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The sharp constant in the weak (1,1) inequality

for the square function: a new proof

Irina Holmes, Paata Ivanisvili and Alexander Volberg

Abstract. In this note we give a new proof of the sharp constant C =

e−1/2 +
∫ 1

0
e−x2/2 dx in the weak (1, 1) inequality for the dyadic square

function. The proof makes use of two Bellman functions L and M related
to the problem, and relies on certain relationships between L and M, as
well as the boundary values of these functions, which we find explicitly.
Moreover, these Bellman functions exhibit an interesting behavior: the
boundary solution for M yields the optimal obstacle condition for L, and
vice versa.

1. Introduction

In this paper we consider weak inequalities for the dyadic square function

Sϕ(x) :=
(∑

I∈D
(ϕ, hI)

2 11I(x)

|I|
)1/2

,

where (·, ·) denotes the usual inner product in L2(R), D is the standard collection
of dyadic intervals on the real line, and {hI}I∈D are the (L2-normalized) Haar
functions:

hI(x) :=
1√|I| (11I−(x)− 11I+(x)),

where I− and I+ denote the left and right halves of I, respectively. In particular,
we look at localized versions of S, applied to compactly supported functions; for a
dyadic interval J ∈ D, let

S2
Jϕ :=

∑
I⊂D, I⊆J

(ϕ, hI)
2 11I
|I| =

∑
I⊂J

|ΔIϕ|2 11I ,
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where ΔIϕ denotes the martingale difference

ΔIϕ :=
1

2
(〈ϕ〉I+ − 〈ϕ〉I− )(11I+ − 11I−) = (ϕ, hI)hI .

Note that S2
Jϕ = S[(ϕ − 〈ϕ〉J )11J ], where 〈ϕ〉J := 1

|J|
∫
J
ϕdx, so we may always

assume that supp(ϕ) ⊂ J .

We are looking for the sharp constant C in the inequality

|{x ∈ J : S2
Jϕ(x) ≥ λ}| ≤ C

1√
λ

∫
J

|ϕ|,

for all ϕ ∈ L1(J) and J ∈ D. It was conjectured by Bollobás in [2], and it was
later proved by Osekowski in [5], that this constant is

(1.1) C = Ψ(1), where Ψ(τ) = τΦ(τ) + e−τ2/2 and Φ(τ) =

∫ τ

0

e−x2/2 dx.

In this paper we give a new proof of this fact, using Bellman functions. We use
several of them, and, roughly speaking, try to solve an obstacle problems for the
PDE that are assigned to these Bellman functions.

As often happens in obstacle problems, the solution breaks the domain of defini-
tion to two sub-domains: the first one is where the solution is equal to the obstacle,
and the second one, where the solution is strictly bigger (or strictly smaller, de-
pending on the problem) than the obstacle, and in this domain the corresponding
PDE should be solved precisely. This can be a difficult task (we deal with fully
nonlinear degenerate elliptic equations), but the sharp constant in the underly-
ing inequality can be found sometimes without fulfilling this difficult task in its
entirety. This is what we will be doing. But we found out the sub-domains men-
tioned above, so we found precisely where our Bellman functions coincide with a
corresponding obstacle functions.

B. Bollobás published [2] in 1982, but apparently he initiated this problem in
mid-70’s, as it is said in [2] that he invented the problem to entertain professor
Littlewood. In [2] a certain constant and a certain special function (the Bellman
function of an underlying problem) were invented. But the fact that the constant
and the function of Bollobás are precisely the best constant and the Bellman
function correspondingly was proved only in 2008 by A. Osekowski in [5]. We
give here a different proof of this fact, and we list also some extra properties of the
function found by Bollobás in [2].

We begin by defining the standard Bellman function for the above listed prob-
lem.

Definition 1.1. Given f ∈ R, F ≥ |f |, and λ > 0, define

M(f, F, λ) := sup
1

|J | |{x ∈ J : S2
Jϕ(x) ≥ λ}|,

where the supremum is over all functions ϕ, supported in J ∈ D, such that 〈ϕ〉J = f
and 〈|ϕ|〉J = F . We say that any such ϕ is an admissible function for M(f, F, λ).
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As shown in Proposition 2.1, this function has the expected properties, such
as a main inequality and an obstacle condition. Also as expected, we show in
Theorem 2.4 that M is the so-called “least supersolution” for its main inequality.

Next, we define another Bellman function, also associated to this problem.

Definition 1.2. Given f ∈ R, 0 ≤ p ≤ 1, and λ > 0, define

L(f, p, λ) := inf〈|ϕ|〉J ,
where the infimum is over all functions ϕ, supported in J ∈ D, such that

〈ϕ〉J = f and
1

|J | | {x ∈ J : S2
Jϕ(x) ≥ λ}| = p.

We say that any such ϕ is an admissible function for L(f, p, λ).

This definition is inspired by Bollobás [2] – see Remark 2.9 for details of the
connection to Bollobás’ definition. Being defined as an infimum, this function will
have most of the mirrored properties of M – replace concavity with convexity for
example. These are detailed in Proposition 2.2. Also mirroring M, we show in
Theorem 2.7 that L is the so-called “greatest subsolution” for its main inequality.

Using the standard methods, we obtain so-called “obstacle conditions” for M

and L, namely

M(f, F, λ) = 1, ∀F ≥
√
λ and L(f, p, λ) = |f |, ∀|f | ≥

√
λ.

While these obstacle conditions suffice, as expected, to prove the least su-
persolution and greatest subsolution results, there is no reason to believe these
obstacle conditions are optimal. That is, M could very well be equal to 1 for some
points where F <

√
λ, for instance. As it turns out, we may find out the optimal

(largest) domains where obstacle condition for M holds from information about L,
and vice versa.

In Section 3 we explore the connections between M and L. We show in The-
orem 3.1 that L(f, p, λ) is the smallest value of F for which M(f, F, λ) ≥ p, and
M(f, F, λ) is the largest value of p such that L(f, p, λ) ≤ F :

L(f, p, λ) = inf{F ≥ |f | : M(f, F, λ) ≥ p}
and M(f, F, λ) = sup{p ∈ [0, 1] : L(f, p, λ) ≤ F}.

These relationships are further improved in Proposition 3.4, where we show that
in certain domains (ultimately the really “interesting” parts of the domains), we
have in fact that

M
(
f,L(f, p, λ), λ

)
= p and L

(
f,M(f, F, λ), λ) = F.

Then the value of M along the boundary F = |f |,
Mb(f, λ) := M(f, |f |, λ) = sup{p ∈ [0, 1] : L(f, p, λ) = |f |},

yields the optimal obstacle condition for L, and the value of L along the bound-
ary p = 1,

Lb(f, λ) := L(f, 1, λ) = inf{F ≥ |f | : M(f, F, λ) = 1},
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yields the optimal obstacle condition for M. We find Mb and Lb explicitly in
Section 5. See Section 3.1 and Figures 1 and 2 for a description of the optimal
obstacle conditions for M and L obtained from these boundary values.

In Section 4 we give the new proof of the sharp constant in (1.1). The inequality

M(0, F, λ) ≤ F

L(0, 1, λ)
=

F

Lb(0, λ)
,

is proved in detail in Theorem 4.1. This, combined with the relationship

L(f,M(f, F, λ), λ) = F,

and the expression of Lb obtained in Theorem 3.3, then yields the desired sharp
constant C, as detailed in Corollary 4.3. The proof is significantly simplified once
we find, in Proposition 4.2, the values of M and L at f = 0.

2. Properties of the Bellman functions M and L

2.1. Basic properties

In this section we prove the basic properties of M and L, such as the main inequal-
ities, convexity, monotonicity, and obstacle conditions.

Proposition 2.1. The Bellman function M(f, F, λ) in Definition 1.1 has the fol-
lowing properties :

1) M is independent of the choice of interval J ∈ D in its definition.

2) (Domain and range): M has convex domain ΩM := {(f, F, λ) : |f | ≤ F ;λ>0},
and 0 ≤ M ≤ 1.

3) M is decreasing in λ.

4) M is even in f .

5) (Homogeneity):

(2.1) M(f, F, λ) = M(tf, |t|F, t2λ), ∀t 
= 0.

6) (Obstacle condition):

(2.2) M(f, F, λ) = 1, ∀λ ≤ F 2.

7) (Main inequality): For all triplets (f, F, λ), (f±, F±, λ±) in the domain with
f = 1

2 (f− + f+), F = 1
2 (F− + F+), and λ = min(λ−, λ+), there holds

(2.3) M
(
f, F, λ+

(
f+ − f−

2

)2 )
≥ 1

2

(
M(f+, F+, λ+) +M(f−, F−, λ−)

)
.

8) M is concave in the variables f and F .
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9) M is maximal at f = 0:

(2.4) M(f, F, λ) ≤ M(f, F, λ − f2) ≤ M(0, F, λ).

10) M is non-decreasing in F ; M is non-increasing in f for f ≥ 0 (and non-
decreasing in f for f ≤ 0).

Proof. Property 1) follows by the standard considerations. Properties 2) and 3)
are obvious. Property 4) follows since ϕ is admissible for M(f, F, λ) if and only
if −ϕ is admissible for M(−f, F, λ), and in this case S2

Jϕ = S2
J (−ϕ). To see homo-

geneity, 5), note that ϕ is admissible for M(f, F, λ) if and only if tϕ is admissible
for M(tf, |t|F, t2λ), and in this case S2

J(tϕ) = t2S2
Jϕ.

Next, we prove the obstacle condition 6). Given a point (f, F, λ) in the domain,
consider the function ϕ = f11J + F

√|J |hJ . Then 〈ϕ〉J = f , S2
Jϕ = F 211J , and

〈|ϕ|〉J = F . So ϕ is admissible for M(f, F, λ), and if λ ≤ F 2, {x ∈ J : S2
Jϕ(x) ≥

λ} = J , so M(f, F, λ) = 1.

To prove the main inequality 7), let J ∈ D be a dyadic interval, and let ϕ±
be functions supported on J±, admissible for M(f±, F±, λ±), and which give the
supremum up to some ε > 0:

supp(ϕ±) ⊂ J±; 〈ϕ±〉J± = f±; 〈|ϕ±|〉J± = F±,

and
1

|J±|
∣∣{x ∈ J± : S2

J±ϕ± ≥ λ±}
∣∣ >M(f±, F±, λ±)− ε.

Now define ϕ on J by concatenation: ϕ := ϕ−11J− + ϕ+11J+ . Then 〈ϕ〉J = f and
〈|ϕ|〉J = F , so ϕ is admissible for M(f, F, λ). Moreover,

S2
Jϕ = |ΔJϕ|2 11J +

∑
I⊂J−

|ΔIϕ−|2 11I +
∑
I⊂J+

|ΔIϕ+|2 11I

=
1

4
(f+ − f−)2 11J + S2

J−ϕ− + S2
J+
ϕ+.

Then

M
(
f, F, λ + 1

4 (f+ − f−)2
) ≥ 1

|J |
∣∣{x ∈ J : S2

J−ϕ−(x) + S2
J+
ϕ+(x) ≥ λ}∣∣

≥ 1

2|J−| v |{x ∈ J− : S2
J−ϕ−(x) ≥ λ−}

∣∣+ 1

2 |J+|
∣∣{x ∈ J+ : S2

J+
ϕ+(x) ≥ λ+}

∣∣
>

1

2
(M(f−, F−, λ−) +M(f+, F+, λ+))− ε.

Since this holds for all ε > 0, the main inequality (2.3) is proved.

To prove 8), rewrite the main inequality in a more convenient form:

(2.5)
1

2

(
M(f + a, F + b, λ) +M(f − a, F − b, λ)

) ≤ M(f, F, λ+ a2) ≤ M(f, F, λ),

for all a ∈ R and |b| ≤ F . Letting a = 0 above, we obtain that M is midpoint
concave in the variable F . Letting b = 0, we have midpoint concavity in the
variable f . Since M is measurable, this is enough to show that M is concave in F
and f (see page 60 in [3], and the references therein [1], [6]).
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For 9), take f = 0 and b = 0 in (2.5):

M(0, F, λ + a2) ≥ 1

2

(
M(a, F, λ) +M(−a, F, λ)) = M(a, F, λ),

where the last equality follows because M is even in the first variable.

Finally, to see 10) note that by the obstacle condition (2.2), M(f, ·, λ) is concave
and has a maximum at F =

√
λ, and is constant for F ≥ √

λ. Similarly, M(·, F, λ)
is even, concave, and by (2.4) has a maximum at f = 0. �

Note that if F = 0, the only admissible function is ϕ = 0 a.e., so

(2.6) M(0, 0, λ) = 0, ∀λ > 0.

Proposition 2.2. The Bellman function L(f, p, λ) in Definition 1.2 has the fol-
lowing properties :

1) L is independent of the choice of interval J ∈ D in its definition.

2) (Domain and range): L has convex domain ΩL := {(f, p, λ) : f ∈ R; p ∈
[0, 1], λ > 0}. As for the range,

(2.7) |f | ≤ L(f, p, λ) ≤ (1 − p) |f |+ pmax(|f |,
√
λ).

3) L is increasing in λ.

4) L is even in f .

5) (Homogeneity):

(2.8) L(tf, p, t2λ) = |t|L(f, p, λ), ∀t 
= 0.

6) (Obstacle condition):

(2.9) L(f, p, λ) = |f |, ∀|f | ≥
√
λ.

7) (Main inequality): For all triplets (f, p, λ), (f±, p±, λ±) in the domain with
f = 1

2 (f− + f+), p =
1
2 (p− + p+), and λ = min(λ−, λ+), there holds

(2.10) L
(
f, p, λ+

(f+ − f−
2

)2 )
≤ 1

2

(
L(f+, p+, λ+) + L(f−, p−, λ−)

)
.

8) L is convex in the variables f and p.

9) L is minimal at f = 0:

(2.11) L(0, p, λ) ≤ L(0, p, λ+ f2) ≤ L(f, p, λ).

10) L is non-decreasing in p ; L is non-decreasing in f for f ≥ 0 (and non-
increasing in f for f ≤ 0).
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Proof. The proofs of properties 1), 4) and 5) are similar to those for M. It is also
straightforward to prove

(2.12) L(f, p, λ+ a2) ≤ 1

2

(
L(f + a, p+ b, λ) + L(f − a, p− b, λ)

)
,

a weaker form of (2.10) – note that we do not know yet that L is increasing in λ,
a property that is not so obvious in this case. We may see now however that L is
convex in p, by letting a = 0 in (2.12).

Next, we prove the range condition (2.7), and note that in this case the obstacle
condition (2.9) follows directly from the range condition, since

|f | ≤ L(f, p, λ) ≤ (1− p) |f |+ pmax(|f |,
√
λ) ≤ max(|f |,

√
λ).

The first inequality is obvious, as any function ϕ admissible for L(f, p, λ) satisfies
〈|ϕ|〉J ≥ |〈ϕ〉J | = |f |. We now prove the second inequality, and begin with some
simple examples. When p = 1, consider the function ϕ = f 11J +

√
λ
√|J |hJ . Then

S2
Jϕ = λ11J , so ϕ is admissible for L(f, 1, λ), and then

L(f, 1, λ) ≤ 〈|ϕ|〉J =
1

2
|f +

√
λ|+ 1

2
|f −

√
λ| = max{|f |,

√
λ}.

If p = 1/2, then consider for example the function ϕ = f 11J +
√
λ
√|J−|hJ− . Then

S2
Jϕ = λ11J− , so ϕ is admissible for L(f, 1/2, λ), and then

L(f, 1/2, λ) ≤ 〈|ϕ|〉J =
1

4
|f +

√
λ|+ 1

4
|f −

√
λ|+ 1

2
|f | = 1

2
|f |+ 1

2
max{|f |,

√
λ}.

Now suppose that p ∈ (0, 1) is a dyadic rational, that is, p = k/2N for some
integers N ≥ 1 and 1 ≤ k ≤ 2N − 1. On some dyadic interval J , let I denote any
collection of k subintervals in the N th generation J(N) of dyadic descendants of J ,
and let

ϕ = f 11J +
√
λ
∑
I∈I

√
|I|hI .

Then S2
Jϕ = λ11{∪I:I∈I}, so

1

|J | |{x ∈ J : S2
Jϕ(x) ≥ λ}| = |⋃I∈I I|

|J | =
k

2N
= p,

and L(f, p, λ) ≤ 〈|ϕ|〉J . Now for every I ∈ I, on I±, ϕ = f ± √
λ, and ϕ = f off

∪I∈II. So

〈|ϕ|〉J =
1

|J |
(
max{|f |,

√
λ}

∑
I∈I

|I|+ |f ||J \∪I∈II|
)
= (1− p) |f |+ pmax{|f |,

√
λ}.

Therefore the second inequality in (2.7) holds for all dyadic rationals p ∈ (0, 1),
and the result follows.

Also note that, taking p = 0 in (2.7), we see that

(2.13) L(f, 0, λ) = |f |.
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Thus L(f, ·, λ) is convex in p ∈ [0, 1] and has a minimum at p = 0, so L is
non-decreasing in p. In turn, this allows us to prove property 3), that L is non-
decreasing in λ: suppose λ1 ≤ λ2 and let ϕ be admissible for L(f, p, λ2). Then
〈ϕ〉J = f and

p =
1

|J | |{x ∈ J : S2
Jϕ(x) ≥ λ2}| ≤ 1

|J | |{x ∈ J : S2
Jϕ(x) ≥ λ1}| =: q.

So ϕ is also admissible for L(f, q, λ1), where q ≥ p, which means

〈|ϕ|〉J ≥ L(f, q, λ1) ≥ L(f, p, λ1).

Since this holds for all ϕ admissible for L(f, p, λ2), we have L(f, p, λ2) ≥ L(f, p, λ1).
Having the desired monotonicity in λ then gives the full form of the main

inequality (2.10), as well as L(f, p, λ) ≤ L(f, p, λ + a2). So letting b = 0 in (2.12)
with we obtain convexity in f – so property 8) is also proved. Let f = 0 and b = 0
in (2.12) and we obtain 9), minimality of L at f = 0. Finally, we may then finish
proving 10): since L(·, p, λ) is even, convex, and minimal at f = 0, the claimed
monotonicity in f follows. �

2.2. M is the least supersolution

Consider the main inequality for M in more generality:

(2.14) m(f, F, λ+ a2) ≥ 1

2

(
m(f + a, F + b, λ) +m(f − a, F − b, λ)

)
.

Definition 2.3. We say that a functionm(f, F, λ) defined on ΩM is a supersolution
of the main inequality (2.14) provided that m is non-negative, continuous, and
satisfies

1) the main inequality (2.14);

2) the obstacle condition m(f, F, λ) = 1, whenever λ ≤ F 2.

Theorem 2.4. If m is any supersolution as defined above, then M ≤ m.

Proof. Obviously, it suffices to show that if m is a supersolution, then

(2.15) |J |m(f, F, λ) ≥ |{x ∈ J : S2
Jϕ(x) ≥ λ}|,

for any function ϕ supported in J ∈ D with 〈ϕ〉J = f and 〈|ϕ|〉J = F .

Remark 2.5. Some caution is needed when working in L1, so we recall here
the classical Haar system on [0, 1). Consider J = [0, 1) and arrange its dyadic
subintervals (and hence also their corresponding Haar functions) in lexicographical
order:

Jn :=
[ j − 1

2k
,
j

2k

)
, ∀n = 2k + j − 1, k ≥ 0, 1 ≤ j ≤ 2k.

So
J1 = J ; J2 = J−, J3 = J+; J4 = J−−, J5 = J−+, . . . ,

where I− and I+ denote the left and right halves of a dyadic interval I, respectively.
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The classical result of Haar states that for every ϕ ∈ Lp[0, 1), 1 ≤ p < ∞, the
Haar series

ϕN (x) := 11[0,1)(x)

∫ 1

0

ϕ+

N∑
k=1

(ϕ, hJk
)hJk

(x)

converges to ϕ in Lp[0, 1) and almost everywhere. The reason for caution in our
problem is that, while for p > 1 the Haar functions form an unconditional basis for
Lp[0, 1), the most we can say for p = 1 is that {11[0,1)} ∪ {hJk

}k≥1 is a Schauder
basis. That is, we may rearrange the Haar series in such a way that it becomes
divergent.

This result transfers in an obvious way to any dyadic interval J ∈ D, and we
use the notation

{hJk
}k≥1

whenever we must keep track of the ordering of the subintervals of J . We say this
is the Haar system adapted to J .

Returning to our proof, the first key observation is that it suffices to prove (2.15)
for functions ϕ with finite Haar expansion. To see this, let ϕ with supp(ϕ) ⊂ J ,
〈ϕ〉J = f and 〈|ϕ|〉J = F . Then the Haar series

ϕN := f 11J +

N∑
k=1

(ϕ, hJk
)hJk

converges to ϕ in L1(J) and almost everywhere. Moreover, 〈ϕN 〉J = f and FN :=
〈|ϕN |〉J → F as N → ∞. Consider now the sets

EN,λ := {x ∈ J : S2
JϕN (x) ≥ λ} and Eλ := {x ∈ J : S2

Jϕ(x) ≥ λ}.
We must be a little careful now, since it is not necessarily true that |EN,λ| →

|Eλ| as N → ∞. So let ε > 0 and use (2.15) with λ− ε instead, to obtain

(2.16) |J |m(f, FN , λ− ε) ≥ |{x ∈ J : S2
JϕN (x) ≥ λ− ε}| = |EN,λ−ε|,

for all N . Now, since S2
Jϕ = limN→∞ S2

JϕN a.e. we have

(2.17)
∞⋃

N=1

EN,λ−ε ⊇ Eλ = {x ∈ J : S2
Jϕ(x) ≥ λ} a.e.

(for almost all x ∈ Eλ, there will be a level Nx after which x ∈ EN,λ−ε for all
N ≥ Nx). Taking lim sup in (2.16) and (2.17) we have then

|J |m(f, F, λ− ε) ≥ lim sup
N→∞

|EN,λ−ε| ≥ |Eλ|.

Since this holds for all ε > 0 and m is continuous, we obtain exactly the desired
conclusion.

So now suppose supp(ϕ) ⊂ J , 〈ϕ〉J = f , 〈|ϕ|〉J = F . The goal is to show that
if m is any supersolution,

|J |m(f, F, λ) ≥ |E|, where E := {x ∈ J : S2
Jϕ(x) ≥ λ}.
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Suppose further that there is some dyadic level N > 0 such that

ϕ = f 11J +
∑
I⊂J

|I|≥|J|2−N

(ϕ, hI)hI .

Remark that S2
Jϕ is constant on each I ∈ J(N), so E is then a disjoint union of

intervals I ∈ J(N) (unless E is empty, in which case we are done). For every I ⊂ J ,
let

fI := 〈ϕ〉I , FI := 〈|ϕ|〉I , λI := λ−
∑

K:I�K⊂J

Δ2
Kϕ.

Then note that

f = fJ =
1

2
(fJ+ + fJ−), F = FJ =

1

2
(FJ+ + FJ−),

λ = λJ and Δ2
Jϕ =

1

4
(fJ+ − fJ−)

2 ≤ F 2
J .

Now, we describe the iteration procedure:

• If λ ≤ Δ2
Jϕ, then the obstacle condition gives that |J |m(f, F, λ) = |J | ≥ |E|,

and we are done.

• Otherwise, we have λJ+ = λJ− = λ −Δ2
Jϕ > 0, so then we apply the main

inequality for m to obtain:

|J |m(f, F, λ) ≥ |J−|m(fJ− , FJ− , λJ−) + |J+|m(fJ+ , FJ+ , λJ+).

– If λJ+ ≤ Δ2
J+
ϕ ≤ F 2

J+
, then this becomes

|J |m(f, F, λ) ≥ |J−|m(fJ− , FJ− , λJ−) + |J+|,

and if we iterate further, we only do so on J−. Also note that, in this
case, λI ≤ 0 for any I ∈ J(N) with I � J+.

– Otherwise, iterate the J+ term further, with λJ+− = λJ++ = λ−Δ2
Jϕ−

Δ2
J+
ϕ > 0.

Continuing this process down to the last dyadic level N , we have

(2.18) |J |m(f, F, λ) ≥
∑

I∈J(N):λI>0

|I|m(fI , FI , λI) +
∑

I∈J(N):λI≤0

|I|.

Finally, it is easy to see that for any I ∈ J(N), we have I ⊂ E if and only if
λI ≤ Δ2

Iϕ, and again by the obstacle condition, if I ⊂ E and λI > 0, then
m(fI , FI , λI) = 1. So (2.18) gives us the desired conclusion:

|J |m(f, F, λ) ≥
∑

I∈J(N):I⊂E

|I| = |E|. �
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2.3. L is the greatest subsolution

Let us also consider the main inequality for L in more generality:

(2.19) �(f, p, λ+ a2) ≤ 1

2

(
�(f + a, p+ b, λ) + �(f − a, p− b, λ)

)
.

Definition 2.6. We say that a function �(f, p, λ) defined on ΩL is a subsolution
for the main inequality (2.19) provided that � is non-negative, continuous, and
satisfies

1) the main inequality (2.19);

2) range/obstacle condition: |f | ≤ �(f, p, λ) ≤ max{|f |,√λ};
3) boundary condition: �(f, 0, λ) = |f |.

Theorem 2.7. If � is any subsolution as defined above, then � ≤ L.

Proof. Wemust prove that �(f, p, λ) ≤ 〈|ϕ|〉J for any function ϕ on J with 〈ϕ〉J = f
and 1

|J| |E| = p, where E = {x ∈ J : S2
Jϕ(x) ≥ λ}. As before, we may assume that

there is some dyadic level N ≥ 0 below which the Haar coefficients of ϕ are zero,
and assume that p is a dyadic rational.

If λ ≤ Δ2
Jϕ, then by condition 2),

�(f, p, λ) ≤ max{|f |,
√
λ} ≤ max{|f |, |ΔJϕ|} ≤ 〈|ϕ|〉J ,

and we are done. Otherwise, put λJ± = λ−Δ2
Jϕ > 0, fJ± = 〈ϕ〉J± , and

pJ± =
1

|J±| |{x ∈ J± : S2
J±ϕ(x) ≥ λJ±}|.

Then, by the main inequality,

|J |�(f, p, λ) ≤ |J−| �(fJ− , pJ− , λJ−) + |J+| �(fJ+ , pJ+ , λJ+).

If λJ± ≤ Δ2
J±ϕ, it follows as before that |J±|�(fJ± , pJ± , λJ±) ≤

∫
J±

|ϕ|, and oth-

erwise we iterate further on J±.
Continuing in this way down to the last level N and putting λI := λ−Δ2

I(1)ϕ−
· · · −Δ2

Jϕ for every I ∈ J(N), the previous iterations have covered all cases where
λI ≤ 0, and we have

(2.20) |J | �(f, p, λ) ≤
∑

I∈J(N):λI≤0

∫
I

|ϕ|+
∑

I∈J(N):λI>0

|I| �(fI , pI , λI).

Now note that, for I ∈ J(N),

pI =
1

|I| |{x ∈ I : S2
Iϕ(x) ≥ λI}| = 1

|I| |{x ∈ I : Δ2
Iϕ(x) ≥ λI}| =

{
0, if I 
⊂ E,
1, if I ⊂ E.

So, if I 
⊂ E, then we use the boundary condition 3):

�(fI , pI , λI) = �(fI , 0, λI) = |fI | ≤ 〈|ϕ|〉I ,
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and if I ⊂ E, or λI ≤ Δ2
Iϕ, we use condition 2) as before to obtain �(fI , pI , λI) ≤

max{|fI |, |ΔIϕ|} ≤ 〈|ϕ|〉I . Finally, (2.20) becomes

|J | �(f, p, λ) ≤
∑

I∈J(N)

∫
I

|ϕ| =
∫
J

|ϕ|. �

Remark 2.8. Later, in Section 5, we will look at subsolutions for the particular
case L(f, 1, λ). We note that the boundary condition 3) above will no longer be
needed there: when p = 1, we are looking only at functions ϕ with S2

Jϕ ≥ λ
almost everywhere on J , so at the end of the proof, there will be no intervals left
outside E, and there will be no terms of the form �(fI , 0, λI).

Remark 2.9. Our definition of the Bellman function L was inspired by Bollo-
bás [2], who worked with

LB(s, h) := inf
{∫ 1

0

|ϕ| dx : supp(ϕ) ⊂ [0, 1];

∫ 1

0

ϕdx = h; Sϕ ≡ s on [0, 1]
}
.

We claim that LB(s, h) = L(h, 1, s2). In fact, we may define L(f, p, λ) in general
by replacing “≥ λ” with “= λ”. To see this, let

L′(f, p, λ) := inf
{
〈|ϕ|〉J : supp(ϕ) ⊂ J ; 〈ϕ〉J = f ;

1

|J | |{x ∈ J : S2
Jϕ(x) = λ}| = p

}
.

We claim that L′ = L. Suppose ϕ is admissible for L′(f, p, λ). Then

q :=
1

|J | |{x ∈ J : S2
Jϕ(x) ≥ λ}| ≥ 1

|J | |{x ∈ J : S2
Jϕ(x) = λ}| = p,

so ϕ is also admissible for L(f, q, λ) with q ≥ p. Then, since L is non-decreasing
in the second variable, 〈|ϕ|〉J ≥ L(f, q, λ) ≥ L(f, p, λ). This shows that L′ ≥ L.

To see the converse, we note that L′ is a subsolution for the main inequal-
ity (2.19), as in Definition 2.6. It is easy to show in the usual way that L′ sat-
isfies (2.19). Moreover, L′ satisfies the same range condition (2.7) as L: |f | ≤
L′(f, p, λ) ≤ (p − 1)|f | + pmax(|f |,√λ). The proof of this inequality for L goes
through identically for L′, since the test functions ϕ we constructed for each dyadic
rational p really satisfied {x ∈ J : S2

Jϕ(x) ≥ λ} = {x ∈ J : S2
Jϕ(x) = λ}. Then by

Theorem 2.7 (that claims L to be the greatest subsolution for the main inequal-
ity (2.19)) it follows that L′ ≤ L.

3. Relationships between M and L

Theorem 3.1. L(f, p, λ) is the smallest value of F for which M(f, F, λ) ≥ p :

(3.1) L(f, p, λ) = inf{F ≥ |f | : M(f, F, λ) ≥ p}.
Moreover, M(f, F, λ) is the largest value of p such that L(f, p, λ) ≤ F :

(3.2) M(f, F, λ) = sup{p ∈ [0, 1] : L(f, p, λ) ≤ F}.
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Proof. Suppose M(f, F, λ) ≥ p and let ε > 0. Then there is a function ϕ on J ∈ D
such that

〈ϕ〉J = f, 〈|ϕ|〉J = F, q :=
1

|J | |{x ∈ J : S2
Jϕ(x) ≥ λ}| > p− ε.

Then ϕ is admissible for L(f, q, λ), and since L is non-decreasing in the second
variable,

L(f, p− ε, λ) ≤ L(f, q, λ) ≤ 〈|ϕ|〉J = F.

Since this holds for all ε > 0, L(f, p, λ) ≤ F for all F such that M(f, F, λ) ≥ p.
Further, for every ε > 0 there is a function ϕ on J ∈ D such that

〈ϕ〉J = f,
1

|J | |{x ∈ J : S2
Jϕ(x) ≥ λ}| = p, F := 〈|ϕ|〉J < L(f, p, λ) + ε.

But ϕ is admissible forM(f, F, λ), and then clearlyM(f, F, λ) ≥ p. This proves (3.1).
The other equation (3.2) follows similarly. �

3.1. Optimal obstacle conditions for M and L

Looking back at the obstacle condition (2.2) for M, namely M(f, F, λ) = 1 when-
ever F ≥ √

λ, there is no reason to think this condition is optimal. That is, there
well could be values of F strictly smaller than

√
λ where M is 1. As it turns out,

the optimal obstacle condition for M can be obtained from information about L.
Since M ≤ 1, taking p = 1 in (3.1), we obtain exactly this:

(3.3) L(f, 1, λ) = inf{F ≥ |f | : M(f, F, λ) = 1}.

On the other hand, the obstacle condition for L really comes from its range, |f | ≤
L(f, p, λ) ≤ max{|f |,√λ}, which clearly shows that L = |f | whenever |f | ≥ λ2.
However, this says nothing about p, and we do know that, for example, L(f, 0, λ) =
|f | regardless of the behavior of f and λ. What other values of p could this hold
for? This is again obtained precisely from information about M, by letting F = |f |
in (3.2):

(3.4) M(f, |f |, λ) = sup{p ∈ [0, 1] : L(f, p, λ) = |f |}.

So, if we find the expressions for L and M along these boundaries of their domains,
we also obtain the optimal obstacle conditions for M and L, respectively.

We denote these boundary values of M and L by Mb and Lb, respectively,
defined as follows. For f ≥ 0 and λ > 0,

(3.5) Mb(f, λ) := M(f, |f |, λ) = sup
1

|J | |{x ∈ J : S2
Jϕ(x) ≥ λ}|,

where the supremum is over all functions ϕ on J with ϕ ≥ 0 a.e. and 〈ϕ〉J = f .
Note that since M is even in f , it suffices to consider Mb for f ≥ 0. Moreover, the
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only admissible functions for M(f, |f |, λ) are those with ϕ ≥ 0 a.e. (for f ≥ 0) or
ϕ ≤ 0 a.e. (for f ≤ 0). Similarly,

Lb(f, λ) := L(f, 1, λ)

= inf{〈|ϕ|〉J : supp(ϕ) ⊂ J ; 〈ϕ〉J = f ; S2
Jϕ ≥ λ a.e. on J}.(3.6)

We find these functions in Section 5, where we prove the following results.

Theorem 3.2. The function Mb is given by

(3.7) Mb(|f |, λ) = M(f, |f |, λ) =
{

Φ(|f |/
√
λ)

Φ(1) , |f | < √
λ,

1, |f | ≥ √
λ,

= min
(Φ(|f |/√λ)

Φ(1)
, 1
)
,

where, for all τ ≥ 0,

Φ(τ) :=

∫ τ

0

e−x2/2 dx.

Theorem 3.3. The function Lb is given by
(3.8)

Lb(f, λ)=L(f, 1, λ)=

{ √
λΨ(|f |/

√
λ)

Ψ(1) , 0≤|f |<√
λ

|f |, |f |≥√
λ.

=
√
λmax

(Ψ(|f |/√λ)
Ψ(1)

,
|f |√
λ

)
,

where
Ψ(τ) = τΦ(τ) + e−τ2/2, for all τ ≥ 0.

3.2. The functions θ and η

To visualize the optimal obstacle conditions induced by Mb and Lb for L and M,
respectively, we use homogeneity of M and L to reduce the discussion to functions
of two variables. Specifically, from (2.1) and (2.8), we write

(3.9) M(f, F, λ) = M(f/
√
λ, F/

√
λ, 1) =: θ(τ, γ) and L(f, p, λ) =:

√
λη(τ, p),

where τ = f/
√
λ and γ = F/

√
λ. Thus θ is defined on Ωθ := {0 ≤ |τ | ≤ γ} with

values in [0, 1], and η is defined on Ωη := {0 ≤ p ≤ 1; τ ∈ R} with values satisfying
|τ | ≤ η(τ, p) ≤ (1− p)|τ |+ pmax(|τ |, 1). It is also clear that θ and η are even in τ ,
so we often restrict our attention to the domains Ω+

θ and Ω+
η where τ ≥ 0. Other

properties that θ and η inherit from M and L are easy to check:

• θ(0, 0) = 0 and η(τ, 0) = τ .

• θ is maximal at τ = 0, and η is minimal at τ = 0:

θ(|τ |, γ) ≤ θ(0, γ), η(0, p) ≤ η(|τ |, p).
• θ is decreasing in τ for τ ≥ 0, and is increasing in γ; η is increasing in both
τ ≥ 0 and p.

• θ is concave in both τ and γ, and η is convex in both τ and p.

• The original obstacle conditions (2.2) and (2.9) for M and L translate to

θ(τ, γ) = 1, ∀γ ≥ 1 and η(τ, p) = |τ |, ∀|τ | ≥ 1.
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Moreover, (3.3) and (3.4) become

η(τ, 1) = inf{γ ≥ |τ | : θ(τ, γ) = 1} and θ(τ, |τ |) = sup{p : η(|τ |, p) = |τ |}.

The expression for Lb gives that

η(τ, 1) =

{
Ψ(|τ |)/Ψ(1), 0 ≤ |τ | < 1,
|τ |, |τ | ≥ 1,

which yields the optimal obstacle condition for θ (see Figure 1).

Figure 1. Initial and optimal obstacle conditions for θ.

Similarly, Mb gives that

θ(τ, τ) =

{
Φ(|τ |)/Φ(1), 0 ≤ |τ | ≤ 1,
1, τ ≥ 1,

which yields the optimal obstacle condition for η (see Figure 2).

Figure 2. Initial and optimal obstacle conditions for η.
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Let us give some special names to the “interesting” parts of the domains of θ
and η, where they are unknown. We denote by Ω̃θ the part of the domain of θ that
lies underneath the obstacle condition curve γ = η(τ, 1):

Ω̃θ :=
{
(τ, γ) : 0 ≤ |τ | ≤ 1; |τ | ≤ γ ≤ Ψ(|τ |)

Ψ(1)
= η(τ, 1)

}
,

and by Ω̃η the part of the domain of η that lies above the obstacle condition curve
p = θ(τ, |τ |):

Ω̃η :=
{
(τ, p) : 0 ≤ |τ | ≤ 1; p ≥ Φ(|τ |)

Φ(1)
= θ(τ, |τ |)

}
.

As the next proposition shows, in these domains we can improve the results of
Theorem 3.1.

Proposition 3.4. The functions M and L satisfy

(3.10) M
(
f,L(f, p, λ), λ

)
= p, for all (τ = f/

√
λ, p) ∈ Ω̃η,

that is, for all

0 ≤ |f | ≤
√
λ and p ≥ Φ(|f |/√λ)

Φ(1)
.

Similarly,

(3.11) L
(
f,M(f, F, λ), λ) = F, for all (τ = f/

√
λ, γ = F/

√
λ) ∈ Ω̃θ,

that is, for all

0 ≤ |f | ≤
√
λ and |f | ≤ F ≤

√
λΨ(|f |/√λ)

Ψ(1)
.

Proof. The relationships between M and L in Theorem 3.1 translate in θ–η lan-
guage as
(3.12)
η(τ, p) = inf{γ ≥ τ : θ(τ, γ) ≥ p} and θ(τ, γ) = sup{0 ≤ p ≤ 1 : η(τ, p) ≤ γ}.

Now fix some 0 ≤ τ ≤ 1. If p < θ(τ, τ) (below the obstacle condition curve
for η), then η(τ, p) = τ and θ(τ, γ) ≥ θ(τ, τ) > p for all γ ≥ τ , so indeed γ = τ
is the smallest possible value of γ where θ(τ, γ) ≥ p. If, on the other hand,

1 ≥ p ≥ θ(τ, τ), or (τ, p) ∈ Ω̃η, then there exists a γ ≥ τ such that θ(τ, γ) = p. So,
in this case, we may rewrite the first equation in (3.12) as

η(τ, p) = inf{γ ≥ τ : θ(τ, γ) = p},
and then obviously

(3.13) θ(τ, η(τ, p)) = p for all (τ, p) ∈ Ω̃η.

This is exactly (3.10). Similarly, we have that

�(3.14) η(τ, θ(τ, γ)) = γ for all (τ, γ) ∈ Ω̃θ.
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4. The sharp inequality for the square function

The following result is an adaptation of Lemma 2 in Bollobás [2].

Theorem 4.1. The functions M and L satisfy

(4.1) M(0, F, λ) ≤ F

L(0, 1, λ)
=

F

Lb(0, λ)
,

for all F ≥ 0 and λ > 0.

Proof. Let ϕ be a function on J ∈ D with
∫
J
ϕ = 0 and finite Haar expansion (up

to some dyadic level N ≥ 0):

ϕ =
∑
I⊂J

(ϕ, hI)hI =
2N+1−1∑

k=1

ak hJk
,

where in the last term we are keeping track of the ordering in the Haar system
adapted to J , as in Remark 2.5. Fix some λ > 0 and let

p :=
1

|J | |{x ∈ J : S2
Jϕ(x) ≥ λ}| =: c〈|ϕ|〉J ,

and suppose that 0 < p < 1. Put the intervals in the last generation J(N) into two
(“good” and “bad”) categories:

J(N) = Ig ∪ Ib,
where Ig is the collection of intervals I ∈ J(N) with S

2
Jϕ ≥ λ on I, and Ib are the

remaining ones where S2
Jϕ < λ. Then clearly

| ∪I∈Ig I| = p |J | and | ∪I∈Ib
I| = (1− p) |J |.

Now, for each I ∈ Ib, let ψI be the function

ψI :=

2N+1−1∑
k=1

1√
2N+1

ak hI−
k
+

2N+1−1∑
k=1

1√
2N+1

ak hI+
k
,

where each {hI−
k
} and {hI+

k
} denote the (ordered) Haar systems adapted to I−

and I+, respectively. Essentially, this amounts to

ψI = 11I−ψI− + 11I+ψI+ ,

where each ψI± is a copy of ϕ adapted to I±, so

〈|ψI± |〉I± = 〈|ψI |〉I = 〈|ϕ|〉J .
Now, let

ϕ1 := ϕ+
∑
I∈Ib

ψI .

Then
∫
J
ϕ1 = 0, and

〈|ϕ1|〉J ≤ 〈|ϕ|〉J
(
1 + (1− p)

)
.
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The square function S2
Jϕ1 equals S2

Jϕ on ∪I∈IgI, while on any I ∈ Ib,
|{x ∈ I : S2

Jϕ1(x) ≥ λ}| ≥ |I−| p+ |I+| p = |I| p.
So ϕ1 satisfies

1

|J | |{x ∈ J : S2
Jϕ1(x) ≥ λ}| ≥ p

(
1 + (1 − p)

)
.

Continuing this process, we obtain a sequence of functions {ϕn}n, supported on J ,
each with

∫
J ϕn = 0 and

1

|J | |{x ∈ J : S2
Jϕn(x) ≥ λ}| ≥ p

(
1 + (1− p) + · · ·+ (1 − p)n

) −−−−→
n→∞ 1,

and

〈|ϕn|〉J ≤ 〈|ϕ|〉J
(
1 + (1− p) + · · ·+ (1− p)n

) −−−−→
n→∞

1

p
〈|ϕ|〉J .

Letting ϕ̃ = limϕn in L1, we have

〈ϕ̃〉J = 0, 〈|ϕ̃|〉J ≤ 1

p
〈|ϕ|〉J , S2

J ϕ̃ ≥ λ a.e. on J.

Therefore ϕ̃ is admissible for L(0, 1, λ), so

L(0, 1, λ) ≤ 〈|ϕ̃|〉J ≤ 1

p
〈|ϕ|〉J =

1

c
.

We then have that

1

|J | |{x ∈ J : S2
Jϕ(x) ≥ λ}| ≤ 〈|ϕ|〉J

L(0, 1, λ)
,

for all ϕ on J with mean zero, and all λ > 0, which yields exactly (4.1). �

Next, we find the values of M and L for f = 0.

Proposition 4.2. If f = 0, the functions M and L are given by :

(4.2) M(0, F, λ) =

{
F

L(0,1,λ) =
F√
λ
Ψ(1), if F ≤ √

λ/Ψ(1),

1, if F >
√
λ/Ψ(1),

and

(4.3) L(0, p, λ) = p L(0, 1, λ) =
p
√
λ

Ψ(1)
.

Proof. Consider γ �→ θ(0, γ). We know that θ(0, 0) = 0 and θ(0, γ) = 1 for all
γ ≥ 1/Ψ(1) (see Figure 1). But θ is concave in γ, so θ(0, ·) lies above its secant
line between (0, 0, 0) and (0, 1/Ψ(1), 1). This line has equation y(γ) = Ψ(1)γ, so

θ(0, γ) ≥ Ψ(1)γ, for all 0 ≤ γ ≤ 1

Ψ(1)
.
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But Theorem 4.1 says that θ(0, γ) ≤ Ψ(1)γ, so then

θ(0, γ) =

{
Ψ(1)γ, if 0 ≤ γ ≤ 1/Ψ(1),
1, otherwise.

Now let p ∈ [0, 1]. Then p = θ(0, γ) for γ = p/Ψ(1). Then by (3.14),

η(0, p) = η(0, θ(0, γ)) = γ =
p

Ψ(1)
,

proving that

η(0, p) =
p

Ψ(1)
. �

Corollary 4.3. The sharp constant C in the inequality

1

|J | |{x ∈ J : S2
Jϕ(x) ≥ λ}| ≤ C

1√
λ
〈|ϕ|〉J , for all ϕ ∈ L1(J), J ∈ D,

is given by C = Ψ(1).

Proof. Obviously

(4.4) C = sup
f,F,λ

M(f, F, λ)
√
λ

F
= sup

F,λ

M(0, F, λ)
√
λ

F
= Ψ(1),

where the second equality follows since M(f, F, λ) ≤ M(0, F, λ), and the last equal-
ity follows from (4.2). �

5. Proofs of the boundary values Mb and Lb of M and L

In this section we prove Theorems 3.2 and 3.3.

5.1. The boundary case Mb(f, λ)

Recall that

Mb(f, λ) := sup
1

|J | |{x ∈ J : S2
Jϕ(x) ≥ λ}|, ∀f ≥ 0, λ > 0,

where the supremum is over all functions ϕ on J with ϕ ≥ 0 a.e. and 〈ϕ〉J = f .
Then Mb has the obvious properties:

• Domain: Ω+
Mb

= {f ≥ 0, λ > 0}; range: 0 ≤ Mb ≤ 1.

• Mb is decreasing in λ.

• Homogeneity: Mb(f, λ) = Mb(tf, t
2λ), for all t > 0.

• Obstacle condition: Mb(f, λ) = 1, for all f ≥ √
λ.

• Boundary condition: Mb(0, λ) = 0, for all λ > 0.

• Main inequality: for any pairs in the domain with f = 1
2 (f+ + f−) and

λ = min{λ±},

(5.1) Mb

(
f, λ+

(f+ − f−
2

)2 )
≥ 1

2

(
Mb(f+, λ+) +Mb(f−, λ−)

)
.
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• Mb is concave and non-decreasing in f .

• Least supersolution: if m(f, λ) is a continuous non-negative function on Ω+
Mb

which satisfies (5.1) and the obstacle condition, then Mb ≤ m.

Rewriting the main inequality (5.1) in a more convenient form,

(5.2) Mb(f, λ) ≥ 1

2

(
Mb(f − a, λ− a2)+Mb(f + a, λ− a2)

)
, ∀f ≥ a ≥ 0, λ > a2,

it is easy to use Taylor’s formula and obtain the infinitesimal version of (5.1):

(5.3) (Mb)ff − 2(Mb)λ ≤ 0.

This inequality should be first understood a.e. The second derivative (Mb)ff exists
almost everywhere and is non-positive, all that because of concavity in variable f .
Also we noted that our function is decreasing in λ, so (Mb)λ exists and is non-
positive. The second order a.e. Taylor formula for concave functions form [4]:

(5.4) F (x+ a) = F (x) + F ′(x)a +
1

2
F ′′(x)a2 + o(a2), a→ 0, for a.e. x ,

and the definition of the derivative allow us to deduce from finite difference in-
equality (5.2) that (5.3) is valid almost everywhere. Using homogeneity of Mb, we
put

Mb(f, λ) = Mb(f/
√
λ, 1) =: α(τ), where τ =

f√
λ
.

Then, from (2.6),

α : [0,∞) → [0, 1] with α(0) = 0, and α(τ) = 1, ∀τ ≥ 1.

The inequality (5.3) becomes the following inequality valid a.e.:

(5.5) τ α′(τ) + α′′(τ) ≤ 0.

But the function α is concave. In particular, it is everywhere defined and con-
tinuous, and its derivative α′ is precisely its distributional derivative, and it is
everywhere defined decreasing function. Let (α)′′ denote the distributional deriva-
tive of decreasing function α′. Thus it is a non-positive measure. We denote its
singular part by symbol σs. Hence, in the sense of distributions,

(5.6) τ α′dτ + (α)′′ = (τα(τ) + α′′(τ))dτ + σs ≤ 0.

Let us look at the differential equation τy′(τ) + y′′(τ) = 0 for τ ≥ 0. The
general solution is:

y(τ) = CΦ(τ) +D, where Φ(τ) :=

∫ τ

0

e−x2/2 dx.

Imposing y(0) = 0 and y(1) = 1, we obtain an obvious candidate for our function α:

(5.7) y(τ) =

{
Φ(τ)/Φ(1), 0 ≤ τ ≤ 1,
1, τ ≥ 1.
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The first thing we should check is that the function obtained this way, namely
m(f, λ) := y(τ) satisfies the (discrete) main inequality (5.1) of the function Mb.
This is the content of the following lemma, which we prove shortly.

Lemma 5.1. The function m(f, λ) = y(τ), where τ = f/
√
λ and y is the function

in (5.7), is a supersolution for (5.1).

Obviously, this gives us that M(f, λ) ≤ m(f, λ). To see that we have, in fact,
equality, we consider a new variable

S := Φ(τ),

and observe that for a function g,

(5.8)
(
τg′(τ) + g′′(τ)

)
eτ

2

=
d2g

dS2
= gSS .

So (5.5) is equivalent to αSS ≤ 0, or α being concave in the variable S. It is easy
to see that:

If g(S) is a concave non-negative function for S ≥ 0, then the ratio g(S)/S is
non-increasing.

Thus, if we put α(τ) := g(S), we have that for all 0 ≤ τ ≤ 1,

g(S)

S
=
α(τ)

Φ(τ)
≥ g(Φ(1))

Φ(1)
=
α(1)

Φ(1)
=

1

Φ(1)
,

which gives exactly that Mb(f, λ) ≥ m(f, λ). Therefore

(5.9) Mb(|f |, λ) = M(f, |f |, λ) =
{

Φ(|f |/
√
λ)

Φ(1) , |f | < √
λ,

1, |f | ≥ √
λ.

Proof of Lemma 5.1. We define the quantities

(5.10) X+
τ,x :=

τ + x√
1− x2

and X−
τ,x :=

τ − x√
1− x2

,

for all τ ≥ 0, and 0 ≤ x < 1, x ≤ τ . We claim that, for all 0 ≤ x ≤ τ < 1, the
function Φ satisfies

(5.11) 2Φ(τ) ≥ Φ(X+
τ,x) + Φ(X−

τ,x).

In what follows, suppose τ ∈ [0, 1) is fixed. We wish to show that

2Φ(τ) ≥ g(x), ∀ 0 ≤ x ≤ τ, where g(x) := Φ(X+
τ,x) + Φ(X−

τ,x).

Since g(0) = 2Φ(τ), it suffices to show that g is non-increasing. We have

d

dx
X+

τ,x =
1 + τx

(1− x2)3/2
and

d

dx
X−

τ,x = − 1− τx

(1− x2)3/2
,
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and then

g′(x) ≤ 0 ⇔ 1 + τx

1− τx
≤ e

2τx
1−x2

⇔ 0 ≤ G(x), where G(x) =
2τx

1− x2
− log

(1 + τx

1− τx

)
.

Since G(0) = 0, it suffices to show that G is non-decreasing. A simple computation
shows that

G′(x) = 2τ
( 1 + x2

(1− x2)2
− 1

1− x2τ2

)
≥ 0, ∀0 ≤ x ≤ τ < 1.

This completes the proof for (5.11).

Returning to Lemma 5.1, recall that we wish to show that

2m(f, λ) ≥ m(f + a, λ− a2) +m(f − a, λ− a2), ∀f ≥ a ≥ 0, λ > a2,

wherem(f, λ) = y(τ), and y(τ) = min(Φ(τ)/Φ(1), 1), for τ = f/
√
λ ≥ 0. Using the

homogeneity of m, we can rewrite this in terms of y. Moreover, letting x := a/
√
λ,

we have that 0 ≤ x < 1 and also x ≤ τ , so we may use exactly the quantities X+
τ,x

and X−
τ,x defined in (5.10) to rewrite the inequality we have to prove

(5.12) 2y(τ) ≥ y(X+
τ,x) + y(X−

τ,x), ∀τ ≥ 0, 0 ≤ x < 1, x ≤ τ.

If τ < 1, then it is easy to see that X−
τ,x ≤ τ < 1, so (5.12) becomes

2Φ(τ) ≥ Φ(X−
τ,x) + Φ(1) y(X+

τ,x).

If X+
τ,x < 1, this becomes exactly (5.11). If X+

τ,x ≥ 1, the inequality follows again
by (5.11) and monotonicity of Φ:

Φ(X−
τ,x) + Φ(1) ≤ Φ(X−

τ,x) + Φ(X+
τ,x) ≤ 2Φ(τ).

Finally, when τ ≥ 1, y(τ) = 1, and since y ≤ 1 always, 2 = 2y(τ) ≥ y(X+
τ,x) +

y(X−
τ,x). �

5.2. The boundary case L(f, 1, λ)

Define

Lb(f, λ) := L(f, 1, λ) = inf{〈|ϕ|〉J : supp(ϕ) ⊂ J ; 〈ϕ〉J = f ; S2
Jϕ ≥ λ a. e. on J}.

Some of the obvious properties Lb inherits from L are:

• Domain: ΩLb
:= {(f, λ) : f ∈ R;λ > 0}.

• Lb is increasing in λ and even in f .

• Homogeneity: Lb(tf, t
2λ) = |t|Lb(f, λ).

• Range/obstacle condition: |f | ≤ Lb(f, λ) ≤ max{|f |,√λ}.
• Main inequality:

(5.13) 2Lb(f, λ) ≤ Lb(f − a, λ− a2) + Lb(f + a, λ− a2), ∀|a| <
√
λ.
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• Lb is convex in f , and recall from (2.11) that Lb is minimal at f = 0:

(5.14) Lb(0, λ) ≤ Lb(f, λ), ∀f,
therefore Lb is non-decreasing in f for f ≥ 0, and non-increasing in f for
f ≤ 0.

• Greatest subsolution: if �(f, λ) is any continuous non-negative function on
ΩLb

which satisfies the main inequality

(5.15) 2�(f, λ) ≤ �(f + a, λ− a2) + �(f − a, λ− a2)

and the range condition �(f, λ) ≤ max{|f |, λ}, then � ≤ Lb. See Remark 2.8.

Using homogeneity, we write

Lb(f, λ) =
√
λLb

( f√
λ
, 1
)
=:

√
λ b(τ), where τ :=

f√
λ
.

Then b : R → [0,∞), b is even in τ , and from (5.14),

(5.16) b(0) ≤ b(τ), ∀τ.
Moreover, b satisfies

(5.17) b(τ) = |τ |, ∀|τ | ≥ 1.

Using again a.e. Taylor’s formula (5.4) for convex functions, the infinitesimal ver-
sion of (5.13) becomes

(Lb)ff − 2(Lb)λ ≥ 0.

In terms of b, this becomes

(5.18) b′′(τ) + τ b′(τ) − b(τ) ≥ 0.

We first understand this inequality in a.e. sense.
To pass to distributional sense, we notice that concave b is everywhere defined

and continuous. Its derivative b′ is also its distributional derivative, and it is
defined everywhere except for countably many jump points and it is a decreasing
function.

Let (b)′′ denote the distributional derivative of decreasing function b′. Thus it
is a non-positive measure. We denote its singular part by the symbol σs. Hence,
in the sense of distributions,

(5.19) (b)′′ + τ b′ dτ − b(τ) dτ =
(
b′′(τ) + τ b′(τ) − b(τ)) dτ + dσs ≤ 0 .

Hence, now we have in the sense of distributions the following inequality (it will
be used later in this sense):

(5.20) b′′(τ) + τ b′(τ) − b(τ) ≥ 0.

Since b is even, we focus next only on τ ≥ 0.
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The general solution to the differential equation z′′(τ) + τz′(τ) − z(τ) = 0 for
τ ≥ 0 is

z(τ) = CΨ(τ) +Dτ, where Ψ(τ) = τΦ(τ) + e−τ2/2, ∀τ ≥ 0.

Note that

(5.21) Ψ′(x) = Φ(x), Ψ′′(x) = e−x2/2 .

Given our condition that b(τ) = τ for all τ ≥ 1, a reasonable candidate for our
function b is one already proposed by Bollobás [2]:

(5.22) z(τ) :=

{
Ψ(τ)/Ψ(1), 0 ≤ τ < 1,
τ, τ ≥ 1.

In other words, a candidate for Lb is

(5.23) L(f, λ) =

{√
λ

Ψ(|f |/
√
λ)

Ψ(1) ,
√
λ ≥ |f |,

|f |, √
λ ≤ |f | .

Our first goal will be to prove:

Lemma 5.2. The function L defined in (5.23) satisfies (5.15).

Since it is easy to verify that L satisfies the range condition L(f, λ) ≤ max{|f |,√λ},
we have then that L is a subsolution of (5.15), and so

L ≤ Lb.

Now we want to prove the opposite inequality

(5.24) Lb ≤ L.

Recall that we write Lb(f, λ) =
√
λb(τ), where τ = f/

√
λ. We look only at τ ≥ 0.

Consider again a new variable

(5.25) T :=
τ

Ψ(τ)
, τ ≥ 0.

Then
dT

dτ
=
e−τ2/2

Ψ2(τ)
,

which shows that T is strictly increasing in τ . Moreover, it is easy to check that
for a function g, we have

(5.26)
d2

dT 2

( g(τ)
Ψ(τ)

)
= Ψ3(τ) eτ

2

(g′′ + τg′ − g).

So, if we circle back to our function b, and denote

β(T ) :=
b(τ)

Ψ(τ)
,

the infinitesimal main inequality (5.18) for b is equivalent to βTT ≥ 0, or β being
convex in the variable T . Now note that

β′(T ) =
(
b′(τ)Ψ(τ) − b(τ)Φ(τ)

)
eτ

2/2.
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Since T = 0 only at τ = 0, we have

β′(T )|T→0+ = b′(0+) ≥ 0,

where b′(0+) denotes the right derivative of b at 0. This is non-negative because b
is a convex, even function. So now we have that β(T ) is convex and β′(0+) ≥ 0,
showing that β is non-decreasing for T ≥ 0. Finally, we have then that for any
0 ≤ τ < 1,

b(τ)

Ψ(τ)
≤ b(1)

Ψ(1)
=

1

Ψ(1)
·

Therefore,

b(τ) ≤ Ψ(τ)

Ψ(1)
, ∀τ ∈ [0, 1],

which is exactly Lb ≤ L. So Theorem 3.3 is proved, provided we have Lemma 5.2,
which we prove next.

Proof of Lemma 5.2. In fact, the proof is given in [2]. It is slightly sketchy and
leaves some cases to the reader, so here we follow the proof of [2] in more details.
The proof is divided into several cases. By symmetry we can always think that
f ≥ 0 in all cases. Using the homogeneity we can always assume that λ = 1.

Case 1) will be when both points (f ± a, 1 − a2) lie in Ωpar := {(p, q) ∈ R2 :
q ≥ p2}. Clearly then (f, 1) will be also in Ωpar.

Notice that L(f, 1) = max(Ψ (|f |)/Ψ(1), |f |) = Ψ (|f |)/Ψ(1) if (f, 1) ∈ Ωpar.

Put

(5.27) X(f, a) :=
|f + a|

(1 − a2)1/2
, a ∈ [−1, 1], f ∈ [0, 1) .

Then (5.15) in our case can be rewritten as

(5.28) 2Ψ(f) ≤ [Ψ(X(f, a)) + Ψ(X(f,−a))]
√
1− a2.

Next, without loss of generality assume that a ≥ 0. The inequality is true for
a = 0.

Let us check that

(5.29)
∂

∂a

(√
1− a2(Ψ(X(f, a)) + Ψ(X(f,−a)))) ≥ 0 .

Consider the case when f − a ≥ 0. Notice that

∂

∂a
X(f, a) =

1√
1− a2

+X(f, a)
a

1− a2
,

∂

∂a
X(f,−a) = − 1√

1− a2
+X(f,−a) a

1− a2
.
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Using the fact that Ψ′(s) = Φ(s), Ψ(s) = sΨ′(s) + e−s2/2, we get the equality

∂

∂a
(Ψ(X(f, a))+Ψ(X(f,−a))) = 1√

1− a2
(Φ(X(f, a))− Φ(X(f,−a))) + a

1−a2
× [

Ψ(X(f, a))− exp(−(X(f, a))2/2)+Ψ(X(f,−a))− exp(−(X(f,−a))2/2)].
Therefore

∂

∂a

(
(Ψ(X(f, a)) + Ψ(X(f,−a)))

√
1− a2

)
= (Φ(X(f, a))− Φ(X(f,−a)))

− a

(1 − a2)1/2
(e−X(f,a)2/2 + e−X(f,−a)2/2) .

But a/
√
1− a2 = 1

2 (X(f, a)−X(f,−a)), so to prove (5.29) one needs to check the
following inequality:

(5.30)
1

X(f, a)−X(f,−a)
∫ X(f,a)

X(f,−a)

e−s2/2ds ≥ 1

2
(e−X(f,a)2/2 + e−X(f,−a)2/2) .

This inequality holds because in our case 1) we have X(f,−a) ∈ [0, 1], X(f, a) ∈
[0, 1], and the function s→ e−s2/2 is concave on the interval [−1, 1]. (It is easy to
verify that for every concave function on an interval, its integral average over the
interval is at least its average over the endpoints of the interval.)

If f − a ≤ 0, then ∂
∂aX(f,−a) = 1/

√
1− a2 +X(f,−a)a/(1− a2). Repeating

the previous calculations verbatim eventually one will need to show the following
inequality:

Φ(X(f, a)) + Φ(X(f,−a)) ≥ X(f, a) +X(f,−a)
2

(
e−X(f,a)2/2 + e−X(f,−a)2/2

)
which is also true, Indeed, we want to show that Φ(a)+Φ(b) ≥ a+b

2 (e−a2/2+e−b2/2)

for all a, b ∈ [0, 1]. If a = b, then the inequality follows because a �→ Φ(a)−ae−a2/2

at a = 0 is true, and its derivative is a2e−a2/2 ≥ 0. In general, consider the map

a �→ Φ(a) + Φ(b)− a+ b

2
(e−a2/2 + e−b2/2) for a ∈ [b, 1].

The derivative of this map is 1
2 (e

−a2/2−e−b2/2)+ a+b
2 ·ae−a2/2, which at point a = b

has a nonnegative sign. Differentiating again we obtain 1
2 e

−a2/2(1−a2)(a+b) ≥ 0.
This finishes the proof of the case 1).

Next, consider Case 2): when (f, 1) /∈ Ωpar. Then notice that f �→ L(f, 1) is
convex as a maximum of two convex functions. Therefore

1

2

(
L(f + a, 1− a2) + L(f − a, 1− a2)

) ≥ L(f, 1− a2) = L(f, 1).

Case 3). Now suppose that (f ± a, 1− a2) are not in Ωpar and (f, 1) is in Ωpar.
We recall that we are considering only f ≥ 0. Since a �→ |f + a| + |f − a| is
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increasing as a increases, it suffices to consider the case when (f − a, 1 − a2) is
such that (f − a)2 = 1 − a2, i.e., the left point is on the parabola. Then we need
to show that

2
Ψ(f)

Ψ(1)
≤ |f − a|+ f + a.(5.31)

Clearly 0 ≤ a ≤ 1. Consider the case when 0 ≤ f ≤ a. From (f − a)2 = 1 − a2

we obtain that a − √
1− a2 =: f(a) ≥ 0, so a ≥ 1/

√
2, and the inequality (5.31)

simplifies to

f(a) ≤ Ψ−1(Ψ(1)a), 1 ≥ a ≥ 1√
2
.

The left-hand side is convex and the right-hand side is concave (as an inverse of
increasing convex function). Since at t = 1 and t = 1/

√
2 the inequality holds,

then it holds on the whole interval [1/
√
2, 1].

If f ≥ a, then the condition (f −a)2 = 1−a2 implies that f = a+
√
1− a2 ≥ 1

for all a ∈ [0, 1]. Therefore the inequality (5.31) becomes Ψ(f)/Ψ(1) ≤ f , which is
correct if f ≥ 1. Indeed, consider g(s) = Ψ(s)/Ψ(1)− s. Then g(1) = 0, g′(1) < 0,
and g′′(t) ≥ 0. Also

lim
s→∞

g(s)

s
=

∫∞
0 e−t2/2dt

Φ(1) + exp(−1/2)
− 1 = −0.1428 · · · < 0.

This implies that g(t) ≤ 0 for all t ≥ 1.

Case 4a). Next we consider the case when (f, 1) is in Ωpar, (f + a, 1 − a2) is
not in Ωpar, (f − a, 1− a2) is in Ωpar and it has non-negative first coordinate, i.e.,
f − a ≥ 0 (the remaining case with negative first coordinate will be treated in
Case 4b)).

First consider the case when f−a = 0, i.e., the first coordinate of the left point
is zero. Then f = a. Since the right point is outside (below) of the parabola we
have (f + a)/

√
1− a2 = 2a/

√
1− a2 ≥ 1. The latter means that a ∈ [1/

√
3, 1].

Then we need to show that

2Ψ(a) = 2Ψ(f) ≤
√
1− a2 Ψ

( f − a√
1− a2

)
+Ψ(1)(f + a) =

√
1− a2 + 2Ψ(1)a.

The left-hand side of the inequality is convex. The right-hand side of the inequality
is concave. Inequality clearly holds for the endpoint cases, i.e., a = 1 and a = 1/

√
3.

Therefore it holds in general.

Notice that if (f − a)2 = λ− a2 then we are in Case 3). So if we show that the
map a �→ L(f+a, 1−a2)+L(f−a, 1−a2) is concave when 1 ≥ (f − a)/

√
1− a2 ≥ 0

(left point is Ωpar with non-negative first coordinate), f ≤ 1 (the point (f, 1) is
in Ωpar), and (f + a)/

√
1− a2 ≥ 1 (the right point is not in Ωpar) then this will

prove Case 4a) completely, because the concave function dominates the number
2L(f, 1) at the endpoints of an interval. We have

L(f + a, 1− a2) + L(f − a, 1− a2) =
√
1− a2 Ψ

( f − a√
1− a2

)
+Ψ(1)(f + a).
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The second term is linear in a. Its first derivative is

−Φ
( f − a√

1− a2

)
− a√

1− a2
exp

(
− 1

2

[ f − a√
1− a2

]2)
+Ψ(1).

Its second derivative is

a(a+ af2 − 2f)

(1 − a2)5/2
exp

(
− 1

2

[ f − a√
1− a2

]2)
.

The map a �→ a + af2 − 2f is increasing in a. Let us increase a. Two scenarios
can occur: 1) f − a = 0 or 2) (f − a)/

√
1− a2 = 1. In the first case we get

a + af2 − 2f = f(f2 − 1) ≤ 1 since 0 ≤ f ≤ 1. In the second case, the condition
a ∈ [0, 1] implies

a+af2−2f = −a−2
√
1− a2+a2(

√
1− a2+a)2 = a(a−1)+2

√
1− a2(a3−1) ≤ 0.

Thus in all cases we obtain a + af2 − 2f ≤ 0, therefore this finishes the proof of
the case 4a).

Case 4b). It remains to show that if the right point already left Ωpar but the
left point is in Ωpar with negative first coordinate, then (5.15) still holds. Then
the required inequality amounts to

2Ψ(f) ≤
√
1− a2 Ψ

( a− f√
1− a2

)
+Ψ(1)(f + a),

where |√1− a2 − a| ≤ f ≤ a ≤ 1 (notice that the latter inequality simply
means that (f + a)/

√
1− a2 ≥ 1, i.e., that the right point is not in Ωpar, and

(a− f)/
√
1− a2 ≤ 1, the left point is in Ωpar with negative first coordinate). It is

the same as to show

Ψ
( a− f√

1− a2

)
+Ψ(1)

(a− (2Ψ(f)/Ψ(1)− f)√
1− a2

)
≥ 0(5.32)

for all 0 ≤ f ≤ 1 if max{f, (
√
2− f2 − f)/2} ≤ a ≤ (f +

√
2− f2)/2.

Let us show that the derivative in a of the left-hand side of (5.32) is nonnegative.
If this is the case then we are done because by increasing a we can reduce the
inequality to an endpoint case which is already verified. Ψ is increasing (see (5.21)),
and since fa ≤ 1 therefore a �→ Ψ((a − f)/

√
1− a2), a ∈ [f, 1] is increasing as a

composition of two increasing functions. Here we have used the fact that

∂

∂a

( a− f√
1− a2

)
=

1− af

(1− a2)3/2
.

To check the monotonicity of the map a �→ [
a− (2Ψ(f)/Ψ(1)− f)

]
/
√
1− a2 it is

enough to verify that a(2Ψ(f)/Ψ(1)− f) ≤ 1. The latter inequality follows from
the following two simple inequalities:

Ψ(f) ≥ Ψ(1)f

2
, 0 ≤ f ≤ 1,(5.33) (f +

√
2− f2

2

)(2Ψ(f)

Ψ(1)
− f

)
≤ 1, 0 ≤ x ≤ 1.(5.34)
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Indeed, to verify (5.33) notice that

d

df

Ψ(f)

f
=
fΦ(f)−Ψ(f)

f2
= −e

−f2/2

f2
< 0,

therefore Ψ(f)/f ≥ Ψ(1) ≥ Ψ(1)/2.

To verify (5.34) it is enough to show that

Ψ(x)

Ψ(1)x
≤ 1

x2 + x
√
2− x2

+
1

2
, x ∈ [0, 1].

If x = 1 we have equality. Taking derivative of the mapping

x→ Ψ(x)

Ψ(1)x
− 1

x2 + x
√
2− x2

− 1

2

in x, we obtain

2

x2

(
− e−x2/2

2Ψ(1)
+

x+ 1−x2√
2−x2

(x+
√
2− x2)2

)
≥ 0.

To prove the last inequality it is the same as to show that

√
2− x2 + x(2 − x2)

x
√
2− x2 + 1− x2

≤ Ψ(1) ex
2/2.

For the exponential function we use the estimate ex
2/2 ≥ 1 + x2/2. We estimate√

2− x2 from above in the numerator by
√
2(1 − x2/4), and we estimate

√
2− x2

from below in the denominator by (1−√
2)(x−1)+1 (as x→ √

2− x2 is concave).
Thus it would be enough to prove that

√
2(1− x2/4) + x(2 − x2)√

2x(1 − x) + 1
≤ Ψ(1)

(
1 +

x2

2

)
, 0 ≤ x ≤ 1.

If we further use the estimates Ψ(1) ≥ 29/28, and 41/29 ≤ √
2 ≤ 17/12 (for

denominator and numerator correspondingly), then the last inequality would follow
from

29

240
· 246x

4 − 486x3 + 233x2 − 12x− 8

29 + 41x− 41x2
≤ 0.

The denominator has the positive sign. The negativity of 246x4− 486x3+233x2−
12x − 8 ≤ 0 for 0 ≤ x ≤ 1 follows from the Sturm algorithm, which shows that
the polynomial does not have roots on [0, 1]. Since at point x = 0 it is negative,
therefore it is negative on the whole interval. �
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