, a label of an edge modifying subsets
of D, cannot be the same as the label of an edge modifying subsets of Dg. Since the labels
are linearly ordered, there is a unique way to combine the rising chains of [z, i] c TP« into
a rising chain of [z, w].

Finally, suppose that x < z is some edge with z < w. Let § be such that the first edge
of the rising chain of [z, w] modifies subsets of Dg. For each «, let x4 < yo be the first edge
of the rising chain in [z, 1] < IIP«. Note that for each a, the label of z, < y, occurs as a
label in the rising chain of [z, w], and thus AM(z4 < ya) = Mag < y) with equality if and
only if @« = 8. Then x < z corresponds, for some «, to an edge z, < z, of elements of Hfa,
and thus either z, = y, or the label of z < z (which is the same as the label of z, < z,)
is greater than or equal to the label of z, < y,, with equality if and only if z, = yo. Thus
Mz < z) = Mz < yg) with equality if and only if & = 8 and z, = yg. In other words, for
any edge r < z with z < w that is not the first edge of the rising chain of [z, w], we have
that A(z < z) is greater than the label of the first edge of the rising chain of [z, w]. O

Theorem 4.9 together with Lemma 4.8 shows that for any colored n-equals partition I,
the homology of A(ITD(< I)) is torsion free. Along with Lemma 4.2, this suggests a Kiinneth
type formula. We develop this now.

For any colored subset F' of D, the inclusion F' < D induces an injection of lattices
I < T2 and under this injection M =~ MP(< F), where F is the n-equals partition
consisting of the single nonsingleton block F' (or F =0 if F contains fewer than n elements
of some color).

In light of this, we can rewrite the isomorphism of Lemma 4.2 as

[P (< 7)) ——1l(< )

where {J;} are the blocks of the partition J. Note that we are viewing .J; both as a block of
J and as a partition of D with only that non-singleton block.

Definition 4.11 (cd(I)). For a partition I, define cd(I) := |D| — |I|, i.e. c¢d(I) equals the
number of elements of D minus the number of blocks of I.

Definition 4.12. Given I, J € H,?, denote their join by I AJ,i.e. I A J is the finest partition
which both J and I refine. We say that I and J meet transversely when cd(I) + cd(J) =
cd(I A J).
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As discussed in §1.8-1.9 and §4.2 of [DGMO00], the direct sum

D Hea(AMR(< 1)) 2) (4.3)
Iell?

has the structure of a graded-commutative algebra; we refer to its product as the intersection
product. From the construction (below), this algebra carries a natural Sp action.

Explicitly, the intersection product is given by 0 on summands associated to I and J which
do not meet transversely. On summands associated to I and J which do meet transversely,
the intersection product is given on each summand by the composition

Hi(AMP (< 1)); 2) ® Hy(AMD (< J)); Z) — Hiy (AP (< 1)) x AR (< J)): Z)

A J)); Z) (4.4)

where the first isomorphism is given by Kiinneth, the second isomorphism arises from a
canonical homeomorphism of order complexes of bounded posets, due to Walker [Wal88,
Theorem 5.1] %, and the final map comes from the join, viewed as a map of posets

(<) xOP (< J)—TP(< I A J)
(LK) — L A K.

For a partition I with blocks I1, ..., Iy, note that the isomorphism of Lemma 4.2 is just the
iterated join

[P (< L) —->ml(< 1)
i
(Ll,...,Lg) l—>L1 A /\Lg.

Comparing with the definition of the intersection product, we conclude the following.

Proposition 4.13. (A “Kiinneth” decomposition) Let I be a partition. Denote by

Iy, ..., Iy the blocks of I. The intersection product induces for each k = 0 a staby-equivariant
isomorphism
¢ - -
@D X Hy (A); Z) —— Hy o1y (AMR(< 1)) Z). (4.5)
kit tko=k i=1

In particular, the algebra (4.3) is generated by the subspace @ Hu—o( A(IID(< I')); Z) where
the sum is over partitions I' € TIY with precisely one nonsingleton block.

One might naively expect that Proposition 4.13 should follow directly from the Kiinneth
theorem. However, it is not the case that the isomorphism in Lemma 4.2 holds with TI2 (< I)
replaced by IIP(< I). Indeed, this is one reason that the intersection product is needed. On
the other hand, an interpretation in terms of Kunneth can be found in Lemmas 4.2 and 4.5
of [Pet2].

5We remark that our notation differs slightly from [Wal88]: here a degree 2 shift appears rather than
degree 1 (as in [Wal88]); this is because Theorem 5.1 in [Wal88] involves a suspension.
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5 Spaces of ordered 0-cycles

Now fix a manifold X of dimension N. Define ZNTLD (X) € XP to be the space of D-tuples of
(not necessarily distinct) points in X labeled by the elements of D such that no point of X
has at least n labels of each color. Since we have fixed m colors throughout, if D happens to
not include any elements of some color then ZNT? (X) = XP. The permutation action of Sp
on XP leaves invariant Z2(X).

The goal of this section is to prove Theorem 5.6 below. This theorem describes the
Q[Sp]-algebra structure of the Es-page of the Leray spectral sequence associated to the
inclusion ZP(X) — XP and the constant sheaf Z. The description will be in terms of
the cohomology of X and the homology of order complexes related to IT”. Petersen [Pet]
gives a spectral sequence for stratified spaces that might also be used to be understand the
homology of ZP(X). However, we crucially need to further understand that action of Sp on
the homology, and it is not straightforward to see that action in Petersen’s spectral sequence.
We begin by studying the combinatorics of the complement of 27? (RM) in RV, Let

Li(D) = {(Z1,...,%m) € RNPD 5 x RNYPO) | gy —agifor 1<i<n, 1<a<m,
<

T11 = T15 for 2 J < n}

Define the colored n-equals arrangement ANP 46 be the linear subspace arrangement in
(RM)P consisting of the set of all translates of Li(D) under the action of Sp. Denote by
12 (RN) the associated intersection lattice :

MPRYY :={Lc R")P | L =1Ly, n---n Ly, for o;€ Sp, Ly, = 0;(L1(D))}

and TIP(RY) is ordered by reverse inclusion. Note also that we include the entire space
(RM)P (i.e. the empty intersection when k = 0 above), and will alternately denote it by 0.
It is an initial element of the poset ITZ (R™).

Remark 5.1. For (m,n) = (1,2), the arrangement Af’D with complement ZNQD (C) is precisely
the braid arrangement studied by Arnol’d [Arn69]. Arnol’d showed that the cohomology
algebra is generated by classes in degree 1 subject to a quadratic relation. The algebras
H*(ZP(RYN);Z) are near cousins of Arnol'd’s algebra, and one might hope they admit a
similar presentation, though we do not expect that they are always quadratic algebras.

Problem 5.2. Give an algebra presentation for H*(ZP(RN);Z).

We do not solve Problem 5.2 here, but only give a set of algebra generators. A solution
to Problem 5.2 would shed significant light on the algebra structure of the Fs-page of the
Leray spectral sequence for the inclusion ZN,? (X)— XP.

Before continuing we will need to make a definition.

Definition 5.3 (cd(x),coor(x)). When z is an element of the intersection lattice of a
subspace arrangement over R, we will denote by cd(x) the codimension of the subspace z,
and when z is also a complex subspace, we write cdc(z) for its complex codimension. Let

coor(z) := HY(RY;Z) @ Hom(H™®) (1, 72),7).
More generally, given a smooth closed submanifold Z in a manifold X, define

coor(Z) := HI™X)(X:7) ® Hom(HI™?)(Z,7), 7).
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We will need the following form of the Goresky-MacPherson formula. The first statement
follows from Deligne-Goresky—MacPherson [DGMO00, Corollary 1.8, and §1.10-1.11], and the
fact that the morphism constructed in [DGMO00, §1.6] is clearly equivariant under our hy-
potheses. For the second statement, see Deligne-Goresky—MacPherson [DGMO00, §4.2]; or de
Longueville-Schultz [dLS01, Theorem 5.2], for a related treatment.

Theorem 5.4 (Goresky-MacPherson Formula). Let A := {L;} be an arrangement of
linear subspaces in RN, and let TL4 denote its intersection lattice. Let M 4 := RN — U, Li.

Suppose that for every x,y € Il 4 with © <y we have cd(y) — cd(x) = 2, and H*(M4;Z)
is a free Z-module. Then we have the following.

1. There exists an isomorphism of abelian groups

H'(MZ) = @ Heaga)-i—2(ALa(< 2)); Z) © coor(x) (5.1)

zell 4

that is equivariant with respect to invertible linear maps o € GL(R, N) that preserve the
arrangement A. (The action on the left-hand side comes from the action of the linear
maps on M4 and the action on the right hand side comes from the induced action on
II4 and the induced actions on the coor(zx).)

2. Taking the direct sum over alli = 0 in (5.1) gives an isomorphism of graded-commutative
algebras :

M.A, @ C—D Hcd(:v —i—2 A( (< ));Z)@COOI‘({L‘) (52)

i xell g

where the algebra structure on the right-hand side of (5.2) is the intersection product
(4.4) on the tensor factors for the order complex, and is given by the natural maps
coor(x) ® coor(y) — coor(x Ny), which are isomorphisms for subspaces x and y which
intersect transversely, and 0 otherwise.

Now let I be an n-equals partition of the colored set D, with blocks I1,...,I.. Let
X; © XP be the subset where coordinates from the same I; are all equal. Note that
dim X; = edim(X) and X; = [[, X;; where X;, = X and the isomorphism records the
equality of the coordinates indexed by I;. Define

cd(I, X) := dimg(X) - (|D] — e),

which is the codimension of X; in X”. When X = R¥, the X; form a linear subspace
arrangement, and we have the map of posets 12 — ¢x,y, given by I — X7 is an isomor-
phism. Further, we have an inclusion of the colored n-equals arrangement AY"" — {X},

and it is not hard to see that they have the same intersection lattices. So, we also have an
isomorphism of posets T2 — TIP(RY) taking I to X;.

Definition 5.5 (€r(q)). Let I be an n-equals partition of the colored set D, with blocks
I,...,I.. Define €;(q) to be the stabj-equivariant constant sheaf, supported on X, whose
stalk at each point equals

ng([’X)_q_Q(A(m); Z)@coor(Xy) = @ . Hk s Z)®coor(Xr,)
kit +ke=cd(I,X)—g—2ei=1
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where denotes the external tensor product of the constant sheaves ]?Ikl.(A(Hﬁ);Z) ®
coor(Xy,) on X7, and where stab; acts on the tensor factors by

Hy.,(AME5); 2) @ coor(X1,) —— Hy, (A5 1) Z) ® coor(Xy,.1,).

1

Theorem 5.4 for colored n-equals arrangement A5 "> endows the direct sum @ ¢ Prenp €1(q)
with a canonical structure as a sheaf of graded algebras.

Theorem 5.6 (The Leray spectral sequence). Let X be a connected, orientable manifold
of dimension N > 2. Let Eg’q(X,D,n) denote the (p,q) term of the Eo-page of the Leray
spectral sequence for the inclusion m : ZN,?(X) — XP, computing the cohomology of the
constant sheaf Z. on ZNE(X) There exists an Sp-equivariant isomorphism of bigraded algebras

@ EP(X,D,n) =P P HP(Xr;er(q)).

p.q p.q IEHE

Further, when X is a smooth, complex algebraic variety, this isomorphism respects mixed
Hodge structures. Here the mixed Hodge structure on

€1(q) = Heq(r,x)—q—2(AIP (< 1)); Z) ® coor(X)

is trivial on the first tensor factor and the canonical one (i.e. pure of type (cde(X7),cde(X7)))
on the second tensor factor.

Proof of Theorem 5.6. By the definition of the Leray spectral sequence, the theorem reduces
to showing that, given the inclusion 7 : ZP(X) — XP| there is an Sp-equivariant isomor-
phism of sheaves of graded algebras:

PRmZ =P P eiq).
q

q Iellp

where the Sp action on the right-hand side is given on the underlying spaces by ¢ : X;—X,.1
and the map of sheaves €;(q) — 0¥ ¢,.7(q) is given on stalks by

€I(Q)x = ~cd(I,X)—q—2(A(1_I7?(< I))a Z) L)ﬁcd(o-l,X)—q—Q(A(Hg(g g I))a Z) = EU-I(Q)U-x

where the first and last isomorphisms are those of Proposition 4.13.
For each ¢, we will give an Sp-equivariant map of sheaves

E = @ er(q) — Rin,Z.
Iellp

We give the map of sheaves by giving it on the basis of open sets on X consisting of all
sets of the form U = Uy x Uz x --- where each U; is a small, nice contractible open and such
that for each j, k either U; = Uy, or U; n U, = .

To such a U we can associate a partition J of D according to which U; are equal. Then,
as in [Tot96, Proof of Theorem 1] we have

HYU n ZP(X):2) ~ HI(Z(RY) x Z2RN) x - ;7). (5.3)
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By the Kiinneth isomorphism, we have

HY(ZIRY) x ZP®RYN) x - 32) = P éﬂi“(gi“(RN);Z)- (5.4)

i1 +-+ig=qa=1

For N = 2, the colored n-equals arrangement AN g easily checked to satisfy the codi-
mension assumptions of the Goresky-MacPherson formula (Theorem 5.4), and thus, for each
1 = 0, there is an Sp-equivariant isomorphism of graded algebras:

PH(ZRY)Z2) =@ D Heagry x)—in—2(AIL (< 1)); Z) ® coor(X7,) (5.5)

ia la [,ell;o

Plugging this in to (5.4) and distributing terms yields an isomorphism of graded algebras:

DHWUNZD(X):Z) =D ) ) ® cd(la, X)—ia—2( A" (< La)); Z)®coor(X7,)

a 4 ([, I)ell)} x. x It it tig=ga=1
(5.6)
By Proposition 4.13, the right-hand side of (5.6) is isomorphic as a graded algebra to :

P P ﬁcd(I,X)quQ(A(Hr?(g 1));Z) ® coor(Xy)
q IellD(<J)
which is isomorphic as a graded algebra to @, @ jcrip €1(¢)(U).
If V is another open set in our basis, with associated partition K, then if there is an
inclusion V— U, then K < J. The map V — U induces a homomorphism

HYU n Z2P(X);2) — HY(V n Z2P(X);2) (5.7)
@ H;d([,)()quz(A(Hr?(< 1)); Z® coor(X;) — @ Ercd([,X)fq72(A(H7?(< 1)); Z) ® coor(Xy).
TeTP (<) IelIR (<K)

From [DGMO00, Equation 1.11.3], we see that this morphism is just given by sending each
summand where I £ K to 0, and is the identity map on summands where I < K. This agrees
with the restriction map @ ;o €1(q)(U) — P epo €1(¢)(V), so gives an isomorphism of
sheaves of algebras. ! !

We now prove the second statement of the theorem. Our computations above, combined
with Proposition 4.13, give that the Fy page of the Leray spectral sequence is generated by
H*(XP) together with @, H*(Xy;€er/(q)), where the direct sum is over partitions I’ € TIY
with precisely one nonsingleton block. It is therefore enough to compute the weights on these
summands.

The summand H*(XP) is just the restriction along the inclusion ZP(X) < XP, and
so carries its canonical mixed Hodge structure, as claimed. Now consider each of the other
summands H*(X;ep(q)). Write I’ as I; plus singletons. There is a commutative diagram
of varieties:

zZb(x) — XxP
| !
zZh(X) —; Xh
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By the naturality of the Leray spectral sequence, this commutative diagram induces a map
of Leray spectral sequences from that of the bottom row to that of the top row. By the first
part of the theorem, the image of this map equals @ ;. H*(Xs;€5(q)). It thus suffices to
compute the Hodge type for the Ey page of the Leray spectral sequence for the inclusion
Jx,n: ZN# (X) < X7, This will follow from a standard argument, which we now recall for
the sake of the reader.

For simplicity of notation, let W := C4mc(X) Recall that for a colored, n-equals partition
J € %1 we denote by W be the linear subspace in W/t defined by setting coordinates to be
equal as determined by the partition J. For z € X7t — 27{1 (X), a standard argument using
Noether Normalization shows that there is an étale neighborhood f: U — X't of  in X1
that admits an étale map 7 : U — W' with the property that 71 (W;) = f~1(X) for each
J eTIIlt. So for 2 € X; we have an isomorphism

(RUjx.1 L)z — RY(jw,1)+L)y.

where the right hand side denotes the stalk at a generic y € W of the push-forward of the
constant sheaf along the inclusion

jW,J: Z~7{1 (W) X VVIl\j1 — Wh.

Now ZV;L]l(W) x W1\ is just a linear subspace complement, and so the Hodge types are
known by work of Bjérner-Ekedahl [BE97, Theorem 4.9].7 Because Wt =~ (A")!! is acyclic,
the Fy page of the Leray spectral sequence for jy,; is precisely H 0 of the pushforward
sheaves RY(jw,j)«Z. Further, the work of Bjorner-Ekedahl identifies the Fa-page with the
cohomology of the arrangement. Taken together, this gives that

(R1(jx,1)+Z) s = (‘D Hcd(K,X)fq72(A(H7lll(< K));Z) ® coor(Wk).
K<J

which in turn equals the stalk at = of the sheaf D €x(q); see Theorem 0.1 of [Sai90] for
the fact that this sheaf is a mixed Hodge module, and therefore its stalks are endowed with
mixed Hodge structures. Note that the codimension of Wg in W' equals the codimension
of X in XP. Combined with the above, this gives an isomorphism of sheaves

R?*Z >~ @ ex(q)
K<I’

This completes the proof of the second statement of the theorem. O

6 The Local Computation: X = RY
Given a colored set D, define

d:= (|IDQ1)],...,|D(m)|) e N™

"Theorem 4.9 of [BE97] is stated for étale cohomology of arrangements over finite fields. However, as
observed in the last line of p. 168 of loc. cit., the arguments give the analogous statement for mixed Hodge
structures of the cohomology of arrangements over C. This is also directly addressed in Example 1.14 of
[DGMO00].
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where |D(i)| denotes the number of elements of D of color i. The permutation action of Sp
on XP leaves invariant Z,? (X). We denote the quotient space by

Z1(X) == 27(X)/Sp.

The goal of this section is to compute H "(Z,‘?(RN ); Q) for N > 2. If we had an explicit
presentation of the algebra H*(Z9(RY);Q), one might hope to compute the Sp-invariants
directly, thus giving H(Z3(RY);Q) by transfer. We do not know such a presentation.

Instead, we induct on a canonical filtration of Sym9(R"), extending arguments in [FW16].
The method goes back to Arnol’d [Arn69] , and Segal [Seg79].

Given /, let d + ¢ denote the vector (di+4,....dpy +0), let d + ¢; denote (di,...,d; +
(,...,dy), and let £-d denote the vector (¢dy, ..., ¢d,,). Our goal in this section is to prove
the following.

Theorem 6.1 (Local computation). Fizr > 1, n, m and d with d; > n for all 4.

1. If N =2r+1, then
HI(ZI®> ), Q)

lle

{ Q i=0 (6.1)

0 else
2. If N =2r, then

~ Q i=2r(mn—-1)—-1
H'(ZIRY™);Q) =4 Q i= (6.2)
0 else

6.1 Proof of Theorem 6.1: the top level

Let Qo denote the orientation sheaf on Z2 (RY). Because zD »(RY) is an oriented manifold,
transfer followed by Poincare duality gives:

H*(ZI®RY);Q) = H*(ZP(RY); Q)
= (HYPIHEP(RY); Q) ® Qur) 2.
The Sp action on Q; is given by

) Qsgn N odd
| Quiv N even

where Qggn and Qv are the restrictions to Sp < S‘ D| of the sign and trivial representations.
This is the critical place where the even and odd dimensional cases differ.

Case 1: N > 1 odd.

Let Ap := Sp n Ajp| © S|p|- By transfer and the fact that Sp acts on Qo by the sign
representation, we have that

(HX(ZP(RY);Q) ® Qor)*P = (HF (ZP(RN)/Ap; Q) ® Qor)*2. (6.3)
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Define R’Zl(RN) .= (RM)P — ZD(RYN). The open embedding
27 (RY) — (RY)P
gives rise to a long exact sequence in compactly supported cohomology
= HUZP(RY); Q) — HY(RY)P; Q) — BB, (RY); Q) — I (2 (RY): Q) — -+
By Equation (6.3) and Poincare duality, the theorem for N > 1 odd is equivalent to :
(HZ (R, (RY)/AD; Q) ® Qugn)*? = 0.

To see this, it suffices to observe that Sy acts trivially on the space Rfl) L(RN)/Ap. Indeed,
by definition, any x € }N%T[L) L(RN) has at least two coordinates, say a; and b;, of each color i
being equal. On the other hand, the Ss-action on the orbit space éﬁl(RN)/AD is given by

applying any transposition to an orbit representative. Picking the transposition (a; b1), we
see that So - [z] = [z] as claimed. This completes the proof of Case 1.

Case 2: N > 1 even.

Now let N = 2r. We will make repeated use of the fact that for any k,

Q «=0

0 else

Sy (R ;@) - {
by transfer, and, similarly, for any space X,
HZ (X x Sym"(R™);Q) = HX *™(X; Q).

Now, as observed above, by Poincaré duality and transfer it suffices to prove the version in
compactly supported cohomology.

Our argument follows the lines of the argument in [FW16], which itself is an extension
of the arguments in Segal [Seg79]. Recall the filtration:

R2rldl = Rg’O(R%) ) R?;l(RZ”) S>--D Y.
with Rg’ . (R?7) the space of m-tuples (D1, . .., Dy,) of effective 0-cycles on R*", with deg(D;) =
d;, for which there exists an effective 0-cycle D of degree at least k, and effective 0-cycles

C;, such that D; = C; + nD for each i. By the same arguments as in [FW16], there are
homeomorphisms

RS L (R¥) — R3, | (R”) = zd=nk(R2) % Sym*(R?").

Since N = 2r and since Qo =~ Qtiv as Sp-equivariant sheaves, to prove the theorem it is
enough to prove Equation (6.4) in the following.
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Proposition 6.2. Let r > 1. Letd > n-1 and k < |28 | Then

n

Q i=2r(d —mn+1)+1

H(ZIRY);Q) ={ Q i=2rd]

0 else

i )= 2r(|d| — k(mn — 1))
Ht d RQT . ~ Q ?
C(Rn,kz( )aQ) { 0 else
and for each j = 1 the continuous open embeddings
ZE(R%) « R2" —)ZSJrlj (RQ’F)

R4, (R?) x R — YT (R?)

(6.5)
(6.6)

given by “bringing zeroes in from infinity” induce isomorphisms on compactly supported ra-

tional cohomology.

Our goal in the rest of this section is to prove Proposition 6.2, and thus Theorem 6.1.

6.2 Proof of Proposition 6.2

We prove the proposition by induction on (c_i, k), ordered lexicographically upward on the

entries in d and downward on k.

For the base cased = n-1 := (n,...,n), the isomorphism (6.4) follows immediately from

the isomorphism
ZPT(R?Y) = Sym™(R*) — R¥ = Sym"(R¥)™ — R¥".
Similarly, we have isomorphisms
RZE ~ R
RYY = Sym™ (R = Sym"(R¥")™

and a map of cofiber sequences

RZE+11‘ (R2r>+ . R27g+12 <R2r>+ (erLLerll (R2r))+

J J |

(REIR?) x R¥)Y —— (REE(R?) x R¥) Y —— (ZPT(RY) x R¥N)*

)

where X denotes the 1-point compactification of X. This is homeomorphic to

(R4r)+ } (Symn‘T"ﬂ‘li RZ’I“)Jr (Z’,?’LL'T+12'(R2T))+

J | |

(RQT’ % RQT)-i— (SymnT(RZT) % RQT)-i— (ZnT(RQT) % RQT)-%—

n

31



Because the first two vertical maps induce isomorphisms in cohomology, the Five Lemma
(applied to the map of long exact sequences in cohomology) shows that the right vertical map
induces a cohomology isomorphism as well. This establishes the base case of the induction.

Given these base cases, the main claim (6.4) of the proposition follows from the claim
that (6.5) is an isomorphism. Suppose we have proved the isomorphism (6.6) for all (d’, k).
Consider the map of cofiber sequences

RyTH(RY) T ———— (Sym T H (R7) Y ——— (25 (R™))

J |

(Rg,l(R2r) % R2r>+ — (Sym&(R2r) % R2T)+ N (ZE(R2T) % R2T’)+

and note that the center column is just the case of (6.6) for k¥ = 0. Our assumption on
(6.6) gives that the left-hand and central vertical maps induce isomorphisms on cohomology.
Applying the Five Lemma to the long exact sequence in cohomology gives that the right-hand
vertical map induces an isomorphism on cohomology, proving the isomorphism (6.5).

It remains to prove the formula for the compactly supported cohomology of Rf: k(Rzr)
and the isomorphism (6.6). We have already shown the base case. For the inductive step,
suppose now that we have shown the proposition for all (&/ ,k) with d’ < d. We will show,
by downward induction on k, that the proposition holds for (c_i, k) for all k. To prove this,
we consider two cases.

Case 1: n ¢ d+ 1;. This case means that d+ 1, #n- d’ for some d’. For the base case
of the downward induction on k, i.e. k = [%ﬁdlj, a similar observation to the above shows
that the map (6.6) induces an isomorphism on compactly supported cohomology.

Now suppose we have shown that (6.6) induces such an isomorphism for d+1; and
k+ 1> 1. Observe that the “bringing in zeroes” maps fit together to give a continuous map
of cofiber sequences

Rg:};izl (RQr)+ N RS:};L (RZT‘)+ - (Zy(ld-i_li)_kn(Rzr) y Symk(RQ’”))Jr

| J |

(Rg,k+1(R2T) % RQT)Jr (ng(RQr) % R2r‘)+ N (ZS*]{TL(RQT) X Symk(R2r> % RQT)+

Our inductive hypotheses show that the left and right vertical maps induce isomorphisms
on cohomology. Applying the Five Lemma to the long exact sequences in cohomology gives
that the central map is an isomorphism in cohomology. This concludes the induction step,
and thus the proof, when n { d+1,.

Case 2: d + 1; =an-1 for a > 1. In this case, the induction proceeds as above, once we
establish the cases k = a and k£ = a — 1. The claim about the cohomology of R?,fa'l follows
from the isomorphism B

R;ﬁl ~ Sym?(R?").

For k = a — 1, the identification

Ran-l R;zltza-l ~ Z;L'I(RQ’I‘) > Syma—l(RQT) ~ (Symwl(R%’) _ RQT) ~ Syma—l(RQT)

n,a—1
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gives rise to the long exact sequence in compactly supported cohomology

PO (Sym™ T (R R Q)— HE (REL (R?); Q— HE (Sym (R?); Q—- -

n,a—1
This implies that

0 p<2ra

0 2ra+l<p<2r(imn+a-—1)
Q p=2r(mn+a—1)

0 p>2r(mn+a-—1)

HP(RAL, (R?); Q) =

n,a—1

This leaves the cases p = 2ra and p = 2ra + 1. For these, we have a long exact sequence

0—s H2Z*(RYT (R?); Q) — H2 (R Q) —2 HZ*F1((Sym™  (R*") — R?") x Sym™ ' (R*); Q)
N H62ra+1 (Ranf (RQT‘); Q) —0.

n,a—1

It suffices to show that the boundary map is an isomorphism. To see this, consider the closed
embedding

RZT x Syma—l(RZT) N Symn-T(RQT) > Syma—l(RZT)
(z,D)—> (n-z,---,n-z,D)

where we view R?" x Sym® }(R?") as the variety of pairs of effective 0-cycles (2, D) on C”
with deg(2) = 1 and deg(D) = a — 1, and where we view Sym™!(R?") x Sym®~!(R?") as the
variety of (m + 1)-tuples of effective 0-cycles

(D1,---, Dy, D)
with deg(D;) = n and deg(D) = a — 1. By inspection,
Symn.I(R2r) % Syma—l(RQT) _R2 « Syma—l(RQT) ~ ZQ'T(RQT) % Syma—l(R2r>
and the assignments

(2,D) — (z+ D)
(Dla"' aDmaD)'_)(Dl'i_an"' 7Dm+nD)

determine a map of cofiber sequences

(RQT % Syma—l(RQr))Jr SN (Symn~f(R2r) % Syma—l(RZT))Jr SN (ZQT(RZn) % Syma—l(RZT))Jr

J J l

Ry L (R Ren L (R) " —————— (21 T(RY) x Sym™ ! (R¥"))*

The left vertical map is an a-fold branched cover, so on the top degree of compactly sup-
ported cohomology, the map it induces is multiplication by a. In particular, this gives an
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isomorphism in rational cohomology, and by the Five Lemma applied to the map of long
exact sequences, we see that the cohomology of R?Lfla'l_l(RQT) is as claimed.

Finally, to see that (6.6) is an isomorphism for d+ L,=an-Tand k = a— 1, we apply the
Five Lemma to the map of long exact sequences induced by the continuous map of cofiber

sequences

R%n~T(R27")+ Rmvf (R2r)+ (ZZLLT(RQT) % RQr(a—l))-‘r

,a n,a—1
M (R(ranal 11 (RQT) % RQT’) (ng—li (RQT) « R2r(a—1) ]RQT)+

Using that the map (6.6) is now an isomorphism for d + 1; = an - I and k = a — 1, the
downward induction on k now proceeds exactly as above, and this completes the proof of the
proposition. O

7 Completing the proof of Theorem 3.1

In this section we complete the proof of Theorem 3.1. We will deduce the theorem in a
number of steps, using Theorem 4.9, Theorem 5.6, and Theorem 6.1. By transfer,

EPY(X,d,n) =~ (E?9(X,D,n) ®Q)°P
Sp

@ HP(X1;er(q) ®Q) (by Theorem 5.6)
Iellp

lle

Sp
@D HP(X1;er(q) @ Q)*toPr

Iellp

lle

Moreover,

HP (X3 e1(@)*1 = (HP (X e1(q) @ Q)51 St tabs (817551,
and, because Sy, x --- x Sy, acts trivially on X7,

> (HP(X3 (er(q) @ Q)1 S abr Sy x5i,),

Our first task after this reduction of the problem is to describe the coefficients (e;(g) ®
Q)51 > *51k)) . Before stating the next lemma we need some terminology. Let dimpg(X) = N.
Let Q[j] denote the rank 1 graded vector space of bidegree (0, j). Note here that the external
tensor product is bigraded.

Lemma 7.1 (Invariants of the coefficient sheaves €;(q)). Endow €;(q) with the bigrad-
ing (0,q)-
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1. Let dimg(X) = 2r + 1,7 > 0. There is an Sp-equivariant isomorphism of bigraded
sheaves on XP :

((0)®Q) = Q[0]
where Sp acts trivially on Q[0]. Further, for all I # 0 e 11D :
(er(g) ® Q)15 = 0.

2. Let dimg(X) = 2r,r > 0.
(a) If I consists only of singletons and q/(2r(mn — 1) — 1) blocks of size mn, then

V4 m
stab; = (] [ S1.) % Sy/@rimn—1)-1)) X ]‘[58 1) (7.1)

=1 1=

where s(I,1) denotes the number of singletons of color i, and there is a staby /(Sr, %
Sp, x -+ )-equivariant isomorphism of bigraded sheaves on X1 :

(e1(q) ® Q)1 = Q[q]

where staby /(St, X Sty %+ -+ ) = Sgj2rmn—1)—1) X | [i=1 Ss(1,5) acts on the sheaf Q[q]
via the alternating representation for Sq/(%(mn 1)—1) and the trivial representation

for TTiZy So1,i)-
(b) For all other I:

(e1(q) ® Q)" ~ 0.

Proof of Lemma 7.1. Let N = dimg(X). We first prove the lemma in the case where || = 1,
i.e. I =1 is the terminal object in 112 and stab; = Sp. Note that Sp acts trivially on Xj. By
the Goresky-MacPherson Formula (Theorem 5.4) and the definition of ex(q), for all z € Xj,
there is an Sp-equivariant isomorphism

P ex(@®Q| =HIZ)R");Q).

Kell? .

Recall the following three facts :
1. By Theorem 6.1, for > 0 we have :

B Q ¢g=2r(mn—-1)—1
HIZIR™);Q) ={ Q ¢=0 (7.2)
0 else

and

(IR ) Q)

lle

{ Q q= (7.3)

0 else
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2. Transfer and the Goresky-MacPherson formula (Theorem 5.4) gives, for each ¢ > 0 and
all N = 2:

HY(ZI®RY);Q) = HI(ZP(RN); Q)P
Sp

@D ﬁcd(I,RN)—q—Q(A(H5(< I)); Q) ® coor((RY)
Iell?

lle

3. Theorem 4.9 gives that e satisfies the hypothesis of Lemma 4.8. This lemma then
gives that dim H RN)_q_2(A(H€); Q) is given by the number of falling chains of IT?
of length cd(1,RN) — q.

Recall that €;(q) ® Q is the constant sheaf I:ICd(LRN)iqu(A(@); Q) ® coor(Xj) on Xj.

First suppose that N = 2r + 1,7 > 0. Then Sp acts on the sheaves coor(Xy) by the
sign representation for all I # 0. The three facts above combine to show that the Sp-
invariants (e;(g) ® Q)P vanish unless ¢ = 0, and there exist falling chains C in IIZ with
((C) = cd(1,R¥+1). Since cd(1,R**1) = (2r + 1)(|D| — |1]) = (2r + 1)(|D] — 1), these
conditions are equivalent to:

0C) = (2r+1)(|D] —1). (7.4)

Now suppose N = 2r,7 > 0. Then Sp acts on the sheaf coor(X;) by the trivial repre-
sentation, and the orientation of X induces an Sp-equivariant trivialization coor(X;) =~ Z
for all I. The three facts above combine to show that the Sp-invariants (€;(g) ® Q)°P
vanish unless ¢ = 2r(mn — 1) — 1 or ¢ = 0, and there exist falling chains C in 112 with
((C) = cd(1,RN) — (2r(mn —1) — 1) or £(C) = cd(1,RY). Since cd(1,RY) = 2r(|D| - |i|) =
2r(|D| — 1), these conditions are equivalent to:

(C) =2r(|D| —mn) + 1, (7.5)
resp. £(C) = 2r(|D| —1). (7.6)
We now claim that, for any N > 2, unless |D(i)| = n for i = 1,...,m, respectively |D| = 1,

there does not exist any falling chain C satisfying (7.5), respectively (7.4) or (7.6). Note
that we are still assuming |I| = 1 here. To see the claim, note that if |D(i)| = n for all ¢,
the longest falling chain C’ must consist of one creation of a non-singleton block, followed
by singleton mergers. Since there are |D| — mn singletons left after the first move, it follows
that

{C"y = |D| —mn + 1.

In particular ¢(C") < N(|D| — mn) + 1, with equality as in (7.5) only when |D| — mn = 0.
Further, (7.4) and (7.6) never occur. When |D(i)| = n for all ¢, there is one falling chain of
length 1, and we see that Sp must act trivially on it when N = 2r since, from Fact 1 above,
there is an invariant.

Similarly, if |[D(7)| < n for some 4, then there are no nontrivial colored n-equals partitions,
ie

2 — {o0y.
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Thus the unique falling chain has length 0, which is only equal to N(|D| — 1) when |D| = 1.
When |D| = 1, 1 = 0. Therefore coor(X;) := H.(XP;Z) ® H.(XP;Z)V = Z with the trivial
Sp-action regardless of the dimension of X. Of course Sp also acts trivially on the unique
falling chain. This proves the lemma in the case |I| = 1.

In the case |I| > 1, suppose I has non-singleton blocks I,...,I; and singleton blocks
I41,. .., 1. The projection of €;(q) ® Q onto the (S, x Sy, x - -+ )-invariants can be factored
as follows: compose the projections m; onto the invariants for the group which fixes I; setwise
and D\I; pointwise, for j =1,... k.

By Proposition 4.13, any class in H.(A(IIP(< 1));Z) ® coor(X7) is a product of classes
coming from the partitions with only one non-singleton block I; for j = 1,...,k. The
argument above shows that the projection 7; is 0 unless N is even and |I; N D( )| = n for
i=1,. . In the case that N = 2r is even, if all [; for j = 1,...,k have |I; n D(i)| = n
for i = 1, ...,m, we have a single dimension of (S, x S’ Iy X )finvarlants for any ¢ divisible
by 2r(mn — 1) — 1 and no invariants for any other ¢q. This gives the Statement 1 and the
first part of Statement 2 of the lemma.

For the second part of Statement 2, the group acting here is non-canonically isomorphic
to

((S ) 2Sq/(27“ (mn—1)— x HSS (1,5)-
i=1

Under the isomorphism of Proposition 4.13, the isomorphism of Lemma 7.1 takes the
form

l
(er(q) @ Q)11 = [X] QI (7.7)

j=1
where Q(I;) denotes, for |I;| = mn, the constant sheaf on X;, with stalk the rank 1 graded

vector space of bidegree (0, 2r(mn — 1) — 1) corresponding to the unique falling chain in Y
of length 1, and where Q(I;) denotes, for |I;| = 1, the constant sheaf on X, with stalk the
rank 1 graded vector space of bidegree (0,0). Passing to the quotient staby /(Sp, x ---S7,) =
Sq/(@r(mn—1)—1) X | Ss(1,i)» We see that the Sy, (mn—1)-1) acts on the right-hand side of
(7.7) accordlng to the Kiinneth isomorphism and the graded rule of signs, i.e. by permuting
classes of odd total degree past each other via the sign representation, while Sy ;) acts by
permuting classes of total degree 0 past each other, i.e. via the trivial representation. ]

Back to the proof of Theorem 3.1. First note that Theorem 5.6 gives

Sp
(E‘gq(Xvan)@Q)SD = @ Hp(XI§6I(Q)®Q)
Iell?
Sp
= | D HY(Xper(q) @ Q)5 =5
Ienl?
where the second isomorphism follows from basic linear algebra. Since Sy, x Sy, x --- acts

trivially on X7, Lemma 7.1 gives that:
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o If dimg(X) = 2r + 1, 7 > 0 then (e7(q) ® Q)°1 > = 0 unless I consists only of
singletons and ¢ = 0; and

o if dimg(X) = 2r, 7 > 0 then (e;(¢) ® Q)1 > = ( unless I consists only of
singletons and ¢/(2r(mn — 1) — 1) blocks of size mn.

We conclude that if dimg(X) = 2r + 1, 7 > 0 then

HP(XP:Q)% q=0

Xl Sp ~
B ={ | 0

This proves the first statement of the theorem.
For the second statement, if dimg(X) = 2r, r > 0 then the above gives that

Sp

(E39(X, D,n) ® Q)*”

lle

&, HP(Xper(@®Q) | - (7.8)
Iemt?
I=singletons and blocks of size mn
with ¢/(2r(mn — 1) — 1) blocks of size mn

We are now in a position to prove the second statement of Theorem 3.1. Let J € Hr?
be a partition composed of singletons and ¢/(2r(mn — 1) — 1) blocks of size mn. Then the
Sp-representation

) HP(X1561(q) ® Q)
Iemt?
I singletons and blocks of size mn
with ¢/(2r(mn — 1) — 1) blocks of size mn

is the induction from stab; up to Sp of

HP(X5e5(0) ® Q).
Thus, by Frobenius reciprocity,

Sp

@D HP(Xr15€1(q) ® Q) — HP(Xj;e5(q) ® Q)*t2P7

Ielt?
I=singletons and blocks of size mn
with ¢/(2r(mn — 1) — 1) blocks

We have

Hp(XJ; €J(q) ®Q)stab‘] _ (Hp(XJ; EJ(q) @Q)S‘Il XS‘]2><~~.)StabJ/(SJ1XSJ2X-..) .

Note that, Sy x Sy, x --- acts trivially on X;. By Lemma 7.1, we have that (e;(¢) ®
Q)51 %92 ~ Q[q] where Q[q] denotes the constant rank 1 graded sheaf on X in bidegree
(0,¢q). By Lemma 7.1, staby/(S;, x Sy, x ---) acts on Q[gq] by the sign representation
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for permutations of nonsingleton blocks and the trivial representation for permutations of
singletons.

Let J have k blocks of size mn and s(.J, 7) singletons of color i. Note that k < |D(7)|/n for
alli = 1,...,m. Then X; =~ X* x ], X*/9) and, by the definition of ¢;(g) and Lemma
7.1, HP(X j;e7(q) @ Q%71x) is the degree (p, q) part of

H¥(X:QL2r(mn — 1) — 1) @ Q) H*(X: Qo)) ),
=1

where the cohomological degree contributes only to the p degree, and where staby /(S x
Sy, X -+ ) ~ 8k x Sp, x Sy, x -+ acts in the usual (graded) way from the Kiinneth formula.
Thus HP(X 7;¢5(q) ® Q)**?P is the degree (p,q) part of

Sym, H*(X: Q[2r(mn — 1) — 1]) ® 6 Symt) H*(X: Q[0])

i=1
as claimed.
When X is a smooth complex variety, Theorem 5.6 applied to Equation (7.8) gives the
weights as claimed in the third statement of the theorem. O
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