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HIGHER CHERN CLASSES IN IWASAWA THEORY

By F. M. BLEHER, T. CHINBURG, R. GREENBERG, M. KAKDE,

G. PAPPAS, R. SHARIFI, and M. J. TAYLOR

Abstract. We begin a study of mth Chern classes and mth characteristic symbols for Iwasawa mod-

ules which are supported in codimension at least m. This extends the classical theory of characteristic

ideals and their generators for Iwasawa modules which are torsion, i.e., supported in codimension at

least 1. We apply this to an Iwasawa module constructed from an inverse limit of p-parts of ideal

class groups of abelian extensions of an imaginary quadratic field. When this module is pseudo-null,

which is conjecturally always the case, we determine its second Chern class and show that it has a

characteristic symbol given by the Steinberg symbol of two Katz p-adic L-functions.
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1. Introduction. The main conjecture of Iwasawa theory in its most clas-

sical form asserts the equality of two ideals in a formal power series ring. The first

is defined through the action of the abelian Galois group of the p-cyclotomic tower

over an abelian base field on a limit of p-parts of class groups in the tower. The other

is generated by a power series that interpolates values of Dirichlet L-functions. This

conjecture was proven by Mazur and Wiles [34] and has since been generalized in

a multitude of ways. It has led to the development of a wide range of new methods

in number theory, arithmetic geometry and the theory of modular forms: see for
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example [3, 18, 27] and their references. As we will explain in Section 3, classical

main conjectures pertain to the first Chern classes of various complexes of mod-

ules over Iwasawa algebras. In this paper, we begin a study of the higher Chern

classes of such complexes and their relation to analytic invariants such as p-adic

L-functions. This can be seen as studying the behavior in higher codimension of

the natural complexes.

Higher Chern classes appear implicitly in some of the earliest work of Iwasawa

[22]. Let p be an odd prime, and let F∞ denote a Zp-extension of a number field

F . Iwasawa showed that for sufficiently large n, the order of the p-part of the ideal

class group of the cyclic extension of degree pn in F∞ is

pµp
n+λn+ν(1.1)

for some constants μ, λ and ν. Let L be the maximal abelian unramified pro-p

extension of F∞. Iwasawa’s theorem is proved by studying the structure of X =

Gal(L/F∞) as a module for the Iwasawa algebra Λ = Zp[[Γ]] ∼= Zp[[t]] associated

to Γ = Gal(F∞/F )∼= Zp. Here, Λ is a dimension two unique factorization domain

with a unique codimension two prime ideal (p,t), which has residue field Fp. The

focus of classical Iwasawa theory is on the invariants μ and λ, which pertain to

the support of X in codimension 1 as a torsion finitely generated Λ-module. More

precisely, μ and λ are determined by the first Chern class of X as a Λ-module, as

will be explained in Subsection 2.5. Suppose now that μ= 0 = λ. Then X is either

zero or supported in codimension 2 (i.e., X is pseudo-null), and

ν ∈ Z= K0

(
Fp

)

may be identified with the (localized) second Chern class of X as a Λ-module. In

general, the relevant Chern class is associated to the codimension of the support of

an Iwasawa module. This class can be thought of as the leading term in the alge-

braic description of the module. When one is dealing with complexes of modules,

the natural codimension is that of the support of the cohomology of the complex.

1.1. Chern classes and characteristic symbols. There is a general theory

of localized Chern classes due to Fulton-MacPherson [12, Chapter 18] based on

MacPherson’s graph construction (see also [49]). Moreover, Gillet developed a so-

phisticated theory of Chern classes in K-cohomology with supports in [13]. This

pertains to suitable complexes of modules over a Noetherian scheme which are ex-

act off a closed subscheme and requires certain assumptions, including Gersten’s

conjecture. In this paper, we will restrict to a special situation that can be examined

by simpler tools. Suppose that R is a local commutative Noetherian ring and that

C• is a bounded complex of finitely generated R-modules which is exact in codi-

mension less than m. We now describe an mth Chern class which can be associated

to C•. In our applications, R will be an Iwasawa algebra.
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Let Y = Spec(R), and let Y (m) be the set of codimension m points of Y , i.e.,

height m prime ideals of R. Denote by Zm(Y ) the group of cycles of codimension

m in Y , i.e., the free abelian group generated by y ∈ Y (m):

Zm(Y ) =
⊕

y∈Y (m)

Z ·y.

For y ∈ Y (m), let Ry denote the localization of R at y, and set C•
y = C• ⊗R Ry.

Under our condition on C•, the cohomology groups Hi(C•
y) = Hi(C•)⊗RRy are

finite length Ry-modules. We then define a (localized) Chern class cm(C•) in the

group Zm(Y ) by letting the component at y of cm(C•) be the alternating sum of

the lengths

∑

i

(−1)ilengthRy
Hi

(
C•
y

)
.

If the codimension of the support of some Hi(C•
y) is exactly m, the Chern class

cm(C•) is what we referred to earlier, just before the start of Subsection 1.1, as the

leading term of C• as a complex of R-modules. This is a very special case of the

construction in [49] and [12, Chapter 18]. In particular, if M is a finitely generated

R-module which is supported in codimension at least m, we have

cm(M) =
∑

y∈Y (m)

lengthRy

(
My

)
·y.

We would now like to relate cm(C•) to analytic invariants. Suppose that R is a

regular integral domain, and let Q be the fraction field of R. When m= 1 one can

use the divisor homomorphism

ν1 : Q× −→ Z1(Y ) =
⊕

y∈Y (1)

Z ·y.

In the language of the classical main conjectures, an element f ∈ Q× such that

ν1(f) = c1(M) is a characteristic power series for M when R is a formal power

series ring. A main conjecture for M posits that there is such an f which can be

constructed analytically, e.g., via p-adic L-functions.

The key to generalizing this is to observe that Q× is the first Quillen K-group

K1(Q) and ν1 is a tame symbol map. To try to relate cm(M) to analytic invari-

ants for arbitrary m, one can consider elements of Km(Q) which can be described

by symbols involving m-tuples of elements of Q associated to L-functions. The

homomorphism ν1 is replaced by a homomorphism νm involving compositions of

tame symbol maps. We now describe one way to do this.

Suppose that η = (η0, . . . ,ηm) is a sequence of points of Y with codim(ηi) = i

and such that ηi+1 lies in the closure ηi of ηi for all i <m. Denote by Pm(Y ) the set

of all such sequences. Let k(ηi) =Q(R/ηi) be the residue field of ηi. Composing
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successive tame symbol maps (i.e., connecting maps of localization sequences), we

obtain homomorphisms

νη : Km(Q) = Km

(
k
(
η0

))
−→ Km−1

(
k
(
η1

))
−→ ·· · −→ K0

(
k
(
ηm

))
= Z.

Here, Ki denotes the ith Quillen K-group. We combine these in the following way

to give a homomorphism

νm :
⊕

η′∈Pm−1(Y )

Km(Q)−→ Zm(Y ) =
⊕

y∈Y (m)

Z ·y.

Suppose a= (aη′)η′∈Pm−1(Y ). We define the component of νm(a) at y to be the sum

of ν(η′
0
,η′

1
,...,η′

m−1
,y)(aη′) over all the sequences

η′ = (η′0,η
′
1, . . . ,η

′
m−1) ∈ Pm−1(Y )

such that y is in the closure of η′m−1.

If M is a finitely generated R-module supported in codimension at least m

as above, then we refer to any element in
⊕

η′∈Pm−1(Y ) Km(Q) that νm maps to

cm(M) as a characteristic symbol for M . This generalizes the notion of a charac-

teristic power series of a torsion module in classical Iwasawa theory, which can be

reinterpreted as the case m= 1.

We focus primarily on the case in which m= 2 and R is a formal power series

ring A[[t1, . . . , tr]] over a mixed characteristic complete discrete valuation ring A.

In this case, we show that the symbol map ν2 gives an isomorphism

∏′
η1∈Y (1) K2(Q)

K2(Q)
∏

η1∈Y (1) K2(Rη1
)

∼−−→ Z2(Y ).(1.2)

This uses the fact that Gersten’s conjecture holds for K2 and R. In the numerator of

(1.2), the restricted product
∏′

η1∈Y (1) K2(Q) is the subgroup of the direct product

in which all but a finite number of components belong to K2(Rη1
)⊂ K2(Q). In the

denominator, we have the product of the subgroups
∏

η1∈Y (1) K2(Rη1
) and K2(Q),

the second group embedded diagonally in
∏′

η1∈Y (1) K2(Q). The significance of this

formula is that it shows that one can specify elements of Z2(Y ) through a list of

elements of K2(Q), one for each codimension one prime η1 of R, such that the

element for η1 lies in K2(Rη1
) for all but finitely many η1.

1.2. Results. Returning to Iwasawa theory, an optimistic hope one might

have is that under certain hypotheses, the second Chern class of an Iwasawa module

or complex thereof can be described using (1.2) and Steinberg symbols in K2(Q)

with arguments that are p-adic L-functions. Our main result, Theorem 5.2.5, is of

exactly this kind. In it, we work under the assumption of a conjecture of Greenberg

which predicts that certain Iwasawa modules over multi-variable power series rings
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are pseudo-null, i.e., that they have trivial support in codimension 1. We recall this

conjecture and some evidence for it found by various authors in Subsection 3.4.

More precisely, we consider in Subsection 5.2 an imaginary quadratic field E,

and we assume that p is an odd prime that splits into two primes p and p̄ of E. Let

Ẽ denote the compositum of all Zp-extensions of E. Let ψ be a one-dimensional

p-adic character of the absolute Galois group of E of finite order prime to p, and

denote by K (resp., F ) the compositum of the fixed field of ψ with Ẽ(μp) (resp.,

E(μp)). We consider the Iwasawa module X =Gal(L/K), where L is the maximal

abelian unramified pro-p extension of K . Set G = Gal(K/E), and let ω be its

Teichmüller character. Let ∆= Gal(F/E), which we may also view as the largest

subgroup of G of prime-to-p order. For simplicity in this discussion, we suppose

that ψ �= 1,ω.

The Galois group G has an open maximal pro-p subgroup Γ isomorphic to Z2
p.

Greenberg has conjectured that X is pseudo-null as a module for Λ = Zp[[Γ]] ∼=
Zp[[t1, t2]]. Our goal is to obtain information about X and its eigenspaces Xψ =

Oψ ⊗Zp[∆] X, where Oψ is the Zp-algebra generated by the values of ψ, and

Zp[∆]→Oψ is the surjection induced by ψ. When Greenberg’s conjecture is true,

the characteristic ideal giving the first Chern class of Xψ is trivial. It thus makes

good sense to consider the second Chern class, which gives information about the

height 2 primes in the support of Xψ .

Consider the Katz p-adic L-functions Lp,ψ and Lp̄,ψ in the fraction field Q of

the ring R = eψ ·W [[G]] ∼= W [[t1, t2]], where eψ ∈ W [[G]] is the idempotent asso-

ciated to ψ and W denotes the Witt vectors of an algebraic closure of Fp. We can

now define an analytic element can
2 in the group Z2(Spec(R)) of (1.2) in the fol-

lowing way. Let can
2 be the image of the element on the left-hand side of (1.2) with

component at η1 the Steinberg symbol

{
Lp,ψ,Lp̄,ψ

}
∈ K2(Q),

if Lp,ψ is not a unit at η1, and with other components trivial. This element can
2 does

not depend on the ordering of p and p̄ (see Remark 2.5.2).

Our main result, Theorem 5.2.5, is that if X is pseudo-null, then

can
2 = c2

(
Xψ

W

)
+ c2

((
Xωψ−1

W

)ι
(1)

)
(1.3)

where Xψ
W and (Xωψ−1

W )ι(1) are the R-modules defined as follows: Xψ
W is the

completed tensor product W ⊗̂Oψ
Xψ , while (Xωψ−1

W )ι(1) is the Tate twist of the

module which results from Xωψ−1

W by letting g ∈ G act by g−1.

In (1.3), one needs to take completed tensor products of Galois modules with

W because the analytic invariant can
2 is only defined over W . Note that the right-

hand side of (1.3) concerns two different components of X, namely those associ-

ated to ψ and ωψ−1. It frequently occurs that exactly one of the two is nontrivial:

see Example 5.2.8. In fact, one consequence of our main result is a codimension
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two elliptic counterpart of the Herbrand-Ribet Theorem (see Corollary 5.2.7): the

eigenspaces Xψ and Xωψ−1

are both trivial if and only if one of Lp,ψ or Lp̄,ψ is a

unit power series.

One can also interpret the right-hand side of (1.3) in the following way. Let Ω=

Zp[[G]] and let ε : Ω→Ω be the involution induced by the map g→χcyc(g)g
−1 on G

where χcyc : G →Z×
p is the cyclotomic character. Then (Xωψ−1

)ι(1) is canonically

isomorphic to the ψ component (Xε)
ψ of the twist Xε =Ω⊗ε,ΩX of X by ε. Thus

Xε is isomorphic to X as a Zp-module but with the action of Ω resulting from

precomposing with the involution ε : Ω→ Ω. Then (1.3) can be written

can
2 = c2

(
W ⊗̂Oψ

(
X⊕Xε

)ψ)
.(1.4)

We discuss two extensions of (1.3). In Subsection 5.3, we explain how the al-

gebraic part of our result for imaginary quadratic fields extends, under certain addi-

tional hypotheses on E and ψ, to number fields E with at most one complex place.

In Section 6, we show how when E is imaginary quadratic and K is Galois over Q,

we can obtain information about the X above as a module for the non-commutative

Iwasawa algebra Zp[[Gal(K/Q)]]. This involves a “non-commutative second Chern

class” in which, instead of lengths of modules, we consider classes in appropriate

Grothendieck groups. Developing counterparts of our results for more general non-

commutative Galois groups is a natural goal in view of the non-commutative main

conjecture concerning first Chern classes treated in [7].

1.3. Outline of the proof. We now outline the strategy of the proof of (1.3).

We first consider the Galois group X = Gal(N/K), with N the maximal abelian

pro-p extension of K that is unramified outside of p. One has X = X/(Ip + Ip̄)

for Ip the subgroup of X generated by inertia groups of primes of K over p and Ip̄
defined similarly for the prime p̄. A novelty of the proof is that it requires carefully

analyzing the discrepancy between the rank one Ω-module X and its free reflexive

hull.

The reflexive hull of a Λ-module M is M∗∗ = (M∗)∗ for M∗ = HomΛ(M,Λ),

and there is a canonical homomorphism M →M∗∗. Iwasawa-theoretic duality re-

sults tell us that since X is pseudo-null, the map X → X∗∗ is injective with an

explicit pseudo-null cokernel (in particular, see Proposition 4.1.17). We have a

commutative diagram

Ip⊕ Ip̄ ��

��

I∗∗p ⊕ I∗∗p̄

��

X �� X∗∗.

(1.5)

Taking cokernels of the vertical homomorphisms in (1.5) yields a homomorphism

f : X −→ X∗∗/
(

im
(
I∗∗p

)
+ im

(
I∗∗p̄

))
,
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where im denotes the image. A snake lemma argument then tells us that the cok-

ernel of f is the Tate twist of an Iwasawa adjoint α(X) of X which has the same

class as Xι in the quotient of the Grothendieck group of the category of pseudo-null

modules by the Grothendieck group of the category of finite modules. Moreover,

the map f is injective in its ψ-eigenspace as ψ �= ω.

The ψ-eigenspaces of X, Ip and Ip̄ are of rank one over Λψ = Oψ[[Γ]]. They

need not be free, but the key point is that their reflexive hulls are. The main conjec-

ture for imaginary quadratic fields proven by Rubin [50, 51] (see also [26]) implies

that the p-adic L-function Lp̄,ψ in ΛW =W [[Γ]] generates the image of the map

W ⊗̂Oψ
(Iψp )

∗∗ −→W ⊗̂Oψ
(Xψ)∗∗ ∼= ΛW ,

and similarly switching the roles of the two primes. Putting everything together,

we have an exact sequence of ΛW -modules:

0 −→Xψ
W −→ ΛW

Lp,ψΛW +Lp̄,ψΛW
−→ α(Xωψ−1

W )(1) −→ 0.(1.6)

The second Chern class of the middle term is can
2 , and the second Chern class of

the last term depends only on its class in the Grothendieck group, yielding (1.3).

1.4. Generalizations. We next describe several potential generalizations

of (1.3) to other fields and Selmer groups of higher-dimensional Galois represen-

tations. We intend them as motivation for further study, leaving details to future

work.

Consider first the case of a CM field E of degree 2d, and suppose that the

primes over p in E are split from the maximal totally real subfield. There is then

a natural generalization of the analytic class on the left side of (1.4). Fix a p-adic

CM type Q for E, and let Q̄ be the conjugate type. Then for K and F defined as

above using a p-adic character ψ of prime-to-p order of the absolute Galois group

of E, one has Katz p-adic L-functions LQ,ψ and LQ̄,ψ in the algebra R = Ωψ
W for

Ω= Zp[[Gal(K/E)]]. Suppose that the quotient

R

RLQ,ψ+RLQ̄,ψ

(1.7)

is pseudo-null over R. A generalization of (1.3) would relate the second Chern

class can
2,Q of (1.7) to a sum of second Chern classes of algebraic objects arising

from Galois groups.

The question immediately arises of how to extend our algebraic methods, as

the unramified outside p Iwasawa module X over K has Ω-rank d. For this, we

turn to the use of highest exterior powers, which has a rich tradition in the study

of special values of L-functions, notably in conjectures of Stark and Rubin-Stark.

Let IQ denote the subgroup of X generated by the inertia groups of the primes in
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Q. Recall that the main conjecture states that the quotient X/IQ has first Chern

class agreeing with the divisor of LQ,ψ. To obtain a rank one object related to the

above p-adic L-functions as before, it is natural to consider the dth exterior power

of the reflexive hull of X, which we may localize at a height 2 prime to ensure

its freeness. Under Greenberg’s conjecture, the quotient
∧d

Ω
X/

∧d
Ω
IQ is pseudo-

isomorphic to the analogous quotient for exterior powers of reflexive hulls, and the

main conjecture becomes the statement that c1((
∧d

Ω
X/

∧d
Ω
IQ)

ψ
W ) is the divisor of

LQ,ψ.

This suggests that the proper object for comparison with the analytic class can
2,Q

is no longer the second Chern class of the ψ-eigenspace of the unramified Iwasawa

module X but of the quotient of dth exterior powers

ZQ =

∧d
Ω
X

∧d
Ω
IQ+

∧d
Ω
IQ̄

.(1.8)

Following the approach used when d = 1, it is natural to consider the difference

between ZQ and the analogous quotient in which every term is replaced by its

reflexive hull. This is the approach taken in [1], where roughly speaking, we show

that the analytic class can
2,Q is a sum of second Chern classes arising from Zψ

Q and

Xωψ−1

. We also provide a Galois-theoretic interpretation of ZQ for d = 2 as a

quotient of the second graded quotient in the lower central series of the Galois

group of the maximal pro-p, unramified outside p extension of K .

We can also consider the case in which E is imaginary quadratic but p is inert,

so that X is again of rank one but the product of corresponding inertia groups over

the completions of K at p has rank two. Using Kobayashi’s plus/minus Selmer

conditions, Pollack and Rubin [45, Section 4] define two rank one submodules I+

and I− of X that play the role of Ip and Ip̄. Using the results in the present paper,

one can get an analogue of (1.6) with Lp and Lp̄ replaced by characteristic elements

of X/I+ and X/I−. As a two-variable main conjecture in this setting is lacking,

this does not directly yield a relation of the second Chern class with L-functions.

Finally, we turn to the Selmer groups of ordinary p-adic modular forms, which

fit in one-variable families known as Hida families, parameterized by the weight

of the form. Theorem 5.2.5 is a special case of this framework involving CM new-

forms. Hida families of residually irreducible newforms give rise to Galois repre-

sentations with Galois-stable lattices free over an integral extension I of an Iwa-

sawa algebra in two variables, the so-called weight and cyclotomic variables. These

lattices are self-dual up to a twist. We can use the cohomology of such a lattice to

define objects analogous to X and X. The former is of rank one over I , and the

latter as before should be pseudo-null, with the dual Selmer group of the lattice

providing an intermediate object between the two. The dual Selmer group is ex-

pected to have first Chern class given by a Mazur-Kitagawa p-adic L-function. In

this case, the algebraic study goes through without serious additional complication,
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and the only obstruction to an exact sequence as in (1.6) is the identification of a

second annihilator.

The above examples may be just the tip of an iceberg. In [17], a main conjecture

is formulated in a very general context where one considers a Galois representation

over a complete Noetherian local ring R with finite residue field of characteristic

p. A main conjecture corresponds to a so-called Panchishkin condition. It is not

uncommon for there to be more than one choice of a Panchishkin condition and

hence more than one main conjecture. On the analytic side, the corresponding p-

adic L-functions should often have divisors intersecting properly. On the algebraic

side, the Pontryagin dual of the intersections of the corresponding Selmer groups

should often be supported in codimension 2. It is then tempting to believe that the

type of result we consider in this paper would have an analogue in this context and

would involve taking highest exterior powers of appropriate R-modules.

There are other situations where one can define more than one Selmer group

and more than one p-adic L-function in natural ways, found for example in the

work of Pollack [44], Kobayashi [28], Lei-Loeffler-Zerbes [30], Sprung [55], Pot-

tharst [46]. Some of these constructions involve what amounts to a choice of Pan-

chishkin condition after a change of scalars. This begs the question, that we do

not address here, of how to define a suitable generalized notion of a Panchishkin

condition.

1.5. Organization of the paper. In Section 2, we define Chern classes and

characteristic symbols, and we explain how (1.2) follows from certain proven cases

of Gersten’s conjecture. In Section 3, we recall the formalism of some previous

main conjectures in Iwasawa theory. We also recall properties of Katz’s p-adic

L-functions and Rubin’s results on the main conjecture over imaginary quadratic

fields. In Subsection 3.4, we recall Greenberg’s conjecture and some evidence for

it.

In Section 4, we discuss various Iwasawa modules in some generality. The

emphasis is on working out Iwasawa-theoretic consequences of Tate, Poitou-Tate

and Grothendieck duality. This requires the work in the Appendix, which concerns

Ext-groups and Iwasawa adjoints of modules over certain completed group rings.

We begin Section 5 with a discussion of reflection theorems of the kind we

will need to discuss Iwasawa theory in codimension two. In Subsection 5.1, we

discuss codimension two phenomena in the most classical case of the cyclotomic

Zp-extension of an abelian extension of Q. Our main result over imaginary qua-

dratic fields is proven in Subsection 5.2 using the strategy discussed above. The

extension of the algebraic part of the proof to number fields with at most one com-

plex place is given in Subsection 5.3. The non-commutative generalization over

imaginary quadratic fields is proved in Section 6.
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2. Chern classes and characteristic symbols.

2.1. Chern classes. We denote by K′
m(R) and Km(R), the Quillen K-

groups [47] of a ring R defined using the categories of finitely generated and

finitely generated projective R-modules, respectively. If R is regular and Noether-

ian, then we can identify Km(R) = K′
m(R).

Suppose that R is a commutative local integral Noetherian ring. Denote by m

the maximal ideal of R. Set Y = Spec(R), and denote by Y (i) the set of points of

Y of codimension i, i.e., of prime ideals of R of height i. Let Q denote the fraction

field Q(R) of R, and denote by η the generic point of Y .

For m≥ 0, we set

Zm(Y ) =
⊕

y∈Y (m)

Z ·y,

the right-hand side being the free abelian group generated by Y (m).

Consider the Grothendieck group K
′(m)
0 (R)=K

′(m)
0 (Y ) of bounded complexes

E• of finitely generated R-modules which are exact in codimension less than m, as

defined for example in [54, I.3]. This is generated by classes [E•] of such complexes

with relations given by

(i) [E•] = [F•] if there is a quasi-isomorphism E• ∼−→F•,

(ii) [E•] = [F•]+ [G•] if there is an exact sequences of complexes

0 −→F• −→ E• −→G• −→ 0.

If M is a finitely generated R-module with support of codimension at least m, we

regard it as a complex with only nonzero term M at degree 0.

Suppose that C• is a bounded complex of finitely generated R-modules which

is exact in codimension less than m. Then for each y ∈ Y (m), we can consider the

complex of Ry-modules given by the localization C•
y = C•⊗RRy. The assumption

on C• implies that all the homology groups Hi(C•
y) are Ry-modules of finite length

and Hi(C•
y) = 0 for all but a finite number of y ∈ Y (m). We set

cm
(
C•)

y
=

∑

i

(−1)ilengthRy
Hi

(
C•
y

)
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and

cm
(
C•)=

∑

y∈Y (m)

cm
(
C•)

y
·y ∈ Zm(Y ).

We can easily see that cm(C•) only depends on the class [C•] in K
′(m)
0 (Y ) and

that it is additive, which is to say that it gives a group homomorphism

cm : K
′(m)
0 (Y )−→ Zm(Y ).

The element cm(C•) can also be thought of as a localized mth Chern class of C•. In

particular, if M is a finitely generated R-module which is supported in codimen-

sion ≥m, then we have

cm(M) =
∑

y∈Y (m)

lengthRy

(
My

)
·y.

In [49], the element cm(M) is called the codimension-m cycle associated to M

and is denoted by [M ]dim(R)−m. The class cm can also be given as a very special

case of the construction in [12, Chapter 18].

In what follows, we will show how to produce elements of Zm(Y ) starting

from elements in Km(Q).

2.2. Tame symbols and Parshin chains. Suppose that R is a discrete val-

uation ring with maximal ideal m, fraction field Q and residue field k. Then, for all

m ≥ 1, the localization sequence of [47, Theorem 5] produces connecting homo-

morphisms

∂m : Km(Q)−→ Km−1(k).

We will call these homomorphisms ∂m “tame symbols”.

If m = 1, then ∂1(f) = val(f) ∈ K0(k) = Z. If m = 2, then by Matsumoto’s

theorem, all elements in K2(Q) are finite sums of Steinberg symbols {f,g} with

f,g ∈Q× (see [37]). We have

∂2({f,g}) = (−1)val(f)val(g) f
val(g)

gval(f)
modm ∈ k×(2.1)

(see for example [15, Cor. 7.13]). In this case, by [9], localization gives a short

exact sequence

1 −→ K2(R)−→ K2(Q)
∂2−−→ k× −→ 1.(2.2)

This exactness is a special case of Gersten’s conjecture: see Subsection 2.3.

In what follows, we denote by ηi a point in Y (i), i.e., a prime ideal of codimen-

sion i. Suppose that ηi lies in the closure {ηi−1}, so ηi contains ηi−1, and consider
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R/(ηi−1). This is a local integral domain with fraction field k(ηi−1), and ηi de-

fines a height 1 prime ideal in R/(ηi−1). The localization Rηi−1,ηi = (R/(ηi−1))ηi
is a 1-dimensional local ring with fraction field k(ηi−1) and residue field k(ηi).

The localization sequence in K′-theory applied to Rηi−1,ηi still gives a connecting

homomorphism

∂m
(
ηi−1,ηi

)
: Km

(
k
(
ηi−1

))
−→ Km−1

(
k
(
ηi
))
.

For m = 1, by [47, Lemma 5.16] (see also Remark 5.17 therein), or by

[15, Corollary 8.3], the homomorphism ∂1(ηi−1,ηi) : k(ηi−1)
× → Z is equal to

ordηi : k(ηi−1)
× → Z where ordηi is the unique homomorphism with

ordηi(x) = lengthRηi−1,ηi

(
Rηi−1,ηi/(x)

)

for all x ∈Rηi−1,ηi −{0}.

For any n≥ 1, we now consider the set Pn(Y ) of ordered sequences of points

of Y of the form η = (η0,η1, . . . ,ηn), with codim(ηi) = i and ηi ∈ {ηi−1}, for all i.

Such sequences are examples of “Parshin chains” [43]. For η = (η0,η1, . . . ,ηn) ∈
Pn(Y ), we define a homomorphism

νη : Kn(Q) = Kn

(
k
(
η0

))
−→ Z= K0

(
k
(
ηn

))

as the composition of successive symbol maps:

νη = ∂1

(
ηn−1,ηn

)
◦ · · · ◦∂n−1

(
η1,η2

)
◦∂n

(
η0,η1

)
:

Kn

(
k
(
η0

))
−→ Kn−1

(
k
(
η1

))
−→ ·· · −→ K1

(
k
(
ηn−1

))
−→ K0

(
k
(
ηn

))
.

Using this, we can define a homomorphism

νm :
⊕

η′∈Pm−1(Y )

Km(Q)−→ Zm(Y ) =
⊕

y∈Y (m)

Z ·y

by setting the component of νm((aη′)η′) for aη′ ∈ Km(Q) that corresponds to y ∈
Y (m) to be the sum

νm

((
aη′

)
η′

)
y
=

∑

η′|y∈{η′
m−1

}

νη′∪y
(
aη
)
.(2.3)

Here, we set

η′∪ y =
(
η′0,η

′
1, . . . ,η

′
m−1

)
∪ y =

(
η′0,η

′
1, . . . ,η

′
m−1,y

)
.

Only a finite number of terms in the sum are nonzero.

For the remainder of the section, we assume that R is in addition regular.
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For m= 1, the map νm amounts to

ν1 : K1(Q) =Q× −→ Z1(Y ) =
⊕

y∈Y (1)

Z ·y

sending f ∈Q× to its divisor div(f). Since R is regular, it is a UFD, and ν1 gives

an isomorphism

div : Q×/R× ∼−−→ Z1(Y ).(2.4)

For m= 2, the map

ν2 :
⊕

η1∈Y (1)

K2(Q)−→ Z2(Y ) =
⊕

y∈Y (2)

Z ·y,

satisfies

ν2(a) =
∑

η1∈Y (1)

divη1

(
∂2

(
aη1

))

for a= (aη1
)η1

with aη1
∈ K2(Q). Here,

divη1
(f) =

∑

y∈{η1}

ordy(f) ·y

is the divisor of the function f ∈ k(η1)
× on {η1}.

2.3. Tame symbols and Gersten’s conjecture. In this paragraph we sup-

pose that Gersten’s conjecture is true for K2 and the integral regular local ring R.

By this, we mean that we assume that the sequence

1 −→ K2(R)−→ K2(Q)
ϑ2−−→

⊕

η1∈Y (1)

k
(
η1

)× ϑ1−−→
⊕

η2∈Y (2)

Z−→ 0(2.5)

is exact, where the component of ϑ2 at η1 is the connecting homomorphism

∂2

(
η0,η1

)
: K2(Q)−→ K1

(
k
(
η1

))
= k

(
η1

)×
,

and ϑ1 has components ∂1(η1,η2) = ordη2
: k(η1)

× → Z.

The sequence (2.5) is exact when the integral regular local ring R is a DVR by

Dennis-Stein [9], when R is essentially of finite type over a field by Quillen [47,

Theorem 5.11], when R is essentially of finite type and smooth over a mixed char-

acteristic DVR by Gillet-Levine [14] and Bloch [2], and when R=A[[t1, . . . , tr]] is

a formal power series ring over a complete DVR A by work of Reid-Sherman [48].

In these last two cases, by examining the proof of [14, Corollary 6] (see also [48,

Corollary 3]), one sees that the main theorems of [14] and [48] allow one to reduce

the proof to the case of a DVR.
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By the result of Dennis and Stein quoted above for the DVR Rη1
, we also have

1 −→ K2

(
Rη1

)
−→ K2(Q)

∂2−−→ k
(
η1

)× −→ 1.(2.6)

Continuing to assume (2.5) is exact, we then obtain that ϑ1 induces an isomorphism

⊕
η1∈Y (1) k

(
η1

)×

ϑ2

(
K2(Q)

) ∼−−→ Z2(Y ).(2.7)

Combining this with (2.6), we obtain an isomorphism

ν̄2 :

∏′
η1∈Y (1) K2(Q)

K2(Q) ·
∏

η1∈Y (1) K2(Rη1
)

∼−−→ Z2(Y ) =
⊕

η2∈Y (2)

Z ·η2(2.8)

where the various terms are as in the following paragraph.

In the numerator, the restricted product
∏′

η1∈Y (1) K2(Q) is the subgroup of the

direct product in which all but a finite number of components belong to K2(Rη1
).

In the denominator, we have the product of the subgroups
∏

η1∈Y (1) K2(Rη1
) and

K2(Q), the second group embedded diagonally in
∏′

η1∈Y (1) K2(Q). Note that by the

description of elements in K2(Q) as symbols, this diagonal embedding of K2(Q)

lies in the restricted product. The map giving the isomorphism is obtained by

ν2 :

′∏

η1∈Y (1)

K2(Q)−→ Z2(Y ),(2.9)

which is defined by summing the maps

ν(η0,η1,η2) = ∂1

(
η1,η2

)
◦∂2

(
η0,η1

)
: K2(Q)−→ Z

as in (2.3). The map ν2 is well defined on the restricted product since ν(η0,η1,η2)

is trivial on K2(Rη1
), and it makes sense independently of assuming that (2.5) is

exact.

2.4. Characteristic symbols. Suppose that R is a local integral Noetherian

ring and that C• is a complex of finitely generated R-modules which is exact on

codimension m−1. We can then consider the mth localized Chern class, as defined

in Subsection 2.1

cm
(
C•) ∈ Zm(Y ) =

⊕

ηm∈Y (m)

Z ·ηm.

Definition 2.4.1. An element (aη′)η′ ∈
⊕

η′∈Pm−1(Y ) Km(Q) such that

νm

((
aη′

)
η′

)
= cm

(
C•)

in Zm(Y ) will be called an mth characteristic symbol for C•.
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If m is the smallest integer such that C• is exact on codimension less than m,

we will simply say that (aη′)η′ as above is a characteristic symbol.

2.5. First and second Chern classes and characteristic symbols. We

now assume that the integral Noetherian local ring R is, in addition, regular.

Suppose first that m = 1, and let C• be a complex of finitely generated R-

modules which is exact on codimension 0, which is to say that C•⊗RQ is exact. We

can then consider the first Chern class c1

(
C•) ∈ Z1(Y ). By (2.4), we have Z1(Y )�

Q×/R× given by the divisor map. In this case, a first characteristic symbol (or

characteristic element) for C• is an element f ∈Q× such that

div(f) = c1

(
C•).

This extends the classical notion of a characteristic power series of a torsion module

in Iwasawa theory, considering the module as a complex of modules supported in

degree zero.

In fact, let M be a finitely generated torsion R-module. Let P be a set of rep-

resentatives in R for the equivalence classes of irreducibles under multiplication by

units so that P is in bijection with the set of height 1 primes Y (1). For each π ∈P ,

let nπ(M) be the length of the localization of M at the prime ideal of R generated

by π. Then c1(M) =
∑

π∈P
nπ · (π). In the sections that follow, we will also use

the symbol c1(M) to denote the ideal generated by
∏

π∈P
πnπ(M); this should not

lead to confusion. Note that, with this notation, M is pseudo-null if and only if

c1(M) = R. If R = Zp[[t]] = Zp[[Zp]], then c1(M) is just the usual characteristic

ideal of R. This explains the statements in the introduction connecting the growth

rate in (1.1) to first Chern classes (e.g., via the proof of Iwasawa’s theorem in [56,

Theorem 13.13]).

Suppose now that m= 2. Let C• be a complex of finitely generated R-modules

which is exact on codimension ≤ 1. We can then consider the second localized

Chern class c2(C•) ∈ Z2(Y ). In this case, we can also consider characteristic sym-

bols in a restricted product of K2-groups. An element (aη1
)η1

∈∏′
η1∈Y (1) K2(Q) is

a second characteristic symbol for C• when we have

ν2

((
aη1

)
η1

)
= c2

(
C•).

PROPOSITION 2.5.1. Suppose that f1,f2 are two prime elements in R. Assume

that f1/f2 is not a unit of R. Then a second characteristic symbol of the R-module

R/(f1,f2) is given by a= (aη1
)η1

with

aη1
=

{{
f1,f2

}−1
, if η1 =

(
f1

)
,

1, if η1 �=
(
f1

)
.
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Proof. Notice that, under our assumptions, R/(f1,f2) is supported on codi-

mension 2. We have to calculate the image of the Steinberg symbol {f1,f2} under

K2(Q)
∂2−−→ K1

(
k
(
η1

)) divη2−−−−→ Z

for η1 = (f1) and η2 ∈ {η1}. (The rest of the contributions to ν2((aη1
)η1

) are obvi-

ously trivial.) We have valη1
(f1) = 1, valη1

(f2) = 0, and so

∂2

({
f1,f2

})
= f−1

2 mod
(
f1

)
∈ k

(
η1

)×
.

By definition,

divη2

(
f2

)
= lengthR′

(
R′/f2R

′),

where R′ is the localization R(f1),η2
= (R/(f1))η2

. We have a surjective homo-

morphism of local rings Rη2
→R′. The Rη2

-module structure on (R/(f1,f2))η2
=

R′/f2R
′ factors through Rη2

→R′, so

lengthR′
(
R′/f2R

′)= lengthRη2

((
R/

(
f1,f2

))
η2

)
.

This, taken together with the definition of c2(R/(f1,f2)), completes the proof. �

Remark 2.5.2. The same argument shows that a second characteristic sym-

bol of the R-module R/(f1,f2) is also given (symmetrically) by a′ = (a′η1
)η1

with a′η1
= {f2,f1}−1 = {f1,f2} if η1 = (f2), and a′η1

= 1 otherwise. We can

actually see directly that the difference a − a′ ∈ ∏′
η1∈Y (1) K2(Q) lies in the

denominator of the right-hand side of (2.8). Indeed, a− a′ is equal modulo∏
η1∈Y (1) K2(Rη1

) to the image of {f1,f2}−1 ∈ K2(Q) under the diagonal embed-

ding K2(Q)→∏′
η1∈Y (1) K2(Q).

3. Some conjectures in Iwasawa theory.

3.1. Main conjectures. In this subsection, we explain the relationship be-

tween the first Chern class (i.e., the case m= 1 in Section 2) and main conjectures

of Iwasawa theory. First we strip the main conjecture of all its arithmetic content

and present an abstract formulation. To make things concrete, we then give two

examples.

For the ring R, we take the Iwasawa algebra Λ = O[[Γ]] of the group Γ = Zr
p

for a prime p, where O is the valuation ring of a finite extension of Qp. That is,

Λ = lim←−U
O[Γ/U ], where U ranges over the open subgroups of Γ. In this case, Λ

is non-canonically isomorphic to O[[t1, . . . , tr]], the power series ring in r variables

over O. We need two ingredients to formulate a “main conjecture”:

(i) a complex of Λ-modules C• quasi-isomorphic to a bounded complex of

finitely generated free Λ-modules that is exact in codimension zero, and
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(ii) a subset {aρ : ρ∈Ξ}⊂Qp for a dense set Ξ of continuous characters of Γ.

Note that every continuous ρ : Γ→Q
×
p induces a homomorphism Λ→Qp that

can be extended to a map Q=Q(Λ)→Qp∪{∞}. We denote this by ζ �→ ζ(ρ) or

by ζ �→
∫
Γ
ρdζ . A main conjecture for the data in (i) and (ii) above is the following

statement.

Main Conjecture for C• and {aρ}. There is an element ζ ∈Q× such that

(a) ζ(ρ) = aρ for all ρ ∈ Ξ,

(b) ζ is a characteristic element for C•, i.e., c1(C•) = div(ζ).

Here, the Chern class c1 and the divisor div are as defined in Section 2.

3.2. The Iwasawa main conjecture over a totally real field. Let E be a

totally real number field. Let χ be an even one-dimensional character of the ab-

solute Galois group of E of finite order, and let Eχ denote the fixed field of its

kernel. For a prime p which we take here to be odd, we then set F = Eχ(μp) and

∆ = Gal(F/E). We assume that the order of ∆ is prime to p. We denote the cy-

clotomic Zp-extension of F by K . Then Gal(K/E) ∼= ∆×Γ, where Γ ∼= Zp. If

Leopoldt’s conjecture holds for E and p, then K is the only Zp-extension of F

abelian over E. Let L be the maximal abelian unramified pro-p extension of K .

Then Gal(K/E) acts continuously on X = Gal(L/K), as there is a short exact

sequence

1 −→ Gal(L/K)−→ Gal(L/E)−→ Gal(K/E) −→ 1.

Thus X becomes a module over the Iwasawa algebra Zp[[Gal(K/E)]]. For a char-

acter ψ of ∆, define Oψ to be the Zp-algebra generated by the values of ψ. The

ψ-eigenspace

Xψ =X⊗Zp[∆]Oψ

is a module over Λψ =Oψ[[Γ]]. By a result of Iwasawa, Xψ is known to be a finitely

generated torsion Λψ-module.

On the other side, we let Ξ= {χk
cyc | k≤ 0}, where χcyc is the p-adic cyclotomic

character on Γ. Define

aχk
cyc

= L
(
χωk−1,k

) ∏

p∈Sp

(
1−χωk−1(p)Np−k

)
,

where ω is the Teichmüller character, Sp is the set of primes of E above p, Np is

the norm of p, and L(χωk−1,s) is the complex L-function of χωk−1. Then we have

the following Iwasawa main conjecture [57].

THEOREM 3.2.1. (Barsky, Cassou-Noguès, Deligne-Ribet, Mazur-Wiles,

Wiles) There is a unique L ∈Q× such that
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(a) L(χk
cyc) = aχk

cyc
for every even positive integer k,

(b) c1(X
χ−1ω) = div(L).

3.3. The two-variable main conjecture over an imaginary quadratic

field. We assume that p is an odd prime that splits into two primes p and p̄ in

the imaginary quadratic field E. Fix an abelian extension F of E of order prime

to p. Let K be the unique abelian extension of E such that Gal(K/F ) ∼= Z2
p.

Let ∆ = Gal(F/E) and Γ = Gal(K/F ). Then we have a canonical isomorphism

Gal(K/E)∼=∆×Γ. Let Xp (resp., Xp) be the Galois group over K of the maximal

abelian pro-p extension of K unramified outside p (resp., p). Then, as above, Xp

and Xp become modules over Zp[[∆×Γ]]. It is proven in [50, Theorem 5.3(ii)] that

Xp and Xp are finitely generated torsion Zp[[∆×Γ]]-modules. As in Subsection

3.2, for any character ψ of ∆, we let Oψ be the extension of Zp obtained by

adjoining values of ψ and let

X
ψ
p = Xp⊗Zp[∆]Oψ, X

ψ
p
= Xp⊗Zp[∆]Oψ.

The other side takes the following analytic data: Let Ξψ,p (resp., Ξψ,p) be the

set of all Grössencharacters of E factoring through ∆×Γ of infinity type (k,j)

(resp., (j,k)), with j ≤ 0 < k and with restriction to ∆ equal to ψ. Let g be the

conductor of ψ. Let −dE be the discriminant of E. For χ ∈ Ξψ,p (resp., χ ∈ Ξψ,p)

of infinity type (k,j), let

aχ,p =
Ωj−k

Ωj−k
p

(√
dE

2π

)j

G(χ)

(
1− χ(p)

p

)
L

∞,gp

(
χ−1,0

)

(
resp., aχ,p =

Ωj−k

Ωj−k
p

(√
dE

2π

)j

G(χ)

(
1− χ(p)

p

)
L∞,gp

(
χ−1,0

))
.

Here, Ω and Ωp are complex and p-adic periods of E, respectively, and G(χ) is

a Gauss sum. Moreover, L
∞,f refers to the L-function with the Euler factor at ∞

but without the Euler factors at the primes dividing f. (For more explanation, see

[8, Equation (36), p. 80].) Let W be the ring of Witt vectors of Fp. Using work of

Yager, deShalit proves in [8, Theorem 4.14] that there are Lp,ψ,Lp,ψ ∈W [[Γ]] such

that

Lp,ψ(χ) = aχ,p, for every χ ∈ Ξψ,p, and Lp,ψ(χ) = aχ,p, for every χ ∈ Ξψ,p.

We have the following result of Rubin [50] on the two-variable main conjecture

over E.
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THEOREM 3.3.1. (Rubin) With the notation as above, we have

div
(
Lp,ψ

)
= c1

(
W [[Γ]]⊗̂Oψ[[Γ]]X

ψ
p

)
.

The above is also true with p replaced by p.

Let σ denote the nontrivial element of Gal(E/Q). We obtain an action of σ

on ∆×Γ via conjugation by any lift of σ to Gal(K/Q). We extend this action

Zp-linearly to a map

σ : Zp[[∆×Γ]]−→ Zp[[∆×Γ]].

This homomorphism σ maps Oψ [[Γ]] isomorphically to Oψ◦σ [[Γ]].

LEMMA 3.3.2. The two Katz p-adic L-functions are related by

(a) Lp,ψ = σ(Lp,ψ◦σ).
(b) Lp,ψ(χ) = (p-adic unit) · Lp,ψ−1ω(χ

−1χcyc), where χcyc is the p-adic cy-

clotomic character on ∆×Γ.

Proof. Assertion (a) is proven simply by interpolating both sides at all ele-

ments in Ξψ,p. We first note that both σ(Lp,ψ◦σ) and Lp,ψ lie in W ⊗̂Oψ
Oψ[[Γ]].

Then

σ
(
Lp,ψ◦σ

)
(χ) = Lp,ψ◦σ(χ◦σ)

=
Ωj−k

Ωj−k
p

(√
dE

2π

)j

G(χ◦σ)
(

1− (χ◦σ)(p)
p

)
L

∞,gp

(
(χ◦σ)−1,0

)

=
Ωj−k

Ωj−k
p

(√
dE

2π

)j

G(χ)

(
1− χ(p)

p

)
L∞,gp

(
χ−1,0

)

= Lp,ψ(χ),

where we use the fact that the infinity type of χ ◦ σ is (k,j), and in the third

equality we use the obvious equalities G(χ) =G(χ◦σ) and L
∞,gp((χ◦σ)−1,0) =

L∞,gp(χ
−1,0).

To prove (b), we use the functional equation for p-adic L-functions, which says

that

Lp,ψ(χ) = (p-adic unit) ·L
p,ψ

−1
ω

(
χ−1χcyc

)
,

where we write ψ and χ instead of ψ◦σ and χ◦σ for convenience (see [8, Equation

(9), p. 93]). Using (a) and the functional equation, we obtain

Lp,ψ(χ) = σ
(
Lp,ψ

)
(χ)

= Lp,ψ(χ)

= (p-adic unit) ·Lp,ψ−1ω

(
χ−1χcyc

)
. �
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3.4. Greenberg’s Conjecture. Let E be an arbitrary number field, and let

Ẽ be the compositum of all Zp-extensions of E. Let Γ = Gal(Ẽ/E) and Λ =

Zp[[Γ]]. Then Γ ∼= Zr
p for some r ≥ r2(E) + 1, where r2(E) is the number of

complex places of E. Leopoldt’s Conjecture for E and p is the assertion that

r= r2(E)+1. This is known to be true if E is abelian over Q or over an imaginary

quadratic field [4]. The ring Λ is isomorphic (non-canonically) to the formal power

series ring over Zp in r variables.

Let L be the maximal abelian, unramified pro-p-extension of Ẽ, and let X =

Gal(L/Ẽ), which is a Λ-module that we will call the unramified Iwasawa module

over Ẽ. The following conjecture was first stated in print in [18, Conjecture 3.5].

CONJECTURE 3.4.1. (Greenberg) With the above notation, the Λ-module X is

pseudo-null. That is, its localizations at all codimension 1 points of Spec(Λ) are

trivial.

Note that if E is totally real, and if Leopoldt’s conjecture for E and p is valid,

then Ẽ is the cyclotomic Zp-extension of E, and the conjecture states that X is

finite.

In the case that E is totally complex, we have the following reasonable exten-

sion of the above conjecture. Let K be any finite extension of Ẽ which is abelian

over E. Then Gal(K/E) ∼= ∆×Γ, where ∆ is a finite group and Γ (as defined

above) is identified with Gal(K/F ) for some finite extension F of E. Let X be

the unramified Iwasawa module over K . Then Γ acts on X and so we can again

regard X as a Λ-module. The extended conjecture asserts that X is pseudo-null as

a Λ-module.

Some evidence for Conjecture 3.4.1 has been given in various special cases.

For instance, in [38], Minardi verifies Conjecture 3.4.1 when E is an imaginary

quadratic field and p is a prime not dividing the class number of E, and also for

many imaginary quadratic fields E when p = 3 and does divide the class number.

In [21], Hubbard verifies the conjecture when p = 3 for a number of biquadratic

fields E. In [53], Sharifi gave a criterion for Conjecture 3.4.1 to hold for Q(μp).

By a result of Fukaya-Kato [11, Theorem 7.2.8] on a conjecture of McCallum-

Sharifi and related computations in [36], the condition holds for E =Q(μp) for all

p < 25000. The results of [53] suggest that X should have an annihilator of very

high codimension for E =Q(μp).

One can construct examples of Zr
p-extensions K of a suitably chosen number

field F such that the unramified Iwasawa module X over K has the ideal (p) in its

support as a Zp[[Gal(K/F )]]-module. Such examples can be constructed by imi-

tating Iwasawa’s construction of Zp-extensions with positive μ-invariant. This was

pointed out to us by T. Kataoka. Such a construction can be done for any positive r.

However, if one adds the assumption that K contain the cyclotomic Zp-extension

of F , and r > 1, then we actually know of no examples where X is demonstrably

not pseudo-null.
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Assume that K is a Zr
p-extension of F with r ≥ 1 such that K contains all

p-power roots of unity and, therefore, the cyclotomic Zp-extension of F . The

class group Cl(K) is defined as the direct limit under the obvious maps of the

ideal class groups of the finite extensions of F contained in K . The assertion

that X is pseudo-null as a Λ-module should conjecturally be equivalent to the

assertion that the p-primary subgroup Cl(K)p of Cl(K) is actually trivial. We

sketch an argument just in one direction. One can show that if X is pseudo-null,

then so is Hom(Cl(K)p,Qp/Zp), the Pontryagin dual of Cl(K)p. One then em-

ploys a standard Kummer theory argument to show that Hom(Cl(K)p,μp∞) =

Hom(Cl(K)p,Qp/Zp)(1) is isomorphic to a Λ-submodule of X = Gal(M/K),

where M denotes the maximal abelian pro-p extension of K unramified outside

the primes above p, which we call the unramified outside p Iwasawa module over

K . One can then use the result that X has no nontrivial pseudo-null Λ-submodules.

That result is a consequence of the fact that X has rank r2(F ) as a Λ-module known

as the weak Leopoldt conjecture for K/F , which is satisfied because K contains

the cyclotomic Zp-extension of F . (See [41, Théoreme 3.1] or [16, Proposition 5].)

For a partial result in the converse direction, see [42, Théoreme 5.1].

If one assumes in addition that the decomposition subgroups of Γ=Gal(K/F )

for primes above p are of Zp-rank at least 2, then the assertion that X is pseudo-null

is equivalent to the assertion that X is torsion-free as a Λ-module. This equivalence

follows from [29, Proposition 3.6] (see also Remark 4.2.5). The result in [29] is

stated in terms of the pseudo-nullity of a certain quotient X ′ of X, namely X ′ =
Gal(L′/K), where L′ is the maximal unramified abelian pro-p extension of K

in which all the primes of K lying over p split completely. However, the kernel

of the map X → X ′ is pseudo-null under our assumption on the decomposition

subgroups by Lemma 4.2.3 below. It follows that X is pseudo-null if and only if

X ′ is pseudo-null.

4. Unramified Iwasawa modules.

4.1. The general setup. Let p be a prime, E be a number field, F a finite

Galois extension of E, and ∆= Gal(F/E). Let K be a Galois extension of E that

is a Zr
p-extension of F for some r≥ 1, and set Γ= Gal(K/F ). Set G = Gal(K/E),

Ω= Zp[[G]], and Λ= Zp[[Γ]]. Note that K/F is unramified outside p as a composi-

tum of Zp-extensions.

Let S be a set of primes of E including those over p and ∞, and let Sf be the

set of finite primes in S. For any algebraic extension F ′ of F , let GF ′,S denote

the Galois group of the maximal extension F ′
S of F ′ that is unramified outside the

primes over S. Let Q= Gal(FS/E). For a compact Zp[[Q]]-module T , we consider

the Iwasawa cohomology group

Hi
Iw(K,T ) = lim←−

F ′⊂K

Hi
(
GF ′,S ,T

)
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that is the inverse limit of continuous Galois cohomology groups under corestric-

tion maps, with F ′ running over the finite extensions of F in K . It has the natural

structure of an Ω-module.

We will use the following notation. For a locally compact Λ-module M , let us

set

Ei
Λ(M) = ExtiΛ(M,Λ)

for short. This again has a Λ-module structure with γ ∈ Γ acting on f ∈ E0
Λ
(M)

by (γ ·f)(m) = f(γ−1m) = γ−1f(m). We let M∨ denote the Pontryagin dual, to

which we give a module structure by letting γ act by precomposition by γ−1. If M

is a (left) Ω-module, then M∨ is likewise a (left) Ω-module. Moreover, Ei
Λ
(M) ∼=

Exti
Ω
(M,Ω) as Λ-modules since Ω is Λ-projective (cf. [40, Proposition 5.4.17]),

through which Ei
Λ
(M) acquires an Ω-module structure. We set M∗ = E0

Λ
(M) =

HomΛ(M,Λ).

The first of the following two spectral sequences is due to Jannsen [25, Theo-

rem 1], and the second to Nekovář [39, Theorem 8.5.6] (though it is assumed there

that p is odd or K has no real places). One can find very general versions that imply

these in [10, 1.6.12] and [32, Theorem 4.5.1].

THEOREM 4.1.1. (Jannsen, Nekovář) Let T be a compact Zp[[Q]]-module that

is finitely generated and free over Zp. Set A= T ⊗Zp
Qp/Zp. There are convergent

spectral sequences of Ω-modules

F
i,j
2 (T ) = Ei

Λ

(
Hj(GK,S,A)

∨)=⇒ Fi+j(T ) = H
i+j
Iw (K,T )

H
i,j
2 (T ) = Ei

Λ

(
H

2−j
Iw (K,T )

)
=⇒ Hi+j(T ) = H2−i−j

(
GK,S,A

)∨
.

We will be interested in the above spectral sequences in the case that T = Zp.

We have a canonical isomorphism

H1
(
GK,S,Qp/Zp

)∨ ∼= X,

where X denotes the S-ramified Iwasawa module over K (i.e., the Galois group

of the maximal abelian pro-p, unramified outside S extension of K). We study the

relationship between X and H1
Iw(K,Zp).

The following nearly immediate consequence of Jannsen’s spectral sequence

is a mild extension of earlier unpublished results of McCallum [35, Theorems A

and B].

THEOREM 4.1.2. (McCallum, Jannsen) There is a canonical exact sequence

of Ω-modules

0 −→ Z
δr,1
p −→ H1

Iw

(
K,Zp

)
−→ X∗ −→ Z

δr,2
p −→ H2

Iw

(
K,Zp

)
,
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where δj,i = 1 if i= j and δj,i = 0 otherwise. If the weak Leopoldt conjecture holds

for K , which is to say that H2(GK,S,Qp/Zp) = 0, then this exact sequence extends

to

0 −→ Z
δr,1
p −→ H1

Iw

(
K,Zp

)
−→ X∗ −→ Z

δr,2
p −→ H2

Iw

(
K,Zp

)

−→ E1
Λ(X)−→ Z

δr,3
p −→ 0.

(4.1)

If p is odd or K has no real places, then there are canonical isomorphisms

Ei
Λ
(X)

∼−→ Z
δr,i+2
p for i≥ 2.

Proof. The first sequence is just the five-term exact sequence of base terms in

Jannsen’s spectral sequence for T = Zp. For this, we remark that

F
i,0
2

(
Zp

)
= Ei

Λ

(
Zp

)∼= Z
δr,i
p

by [24, Lemma 5] or Corollary A.13 below. Under weak Leopoldt, F
0,2
2 (Zp) is zero,

so the exact sequence continues as written, the next term being H3
Iw(K,Zp) = 0. If

p is odd or K is totally imaginary, then GF ′,S has p-cohomological dimension 2

for some finite extension F ′ of F in K , so H
j
Iw(K,Zp) vanishes for j ≥ 3, in which

case the spectral sequence also yields the remaining isomorphisms. �

Remark 4.1.3. The weak Leopoldt conjecture for K is well known to hold

in the case that K(μp) contains all p-power roots of unity (see [40, Theorem

10.3.25]).

Remark 4.1.4. For p odd, McCallum proved everything but the exactness at

Z
δr,2
p in Theorem 4.1.2, supposing both hypotheses listed therein.

COROLLARY 4.1.5. There is a canonical isomorphism X∗∗ → H1
Iw(K,Zp)

∗ of

Ω-modules.

Proof. This follows from Theorem 4.1.2, which provides an isomorphism if

r ≥ 3, or if r = 2 and the map X∗ → Zp is zero. If r = 1, then we obtain an exact

sequence

0 −→ X∗∗ −→ H1
Iw

(
K,Zp

)∗ −→ E0
Λ

(
Zp

)
,

and the last term is zero. If r = 2 and the map X∗ → Zp is nonzero, then we obtain

an exact sequence

0 −→ E0
Λ

(
Zp

)
−→ X∗∗ −→ H1

Iw

(
K,Zp

)∗ −→ E1
Λ

(
Zp

)
,

and E0
Λ
(Zp) = E1

Λ
(Zp) = 0 since r = 2. �

Using the second spectral sequence in Theorem 4.1.1, we may use this to obtain

the following.
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COROLLARY 4.1.6. Suppose that p is odd or K is totally imaginary. There is

an exact sequence

0 −→ E1
Λ

(
H2

Iw

(
K,Zp

))
−→ X−→ X∗∗ −→ E2

Λ

(
H2

Iw

(
K,Zp

))
−→ Zp(4.2)

of Ω-modules. In particular, E1
Λ
(H2

Iw(K,Zp)) is isomorphic to the Λ-torsion sub-

module of X.

Proof. By hypothesis, GF ′,S has p-cohomological dimension 2 for some finite

extension F ′ of F in K . Therefore, Nekovář’s spectral sequence is a first quadrant

spectral sequence for any T . For T = Zp, it provides an exact sequence

0 −→ E1
Λ

(
H2

Iw

(
K,Zp

))
−→ H1

(
GK,S,Qp/Zp

)∨ −→ H1
Iw

(
K,Zp

)∗

−→ E2
Λ

(
H2

Iw

(
K,Zp

))
−→ H0

(
GK,S,Qp/Zp

)∨ −→ E1
Λ

(
H1

Iw

(
K,Zp

))

−→ E3
Λ

(
H2

Iw

(
K,Zp

))
−→ 0

(4.3)

of Ω-modules. In particular, applying Corollary 4.1.5 to get the third term, we have

the exact sequence of the statement. �

Remark 4.1.7. In the case that r = 1, Corollary 4.1.6 is in a sense implicit in

the work of Iwasawa [23] (see Theorem 12 and its proof of Lemma 12). In this

case, second Ext-groups are finite, so the map to Zp in the corollary is zero.

Remark 4.1.8. It is natural to ask how (4.2) is related to the more abstract

exact sequence of [24, (1.8.1)] (see also [40, Prop. 5.4.9]). Under the assumption

that K contains all p-power roots of unity, we may answer this as follows. Jannsen

defines a functor D on the homotopy category of Λ-modules. Up to homotopy,

DX= coker(P ∗
0 → P ∗

1 ) for a choice of projective resolution

0 −→ Pr+1 −→ ·· · −→ P1 −→ P0 −→ X−→ 0(4.4)

of X. Taking Ext-groups of the four-term exact sequence defining DX leads to the

exact sequence

0 −→ E1
Λ(DX)−→ X−→ X∗∗ −→ E2

Λ(DX)−→ 0.(4.5)

By definition, one has an injective Λ-module homomorphism α : E1
Λ
(X)→DX

with cokernel equal to the kernel of P ∗
2 →P ∗

3 (taking P3 = 0 if r= 1). By Theorem

4.1.2, the Ext-groups computed by the Λ-dual of (4.4) satisfy Ei
Λ
(X) ∼= Z

δi+2,r
p for

i≥ 2. We also have a map β : H2
Iw(K,Zp)→E1

Λ
(X) that by (4.1) is an isomorphism

if r= 1 or r≥ 4, an injection with cokernel Zp if r= 3, and a surjection with kernel

a quotient C of Zp if r = 2. Setting C = 0 if r = 1 and C = Zp if r ≥ 3, it follows
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from these facts that the map ρ= α◦β : H2
Iw(K,Zp)→ DX fits in a complex

H2
Iw

(
K,Zp

) ρ−→ DX−→ P ∗
2 −→ ·· · −→ P ∗

r+1(4.6)

which has cohomology C concentrated in degree r−2 counting from 0.

If r ≥ 3, or if r = 2 and C = Zp, the complex (4.6) just described allows us to

compute that we have isomorphisms

Ei
Λ(DX)−→ Ei

Λ

(
H2

Iw

(
K,Zp

))
(4.7)

for i /∈ {2,3} and an exact sequence

0 −→ E2
Λ(DX)−→ E2

Λ

(
H2

Iw

(
K,Zp

))
−→ Zp −→ E3

Λ(DX)−→ E3
Λ

(
H2

Iw

(
K,Zp

))
.

If r= 2 and C is finite, the map of (4.7) is an isomorphism for i= 2 and an injection

with cokernel C for i = 3. In all cases, we obtain a map from the exact sequence

(4.5) to the exact sequence (4.2) of the form

0 �� E1
Λ
(DX) ��

�
��

�� X �� X∗∗ �� E2
Λ
(DX) ��

� �

��

0

0 �� E1
Λ
(H2

Iw(K,Zp)) �� X �� X∗∗ �� E2
Λ
(H2

Iw(K,Zp)) �� Zp,

where the leftmost and rightmost vertical maps are induced by ±ρ. (We have only

checked commutativity up to the ambiguous signs, as the remark is not used.)

Remark 4.1.9. In Corollary 4.1.6, the map X → X∗∗ can be taken to be the

standard map from X to its double dual. That is, both the map X→ H1
Iw(K,Zp)

∗ in

(4.3) and the map H1
Iw(K,Zp)→X∗ of Theorem 4.1.2 arise in the standard manner

from a Λ-bilinear pairing

X×H1
Iw

(
K,Zp

)
−→ Λ

defined as follows. Write Λ= lim←−F ′ ΛF ′ , where ΛF ′ = Zp[Gal(F ′/F )] and F ′ runs

over the finite extensions of F in K . Take σ ∈ X and f ∈ H1
Iw(K,Zp). Write f as

an inverse limit of homomorphisms fF ′ ∈ H1(GF ′,S,Zp). Then our pairing is given

by

(σ,f) �−→ lim←−
F ′

∑

τ∈Gal(F ′/F )

fF ′
(
τ̃−1στ̃

)
[τ ]F ′ ,

where τ̃ denotes a lift of τ to GF,S , and [τ ]F ′ denotes the group element of τ in

ΛF ′ . Thus, the composition of X→ H1
Iw(K,Zp)

∗ with the map H1
Iw(K,Zp)

∗ →X∗∗

of Corollary 4.1.5 is the usual map X→ X∗∗.
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Definition 4.1.10. For p in the set Sf of finite primes in S, let Gp denote the

decomposition group in G at a place over the prime p in K , and set Kp =Zp[[G/Gp]],

which has the natural structure of a left Ω-module. We then set

K =
⊕

p∈Sf

Kp and K0 = ker
(
K→ Zp

)
,

where the map is the sum of augmentation maps.

Remark 4.1.11. If K contains all p-power roots of unity, then the group

H2
Iw(K,Zp) is the twist by Zp(−1) of H2

Iw(K,Zp(1)). As explained in the proof of

[52, Lemma 2.1], Poitou-Tate duality provides a canonical exact sequence

0 −→X ′ −→ H2
Iw

(
K,Zp(1)

)
−→K0 −→ 0,(4.8)

where X ′ is the completely split Iwasawa module over K (i.e., the Galois group of

the maximal abelian pro-p extension K that is completely split at all places above

Sf ).

We next wish to consider local versions of the above results. Let T and A =

T ⊗Zp
Qp/Zp be as in Theorem 4.1.1. For p ∈ Sf , let

Hi
Iw,p(K,T ) = lim←−

F ′/E finite

F ′⊂K

⊕

P|p
Hi

(
GF ′

P
,T

)
,

where GF ′
P

denotes the absolute Galois group of the completion F ′
P. If M is a

discrete Zp[[Gal(FS/E)]]-module, let Hi(GK,p,M) denote the direct sum of the

groups Hi(GKP
,M) over the primes P in K over p. We have the local spectral

sequence

P
i,j
2,p(T ) = Ei

Λ

(
Hj

(
GK,p,A

)∨)
=⇒ P

i+j
p (T ) = H

i+j
Iw,p(K,T )

(cf. [32, Theorem 4.2.2]). Note that Hj(GK,p,A)
∨ ∼= H

2−j
Iw,p(K,T †) by Tate duality,

where T † = HomZp
(T,Zp(1)).

Remark 4.1.12. Tate and Poitou-Tate duality provide maps between the sum

of these local spectral sequences over all p ∈ Sf and the global spectral sequences,

supposing for simplicity that p is odd or K is purely imaginary (in general, for real

places, one uses Tate cohomology). On E2-terms, these form a complex

· · · −→ F
i,j
2 (T )−→

⊕

p∈Sf

P
i,j
2,p(T )−→ H

i,j
2

(
T †

)
−→ F

i,j+1
2 (T )−→ ·· · .
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These spectral sequences can be seen in the derived category of complexes of

finitely generated Ω-modules, where they form an exact triangle (see [32, Theorem

4.5.1]). To see this, one uses the regularity of Zp in order to replace the dualiz-

ing complex with Zp. The cohomology groups in question can then be identified

with those we have written by the isomorphisms of [31, Lemmas 5.3.1 and 5.3.2,

Theorem 5.4.1].

Let Γp = Gp∩Γ be the decomposition group in Γ at a prime over p in K , and

let rp = rankZp
Γp. For an Ω-module M , we let M ι denote the Ω-module which as

a compact Zp-module is M and on which g ∈ G now acts by g−1.

LEMMA 4.1.13. For j ≥ 0, we have isomorphisms E
j
Λ
(Kp) ∼= (Kι

p)
δrp,j of Ω-

modules.

Proof. This is immediate from Corollary A.13. �

Let Dp denote the Galois group of the maximal abelian, pro-p quotient of the

absolute Galois group of the completion Kp of K at a prime over p, and consider

the completed tensor product

Dp =Ω⊗̂Zp[[Gp]]Dp,

which has the structure of an Ω-module by left multiplication.

THEOREM 4.1.14. Suppose that K contains all p-power roots of unity. For

each p ∈ Sf , we have a commutative diagram of exact sequences

0 �� E1
Λ
(Kp)(1) ��

��

Dp
��

��

D∗∗
p

��

��

E2
Λ
(Kp)(1)

��

�� 0

0 �� E1
Λ
(H2

Iw(K,Zp)) �� X �� X∗∗ �� E2
Λ
(H2

Iw(K,Zp)) �� Zp

of Ω-modules in which the vertical maps are the canonical ones.

Proof. We have

H2
Iw,p

(
K,Zp

)∼=Kp(−1) and H1
(
GK,p,Qp/Zp

)∨ ∼=Dp,

the first using our assumption on K . We also have H2(GK,p,Qp/Zp) = 0.

The analogue of Theorem 4.1.2 is the exact sequence

0 −→ E1
Λ

(
Kp

)
−→ H1

Iw,p

(
K,Zp

)
−→D∗

p −→ E2
Λ

(
Kp

)
−→ H2

Iw,p

(
K,Zp

)
.(4.9)
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We remark that the map

E2
Λ

(
Kp

)
=

(
Kι

p

)δrp,2 −→ H2
Iw,p

(
K,Zp

)∼=Kp(−1)

is zero since Γp acts trivially on Kι
p but not on any nonzero element of Kp(−1).

Applying Lemma 4.1.13 to (4.9), dualizing, and using the fact that rp ≥ 1 by as-

sumption on K , we obtain an isomorphism H1
Iw,p(K,Zp)

∗ ∼−→D∗∗
p compatible with

Corollary 4.1.5. The analogue of Corollary 4.1.6 is then the exact sequence

0 −→ E1
Λ

(
Kp

)
(1)−→Dp −→D∗∗

p −→ E2
Λ

(
Kp

)
(1)−→Kp.(4.10)

As above, the map E2
Λ
(Kp)(1)→Kp is zero.

The map of exact sequences follows from Remark 4.1.12. �

One might ask whether or not the map X∗ → Zp in Theorem 4.1.2 is zero in

the case r = 2.

PROPOSITION 4.1.15. Suppose that K contains all p-power roots of unity.

If Leopoldt’s conjecture holds for F , then X ′ has no Λ-quotient or Λ-submodule

isomorphic to Zp(1).

Proof. We claim that if M is a finitely generated Λ-module such that the in-

variant group MΓ has positive Zp-rank, then the coinvariant group MΓ does as

well. To see this, let I be the augmentation ideal in Λ. The annihilator of MΓ is I ,

so the annihilator of M is contained in I . By [19, Proposition 2.1] and its proof,

there is an ideal J of Λ contained in the annihilator of M such that any prime ideal

P of Λ containing J satisfies rankΛ/P M/PM is positive. We then apply this to

P = I to obtain the claim.

Applying this to X ′(−1), we may suppose that X ′ has a quotient isomorphic to

Zp(1). Such a quotient is in particular a locally trivial Zp(1)-quotient of the Galois

group of X. In other words, we have a subgroup of H1(GK,S ,μp∞) isomorphic to

Zp and which maps trivially to H1(GK,p,μp∞) for all p ∈ Sf .

The maps

H1
(
GF,S ,μp∞

)
−→ H1

(
GK,S,μp∞

)Γ
and H1

(
GF,p,μp∞

)
−→ H1

(
GK,p,μp∞

)Γ

have p-torsion kernel and cokernel. For instance, the kernel (resp., cokernel) of the

first map is (resp., is contained in) Hi(Γ,μp∞) for i= 1 (resp., i= 2). If Φ∼= Zp is a

subgroup of Γ that does not fix Zp(1), then the Hochschild-Serre spectral sequence

Hi
(
Γ/Φ,Hj

(
Φ,μp∞

))
=⇒ Hi+j

(
Γ,μp∞

)

gives finiteness of all Hk(Γ,μp∞), as Hj(Φ,μp∞) is finite for every j (and zero for

every j �= 0).
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We may now conclude that H1(GF,S,μp∞) has a subgroup isomorphic to Zp

with finite image under the localization map

H1
(
GF,S ,μp∞

)
−→

⊕

p∈Sf

H1
(
GF,p,μp∞

)
.

In other words, Leopoldt’s conjecture must fail (see [40, Theorem 10.3.6]). �

Remark 4.1.16. Proposition 4.1.15 also holds for the unramified Iwasawa mod-

ule X over K in place of X ′.

PROPOSITION 4.1.17. Suppose that r = 2 and K contains all p-power roots

of unity. If Leopoldt’s conjecture holds for F , then the sequences

0 −→ H1
Iw

(
K,Zp

)
−→ X∗ −→ Zp −→ 0(4.11)

0 −→ E1
Λ

(
H2

Iw

(
K,Zp

))
−→ X−→ X∗∗ −→ E2

Λ

(
H2

Iw

(
K,Zp

))
−→ 0(4.12)

of Theorem 4.1.2 and Corollary 4.1.6 are exact.

Proof. Suppose that Leopoldt’s conjecture holds for F . Consider first the

map φ : Zp → H2
Iw(K,Zp) of Theorem 4.1.2. The image of Zp is contained in

H2
Iw(K,Zp)

Γ. There is an exact sequence

0 −→X ′(−1)Γ −→ H2
Iw

(
K,Zp

)Γ −→K0(−1)Γ.

Primes in Sf are finitely decomposed in the cyclotomic Zp-extension Fcyc, and the

action of the summand Γcyc = Gal(Fcyc/F ) of Γ on Zp(−1) is faithful. It follows

that K0(−1)Γ = (KGal(K/Fcyc)
0 (−1))Γcyc is trivial. Proposition 4.1.15 then implies

that φ must have finite image, and we have the first exact sequence.

By Corollary A.13, E1
Λ
(Zp) = 0 and E2

Λ
(Zp)∼= Zp. The long exact sequence of

Ext-groups for (4.11) reads

0 −→ E1
Λ

(
X∗)−→ E1

Λ

(
H1

Iw

(
K,Zp

))
−→ Zp −→ E2

Λ

(
X∗).

By Corollary A.9(b), this implies that E1
Λ
(H1

Iw(K,Zp))→ Zp is surjective with fi-

nite kernel. The map Zp → E1
Λ
(H1

Iw(K,Zp)) of (4.3) is then also forced to be injec-

tive, being that it is of finite (i.e., codimension at least 3) cokernel E3
Λ
(H2

Iw(K,Zp)),

for instance by Proposition A.8. Therefore, the map E2
Λ
(H2

Iw(K,Zp))→Zp in (4.3)

is trivial, and (4.12) is exact. �

4.2. Useful lemmas. It is necessary for our purposes to account for dis-

crepancies between decomposition and inertia groups, and the unramified Iwa-

sawa module X and H2
Iw(K,Zp(1)). The following lemmas are designed for this
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purpose. For a prime p ∈ Sf , we set

Ip =Ω⊗̂Zp[[Gp]]Ip,

where Ip denotes the inertia subgroup of Dp. Then Ip is an Ω-submodule of Dp.

Remark 4.2.1. The unramified Iwasawa module X over K is the cokernel

of the map
⊕

p∈Sf
Ip → X, independent of S containing the primes over p. Its

completely split-at-Sf quotient is the cokernel of
⊕

p∈Sf
Dp → X. The latter Ω-

module is the completely split Iwasawa module X ′ if K contains the cyclotomic

Zp-extension of F .

In the following, we suppose that primes over p do not split completely in

K/F , which occurs, for instance, if p lies over p or K contains the cyclotomic

Zp-extension of F .

LEMMA 4.2.2. Suppose that Γp �= 0. Let εp = 0 (resp., 1) if the completion Kp

at a prime over p contains (resp., does not contain) the unramified Zp-extension of

Ep. Let ε′p = εpδrp,1, and if ε′p = 1, suppose that K contains all p-power roots of

unity. We have a commutative diagram

0 �� Ip ��

��

Dp
��

��

Kεp
p

��

��

0

0 �� I∗∗p �� D∗∗
p

�� Kε′p
p

�� 0

(4.13)

where the right-hand vertical map is the identity if ε′p = 1.

Proof. We have exact sequences 0 → Ip → Dp → Z
εp
p → 0 by the theory of

local fields. These yield the upper exact sequence upon taking the tensor product

with Ω over Zp[[Gp]]. Since Γp �= 0, we have that Kp is a torsion Λ-module. Taking

Ext-groups, we obtain an exact sequence

0 −→D∗
p −→ I∗p −→ E1

Λ

(
Kεp

p

)
−→ E1

Λ

(
Dp

)
.(4.14)

If rp > 1 or εp = 0, then we are done by Lemma 4.1.13 after taking a dual.

Suppose that rp = ε′p = 1. We claim that the last map in (4.14) is trivial. This

map is, by Lemma A.12, just the map of Ω-modules

Ωι⊗Zp[[Gp]] Ext1Λp

(
Zp,Λp

)
−→ Ωι⊗Zp[[Gp]] Ext1Λp

(
Dp,Λp

)
,

where Λp = Zp[[Γp]]. For the claim, we may then assume that r = 1 and K is the

cyclotomic Zp-extension of F . We then have an exact sequence

0 −→Kι
p(1)−→Dp −→D∗∗

p −→ 0
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from Theorem 4.1.14 and Lemma 4.1.13. Taking Ext-groups yields an exact se-

quence

0 −→ E1
Λ

(
D∗∗

p

)
−→ E1

Λ

(
Dp

)
−→Kp(−1)−→ E2

Λ

(
D∗∗

p

)
,

and the first and last term are trivial by Corollary A.9. As there is no nonzero Λ-

module homomorphism Zp → Zp(−1), there is no nonzero homomorphism Kι
p →

Kp(−1), hence the claim. Finally, taking Ext-groups once again, we have an exact

sequence

0 −→ I∗∗p −→D∗∗
p −→Kp −→ E1

Λ

(
I∗p
)
.

By Corollary A.9, E1
Λ
(I∗p ) = 0, so we have shown the exactness of the second row

of (4.13). �

Using Lemma 4.2.2, one can derive exact sequences as in Theorem 4.1.14 with

Ip in place of Dp if we suppose that K contains all p-power roots of unity. When

F contains μp, this hypothesis is equivalent to K containing the cyclotomic Zp-

extension Fcyc of F .

LEMMA 4.2.3. (a) If Kp contains a Z2
p-extension of Ep for all p ∈ Sf lying

over p, then the kernel of the quotient map X →X ′ is pseudo-null.

(b) If Kp contains the unramified Zp-extension of Ep for all p ∈ Sf lying over

p, the quotient map X →X ′ is an isomorphism.

Proof. Take S to be the set of primes over p and ∞. We have a canonical sur-

jection

⊕

p∈Sf

(
Ω⊗̂Zp[[Gp]]Dp/Ip

)
−→ ker(X →X ′)

and Dp/Ip is zero or Zp according as to whether Kp does or does not contain

the unramified Zp-extension of Ep, respectively. This implies part (b) immedi-

ately. It also implies part (a), since Ω⊗̂Zp[[Gp]]Dp/Ip is of finite Zp[[G/Gp]]-rank

and Zp[[G/Gp]] is pseudo-null in case (a). �

The following lemma describes the structure of the Ext-groups of K0 in terms

of those of K.

LEMMA 4.2.4. Let p ∈ Sf .

(a) For 0 ≤ j < r− 1, we have E
j
Λ
(K0) ∼= E

j
Λ
(K). For j ≥ r+ 1, we have

E
j
Λ
(K) = Ej

Λ
(K0) = 0.

(b) If r �= rp for all p ∈ Sf , then Er
Λ
(K) = Er

Λ
(K0) = 0, and we have an exact

sequence

0 −→ Er−1
Λ

(K) −→ Er−1
Λ

(
K0

)
−→ Zp −→ 0.
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(c) If r= rp for some p∈Sf , then Er−1
Λ

(K0)∼= Er−1
Λ

(K), and we have an exact

sequence

0 −→ Zp −→ Er
Λ(K)−→ Er

Λ

(
K0

)
−→ 0.

Proof. Note that

E
j
Λ
(K)∼=

⊕

p∈Sf

(
Kι

p

)δj,rp

by Lemma 4.1.13. Moreover, Corollary A.13 tells us that E
j
Λ
(Zp) ∼= Z

δr,j
p . We are

quickly reduced to the case that r = rp for some p. The map Er
Λ
(Zp) → Er

Λ
(Kp)

for such a p is the map Zp →Kι
p that takes 1 to the norm element, hence is injec-

tive. �

If K contains all p-power roots of unity, then from (4.8) we have an exact

sequence

· · ·−→E
j
Λ

(
K0

)
(1)−→E

j
Λ

(
H2

Iw

(
K,Zp

))
−→E

j
Λ
(X ′)(1)−→E

j+1
Λ

(
K0

)
(1)−→·· ·

(4.15)

for all j. Lemmas 4.2.3 and 4.2.4 then allow one to study the relationship between

the higher Ext-groups of H2
Iw(K,Zp) occurring in Theorem 4.1.14 and the higher

Ext-groups of X.

Remark 4.2.5. At the end of Section 3.4, we asserted that if K contains μp∞ and

rp≥ 2 for all p∈Sf , then X is torsion-free if and only if X is pseudo-null. This may

also be seen as follows. By Corollary 4.1.6, the Λ-torsion subgroup of X is isomor-

phic to E1
Λ
(H2

Iw(K,Zp)). By assumption and Lemmas 4.1.13 and 4.2.4, we have

E1
Λ
(K0) = 0. Thus, by the exact sequence (4.15), the triviality of E1

Λ
(H2

Iw(K,Zp))

and the triviality of E1
Λ
(X ′) are equivalent. Since X ′ is Λ-torsion, E1

Λ
(X ′) = 0 if

and only if X ′ is pseudo-null, which by Lemma 4.2.3 is equivalent to the pseudo-

nullity of X.

4.3. Eigenspaces. We end with a discussion of the rank of the ∆-

eigenspaces of the global and local Iwasawa modules X and Dp. Let us suppose

now that G = Γ×∆, and for simplicity, that ∆ is abelian. Without loss of general-

ity, we shall suppose here that F contains Q(μp), and we let ω : ∆ → Z×
p denote

the Teichmüller character.

Let ψ be a Q̄×
p -valued character of ∆. For a Zp[∆]-module M , we let

Mψ =M ⊗Zp[∆]Oψ,

where Oψ is the Zp-algebra generated by the values of ψ, and Zp[∆]→Oψ is the

surjection induced by ψ. We set Λ= Zp[[Γ]] and Λψ =Oψ[[Γ]]. Note that Ωψ ∼=Λψ
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as compact Oψ-algebras, but Ωψ has the extra structure of an Ω-module on which

∆ acts by ψ.

Let r2(E) denote the number of complex places of E and rψ1 (E) the number of

real places of E at which ψ is odd. We have the following consequence of Iwasawa-

theoretic global and local Euler-Poincaré characteristic formulas, as found in [39,

5.2.11, 5.3.6].

LEMMA 4.3.1. (a) If weak Leopoldt holds for K, then rankΛψ
Xψ = r2(E)+

rψ1 (E).

(b) If either Γp �= 0 or ψ|∆p
�= 1, then rankΛψ

Dψ
p = [Ep : Qp].

Proof. Let Σ be the union of S and the primes that ramify in F/E. Since

the primes in Σ \S can ramify at most tamely in XΣ, the Λψ-modules Xψ and

X
ψ
Σ

(the Σ-ramified Iwasawa module over K) have the same rank. Endow Oψ−1

(which equals Oψ as a Zp-module) with a GE,Σ-action through ψ−1. Let Bψ =

(Ωψ−1

)∨ ∼= HomZp,cont(Λ,O∨
ψ−1), which is a discrete Λψ[[GE,Σ]]-module. Restric-

tion and Shapiro’s lemma (see [39, 8.3.3] and [31, 5.2.2, 5.3.1]) provide Λψ-

module homomorphisms

H1
(
GE,Σ,Bψ

) Res−−−→ H1(GF,Σ,Bψ)
∆ ∼−−→ H1

(
GK,Σ,O∨

ψ−1

)∆ ∼−−→
(
X
ψ
Σ

)∨
,

restriction having cotorsion kernel and cokernel. (The last step passes through the

intermediate module HomZp[∆](XΣ⊗Zp
Oψ−1 ,Qp/Zp).) We are therefore reduced

to computing the Λψ-corank of H1(GE,Σ,Bψ). The global Euler characteristic for-

mula tells us that

2∑

j=0

(−1)j−1 rankΛψ
Hj

(
GE,Σ,Bψ

)∨
=

∑

v∈S−Sf

rankΛψ

(
Ωψ(1)

)GEv ,

and Hj(GE,Σ,Bψ) is Λψ-cotorsion for j = 0 and j = 2, the latter by weak Leopoldt

for K.

Recall that Dp = H1(GK,p,Qp/Zp)
∨. Restriction and Shapiro’s lemma [31,

5.3.2] again reduce the computation of the Λψ-corank of H1(GE,p,Bψ), and the

local Euler characteristic formula tells us that

2∑

j=0

(−1)j rankΛψ
Hj

(
GEp

,Bψ

)∨
=
[
Ep : Qp

]
· rankΛψ

Ωψ =
[
Ep : Qp

]
.

As H2(GEp
,Bψ)

∨ is trivial, and H0(GEp
,Bψ)

∨ ∼= (Ωψ)GEp
is torsion by virtue of

the fact that either Γp or ψ|∆p
is nontrivial, we are done. �

Let us suppose in the following three lemmas that ψ has order prime to p.

These following lemmas are variants of the lemmas of the previous section in

“good eigenspaces”. The proofs are straightforward from what has already been
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done and as such are left to the reader. For the second lemma, one can use the

following simple fact: for an Ω-module M , we have

(
E
j
Λ
(M)(1)

)ψ ∼= E
j
Λ

(
Mωψ−1)

(1).(4.16)

LEMMA 4.3.2. We have Kψ
p = 0 if ψ|∆p

�= 1. We have Kψ ∼=Kψ
0 if ψ �= 1.

LEMMA 4.3.3. Suppose that K contains the cyclotomic Zp-extension Fcyc of

F . If ψ|∆p
�= 1 (resp., ωψ−1|∆p

�= 1), then Iψp →Dψ
p (resp., Dψ

p → (Dψ
p )

∗∗) is an

isomorphism.

LEMMA 4.3.4. Suppose that K contains Fcyc. Then the maps Xψ
� (X ′)ψ ↪→

H2(K,Zp(1))
ψ are isomorphisms if ψ|∆p

�= 1 for all p lying over p.

5. Reflection-type theorems for Iwasawa modules. In this section, we

prove results that relate an Iwasawa module in a given eigenspace with another

Iwasawa module in a “reflected” eigenspace. These modules typically appear on

opposite sides of a short exact sequence, with the middle term being measured

by p-adic L-functions. The method in all cases is the same: we take a sum of the

maps of exact sequences at primes over p found in Theorem 4.1.14 and apply the

snake lemma to the resulting diagram. Here, we focus especially on cases in which

eigenspaces of the unramified outside p Iwasawa modules X have rank 1, in order

that the corresponding eigenspace of the double dual is free of rank one. Our main

result is a symmetric exact sequence for an unramified Iwasawa module and its

reflection in the case of an imaginary quadratic field. This sequence gives rise to a

computation of second Chern classes (see Subsection 5.2).

We maintain the notation of Section 4. We suppose in this section that p is

odd, and we let S be the set of primes of E over p and ∞. We let ψ denote a one-

dimensional character of the absolute Galois group of E of finite order prime to

p, and let Eψ denote the fixed field of its kernel. We then set F = Eψ(μp) and

∆= Gal(F/E). Let ω denote the Teichmüller character of ∆.

We now take Ẽ to be the compositum of all Zp-extensions of E, and we set

r = rankZp
Gal(Ẽ/E). If Leopoldt’s conjecture holds for E, then r = r2(E)+ 1.

We set K = FẼ. As before, we take G = Gal(K/E) and Γ = Gal(K/F ) and set

Ω= Zp[[G]] and Λ = Zp[[Γ]].

For a subset Σ of Sf , let us set KΣ =
⊕

p∈ΣKp. We set

HΣ = ker
(
H2

Iw

(
K,Zp(1)

)
→KSf−Σ

)
,

which for Σ �=∅ fits in an exact sequence

0 −→X ′ −→HΣ −→KΣ −→ Zp −→ 0.(5.1)

For Σ = ∅, we have HΣ
∼= X ′. We shall study the diagram that arises from the

sum of exact sequences in Theorem 4.1.14 over primes in T = Sf −Σ. Setting
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DT =
⊕

p∈T Dp, it reads

0 �� E1
Λ
(KT )(1) ��

��

DT
��

��

D∗∗
T

��

φT

��

E2
Λ
(KT )(1)

��

�� 0

0 �� E1
Λ
(H2

Iw(K,Zp)) �� X �� X∗∗ �� E2
Λ
(H2

Iw(K,Zp)) �� Zp,

(5.2)

where φT =
∑

p∈T φp is the sum of maps φp : D∗∗
p →X∗∗. We take ψ-eigenspaces,

on which the map to Zp in the diagram will vanish if ψ �= 1, r = 1, or r = 2 and

Leopoldt’s conjecture holds for F , the latter by Proposition 4.1.17. The cokernel

of DT → X is the Iwasawa module XΣ,T which is the Galois group over K of the

maximal pro-p abelian extension of K which is unramified outside of Σ and totally

split over T = Sf −Σ. The group IT =
⊕

p∈T Ip has the property that the cokernel

of IT → X is the unramified outside of Σ-Iwasawa module XΣ.

In this section, we focus on examples for which rankΛψ
Xψ = 1, which forces

r ≤ 2 under Leopoldt’s conjecture by Lemma 4.3.1. We have that (Xψ)∗∗ is free of

rank one over Λψ, by Lemma A.1. If p is split in E, then (Dψ
p )

∗∗ is also isomorphic

to Λψ , so

φψ
p :

(
Dψ

p

)∗∗ −→
(
Xψ

)∗∗

is identified with multiplication by an element of Λψ , well defined up to unit. We

shall exploit this fact throughout. At times, we will have to distinguish between

decomposition and inertia groups, which we will deal with below as the need arises.

In our examples, T is always a set of degree one primes, so rp = 1 for p ∈ T . The

assumptions on ψ and T make most results cleaner and do well to illustrate the

role of second Chern classes, but the methods can be applied for any Zr
p-extension

containing the cyclotomic Zp-extension and any set of primes over p.

As in Definition A.6, for an Ω-module M that is finitely generated over Λ with

annihilator of height at least r, we define the adjoint α(M) of M to be Er
Λ
(M).

5.1. The rational setting. Let us demonstrate the application of the results

of Subsection 4.1 in the setting of the classical Iwasawa main conjecture. Suppose

that E = Q and that ψ is odd. For simplicity, we assume ψ �= ω. We study the

unramified Iwasawa module X over K .

THEOREM 5.1.1. If (X ′)ωψ
−1

is finite, then there is an exact sequence of Ω-

modules

0 −→Xψ −→ Ωψ/
(
Lψ

)
−→

(
(X ′)ωψ

−1)∨
(1)−→ 0

with Lψ interpolating the p-adic L-function for χ= ωψ−1 as in Theorem 3.2.1.
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Proof. Note that K = Kp. By Lemma 4.1.13, we have E1
Λ
(K) ∼= Kι and

E2
Λ
(K) = 0. Since ψ �= ω, Lemma 4.3.2 tells us that Kωψ−1 ∼= Kωψ−1

0 . By (4.15)

and Lemma 4.2.4 and our assumption of pseudo-nullity of Xωψ−1

, we have that

the natural maps

E1
Λ(K)(1)ψ

∼−−→ E1
Λ

(
H2

Iw

(
K,Zp

))ψ
and E2

Λ

(
H2

Iw

(
K,Zp

))ψ ∼−−→ E2
Λ(X

′)(1)ψ

are isomorphisms. By (4.16) and Proposition A.4(a), E2
Λ
(X ′)(1)ψ∼=((X ′)ωψ

−1

)∨(1).
The diagram of Theorem 4.1.14 with p= p reads

0 �� E1
Λ
(Kp)(1)

ψ ��

�
��

Dψ
p

��

��

(Dψ
p )∗∗ ��

��

0

0 �� E1
Λ
(H2

Iw(K,Zp))
ψ �� Xψ �� (Xψ)∗∗ �� ((X ′)ωψ

−1

)∨(1) �� 0.

It follows from Lemma 4.2.2 and the fact that there is no nonzero map Kι
p(1)→Kp

of Ω-modules that we can replace Dp by Ip in the diagram. By applying the snake

lemma to the resulting diagram, we obtain an exact sequence

0 −→Xψ −→ cokerθ −→
(
(X ′)ωψ

−1)∨
(1)−→ 0,(5.3)

where θ : (Iψp )∗∗ → (Xψ)∗∗ is the canonical map (restricting φψ
p ). The map θ is

of free rank one Λψ-modules by Lemmas 4.3.1 and A.1, and it is nonzero, hence

injective, as X is torsion. We may identify its image with a nonzero submodule of

Ωψ. Since (X ′)ωψ
−1

is pseudo-null, (5.3) tells us that

c1

(
Xψ

)
= c1

(
Ωψ/ imθ

)
,

and this forces the image of θ to be c1(X
ψ). By the main conjecture of Theorem

3.2.1, we have c1(X
ψ) = (Lψ). �

Remark 5.1.2. If we do not assume that (X ′)ωψ
−1

is finite, one may still derive

an exact sequence of Λψ-modules

0 −→ α
(
Xωψ−1)

(1)−→Xψ −→ Ωψ/(M) −→
((
X ′

fin

)ωψ−1)∨
(1)−→ 0

for some M∈ Ωψ such that (M)c1((X
ωψ−1

)ι(1)) = (Lψ).

5.2. The imaginary quadratic setting. In this subsection, we take our base

field E to be imaginary quadratic. Let p be an odd prime that splits into two primes

p and p̄ in E, so Sf = {p, p̄}. Since Leopoldt’s conjecture holds for E, we have

Γ = Gal(K/F ) ∼= Z2
p. We let Xp denote the p-ramified (i.e., unramified outside of

the primes over p) Iwasawa module over K , and similarly for p̄.

We will prove the following result and derive some consequences of it.
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THEOREM 5.2.1. Suppose that E is imaginary quadratic and p splits in E. If

Xωψ−1

is pseudo-null as a Λψ-module, then there is a canonical exact sequence of

Ω-modules

0 −→
(
X/Xfin

)ψ −→ Ωψ

c1

(
X
ψ
p

)
+ c1

(
X
ψ
p̄

) −→ α
(
Xωψ−1)

(1)−→ 0.(5.4)

Moreover, we have Xψ
fin = 0 unless ψ = ω, and Xω

fin is cyclic.

We require some lemmas.

LEMMA 5.2.2. The completely split Iwasawa module X ′ over K is equal to the

unramified Iwasawa module X over K , and the map Ip →Dp is an isomorphism.

Moreover, we have E1
Λ
(Kp) = 0 and E2

Λ
(Kp)∼=Kι

p.

Proof. The prime p is infinitely ramified and has infinite residue field extension

in Ẽ, so rp = 2. The statements follow from Lemma 4.2.3(b), Lemma 4.2.2, and

Lemma 4.1.13 respectively. �

Note that K = Kp ⊕Kp̄ and K0 = ker(K → Zp) by the definition of Remark

4.1.11.

LEMMA 5.2.3. If Xωψ−1

is pseudo-null as a Λψ-module, then so is

H2
Iw(K,Zp)

ωψ−1

, and we have an exact sequence of Ω-modules

0−→Zp(1)
ψ−→

(
Kωψ−1)ι

(1)−→E2
Λ

(
H2

Iw

(
K,Zp

))ψ−→E2
Λ

(
Xωψ−1)

(1)−→0.

Proof. Lemmas 5.2.2 and 4.2.4 tell us that Ei
Λ
(K0)(1) = 0 for i �= 2 and pro-

vide an exact sequence

0 −→ Zp(1)−→Kι(1) −→ E2
Λ

(
K0

)
(1)−→ 0.(5.5)

The exact sequence (4.15) has the form

0 −→ E1
Λ

(
H2

Iw

(
K,Zp

))
−→ E1

Λ(X)(1) −→ E2
Λ

(
K0

)
(1)−→ E2

Λ

(
H2

Iw

(
K,Zp

))

−→ E2
Λ(X)(1) −→ 0,

noting that X = X ′ by Lemma 5.2.2. The ψ-eigenspaces of the first two terms

are zero by (4.16) and the pseudo-nullity of Xωψ−1

, yielding the first assertion and

leaving us with a short exact sequence. Splicing this together with the ψ-eigenspace

of the sequence (5.5) and applying (4.16) to the last term, we obtain the exact

sequence of the statement. �

The main conjecture for imaginary quadratic fields is concerned with the un-

ramified outside p Iwasawa module Xp over K . For it, we have the following result

on first Chern classes.
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PROPOSITION 5.2.4. If Xωψ−1

is pseudo-null as a Λψ-module, then there is

an injective pseudo-isomorphism X
ψ
p → Ωψ/c1(X

ψ
p ) of Ω-modules.

Proof. We apply the snake lemma to the ψ-eigenspaces of the diagram of The-

orem 4.1.14. By Lemma 5.2.2 and the pseudo-nullity in Lemma 5.2.3, one has a

commutative diagram

0 �� Iψp̄
��

��

(Iψp̄ )
∗∗ ��

φψ
p̄

��

E2
Λ
(Kωψ−1

p̄ )(1) ��

��

0

0 �� Xψ �� (Xψ)∗∗ �� E2
Λ
(H2

Iw(K,Zp))
ψ �� 0,

(5.6)

the right exactness of the bottom row following from Proposition 4.1.17. We im-

mediately obtain an exact sequence

0 −→ X
ψ
p −→ coker

(
φψ
p̄

)
−→ C −→ 0

for φψ
p̄ defined to be as in the diagram (5.6), with C a pseudo-null Ω-module that

by Lemmas 4.1.13 and 5.2.3 fits in an exact sequence

0 −→ Zp(1)
ψ −→

(
Kωψ−1

p

)ι
(1)−→ C −→ α

(
Xωψ−1)

(1)−→ 0.

The map φψ
p̄ : (Iψp̄ )

∗∗ → (Xψ)∗∗ is an injective homomorphism of free rank one

Λψ-modules. Since C is pseudo-null, the image of φψ
p̄ is c1(X

ψ
p ), as required. �

We now prove our main result.

Proof of Theorem 5.2.1. Consider (5.2) for T = {p, p̄}. From (5.6) one has

0 �� Iψp ⊕ Iψp̄
��

��

(Iψp )
∗∗⊕ (Iψp̄ )

∗∗ ��

φψ
p +φψ

p̄

��

E2
Λ
(Kωψ−1

)(1)

��

�� 0

0 �� Xψ �� (Xψ)∗∗ �� E2
Λ
(H2

Iw(K,Zp))
ψ �� 0.

(5.7)

The snake lemma applied to (5.7) produces an exact sequence

Zp(1)
ψ −→Xψ −→

(
Xψ

)∗∗
(
Iψp

)∗∗
+
(
Iψp̄

)∗∗ −→ α
(
Xωψ−1)

(1)−→ 0,(5.8)

where the first and last terms follow from the exact sequence of Lemma 5.2.3. In

the proof of Proposition 5.2.4, we showed that φψ
p̄ is injective with image c1(X

ψ
p ) in

the free rank one Ωψ-module (Xψ)∗∗, and similarly upon switching p and p̄. Thus,
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we have an isomorphism

(
Xψ

)∗∗
(
Iψp

)∗∗
+
(
Iψp̄

)∗∗ ∼= Ωψ

c1

(
X
ψ
p

)
+ c1

(
X
ψ
p̄

) .(5.9)

If ψ �= ω, then Zp(1)
ψ = 0. For ψ = ω, we claim that the image of the map

Zp(1)→Xω of (5.8) is finite cyclic. Since Ωψ/(c1(X
ψ
p )+c1(X

ψ
p̄ )) has no nontriv-

ial finite submodule by Lemma A.3, the result then follows from (5.8) and (5.9).

To prove the claim, we identify Iωp and Iωp̄ with their isomorphic images in Xω ,

so the kernel of Iωp ⊕ Iωp̄ → Xω is identified with (Ip∩ Ip̄)
ω , and similarly with the

double duals. By the exact sequence

0 −→ Iωp −→
(
Iωp

)∗∗ −→ Zp[[Γ/Γp]]
ι(1)−→ 0

that follows from (4.10), we see that Iωp is contained in the ideal I of Λ ∼= (I∗∗p )ω

with Λ/I ∼= Zp(1). This means that the intersection (Ip ∩ Ip̄)
ω is contained in I

times the free rank one Λ-submodule (I∗∗p ∩ I∗∗p̄ )ω of (Xω)∗∗. As the kernel of

Zp(1) →Xω is isomorphic to (I∗∗p ∩ I∗∗p̄ )ω/(Ip ∩ Ip̄)
ω , which has Zp(1) as a quo-

tient, the claim follows. �

Let ΩW =W [[G]] and ΛW =W [[Γ]], where W denotes the Witt vectors of F̄p.

Let Lp,ψ denote the element of ΛW
∼=Ωψ

W that determines the two-variable p-adic

L-function for p and ωψ−1. Let Xψ
W denote the completed tensor product of Xψ

with W over Oψ . Together with the Iwasawa main conjecture for K, Theorem

5.2.1 implies the following result.

THEOREM 5.2.5. Suppose that E is imaginary quadratic and p splits in E.

If both Xψ and Xωψ−1

are pseudo-null Λψ-modules, then there is an equality of

second Chern classes

c2

(
ΛW(

Lp,ψ,Lp̄,ψ

)
)

= c2

(
Xψ

W

)
+ c2

((
Xωψ−1

W

)ι
(1)

)
.(5.10)

These Chern classes have a characteristic symbol with component at a codimen-

sion one prime P of ΛW equal to the Steinberg symbol {Lp,ψ,Lp̄,ψ} if Lp̄,ψ is not

a unit at P , and with other components trivial.

Proof. By [8, Corollary III.1.11], the main conjecture as proven in [51, Theo-

rem 2(i)] implies that Lp,ψ generates c1(X
ψ
p )ΛW . We have

c2

(
α
(
Xωψ−1

W

)
(1)

)
= c2

((
Xωψ−1

W

)ι
(1)

)

by Proposition A.11. We then apply Proposition 2.5.1. �

Remark 5.2.6. Supposing that both Xψ and Xωψ−1

are pseudo-null, the Tate

twist of the result of applying ι to the sequence (5.4) reads exactly as the analogous
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sequence for the character ωψ−1 in place of ψ. The functional equation of Lemma

3.3.2(b) yields an isomorphism

(
Ωψ
W /

(
Lp,ψ,Lp̄,ψ

))ι
(1)∼=Ωωψ−1

W /
(
Lp̄,ωψ−1 ,Lp,ωψ−1

)
,

of the middle terms of these sequences.

This implies the following codimension two Iwasawa-theoretic analogue of

the Herbrand-Ribet theorem in the imaginary quadratic setting, as mentioned in

the introduction. Note that in this analogue we must treat the eigenspaces Xψ and

Xωψ−1

together.

COROLLARY 5.2.7. Suppose that ψ �= 1,ω. The Iwasawa modules Xψ and

Xωψ−1

are both trivial if and only if at least one of Lp,ψ or Lp̄,ψ is a unit in ΛW .

Proof. If Xψ is not pseudo-null, then so are both X
ψ
p and X

ψ
p̄ . So, by the main

conjecture proven by Rubin (see Theorem 3.3.1), neither Lp,ψ nor Lp̄,ψ are units.

If Xωψ−1

is not pseudo-null, then Lp,ωψ−1 and Lp̄,ωψ−1 are similarly not units. By

the functional equation of Lemma 3.3.2(b), this implies that Lp̄,ψ nor Lp,ψ are non-

units as well.

If Xψ and Xωψ−1

are both pseudo-null, then the exact sequence (5.4) of The-

orem 5.2.5 shows that Xψ and Xωψ−1

are both finite if and only if the quotient

Ωψ/(c1(X
ψ
p )+c1(X

ψ
p̄ )) is finite, which cannot happen unless it is trivial by Lemma

A.3. Since ψ �= ω, again noting (5.4), this happens if and only if both Xψ and

Xωψ−1

are trivial as well. By the main conjecture, the quotient is trivial if and only

at least one of Lp,ψ and Lp̄,ψ is a unit in ΛW . �

Example 5.2.8. Suppose that ψ is cyclotomic, so extends to an abelian charac-

ter of ∆̃ = Gal(F/Q), that E �⊆ Q(μp), and that ψ �= 1,ω. Then Xψ is nontrivial

if and only if the ψ-eigenspace under ∆ of the unramified Iwasawa module Xcyc

over the cyclotomic Zp-extension Fcyc of F is nontrivial. That is, since all primes

over p are unramified in K/Fcyc, the map from the Gal(K/Fcyc)-coinvariants of

X to Xcyc is injective with cokernel isomorphic to Gal(K/Fcyc), which has trivial

∆-action. We extend ψ and ω in a unique way to odd characters ψ̃ and ω̃ of ∆̃.

Identify the quadratic character κ of Gal(E/Q) with a character of ∆̃ that is trivial

on ∆.

The ψ-eigenspace of Xcyc under ∆ is the direct sum of the two eigenspaces

Xψ̃
cyc and Xψ̃κ

cyc under ∆̃. By the cyclotomic main conjecture (Theorem 3.2.1), the

Iwasawa module Xψ̃
cyc is nontrivial if and only if the appropriate Kubota-Leopoldt

p-adic L-function is not a unit. This in turn occurs if and only if p divides the

Kubota-Leopoldt p-adic L-value

Lp

(
ω̃ψ̃−1,0

)
=
(
1− ψ̃−1(p)

)
L
(
ψ̃−1,0

)
.
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The value L(ψ̃−1,0) is the negative of the generalized Bernoulli number B1,ψ̃−1 .

We have ψ̃−1(p) = 1 if and only if ψ̃ is locally trivial at p, in which case the p-adic

L-function is said to have an exceptional zero. By the usual reflection principle

(see also Remark 5.1.2), if Xψ̃κ
cyc is nonzero, then so is X ω̃ψ̃−1κ

cyc .

Similarly, the unique extension of ωψ−1 to an odd character of ∆̃ is ω̃ψ̃−1κ,

and X ω̃ψ̃−1κ
cyc is nontrivial if and only if Lω̃ψ̃−1κ is not a unit, which is to say that

p divides Lp(ψ̃κ,0), or equivalently that either p | B1,ω̃−1ψ̃κ or ω̃ψ̃−1κ is locally

trivial at p. If X ω̃ψ̃−1

cyc �= 0, then Xψ̃
cyc �= 0.

Typically, when Xψ̃
cyc is nonzero, X ω̃ψ̃−1

cyc and X ω̃ψ̃−1κ
cyc are trivial. For example,

if p = 37, then 37 | B1,ω̃31 (and X ω̃31

cyc = 0), but 37 � B1,ω̃5κ for κ the quadratic

character of Gal(Q(i)/Q). However, it can occur, though relatively infrequently,

that both B1,ψ̃−1 and B1,ω̃−1ψ̃κ are divisible by p. A cursory computer search using

this κ revealed many examples in the case one of the p-adic L-functions has an

exceptional zero, e.g., for p= 5 and ψ̃ a character of conductor 28 and order 6, and

other examples in the cases that neither does, e.g., with p= 5 and ψ̃ a character of

conductor 555 and order 4.

5.3. Two further rank one cases. We will briefly indicate generaliza-

tions of Theorem 5.2.1 which can be proved in the remaining two cases when

rankΛψ
Xψ = 1. Our field E will have at most one complex place, but it will not be

Q or imaginary quadratic. In view of Lemma 4.3.1, the two cases to consider are

when (i) E has exactly one complex place and the character ψ is even at all real

places, and (ii) E is totally real and ψ is odd at exactly one real place.

For any set of primes T of E, we let XT denote the T -ramified Iwasawa module

over K . If T = {p}, we set Xp = XT . Suppose that we are given n degree one

primes p1, . . . ,pn of E over p, and set T = {p1, . . . ,pn}, Σ = Sf − T and Σi =

Sf −{pi} for i ∈ {1, . . . ,n}.

THEOREM 5.3.1. Let E be a number field with exactly one complex place and

at least one real place, and suppose that ψ is even at all real places of E. Assume

that Leopoldt’s conjecture holds for E, so r = 2. Furthermore, suppose that X
ψ
Σi

is Λψ-torsion for all i ∈ {1, . . . ,n}. Assume that rp = 2 for all p ∈ Sf . If Xωψ−1

is

pseudo-null, then there is an exact sequence of Ω-modules

0 −→ X
ψ
Σ
−→ Ωψ

∑n
i=1 c1

(
X
ψ
Σi

) −→ α
(
Hωψ−1

Σ

)
(1) −→ 0

where HΣ is as in (5.1).

Proof. As in the imaginary quadratic case, the strategy is to control the terms

and vertical homomorphisms of the diagram (5.2). The three steps needed to do

this are (i) show that decomposition groups can be replaced by inertia groups, (ii)
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show that the appropriate eigenspaces of the E1
Λ

groups in (5.2) are trivial, and (iii)

use Iwasawa cohomology groups to relate the E2
Λ

groups in (5.2) to HΣ, which is

an extension of an unramified Iwasawa module.

Note that Zp(1)
ψ = 0 since ψ is even at a real place. For p ∈ T , the field Kp

contains the unramified Zp-extension of Qp because p has degree 1 and rp = 2 =

r. By assumption and Lemmas 4.2.3(a), 4.2.2, and 4.1.13, the map X → X ′ has

pseudo-null kernel, IT = DT and Ei
Λ
(KT ) = 0 for i �= 2. By our pseudo-nullity

assumption, we have E1
Λ
(Xωψ−1

) = 0. It follows from Lemma 4.2.4 and (4.15) that

E1
Λ
(H2

Iw(K,Zp))
ψ = 0. Since Hωψ−1

Σ
is a submodule of the pseudo-null module

H2
Iw(K,Zp(1))

ωψ−1

, we have E1
Λ
(Hωψ−1

Σ
) = 0 as well.

As Zp(1)
ψ = 0, we have (KT )

ωψ−1

0 = Kωψ−1

T . Hence, we have an exact se-

quence

0 −→
(
E2
Λ

(
KT

)
(1)

)ψ −→
(
E2
Λ

(
H2

Iw

(
K,Zp

)))ψ −→
(
E2
Λ

(
HΣ

)
(1)

)ψ −→ 0.

Taking ψ-eigenspaces of the terms of diagram (5.2) and applying the snake lemma,

we obtain an exact sequence

0 −→ X
ψ
T −→ cokerφψ

T −→ E2
Λ

(
Hωψ−1

Σ

)
(1)−→ 0.

As Xψ and Dψ
p for all p ∈ T have Λψ-rank one by Lemma 4.3.1, the argument is

now just as before, the assumption on X
ψ
Σi

ensuring the injectivity of φψ
pi . �

This yields the following statement on second Chern classes.

COROLLARY 5.3.2. Let the notation and hypotheses be as in Theorem 5.3.1.

Suppose in addition that n = 2 and X
ψ
Σ

is pseudo-null. Let fi be a generator for

the ideal c1((XΣi
)ψ) of Λψ . Then the sum of second Chern classes

c2

(
X
ψ
Σ

)
+ c2

((
Kωψ−1

Σ

)ι
(1)

)
+ c2

((
(X ′)ωψ

−1)ι
(1)

)

has a characteristic symbol with component at a codimension one prime P of Λψ

the Steinberg symbol {f1,f2} if f2 is not a unit at P , and trivial otherwise.

Proof. By the exact sequence (5.1) for HΣ, Lemma A.7, and the fact that

Zωψ−1

p = 0, we have

c2

(
α
(
Hωψ−1

Σ

)
(1)

)
= c2

(
α
(
Kωψ−1

Σ

)
(1)

)
+ c2

(
α
(
(X ′)ωψ

−1)
(1)

)
.

The result then follows from Theorem 5.3.1, as in the proof of Theorem 5.2.5. �

In the following, it is not necessary to suppose Leopoldt’s conjecture, if one

simply allows K to be the cyclotomic Zp-extension of F .
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THEOREM 5.3.3. Let E be a totally real field other than Q, and let ψ be odd

at exactly one real place of E. Assume that Leopoldt’s conjecture holds, so r = 1.

Furthermore, suppose that X
ψ
Σi

is Λψ-torsion for all i ∈ {1, . . . ,n}. If (X ′)ωψ
−1

is

finite, then there is an exact sequence of Ω-modules

(
Kωψ−1

Σ

)ι
(1)−→ X

ψ
Σ
−→ Ωψ

∑n
i=1 c1

(
X
ψ
Σi

) −→
(
(X ′)ωψ

−1)∨
(1)−→ 0.

Proof. The argument is much as before: we take the ψ-eigenspace of the terms

of diagram (5.2) with T = {p1, . . . ,pn}. We have E2
Λ
(K) = 0 and E1

Λ
(K)∼=Kι. The

map DT → D∗∗
T in the diagram can be replaced by IT → I∗∗T , as in the proof of

Theorem 5.1.1. Applying the snake lemma gives the stated sequence. �

Although this is somewhat less strong than our other results in general (when

ωψ−1|∆p
= 1 for some p ∈Σ), we have the following interesting corollary.

COROLLARY 5.3.4. Suppose that E is real quadratic, p is split in E into two

primes p1 and p2, and the character ψ is odd at exactly one place of E. If Xψ and

(X ′)ωψ
−1

are finite, then there is an exact sequence of finite Ω-modules

0 −→Xψ −→ Ωψ

c1

(
X
ψ
p1

)
+ c1

(
X
ψ
p2

) −→
(
(X ′)ωψ

−1)∨
(1)−→ 0.

We can make this even more symmetric, replacing X by X ′ on the left, if we

also replace X
ψ
pi by its maximal split-at-p3−i quotient for i ∈ {1,2}, and supposing

only that (X ′)ψ is finite. We of course have the corresponding statement on second

Chern classes.

6. A non-commutative generalization. The study of non-commutative

generalizations of the first Chern class main conjectures discussed in Section 3 has

been very fruitful. See [7], for example, and its references. We now indicate briefly

a non-commutative generalization of Theorems 5.2.1 and 5.2.5 concerning second

Chern classes.

We make the same assumptions as in Subsection 5.2. Namely, E is imaginary

quadratic, and p is an odd prime that splits into two primes p and p̄ in E. Let ψ

be a one-dimensional p-adic character of the absolute Galois group of E of finite

order prime to p with fixed field of its kernel Eψ . Let F = Eψ(μp). Let ω denote

the Teichmüller character of ∆= Gal(F/E). Let Ẽ denote the compositum of all

Zp-extensions of E, and let K be the compositum of Ẽ with F . Let S be the set of

primes of E above p and ∞, so Sf = {p, p̄}.

We suppose in addition that F is Galois over Q. Let σ be a complex conjuga-

tion in Gal(F/Q), and let H = {e,σ}. Then ∆̃ = Gal(F/Q) is a semi-direct prod-

uct of the abelian group ∆ with H . The group H acts on ∆ and Γ = Gal(K/F ) ∼=
Z2
p by conjugation. Let τ be the character of an n-dimensional irreducible p-adic
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representation of ∆̃. Then n∈ {1,2}. If n= 1, then τ restricts to a one-dimensional

character ψ of ∆. If n= 2, then the representation corresponding to τ restricts to a

direct sum of two one-dimensional representations ψ and ψ ◦σ of ∆. So, the orbit

of ψ under the action of σ has order n.

Let Aτ denote the direct factor of Oψ ⊗Zp
Ω = Oψ[[G]] obtained by applying

the idempotent in Oψ[∆̃]-attached to τ , where Oψ is as before. Then Aτ = Ωψ

if n = 1 and Aτ = Ωψ ×Ωψ◦σ if n = 2. The H-action on Aτ is compatible with

the Ω-module structure and the action of H on Ω. Thus, Aτ is a module over the

twisted group ring Bτ =Aτ 〈H〉, which itself is a direct factor of Oψ[[Gal(K/Q)]].

The following non-commutative generalization of Theorem 5.2.1 follows from

the compatibility with the H-action of the arguments used in the proof of said

theorem.

PROPOSITION 6.1. Suppose that Xωψ−1

is pseudo-null as a Λψ-module. If

n = 1, then the sequence (5.4) for ψ is an exact sequence of modules for the non-

commutative ring Bτ . If n= 2, then the direct sum of the sequences (5.4) for ψ and

ψ ◦σ is an exact sequence of Bτ -modules.

To generalize Theorem 5.2.5, we first extend the approach to Chern classes

used in Subsection 2.1 to the context of non-commutative algebras which are finite

over their centers. (For related work on non-commutative Chern classes, see [6].)

The twisted group algebra Bτ is a free rank four module over its center Zτ =

AH
τ . Suppose that M is a finitely generated module for Bτ with support as a Zτ -

module of codimension at least 2. Let Y = Spec(Zτ ), and let Y (2) be the set of

codimension two primes in Y . The localization My = (Zτ )y ⊗Zτ
M of M at y ∈

Y (2) has finite length over the localization (Bτ )y . Let k(y) be the residue field of

y, and let Bτ (y) = k(y)⊗Zτ
Bτ . Then Bτ (y) has dimension 4 as a k(y)-algebra.

From a composition series for My as a Bτ (y)-module, we can define a class [My] in

the Grothendieck group K′
0(Bτ (y)) of all finitely generated Bτ (y)-modules. This

leads to a second Chern class

c2,Bτ
(M) =

∑

y∈Y (2)

[
My

]
·y(6.1)

in the group

Z2
(
Bτ

)
=

⊕

y∈Y (2)

K′
0

(
Bτ (y)

)
.

For y ∈ Y (2), note that Aτ (y) = k(y)⊗Zτ
Aτ is a k(y)-algebra of dimension 2

with an action of H over k(y), and Bτ (y) is the twisted group algebra Aτ (y)〈H〉.
Moreover, we have

k(y)⊗Zτ
Zτ [H]∼= k(y)[H],
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and in this way, both Aτ (y) and k(y)[H] are commutative k(y)-subalgebras of

Bτ (y).

LEMMA 6.2. For y ∈ Y (2), the forgetful functors on finitely generated mod-

ule categories produced by restricting operators from Bτ (y) to either Aτ (y) or

k(y)[H] induce injections

K′
0

(
Bτ (y)

)
−→ K′

0

(
Aτ (y)

)
= Z⊕Z if n= 2, and(6.2)

K′
0

(
Bτ (y)

)
−→ K′

0

(
k(y)[H]

)
= Z⊕Z if n= 1.(6.3)

Proof. Since H has order 2 and Aτ is a Zp-algebra for an odd prime p, the

surjection Aτ → Aτ (y) gives a surjection Zτ = AH
τ → (Aτ (y))

H . Thus k(y) =

Aτ (y)
H . Therefore either Aτ (y) is a Galois étale H-algebra over k(y) or Aτ (y) is

isomorphic to the dual numbers k(y)[ε]/(ε2) in such a way that the generator σ for

H sends ε to −ε.

There is a homomorphism π∗ : K ′
0(k(y))→K ′

0(Bτ (y)) which sends a finitely

generated k(y)-module M to the Bτ (y)-module with underlying Aτ (y)-module

Aτ (y)⊗k(y)M and action of H induced by the action of H on Aτ (y).

Suppose to begin with that Aτ (y) is an étale algebra over k(y), so Aτ (y) is

a Galois étale k(y)-algebra with Galois group H . It is shown by descent in the

paragraph just before [5, Lemma 8.4] that π∗ is an isomorphism. The composition

of π∗ with the forgetful homomorphism f1 : K′
0(Bτ (y)) → K′

0(Aτ (y)) is the ho-

momorphism h : K ′
0(k(y)) → K0(Aτ (y)) induced by tensoring with Aτ (y) over

k(y). Since h is injective, f1 is injective.

If n = 2, then H permutes the two algebra components of Aτ , and Aτ (y) is

isomorphic to the étale k(y)-algebra k(y)×k(y), so we have shown (6.2).

Suppose now that n = 1 and that Aτ (y) is étale over k(y). We have shown

Aτ (y) is then a Galois étale k(y)-algebra with Galois group H . Thus Aτ (y) has

two one-dimensional k(y)-eigenspaces under the action of H . We have also shown

that the map π∗ : K ′
0(k(y)) → K ′

0(Bτ (y)) induced by tensoring with Aτ (y) over

k(y) is an isomorphism. So from the definition of π∗, we see that restricting oper-

ators from Bτ (y) to k(y)[H] gives an injection

K ′
0

(
Bτ (y)

)
−→K0

(
k(y)[H]

)
= Z⊕Z

whose image is the diagonal embedding of Z.

Finally, suppose n = 1 and that Aτ (y) is not étale over k(y). We have shown

that Aτ (y) is isomorphic in this case to the dual numbers k(y)[ε]/(ε2) in such a way

that a generator for H sends ε to −ε. All simple Bτ (y)-modules are annihilated by

ε. Since Bτ (y)/εBτ (y) is isomorphic to k(y)[H], we find that the map (6.3) is

injective. �

As in Theorem 5.2.5, we must take completed tensor products over Oψ with

the Witt vectors W over Fp. In what follows, we abuse notation and omit this W
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from the notation of the completed tensor products. That is, from now on we let

Zτ denote W ⊗̂Oψ
Zτ , and similarly with Aτ and Bτ . We then let Y = Spec(Zτ ),

and we use k(y) to denote the residue field of Zτ at y ∈ Y , and we define Aτ (y)

and Bτ (y) as before. Note that the analogue of Lemma 6.2 holds for y ∈ Y (2), with

Y (2) the subset of codimension 2 primes in Y .

We suppose for the remainder of this section that Xψ and Xωψ−1

are pseudo-

null as Λψ-modules. In view of Proposition 6.1, we have by Theorem 5.2.5 the

following identity among non-commutative second Chern classes

c2,Bτ

⎛
⎝
⊕

χ∈T

Ωχ
W(

Lp,χ,Lp̄,χ

)

⎞
⎠=c2,Bτ

⎛
⎝
⊕

χ∈T
Xχ

W

⎞
⎠+c2,Bτ

⎛
⎝
⊕

χ∈T

(
Xωχ−1

W

)ι
(1)

⎞
⎠ ,(6.4)

where T denotes the orbit of ψ (of order 1 or 2). In view of Lemma 6.2, to compute

(6.4) in terms of p-adic L-functions, it suffices to compute the analogous abelian

second Chern classes via L-functions when Bτ is replaced by Aτ and by Zτ [H]

and we view the latter two as quadratic algebras over Zτ .

In the case that n = 2, a prime y ∈ Y (2) gives rise to one prime in each of the

two factors of Aτ =Ωψ
W ×Ωψ◦σ

W by projection. Note that we can identify Ωψ
W and

Ωψ◦σ
W with ΛW so that Zτ is identified with the diagonal in Λ2

W , and these two

primes of ΛW are then equal. We have

K′
0

(
Aτ (y)

)∼= Z⊕Z,(6.5)

the terms being K′
0 of the residue fields of Ωψ

W and Ωψ◦σ
W for y, respectively.

PROPOSITION 6.3. If n= 2, then under the injective map

⊕

y∈Y (2)

K′
0

(
Bτ (y)

)
−→

⊕

y∈Y (2)

(Z⊕Z)

induced by (6.2) and (6.5), the class in (6.4) is sent to an element with both com-

ponents having a characteristic symbol which at P ∈ Y (1) is equal to the Steinberg

symbol

{
Lp,ψ,Lp̄,ψ

}
∈ K2

(
Frac

(
ΛW

))
if Lp̄,ψ is not a unit at P,

and is zero otherwise.

Proof. This is immediate from Theorem 5.2.5 in the first coordinate. The sec-

ond coordinate is the same by Lemma 3.3.2(a) and the above identification of Ωψ◦σ
W

with ΛW , recalling Remark 2.5.2. �

In the case that n= 1, so ψ = τ |∆, we have an algebra decomposition

Zτ [H] = Z+
τ ×Z−

τ(6.6)
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with the summands corresponding to the trivial and nontrivial one-dimensional

characters of H . These summands are isomorphic to Zτ as Zτ -algebras. We then

have a decomposition

K′
0

(
k(y)[H]

) ∼= Z⊕Z(6.7)

with the terms being K′
0 of the residue fields of Z+

τ and Z−
τ , respectively, for the

images of y.

There are pro-generators γ1,γ2 ∈ Gal(K/F ) such that σ(γ1) = γ1 and σ(γ2) =

γ−1
2 . The ring Aτ = Ωψ is Zτ [λ], where λ = γ2 − γ−1

2 . Note that σ(λ) = −λ and

λ2 ∈Zτ . It follows that we have an isomorphism Zτ [H]
∼−−→Ωψ of Zτ [H]-modules

taking 1 to (1+λ)/2 and σ to (1−λ)/2.

The element σ permutes the p-adic L-functions Lp,ψ and Lp̄,ψ. Define

L+
τ = Lp,ψ+Lp̄,ψ and L−

τ = Lp,ψ−Lp̄,ψ.

PROPOSITION 6.4. If n= 1, then under the injective map

⊕

y∈Y (2)

K′
0

(
Bτ (y)

)
−→

⊕

y∈Y (2)

(Z⊕Z)

induced by (6.3) and (6.7), the class in (6.4) is sent to an element that in the first and

second components, respectively, has a characteristic symbol which at P ∈ Y (1) is

equal to

{λL−
τ ,L+

τ } ∈ K2(Frac(Z+
τ )) if L+

τ is not a unit at P ,

{L−
τ ,λL+

τ } ∈ K2(Frac(Z−
τ )) if λL+

τ is not a unit at P ,

and is zero otherwise.

Proof. The decomposition (6.6) and the isomorphism Ωψ ∼= Zτ [H] induce an

isomorphism

Ωψ

(
Lp,ψ,Lp̄,ψ

) ∼= Z+
τ(

L+
τ ,λL−

τ

) ⊕ Z−
τ(

λL+
τ ,L−

τ

) .

From the two summands on the right, together with Proposition 2.5.1, we arrive at

the two components of the non-commutative second Chern class of (6.4), as in the

statement of the proposition. �

Appendix A. Results on Ext-groups. In this appendix, we derive some

facts about modules over power series rings. For our purposes, let O be the valu-

ation ring of a finite extension of Qp. Let Γ = Zr
p for some r ≥ 1, and denote its

standard topological generators by γi for 1 ≤ i≤ r. Set Λ=O[[Γ]] =O[[t1, . . . , tr]],

where ti = γi−1.
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As in Subsection 4.1, we use the following notation for a finitely gener-

ated Λ-module M . We set Ei
Λ
(M) = Exti

Λ
(M,Λ), and we set M∗ = E0

Λ
(M) =

HomΛ(M,Λ). Moreover, M∨ denotes the Pontryagin dual, and Mtor denotes the

Λ-torsion submodule of M .

We will be particularly concerned with Λ-modules of large codimension, but

we first recall a known result on much larger modules.

LEMMA A.1. Let M be a Λ-module of rank one. Then M∗∗ is free.

Proof. The canonical map (M/Mtor)
∗ → M∗ is an isomorphism, so we may

assume that Mtor = 0. We may then identify M with a nonzero ideal of Λ. The

dual of a finitely generated module is reflexive, so we are reduced to showing that

a reflexive ideal I of Λ is principal. For each height one ideal P of Λ, let πP be

a uniformizer of ΛP , and let nP ≥ 0 be such that πnP

P generates IP . Let s be the

finite product of the πnP

P . Then the principal ideal J = sΛ is obviously reflexive

and has the same localizations at height one primes as I . As I and J are reflexive,

they are the intersections of their localizations at height one primes, so I = J . �

For a finitely generated Λ-module M , we have Ei
Λ
(M) = 0 for all i > r+ 1.

Since Λ is Cohen-Macaulay (in fact, regular), the minimal j = j(M) such that

E
j
Λ
(M) �= 0 is also the height of the annihilator of M . (We take j = ∞ for M = 0.)

In particular, M is torsion (resp., pseudo-null) if j ≥ 1 (resp., j ≥ 2), and M is

finite if j = r+1.

LEMMA A.2. For j ≥ 0, let G0(j) be the Grothendieck group of the category

of finitely generated Λ-modules M with j(M) ≥ j. The quotient of G0(j) by the

image of the natural homomorphism G0(j+1)→G0(j) is generated by the classes

of modules of the form Λ/P with P a prime ideal of height j.

Proof. Suppose M is a finitely generated Λ-module with j(M)≥ j. The codi-

mension of the support of M is then at least j, and the localization of M at every

prime P of codimension j is of finite length over ΛP . If P is in the support of

M , then P is an associated prime of M by [33, (7.D) Thm. 9]. Hence there is an

m ∈M such that Λ ·m is isomorphic to Λ/P . Thus there is an exact sequence

0 −→ Λ/P −→M −→M ′ −→ 0

in which j(M ′) ≥ j and the sum s(M ′) of the lengths of M ′ at codimension j

primes of Λ is one less than s(M). The lemma now follows by induction on s(M).

�

We also have the following:

LEMMA A.3. Let 1 ≤ d≤ r, and let fi for 1 ≤ i≤ d be elements of Λ such that

(f1, . . . ,fd) has height d. Then M = Λ/(f1, . . . ,fd) has no nonzero Λ-submodule

N with j(N)≥ d+1.



HIGHER CHERN CLASSES IN IWASAWA THEORY 675

Proof. Since Λ is a Cohen-Macaulay local ring, we know from [33, Theorem

17.4(iii)] that the ideal (f1, . . . ,fd) has height d if and only if f1, . . . ,fd form a

regular sequence in Λ. Then M is a Cohen-Macaulay module by [33, Theorem

17.3(ii)], and it has no embedded prime ideals by [33, Theorem 17.3(i)]. If M has

a nonzero Λ-submodule N with j(N) ≥ d+ 1, then a prime ideal of Λ of height

strictly greater than d will be the annihilator of a nonzero element of M . This

contradicts the fact that M has no embedded primes. �

Let G be a profinite group containing Γ as an open normal subgroup, and set

Ω=O[[G]]. For a left (resp., right) Ω-module M , the groups Ei
Λ
(M) have the struc-

ture of right (resp., left) Ω-modules (see [32, Proposition 2.1.2], for instance).

We will say that a finitely generated Ω-module M is small if j(M) ≥ r as a

(finitely generated) Λ-module. We use the notation (finite) to denote an unspecified

finite module occurring in an exact sequence, and the notation Mfin to denote the

maximal finite Λ-submodule of M . Let M† = (M ⊗Zp

∧rΓ)∨, which is isomor-

phic to M∨ if G is abelian.

We derive the following from the general study of Jannsen [24]. In [25, Lemma

5], a form of this is proven for modules finitely generated over Zp. Its part (b) gives

an explicit description of the Iwasawa adjoint of a small Ω-module M in the case

that Ω has sufficiently large center. We do not use this in the rest of the paper, but

for comparison with the classical theory, the explicit description appears to be of

interest.

PROPOSITION A.4. Let M be a small (left) Ω-module.

(a) There exist canonical right Ω-module isomorphisms Er+1
Λ

(M)∼=M†
fin, and

these are natural in M .

(b) Given a non-unit f ∈Λ that is central in Ω and not contained in any height

r prime ideal in the support of M , there exists a canonical right Ω-module homo-

morphism

Er
Λ(M)∼= lim←−

n

(
M/fnM

)†
,

the inverse limit taken with respect to maps (M/fn+1M)∨ → (M/fnM)∨ induced

by multiplication by f . The maximal finite submodule of Er
Λ
(M) is zero.

Proof. For i≥ 0 and a locally compact Ω-module A, set

Di(A) = lim−→
U

Hi
cont(U,A)

∨,

where the direct limit is with respect to duals of restriction maps over all open

subgroups U of finite index in Γ. The group Γ is a duality group (see [40, Theorem
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3.4.4]) of strict cohomological dimension r, and its dualizing module is the Ω-

bimodule

Dr

(
Zp

)∼= lim−→
U

HomZp

(
ΛrU,Zp

)∨ ∼=
r∧
Γ⊗Zp

Qp/Zp.

We have Di(M
∨) = 0 for i > r and, by duality, we have the first isomorphism in

Dr

(
M∨)∼= HomΛ

(
M∨,Dr

(
Zp

))∼=
(

lim−→
U

MU
)
⊗Zp

r∧
Γ.

By [24, Theorem 2.1], we then have canonical and natural isomorphisms

Er+1
Λ

(M)∼=
(
Dr

(
M∨)[p∞

])∨ ∼=
((

lim−→
U

MU
)[

p∞
])†

.(A.1)

Moreover, by [24, Corollary 2.6b], we have that Ei
Λ
(M) = 0 for i �= r+ 1 if M

happens to be finite.

We claim that

(
lim−→
U

MU
)[

p∞
]
=Mfin(A.2)

which will finish the proof of part (a). As Γ acts continuously on M , the left-

hand side contains Mfin, so it suffices to show that (lim−→U
MU )[p∞] is finite. As

M is compact, there exist an open subgroup V and k ≥ 1 such that MV [pk] =

lim−→U
MU [p∞]. As V ∼= Γ, it suffices to show that MΓ[p] is finite.

By Lemma A.2 and the right exactness of Er+1
Λ

, we are recursively reduced to

considering M of the form Λ/P with P a prime ideal of height r. If p /∈ P , then

M has no p-power torsion and (A.2) is clear. If p ∈ P , then Λ/P is isomorphic to

Fq[[t1, . . . , tr]]/P
′ for a prime ideal P ′ of height r− 1 and some finite field Fq of

characteristic p, where the ti are the images of the ti = γi−1 for topological gener-

ators γi of Γ. The Γ-invariants of (Λ/P )Γ are annihilated by all ti. If this invariant

group had a nonzero element, it would be annihilated by all ti. The primality of

P ′ would then force P ′ to contain all ti. Since P ′ is not maximal, this proves the

claim, and hence part (a).

Suppose we are given an element f ∈ Λ which is not a unit in Λ and is cen-

tral in Ω but is not in any prime ideal of codimension r in the support of M . As

M/fnM and M [fn] are supported in codimension r+ 1, these Λ-modules are

finite. It follows that we have isomorphisms Er
Λ
(M/M [fn]) ∼= Er

Λ
(M) and then

exact sequences

0 −→ Er
Λ(M)

fn

−−→ Er
Λ(M)−→ Er+1

Λ

(
M/fnM

)
−→ 0.
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We write

Er
Λ(M)∼= lim←−

n

Er
Λ(M)/fnEr

Λ(M)∼= lim←−
n

Er+1
Λ

(
M/fnM

)∼= lim←−
n

(M/fnM)†,

where multiplication by f induces the map (M/fn+1M)† → (M/fnM)†, which

is the twist by the inverse of
∧rΓ of M∨[fn+1] → M∨[fn]. It is clear from the

latter description that Er
Λ
(M) can have no nonzero finite submodule (and for this,

it suffices to prove the statement as a Λ-module, in which case the existence of f

is guaranteed), so we have part (b). �

Remark A.5. A non-unit f ∈Λ as in Proposition A.4(b) always exists. That is,

consider the finite set of height r prime ideals conjugate under G to a prime ideal in

the support of M . The union of these primes is not the maximal ideal of Λ, so we

may always find a non-unit b∈Λ not contained in any prime in the set. The product

of the distinct G-conjugates of b is the desired f . Given a morphism M → N of

small Ω-modules, we obtain a canonical morphism between the isomorphisms of

Proposition A.4(b) for M and N by choosing f to be the same element for both

modules.

For a small Ω-module M and an f as in Proposition A.4(b), the quotient

M/fM is finite, M itself is finitely generated and torsion over Zp[[f ]]. The descrip-

tion of Er
Λ
(M) in Proposition A.4(b) then coincides (up to choice of a Zp-generator

of
∧rΓ) with the usual definition of the Iwasawa adjoint as a Zp[[f ]]-module. In

view of this, we make the following definition.

Definition A.6. The Iwasawa adjoint α(M) of a small Ω-module M is Er
Λ
(M).

We then have the following simple lemma (cf. [56, Proposition 15.29]).

LEMMA A.7. Let 0 → M1 → M2 → M3 → 0 be an exact sequence of small

Ω-modules. The long exact sequence of Ext-groups yields an exact sequence

0 −→ α
(
M3

)
−→ α

(
M2

)
−→ α

(
M1

)
−→ (finite)

of right Ω-modules, where (finite) is the zero module if (M3)fin = 0.

We recall the following consequence of Grothendieck duality [20, Chapter V],

noting that Λ is its own dualizing module in that Λ is regular (and that Ω is a finitely

generated, free Λ-module).

PROPOSITION A.8. For a finitely generated Ω-module M , there is a conver-

gent spectral sequence

E
p
Λ

(
E
r+1−q
Λ

(M)
)
=⇒M δp+q,r+1,(A.3)

natural in M , of right Ω-modules, where δi,j = 1 if i = j and δi,j = 0 if i �= j.

Moreover, Ei
Λ
(Ej

Λ
(M)) = 0 for i < j and for i > r+1.
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This implies the following:

COROLLARY A.9. Let M be a finitely generated Ω-module.

(a) For r = 1, one has Ei
Λ
(M∗) = 0 for all i≥ 1. Hence, M∗ is Λ-free for any

M .

(b) For r = 2, one has E2
Λ
(M∗) = 0 and E1

Λ
(M∗)∼= E3

Λ
(E1

Λ
(M)), so E1

Λ
(M∗)

is finite.

(c) If M is small, then there is an exact sequence of Ω-modules

0 −→ Er+1
Λ

(
Er+1
Λ

(M)
)
−→M −→ Er

Λ

(
Er
Λ(M)

)
−→ 0.

That is, α(α(M)) ∼=M/Mfin as Ω-modules.

For a left (resp., right) Ω-module M , we let M ι denote the right (resp., left)

Ω-module that is M as an O-module and on which g ∈ G acts as g−1 does on M .

The following is a consequence of the theory of Iwasawa adjoints for r = 1 (see

[24, Lemma 3.1]), in which case Λ-small means Λ-torsion.

LEMMA A.10. Let d ≥ 1, and let fi for 1 ≤ i ≤ d be elements of Λ such that

(f1, . . . ,fd) has height d. Set M = Λ/(f1, . . . ,fd). Then Ei
Λ
(M)∼= (M ι)δi,d for all

i≥ 0.

Proof. This is clearly true for d= 0. Let d≥ 1, and set N = Λ/(f1, . . . ,fd−1)

so that M =N/(fd). The exact sequence

0 −→N
fd−−→N −→M −→ 0

that is a consequence of Lemma A.3 gives rise to a long exact sequence of Ext-

groups. By induction on d, the only nonzero terms of that sequence form a short

exact sequence

0 −→N ι (fd)
ι

−−−−→N ι −→ Ed
Λ(M)−→ 0,

and the result follows. �

For more general Ω-modules, we can for instance prove the following.

PROPOSITION A.11. Suppose that G ∼= Γ×∆, where ∆ is abelian of order

prime to p. Let M be a small Ω-module. Then (M/Mfin)
ι and α(M) have the

same class in the quotient of the Grothendieck group of the category of small right

Ω-modules by the image of the Grothendieck group of the category of finite right

Ω-modules. In particular, as Λ-modules, their rth localized Chern classes agree.

Proof. By taking ∆-eigenspaces of M (passing to a coefficient ring containing

|∆|th roots of unity), we can reduce to the case that ∆ is trivial. It then suffices by

Lemmas A.2 and A.7 to show the first statement for M =Λ/P , where P is a height
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r prime. Let ι : Λ→Λ be the involution determined by inversion of group elements.

We can compute α(M) = Er
Λ
(M) = Extr

Λ
(M,Λ) by an injective resolution of Λ by

Λ-modules. Every group in the resulting complex of homomorphism groups will

be killed by ι(P ), so α(M) will be annihilated by ι(P ). Clearly, ι(P ) is the only

codimension r prime possibly in the support of Er
Λ
(M), and it is in the support

since α(α(M)) ∼=M/Mfin by Corollary A.9(c). �

The following particular computation is of interest to us. Let G′ be a closed

subgroup of G, and let M be a finitely generated left Ω′ = Zp[[G′]]-module. Set

Γ′ = G′ ∩Γ, and let Λ′ = Zp[[Γ
′]]. For i = 0 we have a right action of g ∈ Γ′ on

f ∈ E0
Λ′(M) = HomΛ′(M,Λ′) given by setting (fg)(m) = f(m)g and a left action

of g on f given by (gf)(m) = f(m)g−1. This extends functorially to right and left

actions of Γ′ on Ei
Λ′(M) for all i.

LEMMA A.12. With the above notation, we have for all i≥ 0 an isomorphism

of right Ω-modules

Ei
Λ

(
Ω⊗Ω′ M

)∼= Ei
Λ′(M)⊗Ω′ Ω(A.4)

and an isomorphism of left Ω-modules

Ei
Λ

(
Ω⊗Ω′ M

)∼=Ωι⊗Ω′ Ei
Λ′(M).(A.5)

Proof. Let us first show that Ω is flat over Ω′. This follows, for instance, from

[32, Lemma 2.4.3(a)], since Ω is a free profinite Ω′-module, i.e., a topological

direct product of copies of Ω′, on a set right coset representatives for G′ in G.

By [32, Lemma 2.1.6] and [32, Lemma 2.1.7] there are isomorphisms of right Ω-

modules

ExtiΩ
(
Ω⊗Ω′ M,Ω

)∼= ExtiΩ′(M,Ω)∼= ExtiΩ′(M,Ω′)⊗Ω′ Ω.

The isomorphism (A.4) follows, as the left term is Ei
Λ
(Ω⊗Ω′ M) and the right term

is Ei
Λ′(M)⊗Ω′ Ω. The isomorphism (A.5) follows from (A.4). �

COROLLARY A.13. Let G′ be a closed normal subgroup of G, and let N denote

the left Ω-module Zp[[G/G′]]. Let r′ = rankZp
(G′∩Γ). Then Ei

Λ
(N) ∼= (N ι)δi,r′ as

right Ω-modules.

Proof. Let Ω′ = Zp[[G′]]. Note that N ∼= Ω⊗Ω′ Zp, so N ι ∼= Zp⊗Ω′ Ω as right

Ω-modules. By Lemmas A.12 and A.4, we have

Ei
Λ(N)∼= Ei

Λ′
(
Zp

)
⊗Ω′ Ω∼=

(
Zp⊗Ω′ Ω

)δi,r′ . �
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Soc., Zürich, 2007, pp. 335–357.

[28] S. Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), no. 1,

1–36.

[29] A. Lannuzel and T. Nguyen Quang Do, Conjectures de Greenberg et extensions pro-p-libres d’un corps de

nombres, Manuscripta Math. 102 (2000), no. 2, 187–209.

[30] A. Lei, D. Loeffler, and S. L. Zerbes, Wach modules and Iwasawa theory for modular forms, Asian J. Math.

14 (2010), no. 4, 475–528.

[31] M. F. Lim, Poitou-Tate duality over extensions of global fields, J. Number Theory 132 (2012), no. 11,

2636–2672.
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