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Abstract. We introduce a mean field game with rank-based reward: competing agents
optimize their effort to achieve a goal, are ranked according to their completion time, and
are paid a reward based on their relative rank. First, we propose a tractable Poissonian
model in which we can describe the optimal effort for a given reward scheme. Second, we
study the principal–agent problem of designing an optimal reward scheme. A surprising,
explicit design is found to minimize the time until a given fraction of the population has
reached the goal.
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1. Introduction
In this paper, we introduce two game-theoretic problems. The first one is a mean field game with infinitely many
players that compete to obtain a reward. The second one is a principal–agent problem where the principal
interacts with these agents; namely, the principal aims to distribute a given reward budget to the different
ranks such as to minimize the time until the agents complete their task.

Let us think of the agents as independent research teams trying to develop a result or product in the same
field. Following the literature on dynamic research and development (R&D) detailed below, attaining a result
will be modeled as a binary event. At any time t, each agent chooses a research effort λ for which a quadratic
instantaneous cost cλ2 is to be paid, where c> 0 is assumed to be constant for the purpose of this introduction.
In a Poissonian fashion, the agents’ probability of reaching the goal in a small time interval Δt is then given by
λΔt + o(Δt); in the R&D literature, λ is sometimes interpreted as the accumulation of private knowledge, and
the goal is to file a patent. The agents are ranked according to their completion times and paid a reward R(r)
for rank r, where the reward scheme R is a given decreasing function.1 At any time, the agents observe the
fraction ρ(t) of players that have already completed the task and thus which portion of R is still available; more
precisely, the agents use feedback controls λ(ρ(t)). This rank-based coupling of the agents’ optimization
problems is a nonstandard example of a mean field interaction. We shall show that given R, this game has
a unique Nash equilibrium when agents optimize the expectation of reward minus cost. In fact, this setting
turns out to be very tractable: Theorem 1 provides explicit formulas for the equilibrium optimal control λ∗ and
the agents’ value function. The value function is independent of the cost c, which, in the body of this paper, is
also allowed to depend on the state ρ(t) to model that the cost may diminish as more results become available.
The second problem is built on top of the first: because we have seen that any reward scheme R leads to

a unique equilibrium between the agents, we can study the problem of a manager or policymaker who would
like to advance research. More precisely, we aim to minimize the time Tα until a given fraction α of the
population has completed their task. The principal has a fixed reward budget B � ∫ 1

0 R(r) dr but may choose
the shape of the decreasing function R—that is, how much reward to allocate to each rank. Quite surprisingly,
the principal’s optimization problem has an explicit but nontrivial solution (Theorem 2):

R∗(r) � B
C′

{
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where C′ is a constant such that the budget constraint is saturated. As can be seen in Figure 1, this function has
two main features. The first one is a discontinuity at r � α: a substantial amount is awarded to the last few relevant
agents, but it is optimal to pay zero reward to the ranks after α. Although it is clearly important to incentivize the
last agents that will complete the α fraction, these agents are not too discouraged by the fact that they may
miss the rewarding ranks. The second feature is the shape of R∗ on [0, α]. A priori, it may not even be obvious
whether it is better to provide a strictly decreasing reward compared with paying the same amount to the first
α ranks. It turns out that R∗ is decreasing, even if not very much so, and moreover, it is concave. Thus, the
difference in reward between two equidistant ranks increases later in the game, apparently to incentivize the
remaining agents to choose a higher effort, as shown on the second panel of Figure 1.

While formulating our game with a continuum of agents is convenient to get directly to our main results,
a more fundamental justification for the mean field game is to study an N-player game for N → ∞. Indeed, we
establish that the N-player version of our two problems have unique solutions, albeit somewhat less explicit
than in the mean field case. We show that the N-player equilibrium converges to the mean field limit; that
is, the value functions and the optimal feedback controls converge (Theorem 4) if the given reward schemes
converge. Moreover, the optimal reward schemes for the principal and the corresponding expected completion
times converge (Theorem 5). The analysis for finite N also allows us to study size effects that cannot be
observed in the mean field limit and thus are rarely addressed for large population games. In particular, we
shall observe in Section 4.3 that with a fixed per capita budget, an increase in population size adversely affects
the principal: the minimal expected completion time for a fixed target proportion α is increasing in N.

1.1. Literature
Dynamic competitions (also called races) are classic in the economics literature. An early reference related to our
paper is Reinganum [34], which discusses an N-player dynamic game of R&D and patent protection. Rewards are
paid at a fixed time horizon, and two cases are studied: either only the first-ranked player is rewarded (perfect
patent protection) or the subsequent ranks receive a positive, smaller reward; however, only the case of an identical
reward for all “imitators” is considered. Malueg and Tsutsui [29] extend Reinganum’s setting with a hazard rate
that represents changes in the difficulty of the research project, an aspect we have incorporated differently by
using a state-dependent cost that can model how the increase in public knowledge affects the project. Harris and
Vickers [19] and Grossman and Shapiro [17] focus on the strategic interactions between agents in multiperiod
two-player games. A recent work in this area is that of Cao [6], which studies a continuous-time, continuous-state
version of a model in Harris and Vickers [19]. See also Cao [6], Malueg and Tsutsui [29], Taylor [40], Hörner [20],
and Moscarini and Smith [30] for related contributions and further references in this literature.

Mean field games were introduced by Lasry and Lions [25, 26, 27] and Huang et al. [22, 23] to study Nash
equilibria in the limiting regime where the number of players tends to infinity and interactions take place
through the empirical distribution of the private states; we refer to Guéant et al. [18], Bensoussan et al. [4], and
Carmona and Delarue [8, 9] for background on mean field games. Because the impact of an individual player
on the aggregate distribution is negligible, finding a Nash equilibrium reduces to solving a stochastic op-
timization problem for a representative player against a fixed environment, together with a consistency
condition. This can be justified rigorously by formulating a game with a continuum of players and by showing

Figure 1. (Color online) The optimal reward scheme R* and the corresponding equilibrium effort λ* and state process ρ for
three different cutoff values α, with B � 1 and c ≡ 1.
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that it is the limit of an N-player game. Convergence is often shown backward; that is, the mean field
equilibrium is shown to provide an ε-Nash equilibrium for the N-player game. The forward convergence of
the N-player equilibrium to the mean field equilibrium is typically more difficult to prove. For standard,
diffusion-driven mean field games, this has been accomplished recently in the seminal work of Cardaliaguet
et al. [7]. Although our game is of a different form, its tractability allows us to give an elementary yet
nontrivial proof of the forward convergence; one feature in common with Cardaliaguet et al. [7] is that we use
feedback controls. In a finite-state setting, forward convergence was shown by Gomes et al. [16] for a small
time horizon and more recently by Bayraktar and Cohen [1] for an arbitrary finite time horizon.

Competitions (i.e., rank-based rewards) are a classic topic in contract theory, dating back to the work of
Lazear and Rosen [28]. With applications from school grades to sports and business competitions, rank-order
prize allocation is one of the most widely used relative performance evaluation criteria; we refer to Vojnović [41]
for a detailed introduction and an extensive list of references. To the best of our knowledge, the only existing
work on mean field games with rank-based reward is Bayraktar and Zhang [2], where players are ranked
according to their terminal positions. The main aim of that work is to obtain abstract existence results for
games with common noise via translation invariance, whereas in this work players are ranked according to
exit times, and the focus is on specific properties of solutions (and, of course, the principal’s problem). In a
different way, exit times are used in the toy example of Guéant et al. [18]: “When does the meeting start?” Rank-
based features are also studied in the literature on (uncontrolled) particle systems; one example is Shkolnikov [37].
Nadtochiy and Shkolnikov [31] consider particles interacting through hitting times. A different but related
recent literature studies mean field games of timing where players directly choose stopping times; see
Carmona et al. [11], Bertucci [5], and Nutz [32]. See also Seel and Strack [35, 36], and Feng and Hobson [14, 15]
for a model where finitely many agents aim to stop in the highest state but do not observe the competitors.

Continuous-time principal–agent problems with multiple agents have been studied by Koo et al. [24] and
Elie and Possamaı̈ [12] and have been extended to the mean field setting by Elie et al. [13] and Bensoussan
et al. [3]. Although these works have not considered rank-based rewards, a common feature is the Stackelberg
equilibrium: the principal designs a reward scheme that the agents take as an external input to form a Nash
equilibrium among themselves. By contrast, in mean field games with a major player, as in Huang [21] or
Carmona and Wang [10], a Nash equilibrium is formed collectively by the major and minor players. To the best of
our knowledge, the convergence of the N-player principal–agent problem to the mean field limit has only been
established in a simple example where the equilibrium controls are independent of N; see Elie et al. [13].

The remainder of this paper is structured as follows. In Section 2, we determine the unique Nash equi-
librium of the mean field competition for a continuum of players with a given reward scheme. On the strength
of this result, Section 3 solves the associated principal–agent problem where the principal designs the reward
scheme. In Section 4, we study the corresponding N-player problems, and Section 5 establishes their con-
vergence as N → ∞. Proofs are gathered in Appendix A, whereas Appendix B provides background on the
exact law of large numbers used in Section 2.

2. Mean Field Game
Let (I,(, μ) be an atomless probability space; each i ∈ I is thought of as an agent. Moreover, let (Ω,^,P) be
another probability space, to be used as the sample space. Let (Zi)i∈I be a family of exponential(1)-distributed
random variables on Ω, which is essentially pairwise independent; that is, for μ-almost all i ∈ I, Zi is in-
dependent of Zj for μ-almost all j ∈ I. We assume that this family is defined on an extension of the product
(I ×Ω,( ⊗^, μ ⊗ P) for which the exact law of large numbers holds, as detailed in Appendix B. Given a locally
Lebesgue-integrable function θ : R → [0,∞), we define

τiθ � inf t :
∫ t

0
θ(s) ds � Zi

{ }
; (1)

then (τiθ)i∈I are essentially pairwise independent, and their distribution corresponds to the first jump time of an
inhomogeneous Poisson process with intensity θ. Below, the function θ is of the form θ � λ ◦ ρ where λ is
a function chosen by the agent, and ρ is a given function, and we shall find it convenient to write τiλ for τiθ
despite the abuse of notation. If τiλ ≤ t, we shall say that agent i has “arrived” by time t.

We define the set Λ of admissible ( feedback2) controls as the set of piecewise Lipschitz continuous3 functions
λ : [0, 1) → R+. The next lemma introduces the state process that emerges if all agents use the control λ ∈ Λ.
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Lemma 1. Let λ ∈ Λ be an admissible feedback control. There exists a unique continuous function ρ : R+ → [0, 1) satisfying

ρ(t) �
∫ t

0
λ(ρ(s))(1 − ρ(s)) ds, t ≥ 0. (2)

If all agents use the feedback control λ, then ρ(t) � μ{i : τiλ(ω) ∈ [0, t]} P−a.s. as well as ρ(t) � P{τiλ ∈ [0, t]} μ−a.s.;
that is, ρ(t) is both the proportion of agents that have arrived by time t and the probability that any given agent i has
arrived by time t.

Next, we fix a cost coefficient c : [0, 1] → (0,∞), that is assumed to be Lipschitz continuous (thus, c and 1/c are
bounded). Moreover, we fix a reward scheme R : [0, 1] → R+ that is assumed to be decreasing, piecewise Lipschitz
continuous, and left-continuous at r � 1. We interpret R(r) as the reward paid to an agent arriving at rank r.

Let us now consider the control problem of a given agent i before arriving, assuming that all other agents
use λ0 ∈ Λ, which induces a state process ρ � ρλ0 by (2). The objective of agent i is to choose λ ∈ Λ such as to
maximize

J(λ;λ0) � E R(ρ(τλ)) −
∫ τλ

0
c(ρ(t))λ(ρ(t))2 dt

[ ]
,

where τλ � τiλ is the arrival time of the given agent for the control λ. Thus, the agent is rewarded according to
the rank but pays a quadratic cost of effort with coefficient c. We use the convention ρ(∞) :� 1, meaning that
agents who never arrive are paid the reward R(1). If λ ∈ Λ attains supλ∈Λ J(λ;λ0), we say that λ is an optimal
control given λ0. Moreover, we introduce the value function

v(r) � v(r;λ0) � sup
λ∈Λ

E R(ρ(τλ)) −
∫ τλ

0
c(ρ(t))λ(ρ(t))2 dt

⃒⃒⃒⃒
ρ(0) � r

[ ]
, (3)

where dρ(t) � λ0(ρ(t))(1 − ρ(t)) dt. Note that v(0) � supλ∈Λ J(λ;λ0).
If λ is an optimal control given λ, we call λ an equilibrium optimal control and the induced ρ the corre-

sponding equilibrium state process. This is a Nash equilibrium: if all other players use the feedback control λ, the
state evolves according to ρ by Lemma 1 (recall that μ is atomless), and then λ is an optimal control for our
fixed player.

Theorem 1. Let R be a reward scheme. Then there exists a unique (almost everywhere [a.e.]) equilibrium optimal control
λ∗ ∈ Λ, given by

λ∗(r) �
R(r) − 1

2
̅̅̅̅
1−r√

∫ 1

r
R(y)̅̅̅̅
1−y

√ dy

2c(r) , r ∈ [0, 1), (4)

and the corresponding equilibrium state process ρ is determined by (2) with λ � λ∗. In equilibrium, the value function of
any agent before arriving is

v(r) � 1

2
̅̅̅̅̅̅̅
1 − r

√
∫ 1

r

R(y)̅̅̅̅̅̅̅
1 − y

√ dy, r ∈ [0, 1). (5)

Let us remark that although the piecewise Lipschitz requirement is mainly for convenience, the continuity of R at
r � 1 is more essential in providing existence. The following example exhibits a phenomenon that is familiar in
infinite-horizon optimal stopping problems.

Example 1. Suppose that c ≡ 1 and R � 1[0,1); that is, the reward is one for agents arriving in finite time and zero for
those who never arrive. Then, using the constant control λ ≡ ε> 0 yields an exponential arrival time with
E[τ] � 1/ε, and thus the expected reward is

E R(ρ(τ)) −
∫ τ

0
ε2 dt

[ ]
� 1 − ε.

As a result, the value function satisfies v(r) � 1 � R(r) for all r< 1. But because λ ≡ 0 yields zero reward and any
other control has positive cost, this value is not attained: there is no optimal control and thus no equilibrium in
the above sense.
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Remark 1. We see from (5) that the equilibrium value function is independent of the cost coefficient c. This can also
be understood directly by expressing (3) as an integral over the ranks, using the Kolmogorov equation (2) and the
change-of-variable formula:

v(r0) � sup
λ∈Λ

E R(ρ(τλ)) −
∫ ρ(τλ)

ρ(0)
c(r)λ(r) dr

1 − r

⃒⃒⃒⃒
ρ(0) � r0

[ ]
.

Indeed, ρ(τλ) is independent of λ—when all agents use the same control, their ranking is given by the ranking
of the Zi. By contrast, cλ ∈ Λ if and only if λ ∈ Λ, and hence v is independent of c in equilibrium. Intuitively,
a higher cost leads to a smaller optimal effort, but because this holds for all agents, the equilibrium state ρ is
slowed down to the extent that the reduced effort results in the same reward.

The equilibrium value function of any agent has a surprising interpretation: it can be compared with a deal
where the agent pays no cost for his (constant) effort but is given the handicap of running at half the intensity
of the competitors.

Proposition 1. The equilibrium value function v of (5) coincides with the value function of an agent whose effort is fixed at
λ ≡ λ0 ∈ (0,∞) and is charged zero cost, whereas all other agents use λ ≡ 2λ0:

v(r) � E[R(ρ(τ))|ρ(0) � r], where τ ∼ Exp(λ0) and ρ′(t) � 2λ0(1 − ρ(t)).
In particular, v(0) � E[R(1 − e−2τ)] for τ ∼ Exp(1).

The following result shows that the unique equilibrium of Theorem 1 is stable with respect to the reward
scheme.

Proposition 2. Let Rn,R be reward schemes such that Rn → R pointwise. Then the corresponding equilibrium optimal
controls also converge pointwise, whereas the equilibrium value functions and state processes converge uniformly.

2.1. Examples with Closed-Form Solutions
In this section, we present a family of explicitly solvable examples. Given a total reward budget B �∫ 1
0 R(r) dr ≥ 0, the family has a cutoff parameter α ∈ (0, 1] indicating that no reward will be paid to agents
ranked lower than α, as well as a shape parameter q ≥ 0. The general form is then given by

R(r) � κ(1 − r)q1[0,α](r), κ � B(1 + q)
1 − (1 − α)1+q ;

the constant κ is chosen such that B � ∫ 1
0 R(r) dr. We notice that a larger value of q indicates that a larger portion

of the reward budget is paid to highly ranked player, whereas q � 0 corresponds to a uniform distribution of
the reward among the top α ranks. For such a reward, the value function and the optimal effort of Theorem 1
admit closed-form solutions:

v(r) � κ

(1 + 2q) (1 − r)q − (1 − α)q
̅̅̅̅̅̅̅
1 − α

1 − r

√( )+
,

λ∗(r) � 1{r≤α}
κ

2c(r)(1 + 2q) 2q(1 − r)q + (1 − α)q
̅̅̅̅̅̅̅
1 − α

1 − r

√( )
.

In the boundary case α � 1, the Lipschitz assumption of Theorem 1 is not satisfied when 0< q< 1. However,
one can check the indicated formulas by direct computation in this case.

In general, the cumulative distribution function Fτλ∗ (t) � ρ(t) of any agent’s equilibrium completion time can
be computed numerically by solving the Kolmogorov equation (2) for ρ. Inverting the equilibrium state process
also gives rise to the quantile Tβ � inf{t : ρ(t) ≥ β}—that is, the time until a β-proportion of the players has
reached the goal. In the following special cases, these quantities can be obtained in closed form.

2.1.1. Power Reward Without Cutoff. This case corresponds to α � 1, where we also assume that the cost c is
constant. Then the above formulas specialize to

v(r) � B(1 + q)
1 + 2q

(1 − r)q, λ∗(r) � Bq(1 + q)
c(1 + 2q) (1 − r)q,
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and we can also solve for

Fτλ∗ (t) � ρ(t) � 1 − 1 + Bq2(1 + q)
c(1 + 2q) t

( )−1
q
, Tβ � c(1 + 2q)

Bq2(1 + q) (1 − β)−q − 1
[ ]

.

We see that the equilibrium value v is decreasing in q. That is, each individual is worse off if the reward
scheme heavily favors the highly ranked players; this can be attributed to the cost caused by the large effort
level λ∗ in the beginning of the competition. We also observe that λ∗ is decreasing in r so that agents decrease
their effort once the higher ranks are filled.

2.1.2. Uniform Reward with Cutoff. This case corresponds to q � 0, and we again assume that the cost c is con-
stant. The general formulas now specialize to

v(r) � B
α

1 −
̅̅̅̅̅̅̅
1 − α

1 − r

√( )+
, λ∗(r) � 1{r≤α}

B
2cα

̅̅̅̅̅̅̅
1 − α

1 − r

√
.

We also have Fτλ∗ (t) � ρ(t) � 1 − 1 − B
̅̅̅̅
1−α√

4cα t
( )

2 for t ≤ Tα and Fτλ∗ (t) � ρ(t) � α for t>Tα, where

Tα � 4cα(1 − ̅̅̅̅̅̅̅
1 − α

√ )
B

̅̅̅̅̅̅̅
1 − α

√ , (6)

and then the general quantile is Tβ � 4cα(1 − ̅̅̅̅̅̅̅
1 − β

√ )/(B ̅̅̅̅̅̅̅
1 − α

√ ) for β ≤ α and Tβ � ∞ for β>α. In contrast to the
case α � 1, we see that λ∗ is increasing in r for r ≤ α: as the race progresses, the agents compete for the
remaining reward and increase their effort up to the time when an α-proportion of agents has reached the
goal, and then the remaining players give up (see Figure 2).

2.2. Staircase Reward
Consider a reward scheme R and a cost coefficient c of the staircase form

R � R11[r0,r1] +
∑n
j�2

Rj1(rj−1,rj], c � c11[r0,r1] +
∑n
i�2

cj1(rj−1,rj],

where R1 ≥ R2 ≥ · · · ≥ Rn ≥ 0 and 0 � r0 < r1 < · · · < rn � 1 are constants. Equations (4) and (5) then yield that
for rj−1 < r ≤ rj,

v(r) � Rj + 1̅̅̅̅̅̅̅
1 − r

√ −Rj
̅̅̅̅̅̅̅
1 − rj

√ + ∑n
k�j+1

Rk
̅̅̅̅̅̅̅̅̅̅
1 − rk−1

√ − ̅̅̅̅̅̅̅̅
1 − rk

√( )[ ]
,

λ∗(r) � 1

2cj
̅̅̅̅̅̅̅
1 − r

√ Rj
̅̅̅̅̅̅̅
1 − rj

√ − ∑n
k�j+1

Rk
̅̅̅̅̅̅̅̅̅̅
1 − rk−1

√ − ̅̅̅̅̅̅̅
1 − ri

√( )[ ]
.

Figure 2. (Color online) Optimal effort under power reward with cutoff α � 0.5, assuming B � 1 and c ≡ 1.
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We claim that the equilibrium state ρ is given by

ρ(t) � 1 − ̅̅̅̅̅̅̅̅̅̅
1 − rj−1

√ − Aj

4cj
(t − tj−1)

( )2
, tj−1 ≤ t ≤ tj, (7)

where Aj � Rj
̅̅̅̅̅̅̅
1 − rj

√ −∑n
k�j+1 Rk( ̅̅̅̅̅̅̅̅̅̅

1 − rk−1
√ − ̅̅̅̅̅̅̅̅

1 − rk
√ ), and tj is recursively defined by tj � tj−1 + 4cj

Aj
( ̅̅̅̅̅̅̅̅̅̅

1 − rj−1
√ −̅̅̅̅̅̅̅

1 − rj
√ ) and t0 � 0. This is to be read with the convention that 1/0 � ∞; indeed, we have Aj � 0 and tj � ∞ if
(and only if) Rj � Rj+1 � · · · � Rn. To see (7), we may solve the ordinary differential equation (ODE) (2) suc-
cessively for each interval [rj−1, rj]. Let t0 � 0. Suppose that we have already found t0, . . . , tj−1 and ρ(t) for
t ∈ [0, tj−1]. Then the ODE on the jth interval reads as ρ′(t) � Aj

2cj

̅̅̅̅̅̅̅̅̅̅
1 − ρ(t)√

with initial condition ρ(tj−1) � rj−1, and
the solution is given by (7), whereas tj is determined through the condition ρ(tj) � rj.

Finally, let β ∈ (0, 1] be given. By adding β to the grid if necessary, we may assume without loss of generality
that β � rj0 for some j0 ∈ {1, . . . ,n}, and then the β-quantile is Tβ � tj0 � ∑j0

j�1
4cj
Aj
( ̅̅̅̅̅̅̅̅̅̅

1 − rj−1
√ − ̅̅̅̅̅̅̅

1 − rj
√ ).

3. Mean Field Principal–Agent Problem
We have seen that for a given reward scheme R, there exists a unique (deterministic) equilibrium state ρ, and
thus for α ∈ (0, 1], the time

Tα(R) � inf{t ≥ 0 : ρ(t) ≥ α} ∈ (0,∞]
is deterministic and well defined. This is the time until an α-proportion of the population has reached the goal,
or equivalently, the α-quantile of the distribution of the equilibrium arrival time τ∗.

In this section, we fix α ∈ (0, 1) and the total reward budget B> 0, and we ask for a reward scheme R that
minimizes Tα(R) subject to the constraint that

∫ 1
0 R(r) dr ≤ B. This corresponds to a principal–agent problem in

the second-best sense: the planner can set the reward for the agents but cannot dictate their choice of controls.
The principal considers her project completed when an α-proportion of the agents have reached their goal, and
she aims to find the minimal completion time

T∗
α � inf

R∈5:
∫

R(r) dr≤B
Tα(R), (8)

where 5 is the set of all reward schemes. We remark that for α � 1, we have Tα(R) � ∞ for all R, whence we do
not consider this case. By contrast, T∗

α <∞ for all α ∈ (0, 1), because this is already accomplished by the uniform
reward R with cutoff at α (see (6)).

An additional assumption on the cost coefficient c is needed for our result:

r �→ c(r)(1 − r)
2 − r

is decreasing. (9)

This assumption is discussed in more detail in Remark 2. The solution to the principal’s problem is then given
as follows.

Theorem 2. Let c satisfy (9). Given a reward budget B> 0 and α ∈ (0, 1), there is an a.e. unique optimal reward scheme R∗
attaining the minimal completion time T∗

α of (8), given by

R∗(r) � B
C

̅̅̅̅̅̅̅
c(r)
2 − r

√
+ 1
2

∫ α

r

1
1 − s

̅̅̅̅̅̅̅
c(s)
2 − s

√
ds

{ }
1[0,α](r), (10)

and the minimal completion time is

T∗
α � 4C2

B
, where C � 1

2

∫ α

0

̅̅̅̅̅̅̅̅̅̅̅̅̅
c(r)(2 − r)√
1 − r

dr. (11)

The corresponding equilibrium effort is

λ∗(r) � B
2C

1̅̅̅̅̅̅̅̅̅̅̅̅̅(2 − r)c(r)√ 1[0,α](r).
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In the particular case where the cost c is constant, we have

R∗(r) � B
C′

1̅̅̅̅̅̅̅
2 − r

√ + 1
2
log

(1 + ̅̅̅̅̅̅̅
2 − α

√ )(1 − ̅̅̅̅̅̅̅
2 − r

√ )
(1 − ̅̅̅̅̅̅̅

2 − α
√ )(1 + ̅̅̅̅̅̅̅

2 − r
√ )

{ }
1[0,α](r),

T∗
α � 4cC′2

B
,

C′ � C̅̅
c

√ � ̅̅
2

√ − ̅̅̅̅̅̅̅
2 − α

√ + 1
2
log

(1 + ̅̅̅̅̅̅̅
2 − α

√ )(1 − ̅̅
2

√ )
(1 − ̅̅̅̅̅̅̅

2 − α
√ )(1 + ̅̅

2
√ ) .

Figure 1 shows R∗, λ∗, and ρ for constant cost coefficient c. As discussed, the key features of R∗ are the strict
decrease and concavity on [0, α] and the discontinuity at α. The equilibrium effort λ∗ is strictly increasing on
[0, α]. For general c, the product

̅̅
c

√
λ∗ is increasing, but λ∗ need not be.

Remark 2. Assumption (9) is satisfied in particular if c is decreasing, which certainly holds in the applications we
have in mind. If we suppose for simplicity that c is differentiable, the assumption is equivalent to the derivative c′

satisfying c′(r) ≤ c(r)
(2−r)(1−r) , for which a sufficient condition is that c′(r) ≤ c(r)/2. Thus, an increase of c is permissible if

it is limited relative to the level of c. When the assumption is not satisfied, (10) no longer describes the solution to the
principal–agent problem; in fact, (10) is not a decreasing function and hence not a reward scheme. The proof of
Theorem 2 shows that finding an optimal reward scheme can still be phrased as a convex optimization problem;
however, the monotonicity constraint on R is now binding, which is an obstruction to finding an explicit solution.

We may also ask the reverse question: given α ∈ (0, 1) and a desired completion time T> 0, what is the
minimal budget enabling the principal to achieve T? The answer follows from Theorem 2 by inverting (11).

Corollary 1. Let c satisfy (9). Given α ∈ (0, 1) and T> 0, the minimal budget enabling the principal to achieve a completion
time T∗

α ≤ T is B∗ � 4C2/T, where C is given by (11).

4. N-Player Problems
In this section, we study a version of the competition with finitely many players as well as a corresponding
version of the principal–agent problem. The connections between these and the mean field formulations will
be established in Section 5.

4.1. The N-Player Game
We consider a game with N players, where N ≥ 1 is a fixed integer. At any time t, each player i observes the
number n of players that have already arrived and chooses an effort level λi(n) ∈ R+. Suppose that player i uses
the feedback control λi, and all other players use a feedback control λ−i. We denote by ξλi ,λ−i (t) the number of
players that have arrived by time t; that is,

ξλi ,λ−i (t) �
∑N
i�1

1{τi≤t},

where τi � inf{t ≥ 0 :
∫ t
0 λi(ξλi ,λ−i (s)) ds � Zi} is the arrival time of player i, and τj � inf{t ≥ 0 :

∫ t
0 λ−i(ξλi ,λ−i (s)) ds

� Zj} is the arrival time of player j �� i, for some independent exponential random variables {Z1, . . . ,ZN} with
unit rate. The existence of the state process is clear in this case; we may see (1{τi≤t}, ξλi ,λ−i ) as a Markov pure
jump process with values in {0, 1} × {0, 1, . . . ,N}. We emphasize that we now use the number rather than the
fraction of arrived players as the state variable.

Let Rn ∈ R+ be the reward for finishing at the nth place; as before, we assume that (Rn)1≤n≤N is decreasing,
and we convene that RN is paid to players that never arrive. Moreover, let cn > 0 be the cost coefficient when n
players have arrived. Then the objective of player i is to maximize

Ji(λi;λ−i) � E Rξλi ,λ−i (τi) −
∫ τi

0
cξλi ,λ−i (s)λ

2
i (ξλi ,λ−i (s))ds

[ ]
,
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and λ is a (symmetric) equilibrium optimal control if argmaxλi Ji(λi;λ) � λ for all i. For 0 ≤ n ≤ N − 1, the value
function of player i before arriving is

vn :� sup
λi

E Rξ(τi) −
∫ τi

0
cξ(s)λ2

i (ξ(s))ds
⃒⃒⃒⃒
ξ(0) � n

[ ]
,

where ξ :� ξλi,λ−i . We also convene that vN :�RN .

Remark 3. The last player never arrives. Indeed, onceN − 1 players have arrived, the remaining player achieves the
optimal value vN−1 by using the control λi ≡ 0, and in fact, vN−1 � RN � vN . This is due to the convention that RN is
paid to players that never arrive. On the other hand, this convention is necessary for the existence of an equilibrium
because the same value is asymptotically achieved by using the control λi ≡ ε with small ε> 0.

Proposition 3. The N-player game has a unique Nash equilibrium. The equilibrium value function (vn)0≤n≤N is the unique
solution of the backward recursion

vn � Rn+1+ 2(N − n − 1)vn+1
1 + 2(N − n − 1) , 0 ≤ n ≤ N − 1; vN � RN . (12)

The unique equilibrium optimal control is

λ∗(n) � Rn+1 − vn
2cn

, 0 ≤ n ≤ N − 1. (13)

4.2. The N-Player Principal–Agent Problem
Next, we consider the N-player version of the mean field principal–agent problem introduced in Section 3.
Given n0 ∈ {1, . . . ,N − 1} and a (nonnegative, decreasing) reward scheme (Rn), let

Tn0 � inf{t ≥ 0 : ξλ∗ (t) � n0}
be the (random) time until n0 players have arrived, where the players use the unique equilibrium optimal
control λ∗ for (Rn) and the (fixed, positive) cost coefficients (cn) (see (13)). Below we shall find it useful to write
λ∗
n rather than λ∗(n) whenever we are in the N-player setting.
Given the per capita4 reward budget B> 0, the principal chooses a reward scheme (Rn) such as to minimize

the expected completion time ETn0 subject to the budget constraint
∑N

n�1 Rn ≤ NB. In analogy to (9), we shall
assume that cN satisfies

cNn ≤ cNn−1
(2N − 2n + 1)2(2N − n − 1)

4(N − n − 1)(N − n + 1)(2N − n) , n<n0; (14)

again, this is satisfied, for example, when n �→ cNn is constant or decreasing.

Theorem 3. Let cN satisfy (14) and define yn0 � 0:

yn �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

cnN(N − n − 1)
(N − n)(2N − n − 1)

√
, n< n0.

Given a per capita reward budget B> 0, there is a unique optimal reward scheme (R∗
n) attaining the minimal expected

completion time ET∗
n0 , given by

R∗
n�

B
C

yn−1 + 1
2

∑n0−1
k�n−1

yk
N − k − 1

{ }
1{n≤n0},

and the minimal expected completion time is

ET∗
n0 �

4C2

B
, where C � 1

2
̅̅̅
N

√ ∑n0−1
n�0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cn(2N − n − 1)

(N − n)(N − n − 1)

√
.
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The corresponding equilibrium optimal control is

λ∗
n �

B
2C

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N(N − n − 1)

cn(N − n)(2N − n − 1)

√
1{n< n0}.

4.3. Size Effects
We conclude this section with a brief discussion of the influence of the population size N on the principal’s problem
in two different ways. To make the problems comparable, we assume that cNn ≡ c is a constant independent of N.

1. First, we consider as above a principal with a given per capita budget B aiming to minimize the expected
time until an α proportion of the population has arrived. The left panel in Figure 3 shows a negative size effect:
the minimum expected completion time ETN

n0 for n0 � �αN� is increasing in N; that is, an increase in population
size adversely affects the principal.

2. Second, we fix the total budget K � NB and a completion head count n0. Then

ETN
n0 �

1
NK

∑n0−1
n�0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c

1 − n/N
1 + 1

1 − (n + 1)/N
( )√{ }2

is strictly decreasing in N with a limit equal to zero (right panel in Figure 3). That is, the principal who is
aiming for a fixed number of completions benefits from an increase in the population size.

5. Convergence to the Mean Field
In this section, we show that the N-player competition and principal–agent problem converge to their mean
field counterparts as N → ∞.

5.1. Convergence of the N-Player Equilibrium
We consider the mean field setting of Section 2 with a fixed reward scheme R and cost coefficient c, as well as
an N-player game with reward (RN

n ) and cost (cNn ). Our aim is to show that if RN → R and cN → c in a suitable
sense, then the corresponding equilibria converge.

If we start with a reward scheme R : [0, 1] → R+ in the mean field setting, an obvious choice for RN is the
sampling RN

n � R
(
n
N). Because R is decreasing, we have 1

N
∑N

n�1 RN
n ≤ ∫ 1

0 R(r) dr; that is, this discretization may

(and typically will) reduce the cumulative reward. Another choice is the moving average RN
n � N

∫ n/N
(n−1)/N R(y) dy

which preserves the reward. Next, we introduce a condition designed to cover either of these choices
and more.

Recall that R : [0, 1] → R+ is decreasing, piecewise Lipschitz continuous, and left continuous at r � 1. Let
0 � r0 < r1 < . . . < rm < rm+1 � 1 be a finite partition of [0, 1] such that R is Lipschitz on each interval (ri−1, ri). For
our results, we shall assume that

sup
r∈∪m+1

i�1 INi

RN
�rN� − R(r)

⃒⃒⃒ ⃒⃒⃒
≤ K
N

(15)

Figure 3. (Color online) The left panel shows a negative size effect when fixing α � 0.5 and B � 1. The right panel shows
a positive size effect when fixing n0 � 3 and K � 25. In both panels, c ≡ 1, and the minimal expected completion time is plotted
against log2 N.
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for some constant K independent of N, where INi � [ri−1 + 1/N, ri − 1/N] for i � 1, . . . ,m and INm+1 � [rm + 1/N, 1].
Similarly, we assume that5

sup
r∈[0,1]

cN�rN� − c(r)
⃒⃒⃒ ⃒⃒⃒

≤ K
N
. (16)

The next result establishes that the N-player equilibrium converges to the mean field equilibrium as N → ∞.
Thus, it gives a second justification to the mean field formulation, apart from the direct derivation with a
continuum of players as in Section 2.

Theorem 4. Let RN ,R and cN , c satisfy (15) and (16), and let vN , v and λN , λ∗ be the corresponding value functions and
equilibrium optimal controls, respectively. Then

sup
r∈[0,1]

|vN�rN� − v(r)| � O(1/ ̅̅̅
N

√ ), sup
r∈∪m+1

i�1 INi

|λN
�rN� − λ∗(r)| � O(1/ ̅̅̅

N
√ ).

Remark 4. If R(r) � 0 on (α, 1] for some α< 1, then the ODE (A.2) is nondegenerate up to the boundary, and the
convergence rates in Theorem 4 can be improved to O(1/N) (see the proof of the theorem). In particular, this holds
for the optimal reward scheme R∗ of the principal’s problem in Theorem 2.

5.2. Convergence and ε-Optimality for the Principal
Following Section 3, we fix a cost coefficient c satisfying (9), a target proportion α ∈ (0, 1), and a budget B> 0.
We have seen in Theorem 2 that in the mean field setting, there exists a unique reward scheme R∗ that attains
the minimal (deterministic) time T∗

α until an α-proportion of the population has arrived. For the N-player
situation with a given cost cN satisfying (14) and per capita budget B, we have seen in Theorem 3 that there
exists a unique reward scheme RN minimizing the expected time ETN

n0 until n0 players have arrived. In the
following result, we consider n0 � �αN� so that the proportion n0/N tends to α and show that if cN → c, the
expected completion time and the corresponding reward schemes converge as N → ∞.

Theorem 5. Let cN → c in the sense of (16). Then

ETN
�αN� − T∗

α

⃒⃒⃒ ⃒⃒⃒
� O(1/N), sup

r∈[0,α]
RN
�rN� − R∗(r)

⃒⃒⃒ ⃒⃒⃒
� O(1/N).

The next result addresses the convergence of the principal’s problem in a different sense: it shows that if the
principal applies (a discretization of) the optimal reward scheme R∗ from the mean field setting in an N-player
game with large N, rather than the precise optimal scheme RN of Theorem 3, then R∗ is still ε-optimal for min-
imization of the expected completion time.

Corollary 2. Let cN → c in the sense of (16), and let R(N) be a discretization of R∗ satisfying (15). Then the completion time
T(N)
�αN� of the N-player game under R(N) satisfies

ET(N)
�αN� − ETN

�αN�
⃒⃒⃒ ⃒⃒⃒

� O(1/N);

that is, the reward scheme R(N) is O(1/N)-optimal for the N-player principal–agent problem.

Appendix A. Proofs
A.1. Proofs for Section 2
Proof of Lemma 1. The piecewise Lipschitz property of λ implies that (2) has a unique continuous solution ρ. This function is
nonnegative, increasing, globally Lipschitz continuous, and continuously differentiable except at finitely many points (cor-
responding to the jumps to λ) where the left and right derivatives of ρ may disagree. Let ρ̄(t) � 1 − exp(− ∫ t

0 λ(ρ(s)) ds). By the
exact law of large numbers (Proposition 4) and (1),

μ{i : τiλ(ω) ∈ [0, t]} � P{ω : τiλ(ω) ∈ [0, t]} � ρ̄(t)
holds almost surely. On the other hand, the derivative of ρ̄ is seen to satisfy ρ̄′(t) � λ(ρ(t))(1 − ρ̄(t)) a.e., so the uniqueness of
the exponential ODE yields ρ̄ � ρ. □
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Proof of Theorem 1. (1) Suppose that λ̄ ∈ Λ is an equilibrium optimal control; let ρ be the corresponding equilibrium state
process, and let v̄ be the corresponding value function of (3) for any given player before arrival. Using the constant control λ ≡ 0
shows that R(1) ≤ v̄(r) ≤ R(r), and hence v̄(1−) � R(1); recall that R is left continuous at r � 1. Let

r0 � inf{r : R(r) � R(1)}.
Using λ ≡ 0 also shows that v̄ ≡ R(1) on [r0, 1], whereas v̄<R on [0, r0) because the only control with zero cost merely
attains R(1)<R(r). The inequality R(1)<R(r) on [0, r0) also implies that λ̄> 0 a.e. on [0, r0), and in fact, recalling that λ̄ ∈ Λ,
even that λ̄ is a.e. uniformly bounded away from zero on any interval [0, r1] with r1 < r0.

A control-theoretic argument shows that v̄ is Lipschitz on any such interval. Indeed, let 0 ≤ r< r1 and choose h> 0 such
that r + 2h< r1. We may compare the optimal control λ̄ started at r with a control λ such that

λ �
0 on [r, r + h),
aλ̄ on [r + h, r + 2h),
λ̄ on [r + 2h, 1),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
where the constant a ≥ 1 is chosen such that the integral of λ along ρ over [r, r + 2h] coincides with the integral of λ̄ over the
same interval. Then both the extra cost of λ and the loss of expected reward are bounded by a constant (depending only on
r1) times h because if λ̄ achieves a rank in [r + 2h, 1), then λ achieves the same rank, whereas the probability of λ̄ ranking in
[r, r + 2h) is bounded by a constant times h. Because λ is an admissible control for the control problem started at r + h, it
follows that 0 ≤ v̄(r) − v̄(r + h) ≤ Ch as claimed. In particular, v̄ is absolutely continuous and a.e. differentiable.

By dynamic programming, the value function v̄ must then a.e. satisfy the Hamilton–Jacobi equation

sup
l≥0

{l[R(r) − v(r)] − c(r)l2} + λ̄(r)(1 − r)v′(r) � 0 on [0, 1), v(1) � R(1).

Moreover, the optimal control λ̄ must attain the supremum a.e. Recalling that v̄ � R on [r0, 1] and v̄<R on [0, r0), it follows
that

λ̄(r) � R(r) − v̄(r)
2c(r) a.e. (A.1)

and that v̄ satisfies

R(r) − v(r) + 2(1 − r)v′(r) � 0 a.e. on [0, r0), v ≡ R(1) on [r0, 1]. (A.2)

(2) Using the regularity of R, we see that the function v of (5) is Lipschitz on [0, 1) and satisfies v(1−) � R(1). We extend v
to a Lipschitz function on [0, 1] by setting v(1) � R(1). A direct calculation shows that v satisfies (A.2) and that λ∗ of (4) is
the corresponding maximizer (A.1). Moreover, λ∗ ∈ Λ. A verification argument then yields that v is the value function and
λ∗ is an optimal control.

(3) It remains to show that (A.2) has at most one absolutely continuous solution. Indeed, if v1 and v2 are solutions, then
w � v1− v2 is absolutely continuous and satisfies

2(1 − r)w′(r) � w(r) a.e. on [0, r0), w ≡ 0 on [r0, 1].
If r0 < 1, this is a Lipschitz ODE, and it follows directly that w ≡ 0 is the unique solution. If r0 � 1, we set u(t) � w(1 − e−2t)
for t ≥ 0; then u satisfies u′(t) � u(t) on [0,∞), and hence u(t) � u(0)et. But u(∞) � w(1) � 0 then yields that u ≡ 0, and thus
w ≡ 0 as desired. □

Proof of Proposition 1. Let V(r) � E[R(ρ(τ))|ρ(0) � r]. The ODE for ρ has the unique solution ρ(t) � 1 − (1 − r)e−2λ0t for t ≥ 0.
Hence,

V(r) � E[R(1 − (1 − r)e−2λ0τ)] �
∫ ∞

0
λ0e−λ0xR(1 − (1 − r)e−2λ0x) dx.

A change of variables then shows that V(r) coincides with (5). □

Proof of Proposition 2. Note that Rn,R have a uniform upper bound given by supn Rn(0). Moreover, by monotonicity, the
convergence Rn → R is uniform on each interval of continuity of R. It follows directly from (5) that the value functions vn
converge uniformly to their counterpart v. Similarly, (4) yields that the optimal controls λ∗

n converge pointwise to their
counterpart λ∗ and uniformly on each interval of Lipschitz continuity of R. Moreover, there is a uniform upper bound for the
sequence (λ∗

n). By the ODE (2), this entails an upper bound for the Lipschitz constants of (ρn). Thus, after passing to a sub-
sequence, (ρn) converges uniformly to a limit ρ̄. To verify that ρ̄ � ρ, it suffices to show that ρ̄ solves the ODE (2) defining ρ on
each of the mentioned intervals, and that follows from the uniform convergence of (λ∗

n). Finally, by a subsequence argument, the
entire sequence (ρn) must converge to ρ. □
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A.2. Proofs for Section 3 As a preparation for the proof of Theorem 2, we first show that no reward should be distributed
to ranks below α—this is quite intuitive because the planner does not care about agents arriving after rank α. The converse
is also true.

Lemma 2. The value T∗
α of (8) does not change if the infimum is restricted to R ∈ 5 satisfying R> 0 on [0, α) and R � 0 on (α, 1].

Proof. For thefirst property, suppose thatR ∈ 5 vanishes at r ∈ [0, α) and hence on [r, 1]. Then the equilibrium effort λ of (4) also
vanishes at r, which by the Kolmogorov equation (2) implies that the state ρ(t) never exceeds r and hence that Tα(R) � ∞.

To see the second property, let R ∈ 5, and set R̂ � R1[0,α]; then R̂ ∈ 5. For r ∈ [0, α], the corresponding equilibrium efforts
λ and λ̂ of (4) satisfy

λ̂(r) �
R̂(r) − 1

2
̅̅̅̅
1−r√

∫ 1
r

R̂(y)̅̅̅̅
1−y

√ dy

2c(r) ≥
R(r) − 1

2
̅̅̅̅
1−r√

∫ 1
r

R(y)̅̅̅̅
1−y

√ dy

2c(r) � λ(r),

and the inequality is strict if
∫ 1

α
R(y)/ ̅̅̅̅̅̅̅

1 − y
√

dy > 0. As a result, if R does not vanish on (α, 1], then R̂ produces a strictly larger
equilibrium effort on [0, α], and hence Tα(R̂)<Tα(R) whenever Tα(R)<∞, by (2). □

We can now show the theorem through a calculus-of-variations argument.

Proof of Theorem 2. Let

5′ � {
R ∈ 5 :

∫
R(r) dr ≤ B, Tα(R)<∞, R1(α,1] � 0

}
.

As noted, 5′ �� ∅ by (6), and by Lemma 2, it is sufficient to show that R∗ is the unique optimizer in 5′. Moreover, we have
seen in the proof of Lemma 2 that λ∗ is a.e. strictly positive on [0, α) for R ∈ 5′. Hence, ρ is strictly increasing, and we have
Tr(R) � ρ−1(r) for r ∈ [0, α). Differentiating ρ−1(r) and using the ODE (2) for ρ and (4), we then obtain that

Tα(R) �
∫ α

0

1
(1 − r)λ∗(r) dr �

∫ α

0

2c(r)̅̅̅̅̅̅̅
1 − r

√
R(r) ̅̅̅̅̅̅̅

1 − r
√ − ∫ α

r
R(s)

2
̅̅̅̅
1−s√ ds

( ) dr, R ∈ 5′. (A.3)

We see from (A.3) that R �→ Tα(R) is strictly convex on 5′, up to a.e. equivalence. This implies that there is at most one
optimal R ∈ 5′.

Next, we derive a sufficient condition for optimality. We first reparametrize the optimization problem: for R ∈ 5′, we consider

f (r) � fR(r) � R(r) ̅̅̅̅̅̅̅
1 − r

√ −
∫ α

r

R(s)
2

̅̅̅̅̅̅̅
1 − s

√ ds, r ∈ [0, α].

The mapping R �→ fR is one-to-one on 5′ because R can be recovered from f via

R(r) � f (r)̅̅̅̅̅̅̅
1 − r

√ +
∫ α

r

f (s)
2(1 − s)3/2 ds. (A.4)

Indeed, if R is differentiable, then f ′(r) � ̅̅̅̅̅̅̅
1 − r

√
R′(r), and integration by parts yields

R(r) � R(α) −
∫ α

r

f ′(s)̅̅̅̅̅̅̅
1 − s

√ ds � f (α)̅̅̅̅̅̅̅
1 − α

√ −
∫ α

r

f ′(s)̅̅̅̅̅̅̅
1 − s

√ ds � f (r)̅̅̅̅̅̅̅
1 − r

√ +
∫ α

r

f (s)
2(1 − s)3/2 ds,

and now the claim for general R ∈ 5′ follows by approximation. Fubini’s theorem shows that
∫ α

0 R(r) dr � 1
2

∫ α

0
(2−r)f (r)
(1−r)3/2 dr.

Thus, recalling that α< 1, the image ^ of 5′ under R �→ fR is the convex set of all piecewise Lipschitz, nonnegative,
decreasing functions f : [0, α] → R such that (A.6) is finite, and the budget constraint

1
2

∫ α

0

(2 − r)f (r)
(1 − r)3/2 dr ≤ B (A.5)

is satisfied. We write Tα( fR) for Tα(R) by a slight abuse of notation; then by (A.3) we have

Tα( f ) �
∫ α

0

2c(r)̅̅̅̅̅̅̅
1 − r

√
f (r) dr, f ∈ ^. (A.6)

The mapping f �→Tα( f ) is convex and finite valued, and clearly, f ∗ ∈ ^ is optimal if an only if

ε �→φ(ε) � T((1 − ε) f ∗ + ε f ), [0, 1] → R
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attains a minimum at ε � 0 for all f ∈ ^. By convexity, this function has a right derivative φ′(0) at ε � 0, and φ attains
a minimum at ε � 0 if and only if φ′(0) ≥ 0. Note that for any convex function ϕ, the right difference quotient (ϕ(x + ε)
− ϕ(x))/ε satisfies ϕ′(x) ≤ (ϕ(x + ε) − ϕ(x))/ε ≤ ϕ(x + 1) − ϕ(x) for ε ≤ 1. Using these bounds and dominated convergence,
we see that φ′(0) can be computed by differentiation under the integral:

φ′(0) �
∫ α

0

−2c(r)( f (r) − f ∗(r))̅̅̅̅̅̅̅
1 − r

√
f ∗(r)2 dr. (A.7)

Let R∗ be as in (10); then the corresponding function f ∗� fR∗ is given by

f ∗(r) � B
C

̅̅̅̅̅̅̅̅̅̅̅̅̅
c(r)(1 − r)

2 − r

√
, r ∈ [0, α]. (A.8)

Recalling that α< 1 and that c(r)(1 − r)/(2 − r) is decreasing, we verify directly that f ∗ ∈ ^. Moreover, the budget constraint
(A.5) is satisfied with equality.

Fix an arbitrary f ∈ ^. Using the expression (A.8) in the denominator of (A.7), we have

φ′(0) � −2C2

B2

∫ α

0

(2 − r)( f (r) − f ∗(r))
(1 − r)3/2 dr.

Because f ∗ satisfies (A.5) with equality and f satisfies the same with inequality, the above integral is nonpositive. Thus,
φ′(0) ≥ 0, showing that f ∗ ∈ ^ is optimal and hence that R∗ ∈ 5 is optimal. The formula (11) for T∗

α is then obtained from
(A.6) and (A.8), and the formula for λ∗ follows from (4). □

A.3. Proofs for Section 4
Proof of Proposition 3. Fix player i and suppose that all other players use a control λ−i. By dynamic programming, the value
function vn of player i before arrival satisfies

sup
λi≥0

λi[Rn+1 − vn] − cnλ2
i

{ } + λ−i(n)(N − n − 1)(vn+1 − vn) � 0

for 0 ≤ n ≤ N − 2. For n � N − 1, the same holds by Remark 3 and our convention that vN � RN . Thus, (13) is the optimal
control for player i, and it follows that

(Rn+1 − vn)2
4cn

+ λ−i(n)(N − n − 1)(vn+1 − vn) � 0.

Assuming inductively that vn+1 ≤ Rn+1, this quadratic equation has a unique nonnegative root vn, and vn satisfies 0 ≤ vn ≤
Rn+1 ≤ Rn. In a given equilibrium, the consistency condition λi � λ−i implies that

Rn+1 − vn + 2(N − n − 1)(vn+1 − vn) � 0, n � 0, . . . ,N − 1, (A.9)

or, equivalently, (12), which clearly has a unique solution. Conversely, we can verify directly that (12) and (13) define an
equilibrium. □

Proof of Theorem 3. We first observe that Tn0 is a sum of independent exponential random variables (whenever finite), and
thus

ETn0 �
∑n0−1
n�0

1
(N − n)λn

. (A.10)

Moreover, similarly as in Lemma 2, it suffices to consider reward schemes with Rn > 0 for n ≤ n0 and Rn � 0 for n> n0.
Indeed, the first claim is immediate from (13). To obtain the second, we argue by contradiction and compare (Rn) with the
scheme defined by R̂n � Rn1{n≤n0}. Proposition 3 implies that R̂n leads to a strictly larger equilibrium control before n0 and
hence a strictly smaller completion time. Thus, we only consider reward schemes up to n � n0 in what follows.

From (12), (13), and (A.10), we see that ETn0 : R
n0+ → [0,∞] is a strictly convex, continuous function of (R1, . . . ,Rn0 ).

Moreover, the feasible set defined by R1 ≥ R2 ≥ · · · ≥ Rn0 ≥ 0 and
∑N

n�1 Rn ≤ NB is nonempty, convex, and compact. As
a result, there exists a unique optimal reward scheme. In the remainder of the proof, we determine this reward scheme explicitly.
To that end, define xn0 � 0 and xn � Rn+1 − vn for n<n0. By (13) and (A.10), the objective function can then be expressed as

ETn0 �
∑n0−1
n�0

2cn
(N − n)xn .
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From (12) we obtain that Rn+1 − Rn+2 � 1+2(N−n−1)
2(N−n−1) xn − xn+1, and thus the total reward

∑n0
n�1 Rn � ∑n0

n�1 n(Rn − Rn+1) can be
expressed as ∑n0

n�1
Rn � ∑n0

n�1
n

1 + 2(N − n)
2(N − n) xn−1 − xn

{ }
� ∑n0−1

n�0

2N − n − 1
2(N − n − 1) xn.

The constrained optimization problem of finding x0, . . . , xn0−1 ∈ R that

minimize
∑n0−1
n�0

2cn
(N − n)xn subject to

∑n0−1
n�0

2N − n − 1
2(N − n − 1) xn ≤ NB,

can be solved using the method of Lagrange multipliers. One finds that the optimal xn are given by

xn � 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cn(N − n − 1)

θ(N − n)(2N − n − 1)

√
, n � 0, . . . , n0 − 1,

where the Lagrange multiplier θ satisfies ̅
θ̅

√ � 1
NB

∑n0−1
n�0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cn(2N − n − 1)

(N − n)(N − n − 1)

√
.

Note that θ and xn are related to C and yn of Theorem 3 by C � B
̅̅̅̅̅
Nθ

√
/2 and xn � 2yn/

̅̅̅̅̅
Nθ

√ � Byn/C. We have that Rn0 ≥ 0
as xn0−1 ≥ 0, and Rn − Rn+1 � B

C

( 1+2(N−n)
2(N−n) yn−1 − yn) ≥ 0 for n<n0; here the last inequality is equivalent to (14). Thus, the

reward scheme (R∗
n) associated with the optimizer (xn) is indeed nonnegative and decreasing, and it follows that (R∗

n) is the
optimal reward scheme. The formulas for R∗, T∗

n0 , and λ∗ follow by direct calculation. □

A.4. Proofs for Section 5
Proof of Theorem 4. Let N ≥ 4 be large enough such that δ :� 1/N satisfies rm < 1 − ̅̅

δ
√ − δ. This implies, in particular, that

1 − rm > δ + ̅̅
δ

√
> 2δ. We may rewrite the recursion (12) for vNn as

vNn � g
n
N

( )
vNn+1 + 1 − g

n
N

( )( )
RN
n+1, (A.11)

where

g(r) � 2 1 − r − δ( )
δ + 2 1 − r − δ( ) .

Using (5), we write the mean field value in a similar form:

v
n
N

( )
� f

n
N

( )
v

n + 1
N

( )
+ 1 − f

n
N

( )( )
RN
n+1 + E1,n, (A.12)

where

f (r) :�
̅̅̅̅̅̅̅̅̅̅̅̅
1 − r − δ

1 − r

√
and E1,n :� 1

2
̅̅̅̅̅̅̅̅̅
1 − nδ

√
∫ (n+1)δ

nδ

R(y) − RN
�yN�̅̅̅̅̅̅̅

1 − y
√ dy.

Next, we estimate Δn :�
⃒⃒
vNn − v

(
n
N

)⃒⃒
. For the last rank, we have ΔN � RN

N − R(1)⃒⃒ ⃒⃒ ≤ Kδ by (15). For the second-to-last rank,

because 1 − δ ≥ 1 − ̅̅
δ

√
> rm + δ, (15) again implies that

ΔN−1 � RN
N − v 1 − δ( )⃒⃒ ⃒⃒ ≤ 1

2
̅̅
δ

√
∫ 1

1−δ

|RN
�yN� − R(y)|̅̅̅̅̅̅̅

1 − y
√ dy ≤ Kδ.

For n ≤ N − 2, subtracting (A.12) from (A.11) and using that g(r) ≤ 1 when 0 ≤ r ≤ 1 − δ, we obtain that

Δn ≤ Δn+1 + E1,n + E2,n, (A.13)

where

E2,n �
⃒⃒⃒
g

n
N

( )
− f

n
N

( )⃒⃒⃒
· v n + 1

N

( )
− RN

n+1

⃒⃒⃒⃒ ⃒⃒⃒⃒
.

Nutz and Zhang: A Mean Field Competition
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1245–1263, © 2019 INFORMS 1259



Next, we estimate E1,n and E2,n. To that end, it will be useful to define n0 :�N − � ̅̅̅
N

√ � and note that n ≤ n0 if and only if
nδ ≤ 1 − ̅̅

δ
√

.

Estimation of E1,n. If n0 + 1 ≤ n ≤ N − 2, then rm + δ<nδ ≤ 1 − 2δ, and (15) implies

E1,n ≤ Kδ 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − nδ − δ

1 − nδ

√( )
≤ Kδ.

If 0 ≤ n ≤ n0 and nδ, (n + 1)δ[ ] ⊆ INi for some i, then (15) and 1 − nδ ≥ ̅̅
δ

√
imply

E1,n ≤ Kδ
δ

1−nδ
1 +

̅̅̅̅̅̅̅̅
1−nδ−δ
1−nδ

√ ≤ Kδ3/2.

We observe that there are at most 3m indices n for which n ≤ n0, and nδ, (n + 1)δ[ ] is not contained in any INi . For these n,
we use the boundedness of R and the inequality 1 − nδ ≥ 1 − rm − δ> (1 − rm)/2 to obtain

E1,n ≤ (R(0) + Kδ) 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − nδ − δ

1 − nδ

√( )
<

2(R(0) + K/4)δ
(1 − rm) �: C0δ.

In summary,

E1,n ≤
Kδ, if n0 + 1 ≤ n ≤ N − 2,
Kδ3/2, if n ≤ n0 and nδ, (n + 1)δ[ ] ⊆ INi for some i,
C0δ, otherwise (at most 3m instances).

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (A.14)

Estimation of E2,n. Taylor’s theorem implies that for all x ∈ [0, 1],

0 ≤ ̅̅
x

√ − 2x
1 + x

≤ 1
2
(1 − x)2 1

4x3/2
+ 4
(1 + x)3

( )
.

Using this with x � 1 − δ
1−r yields

g(r) − f (r)⃒⃒ ⃒⃒ ≤ δ2

(1 − r)2 h 1 − δ

1 − r

( )
,

where h(x) :� 1
8x3/2 + 2

(1+x)3. For 0 ≤ n ≤ Nrm, we have δ
1−nδ ≤ δ

1−rm ≤ 1
2 , and thus

E2,n ≤ (R(0) + K/4) δ2

(1 − rm)2 h
1
2

( )
�: C1δ

2.

For Nrm < n ≤ N − 2, we have (n + 1)δ> rm + δ, and it follows that

v
n + 1
N

( )
− RN

n+1

⃒⃒⃒⃒ ⃒⃒⃒⃒
� 1

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − (n + 1)δ√ ∫ 1

(n+1)δ
R(y) − R((n + 1)δ)̅̅̅̅̅̅̅

1 − y
√ dy + R((n + 1)δ) − RN

n+1

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒

≤ K(1 − (n + 1)δ) + Kδ � K(1 − nδ).
Consequently,

E2,n ≤ K(1 − nδ) δ2

(1 − nδ)2 h 1 − δ

1 − nδ

( )
≤ K

2
h

1
2

( )
δ<

K
2
δ,

where we have used that 1 − nδ ≥ 2δ.
As in the estimation of E1,n, the bound can be improved if Nrm <n ≤ n0, and thus 1 − nδ ≥ ̅̅

δ
√

. In this case, we have

E2,n ≤ Kh
1
2

( )
δ3/2 <Kδ3/2.

In summary,

E2,n ≤
1
2Kδ, if n0 + 1 ≤ n ≤ N − 2,

Kδ3/2, ifNrm <n ≤ n0,
C1δ2, if n ≤ Nrm.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (A.15)
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Combining the Estimates. Combining (A.13), (A.14), and (A.15) and recalling that ΔN−1 ≤ Kδ, we obtain for n0 + 1 ≤
n ≤ N − 2 that

Δn ≤ ΔN−1 + 3
2
Kδ(N − 1 − n) ≤ Kδ + 3

2
K

̅̅
δ

√
<
5
2
K

̅̅
δ

√

and for n ≤ n0 that

Δn ≤ Δn0+1 + (2K + C1)δ3/2(n0 + 1 − n) + 3mC0δ

≤ 5
2
K

̅̅
δ

√ + (2K + C1)
̅̅
δ

√ (1 − ̅̅
δ

√ + δ) + 3mC0δ<C2
̅̅
δ

√
.

Putting everything together, we have sup0≤n≤N Δn ≤ max(5K/2,C2)/
̅̅̅
N

√
. It remains to note that

|v′(r)| � |R(r) − v(r)|
2(1 − r) ≤

K
2
, rm < r< 1,

R(0)
2(1 − rm) , 0 ≤ r ≤ rm,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
and consequently,

vN�rN� − v(r)
⃒⃒⃒ ⃒⃒⃒

≤ Δ�rN� + v
�rN�
N

( )
− v r( )

⃒⃒⃒⃒ ⃒⃒⃒⃒
≤ Δ�rN� + ‖v′‖∞

N
<

C3̅̅̅
N

√ .

Because λ∗(r) � R(r)−v(r)
2c(r) and λN

n � RN
n+1−vNn
2cNn

, the convergence of λN follows from the uniform convergence of the value functions

and the cost coefficients, the almost uniform convergence of the reward scheme, and the uniform boundedness of 1/c. □

Proof of Theorem 5. We first observe the convergence of the Riemann sum

CN :� 1
2N

∑�αN�−1

n�0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cNn (2 − n+1

N )
(1 − n

N)(1 − n+1
N )

√
→ 1

2

∫ α

0

̅̅̅̅̅̅̅̅̅̅̅̅̅
c(r)(2 − r)√
(1 − r) dr �: C.

The rate of convergence is O(1/N) because cN converges to c (which is bounded away from zero) uniformly at rate O(1/N)
and

̅̅̅̅̅̅̅
2 − r

√
/(1 − r) is Lipschitz continuous on [0, α]. Using the formulas of Theorems 2 and 3, we conclude that

lim
N→∞ETN

�αN� � lim
N→∞

4(CN)2
B

� 4C2

B
� T∗

α

with rate O(1/N). Turning to the convergence of the reward schemes, we similarly observe that for r ≤ α,

y�rN�−1 �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

cN�rN�−1N(N − �rN�)
(N − �rN� + 1)(2N − �rN�)

√
→

̅̅̅̅̅̅̅
c(r)
2 − r

√
� y(r)

and

1
N

∑�αN�−1

k��rN�−1

yk
1 − k+1

N

→
∫ α

r

y(s)
1 − s

ds,

uniformly in r ∈ [0, α] with rate O(1/N). Hence, the formulas in Theorems 2 and 3 yield that

RN
�rN� �

B
CN y�rN�−1 + 1

2

∑�αN�−1

k��rN�−1

yk
N − k − 1

{ }
→ B

C
y(r) + 1

2

∫ α

r

y(s)
1 − s

ds
{ }

� R∗(r)

uniformly in r ∈ [0, α] with rate O(1/N). □

Proof of Corollary 2. Theorem 4 and Remark 4 imply that the N-player equilibrium control λ(N)
�rN� for R

(N) converges uniformly
to the mean field equilibrium control λ∗(r) for R∗ at rate O(1/N). It follows that

fN(r) :� (1 − �rN�)λ(N)
�rN� → (1 − r)λ∗(r) �: f (r)

uniformly at rate O(1/N). Because λ∗ is uniformly bounded away from zero on [0, α], the same holds for f and fN with
large N. Thus, using (A.10) and (A.3),

ET(N)
�αN� − T∗

α

⃒⃒⃒ ⃒⃒⃒
� ∑�αN�−1

n�0

1

(N − n)λ(N)
n

−
∫ α

0

dr
(1 − r)λ∗(r)

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤

∫ �αN�
N

0

| f (r) − fN(r)|
fN(r) f (r) dr � O(1/N).

Because Theorem 5 shows that |T∗
α − ETN

�αN�| � O(1/N), the claim follows. □
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Appendix B. Exact Law of Large Numbers
In this section, we detail a setting such that the exact law of large numbers holds for a continuum of essentially pairwise
independent random variables. Let (I,(, μ) be an atomless (hence uncountable) probability space, and let (Ω,^,P) be
another probability space.

Definition 1. A family ( fi)i∈I of random variables on (Ω,^,P) is essentially pairwise independent if for μ-almost all i ∈ I, fi is
independent of fj for μ-almost all j ∈ I. The family is essentially pairwise independent and identically distributed (i.i.d.) if, in addition,
all fi have the same distribution.

In what follows, we need to work on a probability space that is larger than the usual product6 (I ×Ω,( ⊗^, μ ⊗ P)
because the latter does not support relevant families of i.i.d. random variables (see, e.g., Sun [38, proposition 2.1]).
Following Sun [38], a probability space (I ×Ω,Σ, ν) is an extension of the product (I ×Ω,( ⊗^, μ ⊗ P) if Σ contains ( ⊗^
and the restriction of ν to ( ⊗^ coincides with μ ⊗ P. It is a Fubini extension if, in addition, any ν-integrable7 function
f : I ×Ω → R satisfies the assertion of Fubini’s theorem; that is,
(1) For μ-almost all i ∈ I, the function f (i, ·) is P-integrable;
(2) For P-almost all ω ∈ Ω, the function f (·, ω) μ-integrable; and
(3) i �→ ∫

f (i, ·) dP is μ-integrable, ω �→ ∫ (·, ω) dμ is P-integrable, and∫
f dν �

∫ ∫
f (i, ω)P(dω)μ(di) �

∫ ∫
f (i, ω)μ(di)P(dω).

Let (I ×Ω,Σ, ν) be a Fubini extension of (I ×Ω,( ⊗^, μ ⊗ P). Then essentially pairwise independent families satisfy an
exact version of the law of large numbers. The following is a special case of Sun [38, corollary 2.9].

Proposition 4 (Exact Law of Large Numbers). Let f : I ×Ω → R be ν-integrable. If f (i, ·), i ∈ I are essentially pairwise i.i.d. with
a distribution having mean m, then

∫
f (·, ω) dμ � m for P-almost all ω ∈ Ω.

Next, we turn to the existence of such a setting. The space (I ×Ω,Σ, ν) is called rich if there exists a Σ-measurable
function f : I ×Ω → R such that f (i, ·), i ∈ I are essentially pairwise i.i.d. with a uniform distribution on [0, 1]. By composing
f with a suitable function, it then follows that (I ×Ω,Σ, ν) supports essentially pairwise i.i.d. families with any given
distribution.

Lemma 3. There exist atomless probability spaces (I,(, μ) and (Ω,^,P) such that (I ×Ω,( ⊗^, μ ⊗ P) admits a rich Fubini extension.

This is part of the assertion of Sun [38, proposition 5.6], which also shows that one can take I � [0, 1] and Ω � R[0,1]. The
main result of Sun and Zhang [39] shows that, in addition, one can take μ to be an extension of the Lebesgue measure (but
not the Lebesgue measure itself). A different construction is presented by Podczeck [33].

Endnotes
1 “Decreasing” and “increasing” are understood in the nonstrict sense throughout the paper.
2While feedback controls seem to be the most natural choice for our model, an alternate formulation may use open-loop controls, meaning that
agents choose functions of time rather than state ρ. Because in our game a single agent has negligible impact on the state process, this would lead
to the same equilibrium as for feedback controls.
3That is, [0, 1) is the union of finitely many intervals on which λ is Lipschitz.
4Anormalization of the budget is necessary for a convergence result as in the subsequent section.We have done that implicitly by seeing B as the
total budget in the mean field limit and as the per capita budget in the N-player setting. Equivalently, one could normalize the mass of the
population by assigning mass 1/N to each agent in the N-player game and see B as the total budget.
5This covers, for example, cNn � c(n/N). We do not consider a more general convergence as in (15) because that would lead to more complicated
statements below without substantially enhancing the scope.
6Here we use the convention that the product σ-field ( ⊗^ is completed.
7That is, f is measurable for the ν-completion of Σ and

∫ | f | dν<∞.
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