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HIGHER CHERN CLASSES IN IWASAWA THEORY

By F. M. BLEHER, T. CHINBURG, R. GREENBERG, M. KAKDE,
G. PAPPAS, R. SHARIFL and M. J. TAYLOR

Abstract. We begin a study of mth Chern classes and mth characteristic symbols for Iwasawa mod-
ules which are supported in codimension at least m. This extends the classical theory of characteristic
ideals and their generators for Iwasawa modules which are torsion, i.e., supported in codimension at
least 1. We apply this to an Iwasawa module constructed from an inverse limit of p-parts of ideal
class groups of abelian extensions of an imaginary quadratic field. When this module is pseudo-null,
which is conjecturally always the case, we determine its second Chern class and show that it has a
characteristic symbol given by the Steinberg symbol of two Katz p-adic L-functions.
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1. Introduction. The main conjecture of Iwasawa theory in its most clas-
sical form asserts the equality of two ideals in a formal power series ring. The first
is defined through the action of the abelian Galois group of the p-cyclotomic tower
over an abelian base field on a limit of p-parts of class groups in the tower. The other
is generated by a power series that interpolates values of Dirichlet L-functions. This
conjecture was proven by Mazur and Wiles [34] and has since been generalized in
a multitude of ways. It has led to the development of a wide range of new methods
in number theory, arithmetic geometry and the theory of modular forms: see for
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example [3, 18, 27] and their references. As we will explain in Section 3, classical
main conjectures pertain to the first Chern classes of various complexes of mod-
ules over Iwasawa algebras. In this paper, we begin a study of the higher Chern
classes of such complexes and their relation to analytic invariants such as p-adic
L-functions. This can be seen as studying the behavior in higher codimension of
the natural complexes.

Higher Chern classes appear implicitly in some of the earliest work of Iwasawa
[22]. Let p be an odd prime, and let F<, denote a Z,-extension of a number field
F'. Iwasawa showed that for sufficiently large n, the order of the p-part of the ideal
class group of the cyclic extension of degree p" in F., is

(1.1) pup”+)\n+1/

for some constants u, A and v. Let L be the maximal abelian unramified pro-p
extension of F... Iwasawa’s theorem is proved by studying the structure of X =
Gal(L/F.,) as a module for the Iwasawa algebra A = Z,[I'] = Z,|t] associated
to I' = Gal(F../F') = 7Z,,. Here, A is a dimension two unique factorization domain
with a unique codimension two prime ideal (p,¢), which has residue field IF,,. The
focus of classical Iwasawa theory is on the invariants p and A, which pertain to
the support of X in codimension 1 as a torsion finitely generated A-module. More
precisely, i and A are determined by the first Chern class of X as a A-module, as
will be explained in Subsection 2.5. Suppose now that ;x =0 = A. Then X is either
zero or supported in codimension 2 (i.e., X is pseudo-null), and

verl= Ko(Fp)

may be identified with the (localized) second Chern class of X as a A-module. In
general, the relevant Chern class is associated to the codimension of the support of
an Iwasawa module. This class can be thought of as the leading term in the alge-
braic description of the module. When one is dealing with complexes of modules,
the natural codimension is that of the support of the cohomology of the complex.

1.1. Chern classes and characteristic symbols. There is a general theory
of localized Chern classes due to Fulton-MacPherson [12, Chapter 18] based on
MacPherson’s graph construction (see also [49]). Moreover, Gillet developed a so-
phisticated theory of Chern classes in K-cohomology with supports in [13]. This
pertains to suitable complexes of modules over a Noetherian scheme which are ex-
act off a closed subscheme and requires certain assumptions, including Gersten’s
conjecture. In this paper, we will restrict to a special situation that can be examined
by simpler tools. Suppose that R is a local commutative Noetherian ring and that
C*® is a bounded complex of finitely generated R-modules which is exact in codi-
mension less than m. We now describe an mth Chern class which can be associated
to C*. In our applications, R will be an Iwasawa algebra.
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Let Y = Spec(R), and let Y™ be the set of codimension m points of Y, i.e.,
height m prime ideals of R. Denote by Z"(Y") the group of cycles of codimension
minY,ie., the free abelian group generated by y € Y ("):

z7"V)= P zv

yey(m)

For y € Y™, let R, denote the localization of R at y, and set Cj = C* ®g Ry,
Under our condition on C*®, the cohomology groups HZ(C;) =H!(C*) ®r R, are
finite length R,-modules. We then define a (localized) Chern class ¢,,,(C*) in the
group Z™(Y") by letting the component at y of ¢,,(C*®) be the alternating sum of
the lengths

> (=1)"length H'(C}).

i

If the codimension of the support of some HZ(C;) is exactly m, the Chern class
¢m/(C*) is what we referred to earlier, just before the start of Subsection 1.1, as the
leading term of C® as a complex of R-modules. This is a very special case of the
construction in [49] and [12, Chapter 18]. In particular, if M is a finitely generated
R-module which is supported in codimension at least m, we have

em(M) = Z lengthp, (My) -y.
ng(M)

We would now like to relate ¢,,(C®) to analytic invariants. Suppose that R is a
regular integral domain, and let () be the fraction field of R. When m = 1 one can
use the divisor homomorphism

v:Q—2'(YV)= P Z-y.

yeY ()

In the language of the classical main conjectures, an element f € Q™ such that
vi(f) = ci1(M) is a characteristic power series for M when R is a formal power
series ring. A main conjecture for M posits that there is such an f which can be
constructed analytically, e.g., via p-adic L-functions.

The key to generalizing this is to observe that Q™ is the first Quillen K-group
K;(Q) and v; is a tame symbol map. To try to relate ¢,,(M) to analytic invari-
ants for arbitrary m, one can consider elements of K,, (@) which can be described
by symbols involving m-tuples of elements of () associated to L-functions. The
homomorphism v is replaced by a homomorphism v, involving compositions of
tame symbol maps. We now describe one way to do this.

Suppose that = (1o, ..., ) is a sequence of points of Y with codim(7;) = i
and such that n; 1 lies in the closure 7; of n; for all i < m. Denote by P,,,(Y") the set
of all such sequences. Let k(n;) = Q(R/n;) be the residue field of 1;. Composing
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successive tame symbol maps (i.e., connecting maps of localization sequences), we
obtain homomorphisms

vyt Kin(Q) =K (k(10)) — K1 (k(m)) — -+ — Ko(k(nm)) = 2.

Here, K; denotes the ith Quillen K-group. We combine these in the following way
to give a homomorphism

vm: P K@ —2"(Y)= P Z-y.

7 EPy_1(Y) yey (m)

Suppose a = (ay ),yep,,_, (v)- We define the component of v, (a) at y to be the sum

of 1 (a,y) over all the sequences

051 5+ _15Y)

0 =00y 1) € Pn1(Y)

such that y is in the closure of 7], .

If M is a finitely generated R-module supported in codimension at least m
as above, then we refer to any element in @n’e Pov (V) K,»(Q) that v, maps to
¢m(M) as a characteristic symbol for M. This generalizes the notion of a charac-
teristic power series of a torsion module in classical Iwasawa theory, which can be
reinterpreted as the case m = 1.

We focus primarily on the case in which m = 2 and R is a formal power series
ring A[[t1,...,t.]] over a mixed characteristic complete discrete valuation ring A.
In this case, we show that the symbol map 1, gives an isomorphism

H:neY(l) KZ(Q)
KZ(Q) Hmey(l) KZ(Rm )

This uses the fact that Gersten’s conjecture holds for K, and R. In the numerator of
(1.2), the restricted product H;ﬂ ey K2(Q) is the subgroup of the direct product
in which all but a finite number of components belong to K> (R, ) C K»(Q). In the
denominator, we have the product of the subgroups [, oy Ka(Ry,) and K»(Q),
the second group embedded diagonally in H;ﬂ ey K2(Q). The significance of this

(1.2) LY,

formula is that it shows that one can specify elements of Z?(Y") through a list of
elements of K»(()), one for each codimension one prime 7; of R, such that the
element for 7); lies in K»(R,, ) for all but finitely many 7;.

1.2. Results. Returning to Iwasawa theory, an optimistic hope one might
have is that under certain hypotheses, the second Chern class of an Iwasawa module
or complex thereof can be described using (1.2) and Steinberg symbols in K;(Q)
with arguments that are p-adic L-functions. Our main result, Theorem 5.2.5, is of
exactly this kind. In it, we work under the assumption of a conjecture of Greenberg
which predicts that certain Iwasawa modules over multi-variable power series rings
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are pseudo-null, i.e., that they have trivial support in codimension 1. We recall this
conjecture and some evidence for it found by various authors in Subsection 3.4.

More precisely, we consider in Subsection 5.2 an imaginary quadratic field F,
and we assume that p is an odd prime that splits into two primes p and p of E. Let
E denote the compositum of all Z,-extensions of F. Let 1) be a one-dimensional
p-adic character of the absolute Galois group of E of finite order prime to p, and
denote by K (resp., I') the compositum of the fixed field of 1) with E (pp) (resp.,
E(f1p)). We consider the Iwasawa module X = Gal(L/K), where L is the maximal
abelian unramified pro-p extension of K. Set G = Gal(K/F), and let w be its
Teichmiiller character. Let A = Gal(F'/E'), which we may also view as the largest
subgroup of G of prime-to-p order. For simplicity in this discussion, we suppose
that ¢ # 1,w.

The Galois group G has an open maximal pro-p subgroup I' isomorphic to ZZZ,.
Greenberg has conjectured that X is pseudo-null as a module for A = Z,[I']] =
Zp[[t1,t2]). Our goal is to obtain information about X and its eigenspaces XV =
Oy ®z,(a] X, where Oy, is the Zy-algebra generated by the values of 1, and
Zp|A] — Oy is the surjection induced by ). When Greenberg’s conjecture is true,
the characteristic ideal giving the first Chern class of X¥ is trivial. It thus makes
good sense to consider the second Chern class, which gives information about the
height 2 primes in the support of X.

Consider the Katz p-adic L-functions £y, ,, and Lj ,, in the fraction field ) of
the ring R = ey, - W[G] = W {[t1,t2], where ey, € W[G] is the idempotent asso-
ciated to 1) and W denotes the Witt vectors of an algebraic closure of I,,. We can
now define an analytic element ¢3" in the group Z?(Spec(R)) of (1.2) in the fol-
lowing way. Let c3" be the image of the element on the left-hand side of (1.2) with
component at 1y the Steinberg symbol

{Lp: Lsw} € Ka(Q),

if L, 4 is not a unit at 77y, and with other components trivial. This element 3" does
not depend on the ordering of p and p (see Remark 2.5.2).
Our main result, Theorem 5.2.5, is that if X is pseudo-null, then

(1.3) A = o (X5) + e (X2 ) (1)

where Xg/ and (X%’/wil)L(l) are the R-modules defined as follows: X{f’v is the

completed tensor product W&o, X ¥ while (X;’,[J}Zf1 )“(1) is the Tate twist of the

module which results from X “’jVWl by letting g € G act by g~ .

In (1.3), one needs to take completed tensor products of Galois modules with
W because the analytic invariant ¢5" is only defined over W. Note that the right-
hand side of (1.3) concerns two different components of X, namely those associ-
ated to 1) and wp~!. It frequently occurs that exactly one of the two is nontrivial:
see Example 5.2.8. In fact, one consequence of our main result is a codimension
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two elliptic counterpart of the Herbrand-Ribet Theorem (see Corollary 5.2.7): the
eigenspaces X% and X «¥"" are both trivial if and only if one of Ly, or L5 is a
unit power series.

One can also interpret the right-hand side of (1.3) in the following way. Let ) =
Z,[G] andlete: © — 2 be the involution induced by the map g — Xceye(g)g ' on G
where Xcye: G — Z,) is the cyclotomic character. Then (X wy! )“(1) is canonically
isomorphic to the 1) component (X,)¥ of the twist X, = Q ®e,0X of X by €. Thus
X, is isomorphic to X as a Zj,-module but with the action of ) resulting from
precomposing with the involution €: € — . Then (1.3) can be written

(1.4) & = (Weo, (X0 X)").

We discuss two extensions of (1.3). In Subsection 5.3, we explain how the al-
gebraic part of our result for imaginary quadratic fields extends, under certain addi-
tional hypotheses on £ and 1), to number fields E with at most one complex place.
In Section 6, we show how when E is imaginary quadratic and K is Galois over Q,
we can obtain information about the X above as a module for the non-commutative
Iwasawa algebra Z,, [Gal(//Q)]]. This involves a “non-commutative second Chern
class” in which, instead of lengths of modules, we consider classes in appropriate
Grothendieck groups. Developing counterparts of our results for more general non-
commutative Galois groups is a natural goal in view of the non-commutative main
conjecture concerning first Chern classes treated in [7].

1.3.  Outline of the proof. We now outline the strategy of the proof of (1.3).
We first consider the Galois group X = Gal(N/K), with N the maximal abelian
pro-p extension of K that is unramified outside of p. One has X = X/(I, + )
for I, the subgroup of X generated by inertia groups of primes of K over p and I
defined similarly for the prime p. A novelty of the proof is that it requires carefully
analyzing the discrepancy between the rank one (2-module X and its free reflexive
hull.

The reflexive hull of a A-module M is M** = (M*)* for M* = Homy (M, A),
and there is a canonical homomorphism M — M**. Iwasawa-theoretic duality re-
sults tell us that since X is pseudo-null, the map X — X** is injective with an
explicit pseudo-null cokernel (in particular, see Proposition 4.1.17). We have a
commutative diagram

Lol — I oL

(1.5) l l

X———x™

Taking cokernels of the vertical homomorphisms in (1.5) yields a homomorphism

fi X — X7/ (im (1) +im (1;")),
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where im denotes the image. A snake lemma argument then tells us that the cok-
ernel of f is the Tate twist of an Iwasawa adjoint a(X') of X which has the same
class as X" in the quotient of the Grothendieck group of the category of pseudo-null
modules by the Grothendieck group of the category of finite modules. Moreover,
the map f is injective in its t-eigenspace as ¢ # w.

The 1)-eigenspaces of X, I, and I; are of rank one over Ay, = Oy[I']. They
need not be free, but the key point is that their reflexive hulls are. The main conjec-
ture for imaginary quadratic fields proven by Rubin [50, 51] (see also [26]) implies
that the p-adic L-function Lj ,, in Ay = W[I']|] generates the image of the map

W®O¢ (Ig})** — W®O¢ (%w)** = AW7

and similarly switching the roles of the two primes. Putting everything together,

we have an exact sequence of Ayy-modules:
Aw

Lypphw + LppAw

16)  0— X% — — a(X2 (1) —o.
The second Chern class of the middle term is ¢5", and the second Chern class of
the last term depends only on its class in the Grothendieck group, yielding (1.3).

1.4. Generalizations. We next describe several potential generalizations
of (1.3) to other fields and Selmer groups of higher-dimensional Galois represen-
tations. We intend them as motivation for further study, leaving details to future
work.

Consider first the case of a CM field E of degree 2d, and suppose that the
primes over p in F are split from the maximal totally real subfield. There is then
a natural generalization of the analytic class on the left side of (1.4). Fix a p-adic
CM type Q for E, and let Q be the conjugate type. Then for K and F defined as
above using a p-adic character 1) of prime-to-p order of the absolute Galois group
of E, one has Katz p-adic L-functions Lg 4 and L ,, in the algebra R = Ql‘ﬁ/ for
) =Z,[Gal(K/E)]. Suppose that the quotient

R

1.7
(4.9 RLoy+RLy

is pseudo-null over R. A generalization of (1.3) would relate the second Chern
class ¢5’ of (1.7) to a sum of second Chern classes of algebraic objects arising
from Galois groups.

The question immediately arises of how to extend our algebraic methods, as
the unramified outside p Iwasawa module X over K has )-rank d. For this, we
turn to the use of highest exterior powers, which has a rich tradition in the study
of special values of L-functions, notably in conjectures of Stark and Rubin-Stark.
Let Io denote the subgroup of X generated by the inertia groups of the primes in
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Q. Recall that the main conjecture states that the quotient X/Io has first Chern
class agreeing with the divisor of Lg .. To obtain a rank one object related to the
above p-adic L-functions as before, it is natural to consider the dth exterior power
of the reflexive hull of X, which we may localize at a height 2 prime to ensure
its freeness. Under Greenberg’s conjecture, the quotient /\?2 x/ /\?2 I is pseudo-
isomorphic to the analogous quotient for exterior powers of reflexive hulls, and the
main conjecture becomes the statement that ¢; (( /\§l2 x/ /\?2 I Q)wW) is the divisor of
Loy

This suggests that the proper object for comparison with the analytic class cgl”Q
is no longer the second Chern class of the i)-eigenspace of the unramified Iwasawa
module X but of the quotient of dth exterior powers

d
X
Nelo+Nols

Following the approach used when d = 1, it is natural to consider the difference
between Zg and the analogous quotient in which every term is replaced by its
reflexive hull. This is the approach taken in [1], where roughly speaking, we show
that the analytic class ¢35 is a sum of second Chern classes arising from Z g and

X“¥ . We also provide a Galois-theoretic interpretation of Zg for d =2 as a
quotient of the second graded quotient in the lower central series of the Galois
group of the maximal pro-p, unramified outside p extension of K.

We can also consider the case in which E is imaginary quadratic but p is inert,
so that X is again of rank one but the product of corresponding inertia groups over
the completions of K at p has rank two. Using Kobayashi’s plus/minus Selmer
conditions, Pollack and Rubin [45, Section 4] define two rank one submodules I
and I~ of X that play the role of I, and [;. Using the results in the present paper,
one can get an analogue of (1.6) with £, and L replaced by characteristic elements
of X/I* and X/I~. As a two-variable main conjecture in this setting is lacking,
this does not directly yield a relation of the second Chern class with L-functions.

Finally, we turn to the Selmer groups of ordinary p-adic modular forms, which
fit in one-variable families known as Hida families, parameterized by the weight
of the form. Theorem 5.2.5 is a special case of this framework involving CM new-
forms. Hida families of residually irreducible newforms give rise to Galois repre-
sentations with Galois-stable lattices free over an integral extension Z of an Iwa-
sawa algebra in two variables, the so-called weight and cyclotomic variables. These
lattices are self-dual up to a twist. We can use the cohomology of such a lattice to
define objects analogous to X and X. The former is of rank one over Z, and the
latter as before should be pseudo-null, with the dual Selmer group of the lattice
providing an intermediate object between the two. The dual Selmer group is ex-
pected to have first Chern class given by a Mazur-Kitagawa p-adic L-function. In
this case, the algebraic study goes through without serious additional complication,
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and the only obstruction to an exact sequence as in (1.6) is the identification of a
second annihilator.

The above examples may be just the tip of an iceberg. In [17], a main conjecture
is formulated in a very general context where one considers a Galois representation
over a complete Noetherian local ring R with finite residue field of characteristic
p. A main conjecture corresponds to a so-called Panchishkin condition. It is not
uncommon for there to be more than one choice of a Panchishkin condition and
hence more than one main conjecture. On the analytic side, the corresponding p-
adic L-functions should often have divisors intersecting properly. On the algebraic
side, the Pontryagin dual of the intersections of the corresponding Selmer groups
should often be supported in codimension 2. It is then tempting to believe that the
type of result we consider in this paper would have an analogue in this context and
would involve taking highest exterior powers of appropriate R-modules.

There are other situations where one can define more than one Selmer group
and more than one p-adic L-function in natural ways, found for example in the
work of Pollack [44], Kobayashi [28], Lei-Loeffler-Zerbes [30], Sprung [55], Pot-
tharst [46]. Some of these constructions involve what amounts to a choice of Pan-
chishkin condition after a change of scalars. This begs the question, that we do
not address here, of how to define a suitable generalized notion of a Panchishkin
condition.

1.5. Organization of the paper. In Section 2, we define Chern classes and
characteristic symbols, and we explain how (1.2) follows from certain proven cases
of Gersten’s conjecture. In Section 3, we recall the formalism of some previous
main conjectures in Iwasawa theory. We also recall properties of Katz’s p-adic
L-functions and Rubin’s results on the main conjecture over imaginary quadratic
fields. In Subsection 3.4, we recall Greenberg’s conjecture and some evidence for
it.

In Section 4, we discuss various Iwasawa modules in some generality. The
emphasis is on working out Iwasawa-theoretic consequences of Tate, Poitou-Tate
and Grothendieck duality. This requires the work in the Appendix, which concerns
Ext-groups and Iwasawa adjoints of modules over certain completed group rings.

We begin Section 5 with a discussion of reflection theorems of the kind we
will need to discuss Iwasawa theory in codimension two. In Subsection 5.1, we
discuss codimension two phenomena in the most classical case of the cyclotomic
Z,-extension of an abelian extension of Q. Our main result over imaginary qua-
dratic fields is proven in Subsection 5.2 using the strategy discussed above. The
extension of the algebraic part of the proof to number fields with at most one com-
plex place is given in Subsection 5.3. The non-commutative generalization over
imaginary quadratic fields is proved in Section 6.
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2. Chern classes and characteristic symbols.

2.1. Chern classes. We denote by K/ (R) and K,,(R), the Quillen K-
groups [47] of a ring R defined using the categories of finitely generated and
finitely generated projective -modules, respectively. If R is regular and Noether-
ian, then we can identify K,,,(R) =K/, (R).

Suppose that R is a commutative local integral Noetherian ring. Denote by m
the maximal ideal of R. Set Y = Spec(R), and denote by Y@ the set of points of
Y of codimension i, i.e., of prime ideals of R of height i. Let () denote the fraction
field Q(R) of R, and denote by 7 the generic point of Y.

For m > 0, we set

z"(V)= @ Z-.

yey(‘ln)

the right-hand side being the free abelian group generated by Y (™).

Consider the Grothendieck group Kg(m) (R)= Kg(m) (Y) of bounded complexes
&* of finitely generated R-modules which are exact in codimension less than m, as
defined for example in [54, 1.3]. This is generated by classes [£°] of such complexes
with relations given by

(i) [£°] = [F*] if there is a quasi-isomorphism £°* — F°,

(i) [E°] = [F°*]+[G°] if there is an exact sequences of complexes

00— F*—E&°*—G*—0.

If M is a finitely generated R-module with support of codimension at least m, we
regard it as a complex with only nonzero term M at degree 0.

Suppose that C® is a bounded complex of finitely generated R-modules which
is exact in codimension less than m. Then for each y € Y (™) we can consider the
complex of R,-modules given by the localization Cj = C* @ R,. The assumption
on C* implies that all the homology groups H'(Cy) are I2;-modules of finite length
and H'(Cy) = 0 for all but a finite number of y € Y (™), We set

em(C*), =D _(~1)'length H'(C))

7
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and

m(C) = > em(C), - yeZ™(Y).

er(M)

We can easily see that ¢, (C*) only depends on the class [C*] in KE)(M(Y) and
that it is additive, which is to say that it gives a group homomorphism

m: K(Y) — Z7(Y).

The element ¢,, (C*) can also be thought of as a localized mth Chern class of C*. In
particular, if M is a finitely generated R-module which is supported in codimen-
sion > m, then we have

em(M) = Z lengthp, (My) -y.
ng(M)

In [49], the element ¢, (M) is called the codimension-m cycle associated to M
and is denoted by [M ]dim( R)-m- The class ¢, can also be given as a very special
case of the construction in [12, Chapter 18].

In what follows, we will show how to produce elements of Z"(Y) starting
from elements in K,,,(Q).

2.2. Tame symbols and Parshin chains. Suppose that R is a discrete val-
uation ring with maximal ideal m, fraction field () and residue field k. Then, for all
m > 1, the localization sequence of [47, Theorem 5] produces connecting homo-
morphisms

O Kin(Q) — Kip—1 (k).

We will call these homomorphisms 9, “tame symbols”.

If m =1, then 0;(f) = val(f) € Ko(k) = Z. If m = 2, then by Matsumoto’s
theorem, all elements in K,(Q) are finite sums of Steinberg symbols {f,g} with
1,9 € Q™ (see [37]). We have

) fralg)

7 modm € k*
gV

@.1) ([, g}) = (—1)v )y

(see for example [15, Cor. 7.13]). In this case, by [9], localization gives a short
exact sequence

(2.2) 1 — Ka(R) — Ka(Q) 25 k% — 1.

This exactness is a special case of Gersten’s conjecture: see Subsection 2.3.
In what follows, we denote by 7; a point in Y, i.e., a prime ideal of codimen-
sion 4. Suppose that 7); lies in the closure {7;_1}, so 7; contains 7,1, and consider
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R/(n;—1). This is a local integral domain with fraction field k(n;_;), and n; de-
fines a height 1 prime ideal in R/(7;_1). The localization R, | ,, = (R/(1i-1) )
is a 1-dimensional local ring with fraction field k(n;_;) and residue field k(n;).
The localization sequence in K'-theory applied to R,, | ,, still gives a connecting
homomorphism

Om (771-,1,172-) : Km(k(m,l)) — K1 (k‘(m))

For m =1, by [47, Lemma 5.16] (see also Remark 5.17 therein), or by
[15, Corollary 8.3], the homomorphism 0 (n;—1,7;): k(n;—1)* — Z is equal to
ord,, : k(n;—1)* — Z where ord,, is the unique homomorphism with

ord,, (z) = lengthp, (R i/ ()

forall z € Ry, | ,, — {0}.

For any n > 1, we now consider the set P, (Y") of ordered sequences of points
of Y of the form = (10,71, ...,Mn), With codim(7;) = i and n; € {n; 1}, for all 4.
Such sequences are examples of “Parshin chains” [43]. For 1 = (10,71,...,7) €
P,(Y'), we define a homomorphism

vyt Kn(Q) =Ky (k(m0)) — Z =Ko (k(nn))

as the composition of successive symbol maps:

vy = 01 (Nn—1,1n) © -0 0n—1(m,m2) © 9 (0,1 ) :
Kn (k(m0)) — Kn1(k(m)) — -+ —> Ki(k(1n-1)) — Ko(k(7n))-

Using this, we can define a homomorphism

vm: P Kn(@Q —2"(Y)= P Z-y

E/Gmel(Y) er(m)

by setting the component of v, ((a,y ),y) for a,y € K, (Q) that corresponds to y €
Y (™) to be the sum

(2.3) Vm ((aﬁ/)ﬁ,) , = Z Vn'Uy (aﬁ) .
7'lye{n,_,}

Here, we set

N Uy = (00, 1) Uy = (00,71 10 Y) -

Only a finite number of terms in the sum are nonzero.
For the remainder of the section, we assume that R is in addition regular.
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For m = 1, the map v,,, amounts to

v Ki(Q) =Q* —Z\(Y @Zy

yeY D)

sending f € Q* to its divisor div(f). Since R is regular, it is a UFD, and v gives
an isomorphism

~

(2.4) div: Q*/R* = Z1(Y).
For m = 2, the map
2% @ K»(Q) — Z*(Y @ Z-y,
mey yey @
satisfies

Z divy, (82 (am ))

mey

for a = (ay, ), with a,, € Ko(Q). Here,

divy, (f) = Y ordy(f)-y

ye{m}

is the divisor of the function f € k(n;)* on {n }.

2.3. Tame symbols and Gersten’s conjecture. In this paragraph we sup-
pose that Gersten’s conjecture is true for K, and the integral regular local ring R.
By this, we mean that we assume that the sequence

25 1 —KR) —KQ) 2= @ km) 2 @ z—0
mey ) ey @)

is exact, where the component of 1J, at 771 is the connecting homomorphism

& (no,m): Kao(Q) —> Ky (k(m)) =k(m) ",

and 1)1 has components 0y (n1,72) = ordy, : k(n1)* — Z.

The sequence (2.5) is exact when the integral regular local ring R is a DVR by
Dennis-Stein [9], when R is essentially of finite type over a field by Quillen [47,
Theorem 5.11], when R is essentially of finite type and smooth over a mixed char-
acteristic DVR by Gillet-Levine [14] and Bloch [2], and when R = A[ty,...,t,] is
a formal power series ring over a complete DVR A by work of Reid-Sherman [48].
In these last two cases, by examining the proof of [14, Corollary 6] (see also [48,
Corollary 3]), one sees that the main theorems of [14] and [48] allow one to reduce
the proof to the case of a DVR.
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By the result of Dennis and Stein quoted above for the DVR R, , we also have

(2.6) 1 — Ky (Ry,) — Ka(Q) 25 k() — 1.

Continuing to assume (2.5) is exact, we then obtain that vJ; induces an isomorphism

@meymk(m)x ~ s
9, (K2(Q)) — 2,

Combining this with (2.6), we obtain an isomorphism

H;ﬂeY(l) KZ(Q) ;}
Ko(Q) I, ey Ka(Ry,)

(2.7)

(2.8) i

where the various terms are as in the following paragraph.

In the numerator, the restricted product H;l ey K2(Q) is the subgroup of the
direct product in which all but a finite number of components belong to K»(R,), ).
In the denominator, we have the product of the subgroups HmeY“) K>(R;,) and
K> (@), the second group embedded diagonally in H;ﬂ ey K2(Q). Note that by the
description of elements in K,(Q) as symbols, this diagonal embedding of K;(Q)
lies in the restricted product. The map giving the isomorphism is obtained by

2.9) v ] K@) —Z2(Y),

mey

which is defined by summing the maps

Vi) = 01 (1,m2) 002 (n0,m ) : Ka(Q) — Z

as in (2.3). The map 1, is well defined on the restricted product since V(o112
is trivial on K>(R,,), and it makes sense independently of assuming that (2.5) is
exact.

2.4. Characteristic symbols. Suppose that R is a local integral Noetherian
ring and that C*® is a complex of finitely generated R-modules which is exact on
codimension m — 1. We can then consider the mth localized Chern class, as defined
in Subsection 2.1

n(@) €2 = B Zomm
Definition 2.4.1. An element (ay ),y € @, cp,, ,(v)Km(Q) such that

v () ) = em(€?)

in Z™(Y") will be called an mth characteristic symbol for C*®.
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If m is the smallest integer such that C* is exact on codimension less than m,
we will simply say that (a,y ),y as above is a characteristic symbol.

2.5. First and second Chern classes and characteristic symbols. We
now assume that the integral Noetherian local ring R is, in addition, regular.

Suppose first that m = 1, and let C* be a complex of finitely generated R-
modules which is exact on codimension 0, which is to say that C* ® g () is exact. We
can then consider the first Chern class ¢; (C*) € Z!(Y). By (2.4), we have Z' (V') ~
Q> /R* given by the divisor map. In this case, a first characteristic symbol (or
characteristic element) for C*® is an element f € (Q* such that

div(f) =e1(C*).

This extends the classical notion of a characteristic power series of a torsion module
in Iwasawa theory, considering the module as a complex of modules supported in
degree zero.

In fact, let M be a finitely generated torsion R-module. Let &2 be a set of rep-
resentatives in R for the equivalence classes of irreducibles under multiplication by
units so that & is in bijection with the set of height 1 primes Y (1) For each 7 € 22,
let n. (M) be the length of the localization of M at the prime ideal of R generated
by 7. Then ¢; (M) =) . »ny - (7). In the sections that follow, we will also use
the symbol ¢ (M) to denote the ideal generated by [, 7"~ M); this should not
lead to confusion. Note that, with this notation, M is pseudo-null if and only if
ci(M) = R.If R=Z,[t] = Zy[Z,], then ¢;(M) is just the usual characteristic
ideal of R. This explains the statements in the introduction connecting the growth
rate in (1.1) to first Chern classes (e.g., via the proof of Iwasawa’s theorem in [56,
Theorem 13.13]).

Suppose now that m = 2. Let C® be a complex of finitely generated R-modules
which is exact on codimension < 1. We can then consider the second localized
Chern class c3(C®) € Z*(Y). In this case, we can also consider characteristic sym-
bols in a restricted product of K,-groups. An element (ay, ),, € H;ﬂ ey Ka(Q) is
a second characteristic symbol for C* when we have

v ((an),, ) =e(c?).

PROPOSITION 2.5.1. Suppose that f, > are two prime elements in R. Assume
that fy/ f» is not a unit of R. Then a second characteristic symbol of the R-module

R/(flafZ) is given by a = (am )771 with

u :{{flyfz}l, ifm = (f1),
" ifm # (f1):
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Proof. Notice that, under our assumptions, R/(f1, f») is supported on codi-
mension 2. We have to calculate the image of the Steinberg symbol { f;, f>} under

d1V772

K2 (Q) 25 Ky (k(m)) —25 7

for n; = (f1) and 72 € {n:}. (The rest of the contributions to v ((ay, ),, ) are obvi-
ously trivial.) We have val,, (f1) = 1, val,, (f2) =0, and so

Oo({f1.12}) = 1, 'mod (1) € k(m)".
By definition,

divy, (f2) = lengthp (R'/ f2R'),

where R’ is the localization Ry, ,, = (R/(f1))y,- We have a surjective homo-
morphism of local rings R,, — R'. The R,,-module structure on (R/(f1, f2))n, =
R’/ f> R factors through R,, — R/, so

length s (R /2 ') =lengthy, ((R/(f1.12)),,)-
This, taken together with the definition of ¢2(R/(f1, f2)), completes the proof. [J

Remark 2.5.2. The same argument shows that a second characteristic sym-
bol of the R-module R/(f,f2) is also given (symmetrically) by a’ = (ay, )y,
with a; = {fo, iy ' = {f1, o} if ;1 = (f2), and ap, = 1 otherwise. We can
actually see directly that the difference a — a’ € H;n ey K2(Q) lies in the
denominator of the right-hand side of (2.8). Indeed, a — a’ is equal modulo
[, ey Ko(Ry,) to the image of {fi, 2}~ € K2(Q) under the diagonal embed-

ding K2(Q) = [T}, ey K2 (Q).
3. Some conjectures in Iwasawa theory.

3.1. Main conjectures. In this subsection, we explain the relationship be-
tween the first Chern class (i.e., the case m = 1 in Section 2) and main conjectures
of Iwasawa theory. First we strip the main conjecture of all its arithmetic content
and present an abstract formulation. To make things concrete, we then give two
examples.

For the ring R, we take the Iwasawa algebra A = O[[I'] of the group I' = Z;
for a prime p, where O is the valuation ring of a finite extension of Q,. That is,
A= lim O[I' /U], where U ranges over the open subgroups of I'. In this case, A
is non-canonically isomorphic to O[[ti,...,t, ]|, the power series ring in r variables
over O. We need two ingredients to formulate a “main conjecture”:

(1) a complex of A-modules C*® quasi-isomorphic to a bounded complex of
finitely generated free A-modules that is exact in codimension zero, and
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(ii) asubset {a,: peZ} C @p for a dense set = of continuous characters of I'.
Note that every continuous p: I' — @; induces a homomorphism A — @p that
can be extended to a map @ = Q(A) — Q, U {eo}. We denote this by ¢ — ((p) or

by ( — fr pdC. A main conjecture for the data in (i) and (ii) above is the following
statement.

Main Conjecture for C* and {a,}. There is an element ( € Q* such that
(@) ((p) =a,forall peZ,

(b) ( is a characteristic element for C°®, i.e., ¢;(C*) = div(().

Here, the Chern class ¢; and the divisor div are as defined in Section 2.

3.2. The Iwasawa main conjecture over a totally real field. Let £ be a
totally real number field. Let x be an even one-dimensional character of the ab-
solute Galois group of E' of finite order, and let E, denote the fixed field of its
kernel. For a prime p which we take here to be odd, we then set ' = E, (u,,) and
A = Gal(F/E). We assume that the order of A is prime to p. We denote the cy-
clotomic Z,-extension of F' by K. Then Gal(K/E) = A x T, where I = Z,,. If
Leopoldt’s conjecture holds for £ and p, then K is the only Z,-extension of F
abelian over E. Let L be the maximal abelian unramified pro-p extension of K.
Then Gal(K/E) acts continuously on X = Gal(L/K), as there is a short exact
sequence

1 — Gal(L/K) — Gal(L/E) —s Gal(K/E) — 1.

Thus X becomes a module over the Iwasawa algebra Z,[Gal(K/E)]. For a char-
acter 1 of A, define Oy, to be the Z,-algebra generated by the values of 1. The
1)-eigenspace

XY= X®ZP[A] Oy

is a module over Ay, = O, [[I']. By aresult of Iwasawa, X is known to be a finitely
generated torsion A-module.

On the other side, we let = = { Xﬁyc | k <0}, where Xy is the p-adic cyclotomic
character on I'. Define

ay, = L(x" k) T (1= xe" (o) Np "),
peSy

where w is the Teichmiiller character, S), is the set of primes of £ above p, Np is
the norm of p, and L(xw*~!, s) is the complex L-function of yw*~!. Then we have
the following Iwasawa main conjecture [57].

THEOREM 3.2.1. (Barsky, Cassou-Nogues, Deligne-Ribet, Mazur-Wiles,
Wiles) There is a unique L € Q™ such that
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(a) E(Xé“yc) =y for every even positive integer k,
(b) ¢1(XX @) =div(L).

3.3. The two-variable main conjecture over an imaginary quadratic
field. We assume that p is an odd prime that splits into two primes p and p in
the imaginary quadratic field . Fix an abelian extension F' of F of order prime
to p. Let K be the unique abelian extension of E such that Gal(K/F) = Zzz,.
Let A = Gal(F/E) and I' = Gal(K/F'). Then we have a canonical isomorphism
Gal(K/E) = A xT'. Let X, (resp., Xp) be the Galois group over K of the maximal
abelian pro-p extension of K unramified outside p (resp., p). Then, as above, X,
and X become modules over Zy[[A x I']|. It is proven in [50, Theorem 5.3(ii)] that
X, and Xj are finitely generated torsion Zy[[A x I']-modules. As in Subsection
3.2, for any character ¢ of A, we let O, be the extension of Z, obtained by
adjoining values of 1) and let

Xy = %p®z,00) Oy, XY = X5 ®7,(a) Oy

The other side takes the following analytic data: Let =y, (resp., = 5) be the
set of all Grossencharacters of E factoring through A x I' of infinity type (k,7)
(resp., (4,k)), with j <0 < k and with restriction to A equal to . Let g be the
conductor of . Let —dp be the discriminant of F. For x € =y, , (resp., x € 2y 5)
of infinity type (k,j), let

P it (@)jam (1) b0

ok p

2
(reSP-, Uy p = g;—’,: (éi_ﬂE)jG(x) <1 - @) Leo,gp (X170)>-

Here, {2 and (2, are complex and p-adic periods of E, respectively, and G(x) is
a Gauss sum. Moreover, L., refers to the L-function with the Euler factor at oo
but without the Euler factors at the primes dividing . (For more explanation, see
[8, Equation (36), p. 80].) Let W be the ring of Witt vectors of Fp. Using work of
Yager, deShalit proves in [8, Theorem 4.14] that there are L, ;, L5, € W[I']] such
that

Ly (X) = ayp, forevery x € Eyp, and L4 (X) = a, 5, forevery x € Zy 5.

We have the following result of Rubin [50] on the two-variable main conjecture
over E.
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THEOREM 3.3.1. (Rubin) With the notation as above, we have
div (Lyy) = a1 (W[IT &0, r) xp).
The above is also true with p replaced by p.

Let o denote the nontrivial element of Gal(£/Q). We obtain an action of o
on A x I" via conjugation by any lift of o to Gal(K/Q). We extend this action
Zy-linearly to a map

0 LA X T — Zp[[A x T
This homomorphism o maps Oy [I']] isomorphically to Oy [I']].

LEMMA 3.3.2. The two Katz p-adic L-functions are related by

@) Ly = 0(Lp,goo)-

(b) L5 (x) = (p-adic unit) - Equw()(lxcyc), where Xy is the p-adic cy-
clotomic character on A x T'.

Proof. Assertion (a) is proven simply by interpolating both sides at all ele-
ments in =, 5. We first note that both o(Ly o) and Ly lie in W&o, Op[I].
Then

0 (Lp oo ) (X) = Lppos(x 00

~—

() e (-2t
- () e (1wt
= L5.4(X)s

where we use the fact that the infinity type of xy oo is (k,j), and in the third
equality we use the obvious equalities G(x) = G(xo0) and L., g5((xo0)~',0) =
Leogo(x~,0).

To prove (b), we use the functional equation for p-adic L-functions, which says
that

Ly (x) = (p-adic unit) - £ ! (X chc)

where we write v and  instead of 1) oo and y o o for convenience (see [8, Equation
(9), p- 93]). Using (a) and the functional equation, we obtain

Ly (x) =0 (L,7) (X)
=L, 7(X)
= (p—adiC unit) : Ep#,—lw (X71chc) . O
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3.4. Greenberg’s Conjecture. Let E be an arbitrary number field, and let
E be the compositum of all Zy-extensions of E. Let I' = Gal(E/E) and A =
Zp[T']. Then I' = Z for some 7 > r2(E) + 1, where ry(E) is the number of
complex places of E. Leopoldt’s Conjecture for £ and p is the assertion that
r =1,(FE)+ 1. This is known to be true if F is abelian over QQ or over an imaginary
quadratic field [4]. The ring A is isomorphic (non-canonically) to the formal power
series ring over Z, in r variables.

Let L be the maximal abelian, unramified pro-p-extension of E,and let X =
Gal(L/E), which is a A-module that we will call the unramified Iwasawa module
over E. The following conjecture was first stated in print in [18, Conjecture 3.5].

CONJECTURE 3.4.1. (Greenberg) With the above notation, the A-module X is
pseudo-null. That is, its localizations at all codimension 1 points of Spec(A) are
trivial.

Note that if £ is totally real, and if Leopoldt’s conjecture for E and p is valid,
then E is the cyclotomic Z,-extension of FE, and the conjecture states that X is
finite.

In the case that FE is totally complex, we have the following reasonable exten-
sion of the above conjecture. Let K be any finite extension of E which is abelian
over F. Then Gal(K/FE) = A xI', where A is a finite group and I" (as defined
above) is identified with Gal(K/F’) for some finite extension F' of E. Let X be
the unramified Iwasawa module over K. Then I' acts on X and so we can again
regard X as a A-module. The extended conjecture asserts that X is pseudo-null as
a A-module.

Some evidence for Conjecture 3.4.1 has been given in various special cases.
For instance, in [38], Minardi verifies Conjecture 3.4.1 when E is an imaginary
quadratic field and p is a prime not dividing the class number of £, and also for
many imaginary quadratic fields £ when p = 3 and does divide the class number.
In [21], Hubbard verifies the conjecture when p = 3 for a number of biquadratic
fields E. In [53], Sharifi gave a criterion for Conjecture 3.4.1 to hold for Q(1,).
By a result of Fukaya-Kato [11, Theorem 7.2.8] on a conjecture of McCallum-
Sharifi and related computations in [36], the condition holds for E' = Q(p,,) for all
p < 25000. The results of [53] suggest that X should have an annihilator of very
high codimension for £ = Q(uy,).

One can construct examples of Z,,-extensions K of a suitably chosen number
field F' such that the unramified Iwasawa module X over K has the ideal (p) in its
support as a Z,[[Gal(K/F')]-module. Such examples can be constructed by imi-
tating Iwasawa’s construction of Z,-extensions with positive y-invariant. This was
pointed out to us by T. Kataoka. Such a construction can be done for any positive 7.
However, if one adds the assumption that K contain the cyclotomic Z-extension
of F', and r > 1, then we actually know of no examples where X is demonstrably
not pseudo-null.
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Assume that K is a Zj,-extension of F" with 7 > 1 such that K contains all
p-power roots of unity and, therefore, the cyclotomic Z,-extension of F'. The
class group CI(K) is defined as the direct limit under the obvious maps of the
ideal class groups of the finite extensions of F' contained in K. The assertion
that X is pseudo-null as a A-module should conjecturally be equivalent to the
assertion that the p-primary subgroup CI(K), of CI(K) is actually trivial. We
sketch an argument just in one direction. One can show that if X is pseudo-null,
then so is Hom(CI(K),,Q,/Z,), the Pontryagin dual of CI(K),. One then em-
ploys a standard Kummer theory argument to show that Hom(CI(K),, fip=) =
Hom(CI(K),,Q,/Z,)(1) is isomorphic to a A-submodule of X = Gal(M/K),
where M denotes the maximal abelian pro-p extension of K unramified outside
the primes above p, which we call the unramified outside p Iwasawa module over
K. One can then use the result that X has no nontrivial pseudo-null A-submodules.
That result is a consequence of the fact that X has rank r,(F’) as a A-module known
as the weak Leopoldt conjecture for K/F, which is satisfied because K contains
the cyclotomic Zj,-extension of . (See [41, Théoreme 3.1] or [16, Proposition 5].)
For a partial result in the converse direction, see [42, Théoreme 5.1].

If one assumes in addition that the decomposition subgroups of I' = Gal (K / F")
for primes above p are of Z,-rank at least 2, then the assertion that X is pseudo-null
is equivalent to the assertion that X is torsion-free as a A-module. This equivalence
follows from [29, Proposition 3.6] (see also Remark 4.2.5). The result in [29] is
stated in terms of the pseudo-nullity of a certain quotient X’ of X, namely X' =
Gal(L'/K), where L' is the maximal unramified abelian pro-p extension of K
in which all the primes of K lying over p split completely. However, the kernel
of the map X — X’ is pseudo-null under our assumption on the decomposition
subgroups by Lemma 4.2.3 below. It follows that X is pseudo-null if and only if
X' is pseudo-null.

4. Unramified Iwasawa modules.

4.1. The general setup. Let p be a prime, E be a number field, F' a finite
Galois extension of F, and A = Gal(F'/E). Let K be a Galois extension of F that
is a Zy,-extension of I for some 7 > 1, and set I' = Gal(K/ F'). Set G = Gal(K/ E),
QN =7Z,[G], and A = Z,[[I'].. Note that K/ F' is unramified outside p as a composi-
tum of Zj,-extensions.

Let S be a set of primes of £ including those over p and o, and let Sy be the
set of finite primes in S. For any algebraic extension I’ of F, let Gy g denote
the Galois group of the maximal extension F§ of F” that is unramified outside the
primes over S. Let Q = Gal(Fs/E). For a compact Z,[QJ]-module 7', we consider
the Iwasawa cohomology group

(K, T) = lim H' (Gp 5, T)
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that is the inverse limit of continuous Galois cohomology groups under corestric-
tion maps, with F’ running over the finite extensions of £ in K. It has the natural
structure of an {2-module.

We will use the following notation. For a locally compact A-module M, let us
set

E} (M) = Ext) (M, A)

for short. This again has a A-module structure with v € I acting on f € E} (M)
by (v- f)(m) = f(yv'm) =~ f(m). We let M" denote the Pontryagin dual, to
which we give a module structure by letting ~y act by precomposition by v~ !. If M
is a (left) Q-module, then M " is likewise a (left) 2-module. Moreover, Ef\(M ) =
Extgl(M ,€) as A-modules since €2 is A-projective (cf. [40, Proposition 5.4.17]),
through which E’\ (M) acquires an 2-module structure. We set M* = EQ (M) =
Homp (M, A).

The first of the following two spectral sequences is due to Jannsen [25, Theo-
rem 1], and the second to Nekovar [39, Theorem 8.5.6] (though it is assumed there
that p is odd or K has no real places). One can find very general versions that imply
these in [10, 1.6.12] and [32, Theorem 4.5.1].

THEOREM 4.1.1. (Jannsen, Nekovéf) Let T be a compact 7, Q] -module that
is finitely generated and free over Zy. Set A =T @z, Q) /Zy,. There are convergent
spectral sequences of Q)-modules

Fy/(T) = B\ (W (G5, 4)") = F(T) = H /(K. T)
Hy () = Ej (Hy, 7 (K, T)) = H™(T) = H> 77 (G 5, A4) .

We will be interested in the above spectral sequences in the case that T' = 7Z,,.
We have a canonical isomorphism

H! (Cr.5,Qp/7)" =X,

where X denotes the S-ramified Iwasawa module over K (i.e., the Galois group
of the maximal abelian pro-p, unramified outside S extension of K'). We study the
relationship between X and Hj, (K,Z,).

The following nearly immediate consequence of Jannsen’s spectral sequence
is a mild extension of earlier unpublished results of McCallum [35, Theorems A
and B].

THEOREM 4.1.2. (McCallum, Jannsen) There is a canonical exact sequence
of Q-modules

0— Zpy"' — HLy (K, Z,) — X — Zy* — Ha (K, Z,),
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where §;; = 1ifi = j and 0;; = 0 otherwise. If the weak Leopoldt conjecture holds
for K, which is to say that H*(G i 5,Qy/Z,) = 0, then this exact sequence extends
to

w 0— 7y — HL,(K,Z,) — ¥ — 7y — H, (K, Z,)
' — S EN(X) — 70 —o0.

If p is odd or K has no real places, then there are canonical isomorphisms
Ei (X) =5 Z00 for i > 2.

Proof. The first sequence is just the five-term exact sequence of base terms in
Jannsen’s spectral sequence for 1" = Z,,. For this, we remark that

Fé’o (Zp) = E}\(Zy) = Z;(z5>7"i

by [24, Lemma 5] or Corollary A.13 below. Under weak Leopoldt, Fg’z(Zp) is zero,
so the exact sequence continues as written, the next term being H3, (K,Z,) = 0. If
p is odd or K is totally imaginary, then G'rr g has p-cohomological dimension 2
for some finite extension F’ of F'in K, so H{W(K , Zp) vanishes for j > 3, in which
case the spectral sequence also yields the remaining isomorphisms. U

Remark 4.1.3. The weak Leopoldt conjecture for K is well known to hold
in the case that K'(1,) contains all p-power roots of unity (see [40, Theorem
10.3.25]).

Remark 4.1.4. For p odd, McCallum proved everything but the exactness at
Zf,’“’z in Theorem 4.1.2, supposing both hypotheses listed therein.

COROLLARY 4.1.5. There is a canonical isomorphism X** — HL (K, Z,)* of
Q-modules.

Proof. This follows from Theorem 4.1.2, which provides an isomorphism if
r >3, orif r = 2 and the map X* — Z, is zero. If r = 1, then we obtain an exact
sequence

0— X — H}, (K,Z,)" — E}(Z,),

and the last term is zero. If r = 2 and the map X* — Z,, is nonzero, then we obtain
an exact sequence

0 — E} (Z,) — X — H{, (K,Z,)" — E\(Z,),
and E} (Z,) = E\ (Z,) = 0 since r = 2. O

Using the second spectral sequence in Theorem 4.1.1, we may use this to obtain
the following.
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COROLLARY 4.1.6. Suppose that p is odd or K is totally imaginary. There is
an exact sequence

4.2)  0—E}(H,(K.Zy)) — X — X — E} (H}, (K,Z,)) — Z,

of Q-modules. In particular, E\ (H3, (K,Z,)) is isomorphic to the A-torsion sub-
module of X.

Proof. By hypothesis, G g has p-cohomological dimension 2 for some finite
extension F’ of I in K. Therefore, Nekovéi’s spectral sequence is a first quadrant
spectral sequence for any T'. For T' = Z,,, it provides an exact sequence

0 — B\ (H, (K, Zy)) — H' Gk 5,Q,/Zy) " — HL, (K, Z,)"
43) —E}(H},(K,Z,)) — H°(CGr.5,Qp/Z,)" — EX(HL (K, Zy))
— EA (M}, (K. Zp)) — 0

of (2-modules. In particular, applying Corollary 4.1.5 to get the third term, we have
the exact sequence of the statement. O

Remark 4.1.7. In the case that » = 1, Corollary 4.1.6 is in a sense implicit in
the work of Iwasawa [23] (see Theorem 12 and its proof of Lemma 12). In this
case, second Ext-groups are finite, so the map to Z,, in the corollary is zero.

Remark 4.1.8. It is natural to ask how (4.2) is related to the more abstract
exact sequence of [24, (1.8.1)] (see also [40, Prop. 5.4.9]). Under the assumption
that K contains all p-power roots of unity, we may answer this as follows. Jannsen
defines a functor D on the homotopy category of A-modules. Up to homotopy,
DX = coker(P; — P;") for a choice of projective resolution

4.4) O—FPy——P—F—X—0

of X. Taking Ext-groups of the four-term exact sequence defining DX leads to the
exact sequence

(4.5) 0 — EL\(D¥) — X — X — E3(DX) — 0.

By definition, one has an injective A-module homomorphism «: E} (X) — DX

with cokernel equal to the kernel of Py — P5 (taking P; = 0if r = 1). By Theorem

4.1.2, the Ext-groups computed by the A-dual of (4.4) satisfy B, (X) & Zg”z”“ for

i >2. We also have amap 3: H3,(K,Z,) — E\ (X) that by (4.1) is an isomorphism
if 7 =1 or r > 4, an injection with cokernel Z,, if = 3, and a surjection with kernel
a quotient C' of Z,, if r = 2. Setting C' = 0if r = 1 and C' = Z,, if r > 3, it follows



HIGHER CHERN CLASSES IN INASAWA THEORY 651
from these facts that the map p = a0 3: H3, (K,Z,) — DX fits in a complex
(4.6) H}, (K,Z,) 2 DX — P — - — P,

which has cohomology C concentrated in degree r — 2 counting from O.
If r >3, orif r =2 and C = Z,, the complex (4.6) just described allows us to
compute that we have isomorphisms

@7) EA(DX) — Ejy (Hi, (K, Zy))
for i ¢ {2,3} and an exact sequence
0 — E3(DX) — E} (H},, (K,Z,)) — Z, — EX(DX) — E} (H}, (K, Z,)).

If r =2 and C'is finite, the map of (4.7) is an isomorphism for s = 2 and an injection
with cokernel C' for ¢ = 3. In all cases, we obtain a map from the exact sequence
(4.5) to the exact sequence (4.2) of the form

0 ——— B} (DX) X X E3(DX) ——— 0
] [
0—— E}\(HIZW(K7 ZP)) X X E%\(HIZW(Kv ZP)) — Zpa

where the leftmost and rightmost vertical maps are induced by +p. (We have only
checked commutativity up to the ambiguous signs, as the remark is not used.)

Remark 4.1.9. In Corollary 4.1.6, the map X — X** can be taken to be the
standard map from X to its double dual. That is, both the map X — HJ, (K,Z,)* in
(4.3) and the map H}, (K,Z,) — X* of Theorem 4.1.2 arise in the standard manner
from a A-bilinear pairing

X xH}, (K, Z,) — A

defined as follows. Write A =lim ., A, where A = Z, [Gal(F’/F)] and F” runs
over the finite extensions of F'in K. Take o € X and f € H}, (K, Zyp). Write f as
an inverse limit of homomorphisms fz € H'(G 7.5, Zp). Then our pairing is given
by

(o, /) —1im > fp(F R [r]m,

F' reGal(F'/F)

where 7 denotes a lift of 7 to G g, and [7] denotes the group element of 7 in
A . Thus, the composition of X — HJ, (K,Z,)* with the map H,(K,Z,)* — X**
of Corollary 4.1.5 is the usual map X — X**.
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Definition 4.1.10. For p in the set Sy of finite primes in S, let G, denote the
decomposition group in G at a place over the prime p in K, and set IC, = Z,,[G /G, ],
which has the natural structure of a left {2-module. We then set

K= @KF and :ker(IC—>Zp),
peSy

where the map is the sum of augmentation maps.

Remark 4.1.11. If K contains all p-power roots of unity, then the group
HZ, (K,Z,) is the twist by Z,(—1) of H}, (K,Z,(1)). As explained in the proof of
[52, Lemma 2.1], Poitou-Tate duality provides a canonical exact sequence

(4.8) 0— X' — H}, (K,Zy(1)) — Ko — 0,

where X’ is the completely split Iwasawa module over K (i.e., the Galois group of
the maximal abelian pro-p extension K that is completely split at all places above

Sp).

We next wish to consider local versions of the above results. Let 7" and A =
T @z, Qp/Zy be as in Theorem 4.1.1. For p € Sy, let

Hiyp(K,T) = lim EPH( Gry T

F’/E finite 3|p
F'cK

where G Fy denotes the absolute Galois group of the completion Ffﬁ If Misa

discrete Z,[Gal(Fs/E)]-module, let H (G p, M) denote the direct sum of the
groups H' (G Ky, M ) over the primes ‘P in K over p. We have the local spectral
sequence

Py

2,p Iw,p

L) =EA (W (Grep, A) ") = PY(T) = M4 (K T)
(cf. [32, Theorem 4.2.2]). Note that H/ (G, A)" = fW;(K T7) by Tate duality,
where T" = Homg, (T, Zy(1)).

Remark 4.1.12. Tate and Poitou-Tate duality provide maps between the sum
of these local spectral sequences over all p € Sy and the global spectral sequences,
supposing for simplicity that p is odd or K is purely imaginary (in general, for real
places, one uses Tate cohomology). On Fj,-terms, these form a complex

- — F(T) — @ PR — HY (1) — B (1) —
peSy
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These spectral sequences can be seen in the derived category of complexes of
finitely generated 2-modules, where they form an exact triangle (see [32, Theorem
4.5.1]). To see this, one uses the regularity of Z, in order to replace the dualiz-
ing complex with Z,. The cohomology groups in question can then be identified
with those we have written by the isomorphisms of [31, Lemmas 5.3.1 and 5.3.2,
Theorem 5.4.1].

Let I'y = G, NI be the decomposition group in I' at a prime over p in K, and

let ry = rankz,, I'y. For an ©2-module M, we let M* denote the {2-module which as

a compact Z,-module is M and on which g € G now acts by g .

LEMMA 4.1.13. For j > 0, we have isomorphisms Ef\(le) = (IC;)‘S’“P 7 of Q-
modules.

Proof. This is immediate from Corollary A.13. U

Let ©, denote the Galois group of the maximal abelian, pro-p quotient of the
absolute Galois group of the completion K, of K at a prime over p, and consider
the completed tensor product

Dy =Q&z,[6,] Dp,

which has the structure of an {2-module by left multiplication.

THEOREM 4.1.14. Suppose that K contains all p-power roots of unity. For
each p € Sy, we have a commutative diagram of exact sequences

0 —— E;(Kp)(1) Dy Dy* B (Kp)(1) ———0
0 —— E) (H}, (K, Zp)) X x EX (HL, (K, Zp)) —— Zp

of Q)-modules in which the vertical maps are the canonical ones.

Proof. We have
Hiyp (K, Zp) = Ky(=1)  and H! (G p,Qp/Zp)" = Dy,

the first using our assumption on K. We also have H*(G g y,Q,/Z,) = 0.
The analogue of Theorem 4.1.2 is the exact sequence

4.9) 0— E}(K,) — Hyy, , (K, Z,) — Dj — E} (K,) — Hiy, (K, Z,).
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We remark that the map
BA(Ky) = (K)" — Hi, (K. Z,) 2 Ky (1)

is zero since Iy acts trivially on K but not on any nonzero element of /Cy(—1).
Applying Lemma 4.1.13 to (4.9), dualizing, and using the fact that 7, > 1 by as-
sumption on K, we obtain an isomorphism Hllw’p(K /S Dy* compatible with
Corollary 4.1.5. The analogue of Corollary 4.1.6 is then the exact sequence

(4.10) 0 — E) (Kp) (1) — Dy — D" — B3 (K,) (1) — K.

As above, the map E3 (K) (1) — K, is zero.
The map of exact sequences follows from Remark 4.1.12. U

One might ask whether or not the map X* — Z,, in Theorem 4.1.2 is zero in
the case r = 2.

PROPOSITION 4.1.15. Suppose that K contains all p-power roots of unity.
If Leopoldt’s conjecture holds for F, then X' has no A-quotient or A-submodule
isomorphic to Z(1).

Proof. We claim that if M is a finitely generated A-module such that the in-
variant group M’ has positive Zy,-rank, then the coinvariant group M does as
well. To see this, let I be the augmentation ideal in A. The annihilator of M Uis T,
so the annihilator of M is contained in /. By [19, Proposition 2.1] and its proof,
there is an ideal .J of A contained in the annihilator of M such that any prime ideal
P of A containing J satisfies rank,,p M /P M is positive. We then apply this to
P =TI to obtain the claim.

Applying this to X'(—1), we may suppose that X’ has a quotient isomorphic to
Zp(1). Such a quotient is in particular a locally trivial Z,(1)-quotient of the Galois
group of X. In other words, we have a subgroup of H' (G s, fp=) isomorphic to
Z,, and which maps trivially to H' (G p, y1,~) for all p € S;.

The maps

r r
H' (Grs =) — H' (Grs.p-)  and H'(Grp, ) — B (GEpo )
have p-torsion kernel and cokernel. For instance, the kernel (resp., cokernel) of the
first map is (resp., is contained in) H(I", y1~ ) fori =1 (resp., i =2). f ® = Z, is a
subgroup of I" that does not fix Z,(1), then the Hochschild-Serre spectral sequence

HY (00,1 (@ 1,0)) = H (D)

gives finiteness of all H*(T", y1,~), as H(®, 1~ ) is finite for every j (and zero for
every j # 0).
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We may now conclude that H' (G F,5, Hp=) has a subgroup isomorphic to Z,,
with finite image under the localization map

Hl (GF7S7NPM) — @ Hl (GF7]J7NP°°)'
peSy

In other words, Leopoldt’s conjecture must fail (see [40, Theorem 10.3.6]). U

Remark 4.1.16. Proposition 4.1.15 also holds for the unramified Iwasawa mod-
ule X over K in place of X'.

PROPOSITION 4.1.17. Suppose that r =2 and K contains all p-power roots
of unity. If Leopoldt’s conjecture holds for F', then the sequences

(4.11) 0 — Hi,(K,Z,) — X" —Z, —0
4.12)  0—Ej (Hi,(K,Zy)) — X — X — E} (H},, (K, Z,)) — 0

of Theorem 4.1.2 and Corollary 4.1.6 are exact.

Proof. Suppose that Leopoldt’s conjecture holds for F'. Consider first the
map ¢: Z, — H} (K,Z,) of Theorem 4.1.2. The image of Z, is contained in
H2, (K,Z,)'. There is an exact sequence

0— X'(—1) — H}, (K, Z,)" — Ko(—1)'.

Primes in S} are finitely decomposed in the cyclotomic Z,-extension Fy., and the
action of the summand I'cyc = Gal(Fey/F') of I' on Zy(—1) is faithful. It follows
that Ko(—1)F = (K7 (_1))loe is trivial. Proposition 4.1.15 then implies
that ¢ must have finite image, and we have the first exact sequence.

By Corollary A.13, E} (Z,) = 0 and E} (Z,,) = Z,. The long exact sequence of
Ext-groups for (4.11) reads

0 — E) (X*) — B\ (H],(K.Z,)) — Z, — B3 (X*).

By Corollary A.9(b), this implies that E} (H,(K,Z,)) — Z,, is surjective with fi-
nite kernel. The map Z,, — EX (H},,(K,Z,)) of (4.3) is then also forced to be injec-
tive, being that it is of finite (i.e., codimension at least 3) cokernel E} (H7, (K,Zy)),
for instance by Proposition A.8. Therefore, the map E3 (H3, (K,Z,)) — Z, in (4.3)
is trivial, and (4.12) is exact. U

4.2, Useful lemmas. It is necessary for our purposes to account for dis-
crepancies between decomposition and inertia groups, and the unramified Iwa-
sawa module X and HZ (K,Z,(1)). The following lemmas are designed for this
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purpose. For a prime p € Sy, we set

Iy = Q©z,6,] I,
where J, denotes the inertia subgroup of ©,. Then I, is an {2-submodule of D,,.

Remark 4.2.1. The unramified Iwasawa module X over K is the cokernel
of the map @pe S; I, — X, independent of S’ containing the primes over p. Its
completely split-at-Sy quotient is the cokernel of @pe S; D, — X. The latter €2-
module is the completely split Iwasawa module X’ if K contains the cyclotomic
Z,-extension of F'.

In the following, we suppose that primes over p do not split completely in
K/F, which occurs, for instance, if p lies over p or K contains the cyclotomic
Z.,-extension of F'.

LEMMA 4.2.2. Suppose that Iy # 0. Let e, = 0 (resp., 1) if the completion K,
at a prime over p contains (resp., does not contain) the unramified Zp-extension of
E,. Let 6; = €p0r, 1, and if 6;3 = 1, suppose that K contains all p-power roots of
unity. We have a commutative diagram

0 I, D, Ky 0
(4.13) l l 1
0 I D Ky 0

where the right-hand vertical map is the identity if 6; =1

Proof. We have exact sequences 0 — J, — Dy — Zy — 0 by the theory of
local fields. These yield the upper exact sequence upon taking the tensor product
with Q over Z,[Gy]). Since I'y, # 0, we have that K, is a torsion A-module. Taking
Ext-groups, we obtain an exact sequence

(4.14) 0 — Dy — Iy — E) (K;?) — E{(Dy).

If 7, > 1 or €, = 0, then we are done by Lemma 4.1.13 after taking a dual.
Suppose that r, = e{, = 1. We claim that the last map in (4.14) is trivial. This
map is, by Lemma A.12, just the map of {2-modules

O @3, 16,1 EXh, (Zp, Ap) — Q' @7, 16,1 EXth, (Dps Ap),

where A, = Z,[I'p]]. For the claim, we may then assume that » = 1 and K is the
cyclotomic Z,-extension of F'. We then have an exact sequence

0— Ky(1) — Dy — D" — 0
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from Theorem 4.1.14 and Lemma 4.1.13. Taking Ext-groups yields an exact se-
quence

0 — E) (D;*) — E)\(D,) — Kp(—=1) — EX(D}),

and the first and last term are trivial by Corollary A.9. As there is no nonzero A-
module homomorphism Z;, — Z,(—1), there is no nonzero homomorphism K}, —
KCy(—1), hence the claim. Finally, taking Ext-groups once again, we have an exact
sequence

0 — I;* — Di* — Ky — E} (I7).

By Corollary A.9, E}\(Ig) = 0, so we have shown the exactness of the second row
of (4.13). 0

Using Lemma 4.2.2, one can derive exact sequences as in Theorem 4.1.14 with
I, in place of D, if we suppose that K contains all p-power roots of unity. When
F' contains i, this hypothesis is equivalent to K containing the cyclotomic Z,-
extension [ty of F'.

LEMMA 4.2.3. (a) If K}, contains a Z]%—extension of Ey for all p € Sy lying
over p, then the kernel of the quotient map X — X' is pseudo-null.

(b) If Ky, contains the unramified Z-extension of Ey, for all p € Sy lying over
p, the quotient map X — X' is an isomorphism.

Proof. Take S to be the set of primes over p and e=. We have a canonical sur-
jection

@ (Q ®Zp[[gp]] Qp/jp) — ker(X — X')
peSy

and ©, /7, is zero or Z, according as to whether K, does or does not contain
the unramified Z,-extension of F),, respectively. This implies part (b) immedi-
ately. It also implies part (a), since Q& 1g,1Dp/Jy is of finite Z,[G/Gy]-rank
and Z,[G/Gy| is pseudo-null in case (a). O

The following lemma describes the structure of the Ext-groups of K in terms
of those of K.

LEMMA 4.2.4. Letp € Sy.
' (a) For 0 <j<r—1, we have Efx(lCo) o Efx(lC) For j > r+1, we have
E} (K) = E\(Ko) =0.
(b) If r #rp forall p € Sy, then E}\ (K) = E}\ (Ko) = 0, and we have an exact
sequence

0 — E} '(K) — E} '(Ko) — Z, — 0.
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(c) Ifr =1y for some p € Sy, then B, ' (Ko) 2 B, 1 (K), and we have an exact
sequence

0 — Z, — E} (K) — E} (Ko) — 0.

Proof. Note that

B0 = €D (k3)

pGSf

by Lemma 4.1.13. Moreover, Corollary A.13 tells us that Ef\(Zp) = ng’j. We are

quickly reduced to the case that r =, for some p. The map E)\ (Z,,) — E}\ (KC;)
for such a p is the map Z, — K, that takes 1 to the norm element, hence is injec-
tive. U

If K contains all p-power roots of unity, then from (4.8) we have an exact
sequence

(4.15)
o —E) (Ko) (1) — EA (HE, (K, Z,) ) — EA (X)) (1) — B4 (Io) (1) — -+

for all j. Lemmas 4.2.3 and 4.2.4 then allow one to study the relationship between
the higher Ext-groups of HIZW(K ,Zy) occurring in Theorem 4.1.14 and the higher
Ext-groups of X.

Remark 4.2.5. Atthe end of Section 3.4, we asserted that if K contains i~ and
rp > 2forall p € Sy, then X is torsion-free if and only if X is pseudo-null. This may
also be seen as follows. By Corollary 4.1.6, the A-torsion subgroup of X is isomor-
phic to EX (H,(K,Z,)). By assumption and Lemmas 4.1.13 and 4.2.4, we have
E} (Ko) = 0. Thus, by the exact sequence (4.15), the triviality of E\ (HZ,(K,Z,))
and the triviality of E} (X’) are equivalent. Since X' is A-torsion, E} (X') = 0 if
and only if X" is pseudo-null, which by Lemma 4.2.3 is equivalent to the pseudo-
nullity of X.

4.3. Eigenspaces. We end with a discussion of the rank of the A-
eigenspaces of the global and local Iwasawa modules X and Dy. Let us suppose
now that G =T x A, and for simplicity, that A is abelian. Without loss of general-
ity, we shall suppose here that F' contains Q(s), and we let w: A — Z denote
the Teichmiiller character.

Let ) be a Q) -valued character of A. For a Z,[A]-module M, we let

MY = M @z,[a) Oy,

where Oy, is the Z,-algebra generated by the values of 1, and Z,[A] — Oy is the
surjection induced by 1. We set A = Z,[[I'] and A, = O,[[I']. Note that Q¥ = A,
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as compact O,-algebras, but QY has the extra structure of an 2-module on which
A acts by .

Let r(E) denote the number of complex places of E and rqf (E) the number of
real places of E at which ¢ is odd. We have the following consequence of Iwasawa-
theoretic global and local Euler-Poincaré characteristic formulas, as found in [39,
5.2.11,5.3.6].

LEMMA 4.3.1. (a) If weak Leopoldt holds for K, then ranky, XV =ry(E)+
().
(b) If either 'y # 0 or | a, # 1, then ranky Dg’ = [Ey : Q).

Proof. Let X be the union of S and the primes that ramify in F//E. Since
the primes in ¥\ S can ramify at most tamely in Xy, the A,-modules X¥ and
.’{Ié (the X-ramified Iwasawa module over K) have the same rank. Endow Ow*
(which equals Oy, as a Zy,-module) with a G'g s-action through L. Let By =
Qv Y Homz,, cont(A, Oq\j), 1), which is a discrete Ay [[G g x]-module. Restric-
tion and Shapiro’s lemma (see [39, 8.3.3] and [31, 5.2.2, 5.3.1]) provide Ay-
module homomorphisms

H' (Gpx. By) = H(Gry, By)® —5 H' (Gix, 0}

A~ Py V
)m— (%)
restriction having cotorsion kernel and cokernel. (The last step passes through the
intermediate module Homg, |7 (Xs ®z, Oy-1,Qp/Zp).) We are therefore reduced
to computing the A;-corank of H' (G E,x, By). The global Euler characteristic for-

mula tells us that

2
S (~1Y ranka, B (G, By) = Y ranky, (29(1) 97,
7=0 UGS*Sf

and H/ (G 5, By,) is Ay-cotorsion for j =0 and j = 2, the latter by weak Leopoldt
for K.

Recall that D, = H'(G g p,Q,/Z,)". Restriction and Shapiro’s lemma [31,
5.3.2] again reduce the computation of the Ay-corank of H'(G g, By), and the
local Euler characteristic formula tells us that

2
Z(—l)j ranky H’ (GEF,Bw)V = [Ep :@p] -ranky Qv = [Ep :Qp].
j=0
As H*(Gg,,By)" is trivial, and H(Gg,, By)" = (SW)GE’a is torsion by virtue of
the fact that either I', or |, is nontrivial, we are done. (]

Let us suppose in the following three lemmas that ¢ has order prime to p.
These following lemmas are variants of the lemmas of the previous section in
“good eigenspaces”. The proofs are straightforward from what has already been
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done and as such are left to the reader. For the second lemma, one can use the
following simple fact: for an 2-module M, we have

(4.16) (BAM)(1)" =B (M=) (1),
LEMMA 4.3.2. We have Ky =0 if |, # 1. We have K¥ = K§ if ¢ # 1.

LEMMA 4.3.3. Suppose that K contains the cyclotomic Z,-extension Fey. of
F.Ifp|a, # 1 (resp., m/ﬁlmp # 1), then I:f} — D;ﬁ (resp., D;ﬁ — (Dg})**) is an
isomorphism.

LEMMA 4.3.4. Suppose that K contains Feyc. Then the maps XV — (X')¥ —
H?(K, Zp(l))w are isomorphisms if |, # 1 for all p lying over p.

5. Reflection-type theorems for Iwasawa modules. In this section, we
prove results that relate an Iwasawa module in a given eigenspace with another
Iwasawa module in a “reflected” eigenspace. These modules typically appear on
opposite sides of a short exact sequence, with the middle term being measured
by p-adic L-functions. The method in all cases is the same: we take a sum of the
maps of exact sequences at primes over p found in Theorem 4.1.14 and apply the
snake lemma to the resulting diagram. Here, we focus especially on cases in which
eigenspaces of the unramified outside p Iwasawa modules X have rank 1, in order
that the corresponding eigenspace of the double dual is free of rank one. Our main
result is a symmetric exact sequence for an unramified Iwasawa module and its
reflection in the case of an imaginary quadratic field. This sequence gives rise to a
computation of second Chern classes (see Subsection 5.2).

We maintain the notation of Section 4. We suppose in this section that p is
odd, and we let .S be the set of primes of ' over p and . We let ) denote a one-
dimensional character of the absolute Galois group of E' of finite order prime to
p, and let Ey, denote the fixed field of its kernel. We then set F' = E(j1,) and
A = Gal(F/FE). Let w denote the Teichmiiller character of A.

We now take E to be the compositum of all Z,-extensions of £, and we set
r = rankz, Gal(E/E). If Leopoldt’s conjecture holds for E, then r = 7, (E) + 1.
We set K = FE. As before, we take G = Gal(K/E) and I’ = Gal(K /F) and set
0 =7,[G] and A = Z,[I].

For a subset X of Sy, let us set Ky, = P,cx; Ky We set

Hy = ker (H, (K, Z,(1)) = Ks,—x),
which for ¥ # & fits in an exact sequence
(5.1 0— X' — Hy — Ky, — Z, — 0.

For ¥ = &, we have Hy, = X’. We shall study the diagram that arises from the
sum of exact sequences in Theorem 4.1.14 over primes in T' = Sy — ¥. Setting



HIGHER CHERN CLASSES IN INASAWA THEORY 661

Dr =, cr Dy, itreads

0 —— E\(Kr)(1) —— Dy — D3 —— B3 (K7)(1) ——— 0

S

0— E}\(HIZW(Kv ZP)) X X E%\(HIZW(Kv ZP)) — ZP>

where ¢ = ZpeT ¢y is the sum of maps ¢, : Dy* — X**. We take ¢)-eigenspaces,
on which the map to Z,, in the diagram will vanish if ¢» # 1, r =1, or 7 = 2 and
Leopoldt’s conjecture holds for F', the latter by Proposition 4.1.17. The cokernel
of Dy — X is the Iwasawa module Xx; 7 which is the Galois group over K of the
maximal pro-p abelian extension of K which is unramified outside of ¥ and totally
split over T' = Sy — X.. The group I = @p <7 Ip has the property that the cokernel
of IT — X is the unramified outside of >-Iwasawa module Xy,.

In this section, we focus on examples for which rank y X¥ = 1, which forces
r < 2 under Leopoldt’s conjecture by Lemma 4.3.1. We have that (X¥)** is free of
rank one over A, by Lemma A.1. If p is split in £, then (D;f )** is also isomorphic
to Ay, s0

oy (DY) — (x9)"

is identified with multiplication by an element of A, well defined up to unit. We
shall exploit this fact throughout. At times, we will have to distinguish between
decomposition and inertia groups, which we will deal with below as the need arises.
In our examples, T is always a set of degree one primes, so 1, = 1 for p € T". The
assumptions on v and 7' make most results cleaner and do well to illustrate the
role of second Chern classes, but the methods can be applied for any Z,,-extension
containing the cyclotomic Z,-extension and any set of primes over p.

As in Definition A.6, for an 2-module M that is finitely generated over A with
annihilator of height at least r, we define the adjoint a(M') of M to be E}\ (M).

5.1. The rational setting. Let us demonstrate the application of the results
of Subsection 4.1 in the setting of the classical Iwasawa main conjecture. Suppose
that £ = Q and that ¢ is odd. For simplicity, we assume v # w. We study the
unramified Iwasawa module X over K.

THEOREM 5.1.1. If (X ’)“”Wl is finite, then there is an exact sequence of -
modules

0— XV —0¥/(Ly) — (X)) (1) —0

with Ly, interpolating the p-adic L-function for x = wip~ " as in Theorem 3.2.1.
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Proof. Note that K = K,. By Lemma 4.1.13, we have E}(K) = K* and
E3 (K) = 0. Since ¢ # w, Lemma 4.3.2 tells us that v o IC‘(‘;M]. By (4.15)

and Lemma 4.2.4 and our assumption of pseudo-nullity of X “”Vl, we have that
the natural maps

EL(K)(1)” > B\ (H}, (K.Z,))" and B3 (W3, (K,Z,))" = EX(X')(1)”

are isomorphisms. By (4.16) and Proposition A.4(a), E3(X') (1)Y= (X))« )¥(1).
The diagram of Theorem 4.1.14 with p = p reads

0 —— E\(K,)(1)¥Y —— D} — (D})* ———— 0

Lol

0 — BV (H2, (K,7Zp))" — XY — (X)) — ((X)*¥ V(1) — 0.

It follows from Lemma 4.2.2 and the fact that there is no nonzero map K, (1) — K,
of 2-modules that we can replace D,, by I, in the diagram. By applying the snake
lemma to the resulting diagram, we obtain an exact sequence

(5.3) 0 — X¥ — coker — ((X")*¥)"(1) — 0,

where 6: (I;f )™ — (X¥)* is the canonical map (restricting (;S;f). The map @ is
of free rank one Aw-modules by Lemmas 4.3.1 and A.1, and it is nonzero, hence
injective, as X is torsion. We may identify its image with a nonzero submodule of
Q. Since (X')*¥"" is pseudo-null, (5.3) tells us that

e (XY) = ¢ (2¥/im#),

and this forces the image of 6 to be ¢;(X?). By the main conjecture of Theorem
3.2.1, we have ¢ (XV) = (Ly). O

Remark 5.1.2. 1f we do not assume that (X')<% " is finite, one may still derive
an exact sequence of A,-modules

0 — (X ) (1) — X¥ — Q¥ /(M) — (X)) (1) — 0
for some M € Q¥ such that (M)e; (X<¥ )4 (1)) = (Ly).

5.2. Theimaginary quadratic setting. In this subsection, we take our base
field £ to be imaginary quadratic. Let p be an odd prime that splits into two primes
pand p in E, so Sy = {p,p}. Since Leopoldt’s conjecture holds for £, we have
I'=Gal(K/F) = ZZZ,. We let X, denote the p-ramified (i.e., unramified outside of
the primes over p) Iwasawa module over K, and similarly for p.

We will prove the following result and derive some consequences of it.
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THEOREM 5.2.1. Suppose that E is imaginary quadratic and p splits in E. If
X s pseudo-null as a Ay-module, then there is a canonical exact sequence of
Q-modules

QY
C1 (%g)) +cy (%g))

G4 00— (X/Xpn)" — —s (XY (1) —0.

o B w .
Moreover, we have Xy = 0 unless 1) = w, and Xg, is cyclic.
We require some lemmas.

LEMMA 5.2.2. The completely split Ivasawa module X' over K is equal to the
unramified Iwasawa module X over K, and the map I, — D, is an isomorphism.
Moreover; we have E} (K,) = 0 and E3 (K,)) = Ky,

_Proof. The prime p is infinitely ramified and has infinite residue field extension
in E, so r, = 2. The statements follow from Lemma 4.2.3(b), Lemma 4.2.2, and
Lemma 4.1.13 respectively. U

Note that IC = IC, ® Ky and ICy = ker(C — Z,,) by the definition of Remark
4.1.11.

LEMMA 5.2.3. If Xt s pseudo-null as a Ay-module, then so is
H, (K, Zp)“”z’fl, and we have an exact sequence of Q-modules

0—Z,(1)¥ — (K¢ (1) — B} (H, (K, Z,)) " — B3 (X*Y") (1) —0.

Proof. Lemmas 5.2.2 and 4.2.4 tell us that £ (Ko)(1) = 0 for i # 2 and pro-
vide an exact sequence

(5.5) 0 — Zy(1) — K"(1) — E3 (Ko) (1) — 0.
The exact sequence (4.15) has the form

0 — E) (Hf, (K,Z,)) — Ex(X)(1) — EX (Ko) (1) — B} (Hf, (K,Zy))
— E3(X)(1) — 0,

noting that X = X’ by Lemma 5.2.2. The v-eigenspaces of the first two terms
are zero by (4.16) and the pseudo-nullity of X' “”Vl, yielding the first assertion and
leaving us with a short exact sequence. Splicing this together with the 1/-eigenspace
of the sequence (5.5) and applying (4.16) to the last term, we obtain the exact
sequence of the statement. O

The main conjecture for imaginary quadratic fields is concerned with the un-
ramified outside p Iwasawa module X, over K. For it, we have the following result
on first Chern classes.
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PROPOSITION 5.24. If X Wi g pseudo-null as a \y-module, then there is
an injective pseudo-isomorphism %g) - Q¥ /¢ (%g)) of Q-modules.

Proof. We apply the snake lemma to the 1/-eigenspaces of the diagram of The-
orem 4.1.14. By Lemma 5.2.2 and the pseudo-nullity in Lemma 5.2.3, one has a
commutative diagram

0— IV — (I¥)* ——= B3 (K% )(1) ——0

o | ]

0— XV — (X¥)* — B3 (H},(K,Zp))Y — 0,

the right exactness of the bottom row following from Proposition 4.1.17. We im-
mediately obtain an exact sequence

O—>.’{;f’—>coker(¢g’) —C —0

for gzbg defined to be as in the diagram (5.6), with C' a pseudo-null 2-module that
by Lemmas 4.1.13 and 5.2.3 fits in an exact sequence

0 — Zy(1)¥ — (K&¥ ) (1) — C — a(X¥7) (1) — 0.

The map gbg’: (Ig’ )™ — (X¥)** is an injective homomorphism of free rank one

Ay-modules. Since C'is pseudo-null, the image of ¢g’ is c; (%g’), as required. [
We now prove our main result.

Proof of Theorem 5.2.1. Consider (5.2) for T'= {p,p}. From (5.6) one has

0—— Iy &I — (1) & (I )" —— E{ (k¥ ) (1) ——0

(5.7) l lﬁm;" l

0 xv (XY)** ———— B3 (H,(K,Z,))¥ —— 0.

The snake lemma applied to (5.7) produces an exact sequence

()"
()" + (1)

(5.8) Zp(1)? — XV —s — —a(X* (1) —0,

where the first and last terms follow from the exact sequence of Lemma 5.2.3. In
the proof of Proposition 5.2.4, we showed that ¢g’ is injective with image c; (%g’) in
the free rank one Q2¥-module (X¥)**, and similarly upon switching p and . Thus,
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we have an isomorphism

(5.9) &) = @
()" + ()" al®)+alx)

If ) # w, then Z,(1)¥ = 0. For ¢ = w, we claim that the image of the map
Zp(1) — X* of (5.8) is finite cyclic. Since Q¥ /(c; (f{g}) +c (.’{g’)) has no nontriv-
ial finite submodule by Lemma A.3, the result then follows from (5.8) and (5.9).

To prove the claim, we identify /;” and I’ with their isomorphic images in X,
so the kernel of [/ & I’ — X* is identified with (I, N /5)*, and similarly with the
double duals. By the exact sequence

0— IV — (I9)" — Zp[T/Tp]* (1) — 0

that follows from (4.10), we see that 1" is contained in the ideal I of A = (1;*)
with A/I = 7Z,(1). This means that the intersection (I, N I5)* is contained in [
times the free rank one A-submodule (I;* N I;*)* of (X*)™. As the kernel of
Zp(1) — X is isomorphic to (I;* N I5*)* /(I, N I5)*, which has Z,(1) as a quo-
tient, the claim follows. U

Let Qw = W[G] and Ay = W[I']], where W denotes the Witt vectors of [F,,.
Let L,  denote the element of Ay, = QwW that determines the two-variable p-adic
L-function for p and wi)~'. Let X % denote the completed tensor product of XV
with W over O,,. Together with the Iwasawa main conjecture for K, Theorem

5.2.1 implies the following result.

THEOREM 5.2.5. Suppose that E is imaginary quadratic and p splits in E.
If both XV and X ¥ are pseudo-null A,-modules, then there is an equality of
second Chern classes

(5.10) 1) <(»C,,¢A,7W[,pﬂp)> =0 (Xﬁ/) +cz((X%)/w")L(1))-

These Chern classes have a characteristic symbol with component at a codimen-
sion one prime P of Ay equal to the Steinberg symbol {Ly ., L5} if L5y is not
a unit at P, and with other components trivial.

Proof. By [8, Corollary III.1.11], the main conjecture as proven in [51, Theo-
rem 2(i)] implies that £, ,, generates c; (%;;Z’)AW. We have

ea(o (X3 ) (1) =ea((X5) (1)
by Proposition A.11. We then apply Proposition 2.5.1. U

Remark 5.2.6. Supposing that both X% and X “¥! are pseudo-null, the Tate
twist of the result of applying ¢ to the sequence (5.4) reads exactly as the analogous
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sequence for the character w1 ~! in place of 1. The functional equation of Lemma
3.3.2(b) yields an isomorphism

2 ~ -1
(0 / (Lo £5.0)) (1) Z 5/ (Lo, Ly ),
of the middle terms of these sequences.

This implies the following codimension two Iwasawa-theoretic analogue of
the Herbrand-Ribet theorem in the imaginary quadratic setting, as mentioned in
the introduction. Note that in this analogue we must treat the eigenspaces X and
X“¥ together.

COROLLARY 5.2.7. Suppose that 1) # 1,w. The Iwasawa modules XV and
X" are both trivial if and only if at least one of Ly, y, or Lj . is a unit in Ayy.

Proof. If X" is not pseudo-null, then so are both .’{;f and .’{g. So, by the main
conjecture proven by Rubin (see Theorem 3.3.1), neither L, y, nor L5, are units.
If X% is not pseudo-null, then £, -1 and L; -1 are similarly not units. By
the functional equation of Lemma 3.3.2(b), this implies that L; , nor Ly, ., are non-
units as well.

If X% and X“¥ "' are both pseudo-null, then the exact sequence (5.4) of The-
orem 5.2.5 shows that X¥ and X“¥ ' are both finite if and only if the quotient
Q¥ /(e (f{g}) +c (.’{g’)) is finite, which cannot happen unless it is trivial by Lemma
A.3. Since 1) # w, again noting (5.4), this happens if and only if both X% and
X" are trivial as well. By the main conjecture, the quotient is trivial if and only
at least one of L, y and Lj  is a unitin Ayy. O

Example 5.2.8. Suppose that v is cyclotomic, so extends to an abelian charac-
ter of A = Gal(F/Q), that E ¢ Q(up), and that 1) # 1,w. Then XV is nontrivial
if and only if the 1)-eigenspace under A of the unramified Iwasawa module Xy
over the cyclotomic Zjy-extension Fgyc of I is nontrivial. That is, since all primes
over p are unramified in K/ Fyy, the map from the Gal(K/Fiy.)-coinvariants of
X to Xy is injective with cokernel isomorphic to Gal( K/ Fiy. ), which has trivial
A-action. We extend 1) and w in a unique way to odd characters ¢ and & of A.
Identify the quadratic character « of Gal(E/Q) with a character of A that is trivial
on A.

The -eigenspace of Xy under A is the direct sum of the two eigenspaces

Xg;c and Xé@'g under A. By the cyclotomic main conjecture (Theorem 3.2.1), the

Iwasawa module Xé@c is nontrivial if and only if the appropriate Kubota-Leopoldt
p-adic L-function is not a unit. This in turn occurs if and only if p divides the
Kubota-Leopoldt p-adic L-value

Ly(@p',0)=(1-¢7'(p))L(¥7",0).
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The value L(¢)~',0) is the negative of the generalized Bernoulli number By g1
We have ¥~ (p) = 1 if and only if ¢} is locally trivial at p, in which case the p-adic
L-function is said to have an exceptional zero. By the usual reflection principle
(see also Remark 5.1.2), if Xé_f/é is nonzero, then so is Xfy%il”

Similarly, the unique extension of wp~! to an odd character of A is ok,
and Xé’vylfil” is nontrivial if and only if £ 1, is not a unit, which is to say that
p divides L, (¢k,0), or equivalently that either p | By 51 OF @'k is locally
trivial at p. If X357 0, then X5 # 0.

Typically, when Xg;c is nonzero, Xé";q’cbil and Xé";‘fﬁln are trivial. For example,
if p = 37, then 37 | By g5 (and X?;Cl = 0), but 371 B zs5,, for x the quadratic
character of Gal(Q(i)/Q). However, it can occur, though relatively infrequently,
that both Bl,ﬁrl and Bl,aﬂ% are divisible by p. A cursory computer search using
this « revealed many examples in the case one of the p-adic L-functions has an
exceptional zero, e.g., for p = 5 and v a character of conductor 28 and order 6, and
other examples in the cases that neither does, e.g., with p = 5 and 1 a character of
conductor 555 and order 4.

5.3. Two further rank one cases. We will briefly indicate generaliza-
tions of Theorem 5.2.1 which can be proved in the remaining two cases when
ranky, X% = 1. Our field E will have at most one complex place, but it will not be
@ or imaginary quadratic. In view of Lemma 4.3.1, the two cases to consider are
when (i) £ has exactly one complex place and the character 1) is even at all real
places, and (ii) F is totally real and ) is odd at exactly one real place.

For any set of primes 1" of E, we let X7 denote the T'-ramified Iwasawa module
over K. If T'= {p}, we set X, = X7. Suppose that we are given n degree one
primes pi,...,p, of E over p, and set T' = {py,...,pp}, X =S —T and &; =
Sp—{pi}forie{l,...,n}.

THEOREM 5.3.1. Let E be a number field with exactly one complex place and
at least one real place, and suppose that 1) is even at all real places of E. Assume
that Leopoldt’s conjecture holds for E, so r = 2. Furthermore, suppose that .’f%z
is Ay-torsion for all i € {1,...,n}. Assume that r, =2 for all p € Sj. Xy is
pseudo-null, then there is an exact sequence of Q)-modules

QY

—2?2161 (f%) —>a(7—[§w*')(1) —0

0—>3€§—>

where Hy, is as in (5.1).

Proof. As in the imaginary quadratic case, the strategy is to control the terms
and vertical homomorphisms of the diagram (5.2). The three steps needed to do
this are (i) show that decomposition groups can be replaced by inertia groups, (ii)
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show that the appropriate eigenspaces of the E}\ groups in (5.2) are trivial, and (iii)
use Iwasawa cohomology groups to relate the E% groups in (5.2) to Hx, which is
an extension of an unramified Iwasawa module.

Note that Z,(1)¥ = 0 since v is even at a real place. For p € T, the field K,
contains the unramified Z,-extension of Q, because p has degree 1 and r, =2 =
r. By assumption and Lemmas 4.2.3(a), 4.2.2, and 4.1.13, the map X — X’ has
pseudo-null kernel, I+ = Dy and E\ (Kr) = 0 for i # 2. By our pseudo-nullity
assumption, we have E}, (X «¥™'y = 0. It follows from Lemma 4.2.4 and (4.15) that
E\ (H, (K,Z,))¥ = 0. Since H;Wl is a submodule of the pseudo-null module
H, (K, Zp(l))“’wfl, we have E}\(’ngil) =0 as well.

As Z,(1)¥ = 0, we have (ICT)E;W1 = IC“T)MI. Hence, we have an exact se-
quence

0— (BX(Kr)(1)" — (BA(H, (K, Z,)))Y — (B} (Hx)(1))" — 0.

Taking v-eigenspaces of the terms of diagram (5.2) and applying the snake lemma,
we obtain an exact sequence

0— .’{? — cokergz% — Eﬁ(?—[;wil)(l) — 0.

As X% and fo for all p € T have Ay-rank one by Lemma 4.3.1, the argument is
now just as before, the assumption on %gz ensuring the injectivity of gzbg’i. U

This yields the following statement on second Chern classes.

COROLLARY 5.3.2. Let the notation and hypotheses be as in Theorem 5.3.1.
Suppose in addition that n = 2 and %g is pseudo-null. Let f; be a generator for
the ideal ¢1((Xx,)?) of Ay. Then the sum of second Chern classes

e (X8) + e (K29 (1) + e (X)) (1))

has a characteristic symbol with component at a codimension one prime P of Ay,
the Steinberg symbol { f1, f>} if f» is not a unit at P, and trivial otherwise.

Proof. By the exact sequence (5.1) for Hy, Lemma A.7, and the fact that

Z;‘,’Wl =0, we have

)(1)) = e2(a(ke” ) (1) +ea (X)) (1)).

The result then follows from Theorem 5.3.1, as in the proof of Theorem 5.2.5. [J

c (a (H;w

In the following, it is not necessary to suppose Leopoldt’s conjecture, if one
simply allows K to be the cyclotomic Zj-extension of F'.
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THEOREM 5.3.3. Let E be a totally real field other than Q, and let v be odd
at exactly one real place of E. Assume that Leopoldt’s conjecture holds, so r = 1.
Furthermore, suppose that %gz is Ay-torsion for all i € {1,... ,n}. If(X’)“”W] is
finite, then there is an exact sequence of Q-modules

OY
Z?:l A (%%Z)
Proof. The argument is much as before: we take the 1/-eigenspace of the terms
of diagram (5.2) with T = {py,...,p, }. We have E3 (K) = 0 and E} (K) =2 K*. The

map Dr — D7 in the diagram can be replaced by Ir — 17", as in the proof of
Theorem 5.1.1. Applying the snake lemma gives the stated sequence. U

(K2 (1) — 28— — (X)) (1) — 0,

Although this is somewhat less strong than our other results in general (when
wip ! A, = 1 for some p € X)), we have the following interesting corollary.

COROLLARY 5.3.4. Suppose that E is real quadratic, p is split in E into two
primes 1 and v,, and the character ) is odd at exactly one place of E. If XV and
(X" are finite, then there is an exact sequence of finite Q-modules

QY

w1V
cl(%;’,bl)—l-q(%g;) —>((X) ) (1) =0

0— XY —

We can make this even more symmetric, replacing X by X’ on the left, if we
also replace %;;Z’Z by its maximal split-at-p3_,; quotient for 7 € {1,2}, and supposing
only that (X")? is finite. We of course have the corresponding statement on second
Chern classes.

6. A non-commutative generalization. The study of non-commutative
generalizations of the first Chern class main conjectures discussed in Section 3 has
been very fruitful. See [7], for example, and its references. We now indicate briefly
a non-commutative generalization of Theorems 5.2.1 and 5.2.5 concerning second
Chern classes.

We make the same assumptions as in Subsection 5.2. Namely, £ is imaginary
quadratic, and p is an odd prime that splits into two primes p and p in E. Let ¢
be a one-dimensional p-adic character of the absolute Galois group of F of finite
order prime to p with fixed field of its kernel Fy,. Let F' = Fy(1,). Let w denote
the Teichmiiller character of A = Gal(F/E). Let E denote the compositum of all
Z,-extensions of F, and let K be the compositum of E with F. Let S be the set of
primes of E above p and e, so Sy = {p,p}.

We suppose in addition that F' is Galois over Q. Let o be a complex conjuga-
tion in Gal(F/Q), and let H = {e,o}. Then A = Gal(F/Q) is a semi-direct prod-
uct of the abelian group A with H. The group H acts on A and I' = Gal(K/F') =
ZIZ, by conjugation. Let 7 be the character of an n-dimensional irreducible p-adic
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representation of A.Thenn € {1,2}.If n = 1, then 7 restricts to a one-dimensional
character v of A. If n = 2, then the representation corresponding to 7 restricts to a
direct sum of two one-dimensional representations 1 and v o o of A. So, the orbit
of ¢ under the action of ¢ has order n.

Let A, denote the direct factor of Oy ®z, 2 = Oy [G] obtained by applying
the idempotent in O, [Al-attached to T, where O, is as before. Then A, = QY
if n=1and A, = Q¥ x Q¥ if n = 2. The H-action on A, is compatible with
the 2-module structure and the action of H on 2. Thus, A, is a module over the
twisted group ring B, = A, (H), which itself is a direct factor of Oy, [Gal(K/Q)].

The following non-commutative generalization of Theorem 5.2.1 follows from
the compatibility with the H-action of the arguments used in the proof of said
theorem.

PROPOSITION 6.1. Suppose that X“¥ ' is pseudo-null as a Ay-module. If
n =1, then the sequence (5.4) for 1 is an exact sequence of modules for the non-
commutative ring B. If n =2, then the direct sum of the sequences (5.4) for 1 and
oo is an exact sequence of Br-modules.

To generalize Theorem 5.2.5, we first extend the approach to Chern classes
used in Subsection 2.1 to the context of non-commutative algebras which are finite
over their centers. (For related work on non-commutative Chern classes, see [6].)

The twisted group algebra B is a free rank four module over its center Z, =
AH Suppose that M is a finitely generated module for B, with support as a Z,-
module of codimension at least 2. Let Y = Spec(Z,), and let Y be the set of
codimension two primes in Y. The localization M, = (Z;), ®z M of M aty €
Y ?) has finite length over the localization (B, ),. Let k(y) be the residue field of
y, and let B;(y) = k(y) ®z, B;. Then B, (y) has dimension 4 as a k(y)-algebra.
From a composition series for M, as a B, (y)-module, we can define a class [M,] in
the Grothendieck group K{(B;(y)) of all finitely generated B (y)-modules. This
leads to a second Chern class

(6.1) e, (M) = Z [My] -y

in the group
7*(B;) = @ Ky(B-()).
ng(Z)

Fory € Y, note that A, (y) = k(y) ®z, A, is a k(y)-algebra of dimension 2
with an action of H over k(y), and B, (y) is the twisted group algebra A, (y)(H).
Moreover, we have

k(y) Rz, ZT[H] = k(y)[H]7
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and in this way, both A, (y) and k(y)[H| are commutative k(y)-subalgebras of
B-(y).

LEMMA 6.2. Fory € Y@, the forgetful functors on finitely generated mod-
ule categories produced by restricting operators from B (y) to either A.(y) or
k(y)[H] induce injections

(6.2) Ko(Br(y)) — Ko(A-(y) =Z®Z  ifn=2, and
(6.3) Ko(B-(y)) — Ko (k(y)[H]) =ZSZ ifn=1.

Proof. Since H has order 2 and A, is a Zjy-algebra for an odd prime p, the
surjection A, — A, (y) gives a surjection Z, = AX — (A, (y))". Thus k(y) =
A, (). Therefore either A, (y) is a Galois étale H-algebra over k(y) or A, (y) is
isomorphic to the dual numbers k(y)[e]/(¢?) in such a way that the generator o for
H sends e to —e.

There is a homomorphism 7*: K{(k(y)) — K|(B-(y)) which sends a finitely
generated k(y)-module M to the B,(y)-module with underlying A, (y)-module
A+ (y) ®p(y) M and action of H induced by the action of H on A, (y).

Suppose to begin with that A (y) is an étale algebra over k(y), so A, (y) is
a Galois étale k(y)-algebra with Galois group H. It is shown by descent in the
paragraph just before [5, Lemma 8.4] that 7* is an isomorphism. The composition
of 7* with the forgetful homomorphism f;: K{,(B;(y)) — K{(A;(y)) is the ho-
momorphism h: K{(k(y)) — Ko(A;(y)) induced by tensoring with A, (y) over
k(y). Since h is injective, f] is injective.

If n =2, then H permutes the two algebra components of A, and A, (y) is
isomorphic to the étale k(y)-algebra k(y) x k(y), so we have shown (6.2).

Suppose now that n = 1 and that A, (y) is étale over k(y). We have shown
A;(y) is then a Galois étale k(y)-algebra with Galois group H. Thus A, (y) has
two one-dimensional k(y)-eigenspaces under the action of H. We have also shown
that the map 7*: K/ (k(y)) — K{(B-(y)) induced by tensoring with A, (y) over
k(y) is an isomorphism. So from the definition of 7*, we see that restricting oper-
ators from B, (y) to k(y)[H]| gives an injection

Ky(B-(y)) — Ko(k(y)[H]) =Z & Z

whose image is the diagonal embedding of Z.

Finally, suppose n = 1 and that A, (y) is not étale over k(y). We have shown
that A, (y) is isomorphic in this case to the dual numbers k(y)[e]/(€?) in such a way
that a generator for H sends € to —e. All simple B;(y)-modules are annihilated by
€. Since B;(y)/eB;(y) is isomorphic to k(y)[H], we find that the map (6.3) is
injective. U

As in Theorem 5.2.5, we must take completed tensor products over Oy, with
the Witt vectors W over [F),. In what follows, we abuse notation and omit this W/
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from the notation of the completed tensor products. That is, from now on we let
Z, denote W®Ow Z, and similarly with A, and B;. We then let Y = Spec(Z;),
and we use k(y) to denote the residue field of Z; at y € Y, and we define A, (y)
and B; (y) as before. Note that the analogue of Lemma 6.2 holds for y € V%), with
Y@ the subset of codimension 2 primes in Y.

We suppose for the remainder of this section that X% and X “¥! are pseudo-
null as Ay-modules. In view of Proposition 6.1, we have by Theorem 5.2.5 the
following identity among non-commutative second Chern classes

X S
(64) .B, @m =C,B, @X?fv +CZ,BT @(X;{/X ]) (1) 9

xeT x€T x€T

where T' denotes the orbit of 1) (of order 1 or 2). In view of Lemma 6.2, to compute
(6.4) in terms of p-adic L-functions, it suffices to compute the analogous abelian
second Chern classes via L-functions when B; is replaced by A, and by Z.[H]
and we view the latter two as quadratic algebras over Z.

In the case that n =2, a prime y € Y (?) gives rise to one prime in each of the
two factors of A, = QwW X Qq"ﬁ’;“ by projection. Note that we can identify QwW and
Q%ﬁ}w with Ay so that Z; is identified with the diagonal in A%, and these two
primes of Ay are then equal. We have

(6.5) Ko(A-(y) 2ZeZ,

the terms being K{, of the residue fields of Q;ﬁ’v and QwWOU for y, respectively.

PROPOSITION 6.3. If n = 2, then under the injective map

D xi(B:(y) — D zoz)

yey @ yey @

induced by (6.2) and (6.5), the class in (6.4) is sent to an element with both com-
ponents having a characteristic symbol which at P € YV is equal to the Steinberg
symbol

{Ep,un EM,} € Kz(Frac (AW)) if L5,y is not a unit at P,
and is zero otherwise.

Proof. This is immediate from Theorem 5.2.5 in the first coordinate. The sec-
ond coordinate is the same by Lemma 3.3.2(a) and the above identification of Q%ﬁ}w
with Ay, recalling Remark 2.5.2. O

In the case that n = 1, so 1) = 7|a, we have an algebra decomposition

(6.6) Z,H|=ZFx 2
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with the summands corresponding to the trivial and nontrivial one-dimensional
characters of H. These summands are isomorphic to Z, as Z,-algebras. We then
have a decomposition

(6.7) Ko(k(y)[H]) = ZoZ

with the terms being Kj, of the residue fields of Z and Z_, respectively, for the
images of y.

There are pro-generators 1,7, € Gal(K/F) such that o(;) =~ and o(72) =
v, . The ring A, = Q¥ is Z,[\], where A = v, —, . Note that o(\) = —\ and
A% € Z,.. It follows that we have an isomorphism Z, [H] — Q¥ of Z,[H]-modules
taking 1 to (14+X)/2and o to (1 —\)/2.

The element o permutes the p-adic L-functions £, y, and L ;. Define

Ly =Lyy+Lpy and Lo =Lyy—Lpy.
PROPOSITION 6.4. If n =1, then under the injective map
P Ki(B-(y) — D zo2)
ey ® yey ®

induced by (6.3) and (6.7), the class in (6.4) is sent to an element that in the first and
second components, respectively, has a characteristic symbol which at P € YV js
equal to

{NC_, LT} € Ky(Frac(Z))) if L is not a unit at P,

{L- ALY € Ko(Frac(Z;)) if ALY is not a unit at P,

and is zero otherwise.

Proof. The decomposition (6.6) and the isomorphism Q¥ 22 Z_[H] induce an
isomorphism

Qv Z+ Z:

o~ T

ComLow)  (CINCD) T VEELH)

From the two summands on the right, together with Proposition 2.5.1, we arrive at
the two components of the non-commutative second Chern class of (6.4), as in the
statement of the proposition. U

Appendix A. Results on Ext-groups. In this appendix, we derive some
facts about modules over power series rings. For our purposes, let O be the valu-
ation ring of a finite extension of Q. Let I' = Zj, for some r > 1, and denote its
standard topological generators by ; for 1 <i <r.Set A = O[] = O[ty,...,t.],
where t; = v; — 1.
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As in Subsection 4.1, we use the following notation for a finitely gener-
ated A-module M. We set E{ (M) = Exty (M, A), and we set M* = E{ (M) =
Homp (M, A). Moreover, M" denotes the Pontryagin dual, and M, denotes the
A-torsion submodule of M.

We will be particularly concerned with A-modules of large codimension, but
we first recall a known result on much larger modules.

LEMMA A.l1. Let M be a A-module of rank one. Then M™** is free.

Proof. The canonical map (M /M, )* — M* is an isomorphism, so we may
assume that M, = 0. We may then identify M with a nonzero ideal of A. The
dual of a finitely generated module is reflexive, so we are reduced to showing that
a reflexive ideal I of A is principal. For each height one ideal P of A, let mp be
a uniformizer of Ap, and let np > 0 be such that 771’?’ generates Ip. Let s be the
finite product of the m5”. Then the principal ideal J = sA is obviously reflexive
and has the same localizations at height one primes as /. As I and J are reflexive,
they are the intersections of their localizations at height one primes, so I =.J. [J

For a finitely generated A-module M, we have E% (M) = 0 for all i > 7+ 1.
Since A is Cohen-Macaulay (in fact, regular), the minimal j = j(A/) such that
Ef\(M ) # 0 is also the height of the annihilator of M. (We take j = o for M = 0.)
In particular, M is torsion (resp., pseudo-null) if 7 > 1 (resp., 7 > 2), and M is
finite if j =r+ 1.

LEMMA A.2. For j >0, let Gy(j) be the Grothendieck group of the category
of finitely generated A-modules M with j(M) > j. The quotient of Go(j) by the
image of the natural homomorphism Go(j+1) — Go(7) is generated by the classes
of modules of the form A/ P with P a prime ideal of height j.

Proof. Suppose M is a finitely generated A-module with j(M) > j. The codi-
mension of the support of M is then at least j, and the localization of M at every
prime P of codimension j is of finite length over Ap. If P is in the support of
M, then P is an associated prime of M by [33, (7.D) Thm. 9]. Hence there is an
m € M such that A - m is isomorphic to A/P. Thus there is an exact sequence

0—A/P—M-—M —0

in which j(M') > j and the sum s(M’) of the lengths of M’ at codimension j

primes of A is one less than (/). The lemma now follows by induction on s(M).
O

We also have the following:

LEMMA A3. Let 1 <d <, and let f; for 1 <i <d be elements of A such that
(f1,---y fa) has height d. Then M = AN/(f1,..., fq) has no nonzero A-submodule
N with j(N) > d~+ 1.
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Proof. Since A is a Cohen-Macaulay local ring, we know from [33, Theorem
17.4(iii)] that the ideal (fi,..., fs) has height d if and only if f,..., fq form a
regular sequence in A. Then M is a Cohen-Macaulay module by [33, Theorem
17.3(ii)], and it has no embedded prime ideals by [33, Theorem 17.3(i)]. If M has
a nonzero A-submodule N with j(N) > d+ 1, then a prime ideal of A of height
strictly greater than d will be the annihilator of a nonzero element of M. This
contradicts the fact that M has no embedded primes. U

Let G be a profinite group containing I' as an open normal subgroup, and set
Q = O[G]. For aleft (resp., right) 2-module M, the groups E{, (M) have the struc-
ture of right (resp., left) {2-modules (see [32, Proposition 2.1.2], for instance).

We will say that a finitely generated Q2-module M is small if j(M) > r as a
(finitely generated) A-module. We use the notation (finite) to denote an unspecified
finite module occurring in an exact sequence, and the notation My, to denote the
maximal finite A-submodule of M. Let M = (M ®z, A\"T')", which is isomor-
phic to MV if G is abelian.

We derive the following from the general study of Jannsen [24]. In [25, Lemma
5], a form of this is proven for modules finitely generated over Z,,. Its part (b) gives
an explicit description of the Iwasawa adjoint of a small 2-module M in the case
that €2 has sufficiently large center. We do not use this in the rest of the paper, but
for comparison with the classical theory, the explicit description appears to be of
interest.

PROPOSITION A.4. Let M be a small (left) Q2-module.

(a) There exist canonical right Q-module isomorphisms E\"! (M) =2 Mgn, and
these are natural in M.

(b) Given a non-unit f € A that is central in () and not contained in any height
r prime ideal in the support of M, there exists a canonical right Q)-module homo-
morphism

EX(M) =1im (M/["M)",

n

the inverse limit taken with respect to maps (M f* VM)V — (M) f*M)" induced
by multiplication by f. The maximal finite submodule of E}\ (M) is zero.

Proof. For i > 0 and a locally compact 2-module A, set

DZ(A) = hg Hiont(U7 A)v7
U

where the direct limit is with respect to duals of restriction maps over all open
subgroups U of finite index in I". The group I' is a duality group (see [40, Theorem
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3.4.4]) of strict cohomological dimension 7, and its dualizing module is the €2-
bimodule

T
D, (Z,) = limHomg, (A"U,Z,)" = AT @2, Q,/Z,.
U
We have D;(M") = 0 for i > r and, by duality, we have the first isomorphism in
s
D, (M") 2 Homy (M",D, (7)) = (lim MV ) @z, A\T.
U

By [24, Theorem 2.1], we then have canonical and natural isomorphisms

a0 N = 0,00 ) = ((m ) )

Moreover, by [24, Corollary 2.6b], we have that Eﬁ\(M )=0fori#r+1if M
happens to be finite.
We claim that

(A.2) (1% M U) [p°] = Mgn

which will finish the proof of part (a). As I" acts continuously on M, the left-
hand side contains Mgy, so it suffices to show that (114n;1U MY)[p~] is finite. As
M is compact, there exist an open subgroup V' and k > 1 such that MY [p*] =
lim,, MY[p~]. As V =T, it suffices to show that M [p] is finite.

By Lemma A.2 and the right exactness of ETI, we are recursively reduced to
considering M of the form A/P with P a prime ideal of height r. If p ¢ P, then
M has no p-power torsion and (A.2) is clear. If p € P, then A/P is isomorphic to
Fgy[lt1,...,t.])/ P’ for a prime ideal P’ of height r — 1 and some finite field I, of
characteristic p, where the ¢; are the images of the ¢; = ~; — 1 for topological gener-
ators y; of I'. The I'-invariants of (A/P)" are annihilated by all Z;. If this invariant
group had a nonzero element, it would be annihilated by all ;. The primality of
P’ would then force P’ to contain all #;. Since P’ is not maximal, this proves the
claim, and hence part (a).

Suppose we are given an element f € A which is not a unit in A and is cen-
tral in €2 but is not in any prime ideal of codimension 7 in the support of M. As
M/f"M and M[f"] are supported in codimension r + 1, these A-modules are
finite. It follows that we have isomorphisms E) (M /M([f"]) = E\ (M) and then
exact sequences

0 — By (M) L5 B (M) — B} (M) M) — 0.
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‘We write

Ej (M) = lim E{ (M)/ f"E} (M) = lim EX™! (M/ f"M) 2= 1im (M f" M)",
n n n

where multiplication by f induces the map (M/f" ' M)" — (M/f*M)', which

is the twist by the inverse of \"T" of MV [f"*1] — MV[f"]. 1t is clear from the

latter description that E'\ (A/) can have no nonzero finite submodule (and for this,

it suffices to prove the statement as a A-module, in which case the existence of f

is guaranteed), so we have part (b). U

Remark A.5. A non-unit f € A as in Proposition A.4(b) always exists. That is,
consider the finite set of height r prime ideals conjugate under G to a prime ideal in
the support of M. The union of these primes is not the maximal ideal of A, so we
may always find a non-unit b € A not contained in any prime in the set. The product
of the distinct G-conjugates of b is the desired f. Given a morphism M — N of
small 2-modules, we obtain a canonical morphism between the isomorphisms of
Proposition A.4(b) for M and N by choosing f to be the same element for both
modules.

For a small 2-module M and an f as in Proposition A.4(b), the quotient
M/ f M is finite, M itself is finitely generated and torsion over Z,[[ f]. The descrip-
tion of E'\ (M) in Proposition A.4(b) then coincides (up to choice of a Z,-generator
of A"T') with the usual definition of the Iwasawa adjoint as a Z,|[[f]-module. In
view of this, we make the following definition.

Definition A.6. The Iwasawa adjoint o (M) of a small 2-module M is E} (M).
We then have the following simple lemma (cf. [56, Proposition 15.29]).

LEMMA A.7. Let 0 — M| — My — M3 — 0 be an exact sequence of small
Q-modules. The long exact sequence of Ext-groups yields an exact sequence

0 — a(M;) — a(M) — a(M,;) — (finite)
of right Q-modules, where (finite) is the zero module if (M3 )g, = 0.

We recall the following consequence of Grothendieck duality [20, Chapter V],
noting that A is its own dualizing module in that A is regular (and that €2 is a finitely
generated, free A-module).

PROPOSITION A.8. For a finitely generated §)-module M, there is a conver-
gent spectral sequence

(A.3) ER (BN TI(M)) = MOrars

natural in M, of right Q-modules, where 6; ; =1 if i = j and 0; ; = 0 if © # j.
Moreover;, EY (E} (M)) = 0 for i < j and fori > r+ 1.
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This implies the following:

COROLLARY A.9. Let M be a finitely generated C2-module.

(a) Forr =1, one has B\ (M*) =0 for all i > 1. Hence, M* is A-free for any
M.

(b) Forr =2, one has EX (M*) =0 and E} (M*) = E3 (E} (M)), so E\ (M*)
is finite.

(¢) If M is small, then there is an exact sequence of Q2-modules

0 — By (BRH (M) — M — B} (Ej (M) — 0.
That is, o(a(M)) = M /Mgy, as Q2-modules.

For a left (resp., right) 2-module M, we let M* denote the right (resp., left)
Q-module that is M as an O-module and on which g € G acts as g~! does on M.
The following is a consequence of the theory of Iwasawa adjoints for r = 1 (see
[24, Lemma 3.1]), in which case A-small means A-torsion.

LEMMA A.10. Let d > 1, and let f; for 1 <i < d be elements of A such that
(f1,---, fa) has height d. Set M = A/(fi,..., fa). Then B\ (M) = (M")%4 for all
7>0.

Proof. This is clearly true for d = 0. Let d > 1, and set N = A/(f1,..., fa—1)
so that M = N/(f4). The exact sequence

00— NI N s M—s0

that is a consequence of Lemma A.3 gives rise to a long exact sequence of Ext-
groups. By induction on d, the only nonzero terms of that sequence form a short
exact sequence

0 N Y Ne B (M) 0,

and the result follows. O
For more general (2-modules, we can for instance prove the following.

PROPOSITION A.11. Suppose that G = 1" x A, where A is abelian of order
prime to p. Let M be a small Q2-module. Then (M /Mgz,)" and o(M) have the
same class in the quotient of the Grothendieck group of the category of small right
Q-modules by the image of the Grothendieck group of the category of finite right
Q-modules. In particular, as A-modules, their rth localized Chern classes agree.

Proof. By taking A-eigenspaces of M (passing to a coefficient ring containing
|A|th roots of unity), we can reduce to the case that A is trivial. It then suffices by
Lemmas A.2 and A.7 to show the first statement for M = A/ P, where P is a height
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r prime. Let .: A — A be the involution determined by inversion of group elements.
We can compute (M) = E) (M) = Ext} (M, A) by an injective resolution of A by
A-modules. Every group in the resulting complex of homomorphism groups will
be killed by ¢(P), so a(M ) will be annihilated by ¢+(P). Clearly, +(P) is the only
codimension r prime possibly in the support of E\ (M), and it is in the support
since a(a(M)) = M /Mgy by Corollary A.9(c). O

The following particular computation is of interest to us. Let G’ be a closed
subgroup of G, and let M be a finitely generated left ' = Z,[G'[-module. Set
I"=¢'NT, and let A’ = Z,[[I""]. For i = 0 we have a right action of g € I on
f €EQ, (M) =Homy/(M,A’) given by setting (fg)(m) = f(m)g and a left action
of g on f given by (gf)(m) = f(m)g~". This extends functorially to right and left
actions of I on EY, (M) for all i.

LEMMA A.12. With the above notation, we have for all © > 0 an isomorphism
of right Q-modules

(A.4) E)\ (Q®o M) 2E} (M) ®g
and an isomorphism of left Q-modules
(A.5) E)\ (Q®@o M) =2 Q' ®g E)/(M).

Proof. Let us first show that  is flat over €'. This follows, for instance, from
[32, Lemma 2.4.3(a)], since € is a free profinite {2’-module, i.e., a topological
direct product of copies of €', on a set right coset representatives for G’ in G.
By [32, Lemma 2.1.6] and [32, Lemma 2.1.7] there are isomorphisms of right {2-
modules

Extf, (@ M, Q) = Extgy (M, Q) = Exty (M, Q) @ €.

The isomorphism (A.4) follows, as the left term is E%, (2 ®@¢ M) and the right term
is E%, (M) ®¢y . The isomorphism (A.5) follows from (A.4). O

COROLLARY A.13. Let G’ be a closed normal subgroup of G, and let N denote
the left Q-module Z,,[G/G']. Let v’ = rankz, (G'NT). Then E} (N) = (N9)%ur' as
right Q-modules.

Proof. Let Q' = Z,[G']. Note that N = Q ®¢y Z;,, so N* = Z, @y (2 as right
2-modules. By Lemmas A.12 and A.4, we have

E;\(N) = E?\/ (Zp) ®Q/ = (Zp ®Q’ Q)(si,w ' .
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