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Abstract: The skyrocketing popularity of health monitoring has spurred increasing interest in 16 
wearable electrochemical biosensors.  Compared with the traditionally rigid and bulky 17 
electrochemical biosensors, flexible and stretchable devices render a unique capability to conform 18 
to the complex, hierarchically textured surfaces of the human body.  With a recognition element 19 
(e.g., enzymes, antibodies, nucleic acids, ions) to selectively react with the target analyte, wearable 20 
electrochemical biosensors can convert the types and concentrations of chemical changes in the 21 
body into electrical signals for easy readout.  Initial exploration of wearable electrochemical 22 
biosensors integrates electrodes on textile and flexible thin-film substrate materials.  A stretchable 23 
property is needed for the thin-film device to form an intimate contact with the textured skin 24 
surface and to deform with various natural skin motions.  Thus stretchable materials and 25 
structures have been exploited to ensure the effective function of a wearable electrochemical 26 
biosensor.  In this mini-review, we summarize the recent development of flexible and stretchable 27 
electrochemical biosensors, including their principles, representative application scenarios (e.g., 28 
saliva, tear, sweat, and interstitial fluid), and materials and structures.  While great strides have 29 
been made in the wearable electrochemical biosensors, challenges still exist, which represents a 30 
small fraction of opportunities for the future development of this burgeoning field. 31 
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 35 

1. Introduction 36 
As personal healthcare starts to gain skyrocketing popularity, various wearable sensors have 37 

been developed for the health monitoring of the individual [1–4].  With relatively simple design, 38 
physical sensors have been explored to capture physical (e.g., temperature [5,6], motion [7,8], 39 
respiration rate [9,10], and gas exposure [11,12] among others) and electrophysiological signals (e.g., 40 
ECG [13], EMG [14], and EEG [15], among others).  However, it is still highly desirable to capture 41 
chemical information for reflecting complete physiological conditions from the children to the 42 
elderly.  With a recognition element (e.g., enzymes, antibodies, nucleic acids, ions) to selectively 43 
react with the target analyte [16,17], electrochemical biosensors can convert the types and 44 
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concentrations of biochemical changes in the body into electrical signals [18,19].  However, 45 
traditional electrochemical biosensors are rigid and bulky.  Because of the mismatch in material and 46 
geometry, their applications are limited on the soft, hierarchically textured surfaces of the human 47 
body [20,21].  Therefore, the development of flexible and stretchable electrochemical biosensors 48 
becomes attractive [22–28].  49 

The recent development in cost-effective fabrication approaches includes various additive 50 
manufacturing or printing technologies.  Integrating electrochemical biosensors on soft substrates 51 
with these approaches renders flexible and stretchable properties for wearable applications (Fig. 1) 52 
[2,29–34].  Printing electrochemical sensing materials directly onto soft textiles of daily clothes 53 
allows for timely monitoring of critical information, without compromising the level of comfort or 54 
function of the garment [35–37].  However, textile-based biosensors are limited to limited regions 55 
because of the need for pliably conformal or intimate contact with biofluids for high-fidelity 56 
detection.  Additionally, not all types of textiles are suitable to integrate sensing materials [38–40].  57 
As an alternative, other flexible thin-film substrates (e.g., paper and plastic) have been explored 58 
[41–46].  However, the intrinsic fracture limit of the flexible thin-film materials is small (e.g., < 1% 59 
for paper).  Thus, the deformation of flexible electrochemical biosensors is limited.  Considering a 60 
stretchable property is needed to form an intimate contact with the textured skin surface and to 61 
deform with various natural skin motions, stretchable materials and structures have been exploited 62 
to ensure the effective function of an electrochemical biosensor (Fig. 1) [32,47,48]. 63 
 64 

 65 
Figure 1. Overview of wearable electrochemical biosensors. Representative fabrication approaches include (a) gravure 66 
printing, reproduced with permission from [49], Copyright 2015, Springer; (b) screen printing, reproduced with permission 67 
from [50], Copyright 2013, Wiley-VCH, (c) 3D printing, reproduced with permission from [51], Copyright 2016, Wiley-VCH, 68 
(d) flexographic printing, reproduced with permission from [52], Copyright 2010, The Royal Society of Chemistry, and (e) 69 
inkjet printing, reproduced with permission from [53]. Copyright 2017, American Chemical Society. Wearable electrochemical 70 
sensors can be integrated on various substrate materials, including (f) fabric/textile, reproduced with permission from [54], 71 
Copyright 2014, Wiley-VCH; (g) paper, reproduced with permission from [55], Copyright 2014, Wiley-VCH; (h) plastic thin 72 
films, reproduced with permission from [56], Copyright 2012, Macmillan Publishers Limited; (i) temporary tattoo substrates, 73 
reproduced with permission from [57], Copyright 2012, The Royal Society of Chemistry; along with (j) stretchable structures, 74 
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reproduced with permission from [58], Copyright 2015, American Chemical Society. Applying the resulting wearable 75 
electrochemical sensors can analyze a variety of body fluids, including (k) tear, reproduced with permission from [59], 76 
Copyright 2015, IOP Publishing Ltd; (l) sweat, reproduced with permission from [60], Copyright 2013, American Chemical 77 
Society; (m) interstitial fluid (ISF), reproduced with permission from [61], Copyright 2014, American Chemical Society, and 78 
(n) saliva, reproduced with permission from [62], Copyright 2012, Macmillan Publishers Limited.  79 
 80 

In this mini-review, we summarize the latest development of wearable electrochemical 81 
biosensors. Their working principles, target biofluids, fabrication approaches, and wearable 82 
electrochemical biosensors based on various stretchable materials and structures are reviewed.  83 
Following the introduction of the working principles of different electrochemical biosensors in 84 
Section 2, we discuss the variety of target biofluids (e.g., sweat, tear, saliva, and interstitial fluids) for 85 
wearable electrochemical biosensors to sample and analyze in Section 3.  Next, Section 4 focuses on 86 
a few representative cost-effective fabrication approaches such as additive manufacturing or 87 
printing to integrate electrochemical biosensors on various flexible and stretchable substrates, 88 
followed by a conclusion and future perspective in Section 5. 89 

2. Principles of electrochemical biosensors 90 
Electrochemical biosensors often consist of a recognition element and a sensor element (Fig. 2). 91 

The recognition element could be the nucleic acid, antibody, ions, or enzyme.  The sensing element 92 
may rely on amperometry/voltammetry, potentiometry, field-effect transistors, or impedimetry 93 
[63–66].  These different types of electrochemical biosensors are also compared in Table 1 [64–67].  94 
The transduced signals from the sensing element can be transmitted through a wired or wireless 95 
communication module.  The analysis of the data can then help inform the health condition. 96 

 97 
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Figure 2. Schematic of electrochemical biosensors that include (a) a recognition element (e.g., nucleic acid, antibody, ions, or 99 
enzyme) and a detection transducer, along with a corresponding signal processing unit; Reproduced with permission from 100 
[63]; Copyright 2016, The Royal Society of Chemistry. The detection transducer could be (b) amperometric/voltammetric 101 
sensors with i) two-, ii) three-, or iii) four-electrode configuration (Reproduced with permission from [63]; Copyright 2016, 102 
The Royal Society of Chemistry), (c) a potentiometric sensor (Reproduced with permission from [64]; Copyright 2014, 103 
National Academy of Sciences), (d) a field-effect transistor sensor (Reproduced with permission from [65]; Copyright 2017, 104 
Elsevier), or (e) an impedimetric sensor (Reproduced with permission from [66], Copyright 2008, Elsevier.) (f) Signal 105 
processing element that may include wireless communication module and processing units such as phones (Reproduced with 106 
permission from [65]; Copyright 2017, Elsevier). 107 
 108 

Table 1. Summary of the working principles of different electrochemical sensors. 109 
Detection Mode Transducer Analytes 

Amperometric/ 
voltammetric sensors 

Carbon, metal, chemically modified electrodes Alcohols, glucose, phenols, lactate 

Potentiometric sensors Ion-selective, carbon, metal, glass electrodes K+, Cl-, Ca2+, Na+ 

Field-effect transistors Ion-sensitive/ enzyme field-effect transistor K+, H+ 

Impedimetric sensors Interdigitated/ metal electrodes K+, helicobacter pylori 

 110 

2.1 Amperometric/voltammetric biosensors 111 
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By probing the potential-current relationship, the amperometric or voltammetric biosensors can 112 
detect electroactive species present in biological samples.  In voltammetric biosensors, the applied 113 
potential is varied to operate in either a linear or cyclic voltammetric mode.  The target analyte can 114 
be identified by the peak potential, whereas its concentration could be informed by the peak current.  115 
Different from voltammetric biosensors, amperometric sensors relate the measured current with the 116 
concentration of a specific analyte at a fixed potential.  Other than the Faradaic current from the 117 
reaction of the analyte, other sources of current also contribute to the measured current (collectively 118 
referred to as the background current).  The background current includes the electrolysis of 119 
impurities, the electrolyte, and the electrode material, along with the capacitive current from the 120 
electrode/solution interface.  Operating the electrode at a fixed potential can help eliminate the 121 
capacitive current.  While the background current might be subtracted from the total current in 122 
some cases [68–70], it can be challenging in other cases as the background current may interact with 123 
the signal current in a non-linear manner.  The electrochemical system in a simple amperometric/ 124 
voltammetric cell configuration could consist of a few from two to four electrodes, i.e., a working, 125 
working sensing, counter, and reference electrodes (Fig. 2a).  In the amperometric biosensor, gold, 126 
carbon, or platinum represents the common choice for the working electrode.  These electrode 127 
materials can provide good electron transfer towards the substrate in the reaction and maintain high 128 
activation energy for electron transfer in the competing reactions.  Ag/AgCl often serves as the 129 
reference electrode to provide a fixed potential against which the potential of the working electrode 130 
is controlled and measured.  The two-electrode configuration is simple.  However, it has limited 131 
control of the potential on the surface of the working electrode with large currents, leading to a 132 
smaller linear range.  To overcome this limitation, the counter electrode is employed to provide a 133 
more stable potential reference in the three-electrode configuration.  In a four-electrode biosensor, 134 
redox recognition elements are immobilized on both the working and working sensing electrodes.  135 
The proximity of two working electrodes enhances redox recycling that helps regenerate 136 
electroactive species after their oxidation or reduction.  Thus, this configuration is ideally suited for 137 
micro-scale interdigitated electrode arrays.  Because redox recycling is only available with the 138 
redox bio-recognition element, four-electrode systems are not as commonly used as their 139 
three-electrode counterparts.  Amperometric/ voltammetric biosensors with different 140 
configurations are commonly used as immunosensors, enzyme biosensors, and pesticide monitors 141 
[71–74]. 142 

2.2 Potentiometric biosensors 143 

In potentiometric biosensors, an analyte recognition event is converted into a potential signal 144 
for sensing (Fig. 2b).  Local equilibrium is established across the recognition membrane (e.g., 145 
ion-selective members), leading to a change in the membrane potential.  The information of the 146 
analyte is obtained from the potential difference between the working and reference electrodes.  147 
The most common potentiometric biosensors are capable of detecting pH, ions (e.g., F-, I-, CN-, Na+, 148 
K+, Ca2+, or NH4+), and gas (e.g., CO2 or NH3).  The potential differences between the working and 149 
reference electrodes are proportional to the logarithm of the ion activity or gas fugacity (i.e., effective 150 
partial pressure or concentration) [71–74].  Though potentiometric biosensors are simple, low cost, 151 
and highly selective, they have low sensitivity that limits their use in many applications [72].   In 152 
addition to the contribution from the sensor response, the current response in potentiometric 153 
biosensors also comes from the electrode double layer charging current that can be estimated by a 154 
double layer capacitance model.  The charging current is often considerable and difficult to remove 155 
or filter out, thereby limiting the resolution of potentiometric sensors [73]. 156 

2.3 Field-effect transistor (FET) biosensors 157 

In the ion-sensitive field-effect transistors (ISFETs), an ion-selective membrane is applied 158 
directly to the insulated gate of the field-effect transistors (Fig. 2c). The ISFETs can also be used to 159 
determine the corresponding ion concentrations.  When such ISFETs are coupled with a biocatalytic 160 
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or biocomplexity layer, they become biosensors and are usually called either enzyme or 161 
immunological field-effect transistors (ENFETs or IMFETs).  Unlike potentiometric and 162 
amperometric biosensors that use an electrode transducer, the ISFETs’ transducer is the gate oxide 163 
layer.  The response of the ISFETs allows the output to be either the gate voltage or source-drain 164 
current by fixing one and measuring the other.  The ISFET biosensors have been developed for 165 
enzyme sensing, antigen-antibody binding reaction measurements, and DNA detection [71,73,75]. 166 

2.4 Impedimetric biosensors 167 

Impedimetric biosensors measure the change in electrical impedance.  This change often 168 
results from changes in capacitance and/or resistance of bio-interface characteristics for 169 
bio-recognition events.  As a small sinusoidal stimulus voltage (or current) is imposed in a range of 170 
frequencies, the resulting current (or voltage) is measured in the impedimetric biosensor.  Thus, it 171 
can inform bio-recognition events from the obtained phase and/or amplitude changes.  Compared 172 
to potentiometric and amperometric biosensors, an important advantage of impedimetric biosensors 173 
is that they do not damage or disturb most bio-recognition events because of the applied stimulus 174 
sinusoidal voltage is negligibly small (usually 5–10 mV in amplitude) [74]. 175 

3. Target biofluids for the wearable electrochemical biosensors 176 
Wearable electrochemical biosensors have been explored for human health monitoring through 177 

the analysis of saliva, tear, sweat, and interstitial fluid (Fig. 3).  Table 3 compares the representative 178 
electrochemical biosensors for these different target biofluids within the last five years. 179 
 180 
 181 



  
Table 3. Summary of representative electrochemical biosensors with applications of biofluid analysis. 182 

Biofluid Platform Recognition 

element 

Analyte Technique Response time Linearity range LOD detection sensitivity Ref. 

Saliva PET Uricase 

enzyme 

Uric acid Amperometry NR (real-time) 0-1.0 mM  NR 2.32 µA /mM in artificial saliva 

1.08 µA/mM in undiluted human saliva 

[76] 

PB LOx Lactate Amperometry NR (real-time) 0.1-1.0 mM NR 0.202 µA/mM in undiluted human 

saliva 

[77] 

Foil Carbon (carboxymethyl)lysine Amperometry NR (real-time) 0.5-10 µg/mL 0.8 µM NR [78] 

polyester GOx Glucose Amperometry NR (real-time) 0-1.0 mM 5 µM 41.7 µA⋅mM−1·cm−2 [79] 

PETG GOx Glucose Amperometry NR (real-time) 0.1-1.0 mM NR NR [80] 

Tear PET GOx Glucose Amperometry NR 10 µM–100 mM 5 µM NR [81] 

Amperometry 35 s 0−100 µM 50 µM 53 µA⋅mM−1·cm−2 [82] 

Amperometry NR (real-time) 0.1-0.6mM NR NR [83] 

Polyethylene CuO Glucose Amperometry NR (real-time) 0–0.7 mM 2.99 µM 850 µA mM−1 cm−2 [84] 

Sweat PET Carbon ink Glucose Amperometry NR (real-time) 0.05 to 0.3 mM NR 10.89 µA mM–1 cm–2 [85] 

Tattoo Carbon ink Zinc Amperometry NR (real-time) 20-100 mM 0.05 µg/ml 23.8 µA·ml/µg [86] 

Carbon fibres CNT ink Na+ Potentiometry NR 10-6 M to 10-1 M 4.02×10-7 

M 

0.19 mV/decade [87] 

PET GOx Glucose Amperometry NR NR 10 × 10−6 M 41.8 nA µm−1 cm−2 [88] 

Polycarbonate LOx Lactate Amperometry NR NR NR 0.2 mM [89] 
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Tattoo LOx Lactate Amperometry NR (real-time) 1-20 mM NR 0.1031 µA⋅mm−2⋅mM−1 [60] 

ETH 129, 

PANI 

Ca2+, pH Potentiometry NR (real-time) NR NR 32.2 mV/decade, 62.5 mV/decade [90] 

PDMS GOx Glucose Amperometry NR (real-time) 0-1 mM NR NR [91] 

Interstitial 

fluid 

Tattoo GOx Glucose Amperometry NR 0-0.16 mM NR NR [92] 

NR: not reported; LOD: Limit of detection; PET: Polyethylene terephthalate; PB: Polybutylene; PETG: Polyethylene Terephthalate Glycol; ETH 129: a thin organic membrane containing electrically 183 
neutral carrier calcium ionophore II; PDMS: Polydimethylsiloxane. 184 



  
 185 

 186 
Figure 3. Application of wearable electrochemical biosensor for biofluid analysis. (a) Saliva analysis from i) a mouthguard 187 
biosensor integrated with a wireless amperometric circuit board. ii) Schematic of reagent layer of the chemically modified, 188 
printed Prussian-Blue carbon working electrode containing uricase for the salivary uric acid (SUA) biosensor and iii) optical 189 
image of the wireless amperometric circuit board; Reproduced with permission from [76], Copyright 2015, Elsevier. (b) Tear 190 
analysis by (i) an eyeglasses platform consisting of wireless electronics and a fluidic device with (ii) its exploded view that 191 
shows (1) top polycarbonate membrane, (2) double-adhesive spacer, (3) paper outlet, (4) electrochemical (bio)sensor, and (5) 192 
bottom polycarbonate membrane; Reproduced with permission from [93], Copyright 2019, Elsevier. (c) Sweat analysis from i) 193 
an electrochemical biosensor attached to the skin wet with sweat, along with ii) its performance under mechanical 194 
deformation; Reproduced with permission from [85], Copyright 2018, American Chemical Society. (d) Interstitial fluid (ISF) 195 
analysis that relies on i) a screen-printed glucose biosensor and a wireless flexible printed circuit board, with schematic 196 
illustrations of ii) iontophoretic operation and layout of glucose biosensor. Reproduced with permission from [92], Copyright 197 
2018, Wiley-VCH. 198 
 199 

3.1 Saliva analysis 200 
Human saliva is a watery substance that contains 99.5% water with electrolytes, mucus, white 201 

blood cells, epithelial cells, glycoproteins, enzymes, among others [94].  By leveraging the 202 
developments of biosensors, glucose and lactate in saliva can be non-invasively monitored by a 203 
cavitas sensor from the oral cavity.  A wearable biosensor on a mouthguard is developed to monitor 204 
salivary lactate [77].  The fabrication starts with the printing of Ag/AgCl as the reference electrode 205 
and contacts (for interfacing the electrochemical analyzer) on a flexible PET substrate.  Next, the 206 
Prussian-blue-graphite ink and LOx are coated on the working electrode (without LOx for the 207 
counter electrode), followed by a coating of an insulation layer.  The resulting lactate sensor 208 
demonstrates high sensitivity of 0.553 µA mM−1 and a low limit of detection 0.050 mM.  Building on 209 
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this work, a mouthguard electrochemical biosensor using the enzyme (uricase)-modified electrode 210 
from screen-printing along with an integrated wireless amperometric circuitry detects salivary uric 211 
acid with high sensitivity of 2.32 µA/mM (Fig. 3a) [76].  212 

By using non-toxic serine amino acid as linker molecules for the functionalization of nZrO2, a 213 
label-free and non-invasive biosensing platform can efficiently detect microRNA, an oral cancer 214 
biomarker [63].  This sensor has a low limit of detection of 0.01 ng/mL that is sufficient for the lower 215 
secretion level of targets in human saliva.  And the biosensor also exhibits a linear detection range 216 
0.01–29 ng/mL with a sensitivity of 0.295 µA mL/ng, along with a response time of 6 minutes and 217 
long-term stability up to 45 days.  While the monitoring of saliva is of high interest for healthcare, 218 
significant challenges still exist for the saliva electrochemical biosensors.  The complicated mixture 219 
in the saliva requires the sensor to be highly selective.  The sensor also needs to maintain stable 220 
performance in such a high moisture environment.  Additionally, the devices should be fully 221 
biocompatible due to the use in the mouth. 222 

3.2 Tear analysis 223 
Electrolytes, metabolites, lipids, and proteins/peptides are widely available in the complex 224 

extracellular fluid of tears secreted from lacrimal glands, ocular surface epithelial cells, goblet cells, 225 
and blood [95].  Through electrochemical biosensor applications, these complex extracellular fluids 226 
can be measured for desirable health monitoring analyses [59,82,95,96].  As a natural choice, a 227 
contact lens can integrate an amperometric glucose sensor to analyze the tear.  Firstly, the sol-gel 228 
titania film is applied to immobilize GOx.  Next, Nafion is used to decrease interference from the 229 
other analytes in the tear to result in a glucose sensor with a fast response of 20 s and high sensitivity 230 
of 240 µA/(cm2 mM).  Integrating the sensor with power supply and wireless signal transduction to 231 
a remote electronic device further provides a wireless sensor.  The contact lens biosensor is used to 232 
wirelessly monitor tear glucose in a rabbit ranging from 0.03 to 5.0 mM [97].  The estimated basal 233 
tear glucose of 0.11 mM is shown to have a delay of 10 min from the blood sugar level.  Without 234 
using enzymes, modifying the electrodes with CuO microparticles from inkjet printing leads to an 235 
enzyme-free glucose tear sensor with a high sensitivity of 850 µA mM−1 cm−2 and a low limit of 236 
detection of 2.99 µM [84].  Besides, ocular contact lenses should not obstruct the field of vision. Thus 237 
a highly transparent, multifunctional glucose sensor utilizing graphene and its hybrid with metal 238 
nanowires on an actual ocular contact lens is developed [98,99].  With a stretchability of 25% and 239 
high transparency of > 91%, the sensor has demonstrated its reliable operation through both in vitro 240 
and in vivo tests by using a bovine eyeball and living rabbit, respectively.  Without the need for 241 
direct eye contact, integrating wearable sol-gel tear biosensor on a eyeglasses nose-bridge pad 242 
connected to eyeglasses to collect and analyze tear can enable non-invasive monitoring (Fig. 3b) [93]. 243 

3.3 Sweat analysis 244 
Compared to saliva and tear, sweat that contains abundant biochemical compounds can be 245 

monitored from a wider range of locations on the human body.  With a temperature sensor for 246 
internal calibration, analysis of sweat with a constant flow yields simultaneous and selective 247 
measurements of metabolite (e.g., lactate) and electrolytes (e.g., pH, Na+) [100].  The trace metal in 248 
sweat can also be detected by a wearable amperometric biosensor.  This biosensor consists of an 249 
Ag/AgCl pseudo-reference, counter, and carbon working electrode modified by Nafion and bismuth 250 
for Zn detection.  It owns a sensitivity of 23.8 µA·ml/µg and a limit of detection of 0.05 µg/ml [60].  251 
After preparing patterned Au nanosheets (AuNS) on a stretchable silicon substrate by filtration, 252 
deposition of CNTs is followed by coating of CoWO4/CNT (of polyaniline/CNT) nanocomposites on 253 
the electrode to result in a skin-attachable electrochemical biosensor for detecting glucose (or pH) in 254 
sweat (Fig. 3c) [85].  Besides a sensitivity of 10.89 µA/(mM cm2) (or 71.44 mV/pH) for glucose (or 255 
pH), the sensors are also stable in air for 10 days and against mechanical deformation with a tensile 256 
strain up to 30%.  As sweat rates could vary with body movements (e.g., running vs. sitting), it is 257 
highly desirable for sweat sensors to deconvolute multiple components in the complex mixture of 258 
sweat at different rates.  259 
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3.4 Interstitial fluid (ISF) analysis 260 
Interstitial fluid (ISF) has a similar composition to that of blood.  Each contains essential small 261 

molecules (e.g., salts, proteins, glucose, and ethanol).  Additionally, it can allow for minimally 262 
invasive monitoring without the need for blood sampling [101].  By applying a potential difference 263 
between two electrodes on the skin surface, reverse iontophoresis extracts ions such as Na+ in the ISF 264 
to the skin surface [102,103], which has also been used by the GlucoWatch [104].  Combining 265 
reverse iontophoresis with enzyme-based amperometric biosensor results in a flexible tattoo-based 266 
epidermal diagnostic device (Fig. 3d) [92].  Compared to GlucoWatch, a GOx-modified Prussian 267 
blue transducer at a low applied potential analyzes the ISF glucose extracted by reverse 268 
iontophoresis at a low current density.  Non-invasive extraction of the ISF from the subcutaneous 269 
tissue can also be enabled by a PDMS-based microfluidic system.  This system consists of a micro 270 
vacuum generator for transdermal ISF extraction, microchambers for ISF collection, micro 271 
pneumatic valves for fluid management, and a microflow sensor for ISF volume measurement with 272 
an error < 0.05 µL [105].  Combining the microfluidic chip for ISF collection with a three-electrode 273 
electrochemical glucose sensor further leads to a continuous glucose monitoring microsystem [106].  274 
The resolution of glucose measurements is improved by decorating graphene and Au nanoparticles 275 
on the working electrode.  By providing a composite nanostructured surface, the sensor with the 276 
decoration can capture glucose ranging from 0 to 162 mg/dl with a limit of detection of 1.44 mg/dl.  277 

4. Wearable electrochemical biosensors based on flexible and stretchable materials and structures 278 

4.1. Temple and non-template fabrication methods 279 
Several novel fabrication methods have been developed for flexible and stretchable 280 

electrochemical biosensors [48,107,108].  Lithographic approaches (e.g., thin-film deposition and 281 
etching, photolithography, and ion-beam lithography) can be used to reproducibly fabricate 282 
high-performance devices (e.g., H2O2 sensors [108] and RNA sensors [109]).  However, their 283 
attractive attributes come at a high cost due to the cleanroom setup, multiple equipment 284 
acquisitions, complex processes, and the unique materials required [108–110].  Recent 285 
developments in advanced materials such as new ink formulations help promote the development 286 
of various printing technologies (Fig. 4) [111–115].  These new developments partially address the 287 
challenges in high-cost lithographic approaches that also have compromised performance on rough 288 
or textured surfaces.  Both the leading template and non-template-based printing technologies for 289 
fabricating electrochemical biosensors are summarized and compared (Table 3). 290 

Because the screen printing technique is low cost and easy to scale up for mass production of 291 
electrochemical biosensors with the favorable electroanalytical performance [116,117], it easily 292 
results in low-cost fabric/textile-based electrochemical biosensors [118].  Firstly, the conductive ink 293 
(e.g., Ag/AgCl as a reference electrode) is applied as an underlayer on the textile.  Next, carbon or 294 
metal-based ink containing the recognition element is overlaid on the underlayer to work as the 295 
working electrodes (Fig. 4a) [50].  The spatial resolution and electrical performance of printed 296 
electrodes hinge on ink formulation.  For instance, the ink with a nearly defect-free graphene oxide 297 
derivative can be printed to result in high-resolution lines with a width below 100  µm, a thickness of 298 
3 µm, and a sheet-resistance below 1  Ω/sq [119].  299 

The other template-based printing methods also include flexography and gravure printing, 300 
where the ink is transferred to the substrate from a raised (flexography) or engraved (gravure) 301 
pattern on a roll.  In flexography printing (Fig. 4b) [112], the ink is first transferred from a bath to an 302 
anilox roll.  The anilox roll contains millions of tiny divots to take up the ink, which can bring the 303 
anilox roll in contact with the printing cylinder.  The ink is then transferred to the surface of the 304 
target substrates.  While the ink is on the ridges of the pattern on the printing cylinder in 305 
flexography [87, 94-95], gravure printing relies on impressing the film into the cavities of the roll 306 
where the ink resides (Fig. 4c) [113].  Both these two printing methods are intrinsically robust and 307 
can enable large-area manufacturing [113,119–124]. 308 
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In addition to the template-based printing methods, non-template-based printing technologies 309 
have been developed because of their higher customization design and lower price for small-scale 310 
manufacturing.  Non-template-based printing methods rely on dispensing the given technology.  311 
These technologies include the use of gas or pressurized air (pneumatic), the use of piezoelectric 312 
material in the setup (piezoelectric), the use of aerodynamic focusing (aerosol jet), the driving of ink 313 
by an electric field (electrohydrodynamic), and the heating the material (thermal). [125,126].  As a 314 
representative non-template-based printing method, extrusion-based 3D printing applies the ink 315 
filament through a heated nozzle onto the substrate via a computer-controlled motion stage (e.g., 316 
three-axis) to manufacture a fully 3D-printed electrode (Fig. 4d) [114].  Different from 317 
extrusion-based 3D printing that often requires high viscosity (>300k cP) in the inks, inkjet printing 318 
explores the low viscosity (10–20 cP) inks to help ink transfer (Fig. 4e).  However, low viscosity inks 319 
suffer from small filler loading [115,125].  320 
 321 

 322 
Figure 4. Template- (red boxes) and non-template (green boxes) fabrication approaches. The template fabrication 323 
approaches include (a) screen printing, (b) flexographic process, and (c) gravure printing. The screen printing explores i) 324 
laser-cut stainless steel or chemically-etched polymeric mesh-screen stencils for patterning ii) the Ag/AgCl reference and iii) 325 
working/counter electrodes with carbon- or metal-based ink containing recognition elements overlaid on the Ag/AgCl 326 
conductor; Reproduced with permission from [50], Copyright 2013, Wiley-VCH. In the flexographic process, the surface of 327 
the anilox roller consists of engraved cells. The doctor blade helps to remove excess ink from the anilox; Reproduced with 328 
permission from [112], Copyright 2017, Elsevier. By using a rotary printing press in the gravure printing, the image is 329 
engraved onto a cylinder. Reproduced with permission from [113], Copyright 2018, American Chemical Society. The 330 
non-template fabrication approaches include (d) 3D printing and (e) inkjet printing. In extrusion-based 3D printing, the build 331 
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material filament is heated, melted, and extruded in the nozzle. Each layer is deposited on the previous layer to form the 332 
designed 3D structure; Reproduced with permission from [114], Copyright 2016, Wiley-VCH. In inkjet printing, layers of 333 
conducting and dielectric materials are injected, patterned, and stacked on a substrate; Reproduced with permission from 334 
[115], Copyright 2015, Elsevier. 335 

Table 3. Comparison of representative printing approaches for electrochemical biosensors. 336 
Method Template printing Non-template printing 

Screen printing Gravure printing Flexography printing Inkjet printing 3D printing 

Ink viscosity (cP) 500 - 5000 100 - 1000 50 - 500 10 - 20 > 300 k 

Line width (µm) 50 - 100 10 - 100 45 - 100 2.3 - 50 1 - 100 

Line thickness (µm) 3 - 250 1 < 1 1 - 10 1 - 100 

Speed (m/s) 70 1000 ~ 500 ~ 1 < 1 

 337 
While the electrochemical performance of biosensors hinges on the specific materials of the 338 

electrodes in the sensor, the substrate material affects their mechanical properties, which is related to 339 
the level of comfort and may also result in a change in their electrochemical performance.  The 340 
commonly used substrate materials include the textile, flexible thin films (e.g., paper, plastic, and 341 
tattoo-like thin films), and stretchable thin films.  Table 4 summarizes the representative 342 
electrochemical biosensors based on different substrate materials. 343 

 344 
Table 4. Summary of representative electrochemical sensors based on different substrates. 345 

Substrate Recognition 

element 

Analytes Technique Respo

nse 

time 

Limit of 

detection 

Flexible/ 

Stretchable 

Intimate 

contact 

Ref. 

Fabrics/ 

Textiles 

Woven fiber GOx Glucose FET 0.5 s NR Yes/Yes No [127] 

Textiles PANI/PAN Ammonia Amperometry 9 s 10 ppm Yes/Yes [128] 

Carbon ink TNT Amperometry NR NR Yes/NR  [118] 

Ionselective 

membranes 

Na+, K+ potentiometry NR 

(real-ti

me) 

10-4.9 M, 10-4.9 

M 

Yes/Yes [129] 

Underwater 

garments 

Tyrosinase Phenols Amperometry NR 0.25 µM Yes/NR  [130] 

Cotton LOx Lactate Amperometry NR 0.3 mM Yes/NR  [131] 

Silk LOx Lactate Amperometry 5 s NR Yes/NR  [132] 

Fabrics GOx Glucose Amperometry NR NR Yes/NR  [133] 

Paper GOx Glucose  Amperometry NR NR Yes/No Yes [134] 

Ag Chloride Amperometry 30 - 120 

s 

1.5 mM Yes/No [135] 

GOx Glucose  Amperometry NR NR Yes/No [136] 

Ag Chloride Voltammetry NR NR Yes/No [137] 

Bienzymatic 

GOx-HRP  

Glucose  Amperometry NR 0.37 mg/dL Yes/No [138] 
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Plastic Polyimide  Glutamate 

and LOx 

Glutamate, 

lactate 

Amperometry A few 

second

s 

220 nM, 2 mM Yes/No Yes [139] 

Polyimide  LOx Lactate Amperometry NR NR Yes/No [140] 

PET Enzymes Uric acid, 

cholesterol, 

glucose 

FET NR 3x10-9 M, 

30x10-9 M, 

100x10-9 M  

Yes/No  [141] 

LOx Lactate Amperometry NR 

(real-ti

me) 

1.0 µM Yes/No [142] 

Polyamide GOx Glucose Amperometry NR 0.1 mg/dL Yes/No [143] 

PEN LOx Lactate FET NR 

(real-ti

me) 

66 nM Yes/No [144] 

Polyurethane 
 

GOx Glucose Amperometry NR 

(real-ti

me) 

0.010 mM Yes/No [145] 

LOx Lactate Amperometry 50 s NR Yes/No [146] 

Tattoo 
 

Carbon ink pH Potentiometry 10 s NR Yes/No Yes [147] 

Ionselective 

membranes 

Na+, K+ Potentiometry 5 s, 5 s 10-4 M, 10-4 M Yes/No [148] 

Silver ink Water 

content 

(hydration) 

Impedimetry NR  NR Yes/No [67] 

Alcohol 

oxidase 

Ethanol Potentiometry 30 s NR Yes/No [149] 

GOx: glucose oxidase; Lox: lactate oxidase; FET: Field-effect transistor; PANI: polyaniline; PAN: polyacrylonitrile; HRP: 346 

horseradish peroxidase; NR: not reported. 347 
 348 

4.2 Textile-based biosensors 349 
Being flexible and widely used in our daily life, textiles such as wool, cotton, and nylon have 350 

been extensively exploited as the substrate for integrating various electrochemical biosensors [150].  351 
Early investigations of textile-based chemical biosensors rely on optical systems for bio-sensing.  352 
This is through the utilization of a light source and detector [35–37].  However, the required optical 353 
sensors are sophisticated and high in cost.  By leveraging the recently developed fabrication 354 
techniques, simple textiles-based electrochemical biosensors have been obtained to withstand 355 
repeated bending cycles.  The influence of textile substrates (e.g., Cotton, Polyester, and GORE-TEX 356 
fabric) on the sensing performance of nitroaromatic explosives has been investigated when 357 
integrated screen-printed electrodes on different textile substrates [118].  The adhesion at the 358 
electrode/textile interface is demonstrated to be robust against cycles of laundry washing and 359 
mechanical deformations.  360 

Applying the technique of screen printing yields a highly stretchable textile-based biofuel cell to 361 
analyze sweat metabolites (Fig. 5a) [54].  The glucose (or lactate) biofuel cell with single-enzyme 362 
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and membrane-free configurations could generate a maximum power density of 160 (or 250) µW 363 
cm−2 with an open-circuit voltage of 0.44 (or 0.46) V.  Enzymatically oxidized on the anode, the 364 
biofuel (e.g., glucose) releases electrons that are accepted by the cathode.  The generated power can 365 
operate on human-body sweat to provide a self-powered response.  Intrinsically stretchable inks 366 
(i.e., carbon nanotubes or CNTs dispersed in Ecoflex) and stretchable structure of the serpentine 367 
electrode are employed in the device.  The resulting self-powered devices can exhibit a high 368 
stretchability (a tensile strain of 100%) and endure a stable performance upon repeated (>100 times) 369 
strains.  An alternative wearable, high-power biofuel cell explores a glucose-oxidizing glucose 370 
dehydrogenase as anode and an O2-diffusion bilirubin oxidase as a cathode on a textile cloth (Fig. 371 
5b) [151].  Two types of CNT layers are used to improve the performance of the anode and cathode: 372 
an acid-treated hydrophilic CNT layer for coating of the mediator and enzyme, and 373 
polytetrafluoroethylene (PTFE)-based hydrophobic CNT layer for adequate oxygen diffusion by 374 
forming a microporous layer.  Owning to the stretchable material and structure, the maximum 375 
power density can still maintain 216  µW/cm2 at an output voltage of 0.36 V for glucose of 200  mM 376 
even upon deformation (e.g., S-shape).  By using a series connection of four biofuel cell, power can 377 
be generated with an open-circuit voltage of 1.9  V to illuminate an LED on the cloth. 378 

Compared to the integration of electrodes on the textile with a conventional screen-printing 379 
method that results in ink waste, embroidery and yarn coating use only as much reagent and ink as 380 
required.  Conductive threads with the immobilized enzyme can be embroidered into textiles to 381 
serve as the working, counter, and reference electrodes in an electrochemical biosensor with 382 
three-electrode configuration to quantitatively analyze biofluid samples (Fig. 5c) [133].  The 383 
electrodes with customized geometries at specific locations on a garment can be quickly fabricated 384 
by using a computerized embroidery machine.  The hydrophilic nature of most threads in 385 
embroidered sensors can help quickly absorb liquids to facilitate sample loading for improved 386 
automation.  The embroidered electrochemical biosensor exhibits a stable performance with a 387 
marginal decrease of 9% in the signal after 100 bending cycles.  Multiplexed measurements of 388 
different targets (e.g., glucose and lactate) can also be achieved by using selective assays to each 389 
target (e.g., a glucose assay and a lactate assay).  With negligible signals from the nonspecific 390 
analytes, the glucose (or lactate) assay only selectively responds to the glucose (or lactate) with a 391 
significant response and a high signal-to-noise ratio of 3.2 (or 4.1) at a concentration of 5 mM (or 12.5 392 
mM). Similar to embroidery, yarn coating allows the use of textile weaving with a wide variety of 393 
yarn materials, weaving styles, and looms to create electrochemical biosensors with various 394 
properties.  For instance, silk yarns coated with conducting inks can be handloom-woven as 395 
electrodes into patches of fabric to create arrays of sensors, which are then laminated, cut, and 396 
packaged into individual sensors.  By using the sensor consisting of four electrodes with one 397 
working electrode for hemoglobin and one working electrode for glucose, a multiplexed array can 398 
simultaneously detect glucose and hemoglobin from the blood samples (Fig. 5d) [152].  While the 399 
use of an analyte-specific enzyme (i.e., glucose oxidase) on the working electrode provides a highly 400 
selective glucose detection, the carbon electrode with differential pulse voltammetry (DPV) detects 401 
hemoglobin with no significant interference from glucose.  The shared counter and reference 402 
electrodes in the multiplexed sensor also help reduce the cost.  403 

As an alternative to the weaving/embroidery of conducting fabric or integration of other 404 
conductive materials, the carbonization of textiles coated with nanomaterials presents another route 405 
to the creation of the electrochemical biosensors.  In a representative example, silk fabrics coated 406 
with multi-walled carbon nanotubes to fully use the space and strengthen the interconnection are 407 
first carbonized from hydrophilic to relatively hydrophobic.  Decorating the resulting structure 408 
with Pt microspheres (or glucose oxidase, GOx) enables the detection of H2O2 (or glucose) (Fig. 5e) 409 
[153].  The obtained glucose sensor has a sensitivity of 288.86 µA/(mM cm2) in a relatively good 410 
linear range from 0 to 5 mM.  As the intimate contact between the sensor and skin is highly 411 
desirable to allow for the precise measurement of the target analyte, tight-fit clothing has been 412 
explored.  As a representative example, textile-based amperometric biosensors are integrated on an 413 
elastic waistband of common underwear for direct tight contact [31].  However, the level of comfort 414 
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is significantly compromised.  Additionally, measurements of analyte concentrations are limited to 415 
specific locations that have intimate contact between textile-based devices and the skin [38].  416 
Therefore, thin-film sensors based on the other flexible and stretchable substrates have been 417 
developed to address some of these concerns. 418 

 419 

 420 
Figure 5. Fabric-based electrochemical sensors. (a) Optical images of the designed stencil and its use for printed stretchable 421 
devices through a screen printing process; Reproduced with permission from [54], Copyright 2016, The Royal Society of 422 
Chemistry. (b) i) Schematic of enzyme/CNT composite fibers woven on a textile cloth. The anode and cathode fibers were 423 
prepared by modifying multi-walled CNT-decorated carbon fibers with glucose dehydrogenase and bilirubin oxidase, 424 
respectively. ii) Illumination of an LED device consisting of a charge pump IC, capacitor, and red LED connected to enzymatic 425 
power fibers upon dropping a glucose solution on a cloth; Reproduced with permission from [151], Copyright 2019, Elsevier. 426 
(c) Embroidered electrochemical sensors fabricated on textile, cotton gauze, and cotton t-shirt; Reproduced with permission 427 
from [133], Copyright 2016, The Royal Society of Chemistry. (d) Manufacturing of fabric-based electrochemical sensors: i) 428 
Custom-made yarn coating instrument, ii) handloom used to weave the sensors, iii) woven patches on the loom, and iv) a 429 
woven array of 90 (15 × 6) sensors; Reproduced with permission from [152], Copyright 2015, The Royal Society of Chemistry. 430 
(e) Schematic of processes to prepare the glucose sensor based on the carbonization of textiles; Reproduced with permission 431 
from [153], Copyright 2018, Elsevier. 432 
 433 

4.3 Flexible thin-film biosensors 434 

4.3.1 Paper-based biosensors 435 
Being flexible, foldable and rollable, widely available, inexpensive, lightweight, and 436 

hydrophilic, paper can be readily and rapidly modified with biomolecules and nanomaterials for 437 
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electrochemical sensing applications.  The high porosity of cellulose in the paper also allows for 438 
solution transport through capillary forces.  It can serve as an autonomous microfluidic pumping 439 
system without a need for external pumps [154].  The paper-based bioanalytical devices use 440 
capillary forces to drive the lateral flow of a liquid sample (i.e., lateral flow immunochromatographic 441 
assays or lateral flow tests) [155,156].  Based on the generated color, lateral flow tests can provide 442 
qualitative or semi-quantitative information [157].  Quantitative measurements can also be 443 
obtained with electrochemical paper-based analytical devices (ePADs) that use the 444 
photolithography to create microfluidic channels on the filter paper (Fig. 6a) [55].  The Ag/AgCl ink 445 
is first applied as the reference electrode and conductive pads.  Next, screen-printing carbon ink 446 
that contains Prussian blue (PB) results in the working and counter electrodes.  Spotting the 447 
analyte-specific enzymes (e.g., GOx, lactate oxidase or LOx, and uricase) helps determine the 448 
concentration of glucose, lactate, and uric acid, with a limit of detection of 0.21 ± 0.02 mM, 0.36 ± 0.03 449 
mM, and 1.38 ± 0.13 mM, respectively.  As a close distance between the working and reference 450 
electrodes minimizes the effect from uncompensated resistance between the two electrodes, screen 451 
printing that requires a stencil to pattern the electrodes limits the achievable maximum resolution 452 
[157–160].  453 

Though the shape of electrodes is well-defined with a patterned screen or stencil, they often 454 
suffer from poor electrical properties and irreproducible surface chemical properties.  As an 455 
alternative, prefabricated Au microwires and carbon fibers, along with their meshes, can be 456 
exploited as electrodes in a paper-based device with a multilayered structure created by the folding 457 
principles of origami (Fig. 6b) [161].  When a large surface area is desirable, mesh electrodes are 458 
preferred over their wire counterparts to provide a larger surface area for the immobilization of 459 
bioprobes.  Without using a patterned screen or stencil, portable writing tools such as lead pencils 460 
can directly draw electrodes with the desired geometry on paper to create electrochemical devices 461 
[162].  After pressurization, the mixture consisting of carbon powder as a conductive material, 462 
sodium bentonite as a binding agent, and sodium silicate as a hardening agent in thin rods can be 463 
inserted in commercial lead holders to facilitate drawing on paper.  464 

With precise control of ink droplet volume, inkjet printing has also been explored to fabricate 465 
paper-based electrochemical biosensors [163].  In the inkjet printing paper-based electrochemical 466 
biosensor with a three-electrode configuration [164], the electrochemical deposition of Ag/AgCl on 467 
an inkjet-printed Ag nanoparticle pattern serves as the reference electrode.  After inkjet-printing of 468 
nanoparticle-based gold working and counter electrodes, electropolymerized polyaniline (or GOx 469 
entrapped poly-3,4-ethylenedioxythiophene) films on the surface of the working electrode enables 470 
selective sensing of pH (or glucose), which has comparable performance with their commercial 471 
counterparts.  Applying inkjet printing can also integrate a potentiometric cell into a piece of filter 472 
paper to form a paper-based ion-selective platform (Fig. 6c) [165].  This device uses a hydrophilic 473 
high-capacity ion-exchange membrane and a valinomycin-doped ion-selective electrode (ISE) 474 
membrane embedded into the paper. It achieves highly selective sensing of Cl− and K+ with a 475 
sensitivity of 57.4 ± 0.5 mV/decade and 53.3 ± 0.7 mV/decade, respectively. 476 

Integrating paper-based biosensors with other platforms such as a commercial bandage may 477 
open additional opportunities, such as a smart bandage.  The screen-printed conductive inks are 478 
embedded into commercial bandages.  The developed omniphobic paper-based smart bandage 479 
(OPSB) with a lightweight (~  8  g) is capable of measuring pH and uric acid in open wounds and 480 
pressure ulcers for chronic wound monitoring (Fig. 6d) [166].  Taken together with a wireless 481 
communication module, the wearable OPSB can simultaneously quantify pH and uric acid levels at 482 
the wound site to wirelessly inform the user of wound status [167] at low-cost (~  $ 18). 483 
 484 
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 485 
Figure 6. Paper-based electrochemical biosensors. (a) Design and optical image of the electrochemical detection cell for 486 
paper-based microfluidic devices. WE/CE: working/counter electrode (carbon ink); RE: reference electrode (silver/silver 487 
chloride ink); Reproduced with permission from [55], Copyright 2009, American Chemical Society. (b) Paper-based 488 
microelectrochemical devices with electrodes based on conductive wires, inlet/outlet in the 1st layer, and two stacked 489 
channels in the other 3 layers; Reproduced with permission from [161], Copyright 2014, American Chemical Society. (c) 490 
Optical image of a paper-based ion-sensing platform, with two alligator clips on the left to measure the electromotive force 491 
(EMF) and two clips on the right for balancing; Reproduced with permission from [165], Copyright 2016, WILEY-VCH. (d) 492 
Fabrication and assembly process of omniphobic paper-based smart bandage (OPSB): (i) Schematic of the fabrication of 493 
OPSBs: 1) After spraying RFSiCl3 of 2% in IPA to render Whatman #1 paper omniphobic, 2) flexible carbon and Ag/AgCl 494 
electrodes are patterned through stencil printing, followed by 3) laser-cutting the adhesive layer of the bandage for creating 495 
openings to interface with the wearable potentiostat. Placing the paper-based sensors between the adhesive layer and the 496 
absorbent pad of the commercial bandages assembles the OPSBs, which can monitor (ii) uric acid and pH levels in open 497 
wounds, as well as (iii) the early detection of pressure ulcers. (iv) shows the packaging of the electronics in the rechargeable, 498 
wearable potentiostat; Reproduced with permission from [166], Copyright 2018, Elsevier. 499 
 500 

4.3.2 Plastic-based biosensors 501 
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Compared to paper, plastic substrates (e.g., polyester family, polyethylene naphthalene, 502 
polytetrafluoroethylene, and many others) have sufficient thermal stability, low coefficient of 503 
thermal expansion, and structural resiliency against deformation [125].  By using the widely 504 
reported flexible polyester with a thickness of 50 µm as a representative example [82,168–170], a 505 
three-electrode amperometric lactate biosensor is fabricated along with a bipolar electrocardiogram 506 
sensor in a wearable hybrid sensing system (Fig. 7a) [56].  The three amperometric electrodes are 507 
also separated from the Ag/AgCl electrocardiogram electrodes via a printed hydrophobic layer to 508 
increase sensor stability and signal-to-noise ratio.  The working electrode of the lactate biosensor is 509 
coated with LOx-modified Prussian blue as a biocatalytic layer for selective detection of lactate, 510 
which has a sensitivity of 96  nA/mM in a linear range for the lactate concentration from 0 to 28  mM.  511 
As a representative example in the polyester family, the polyethylene terephthalate (PET) substrate 512 
has also been widely explored for the thin-film sensors.  For instance, a mechanically flexible and 513 
fully integrated sensor array can also be embodied on the PET substrate for multiplexed in situ 514 
perspiration analysis (Fig. 7b)[22].  The integrated sensor array can simultaneously and selectively 515 
measures sweat metabolites (glucose and lactate) and electrolytes (sodium and potassium ions), 516 
along with the skin temperature to calibrate the response of the other sensors.  Molding a 100 517 
µm-thick PET into a contact lens shape allows for the integration of sensors to detect lactate with an 518 
average sensitivity of ∼	 53 µA/(mM cm2) within the linear range from 0 and 1 mM and a relatively 519 
fast response time of 35 s (Fig. 7c) [82]. 520 

A flexible hybrid poly(methyl methacrylate) (PMMA)/paper microfluidic platform with fully 521 
integrated sensing can simultaneously monitor lactate, Na+, and pH for on-body testing of human 522 
sweat (Fig. 7d) [171].  A continuous flow of sweat is collected by microneedles with an array of Pt 523 
and Ag wires (50 µm diameter) and transported in a paper microfluidic channel.  The Pt and Ag 524 
wire microneedles also serve as the working and reference electrodes for the lactate/ Na+/pH sensors.  525 
Before drop-casting LOx on the working electrode in the amperometric-based lactate sensor, a 526 
semipermeable copolymer membrane (sulfonated polyether ether sulphone-polyether sulphone, 527 
SPEES/PES) is applied to achieve high selectivity, following by a coating of an outer polyurethane 528 
layer.  The pH sensor relies on a pH-sensitive iridium oxide (IrOx) membrane to yield a sensitivity 529 
of 71.90 ± 0.8 mV/unit. And the potentiometric Na+ sensor exploits a bilayered structure with 530 
polyvinyl chloride (PVC) membrane on a poly(3,4-ethylenedioxythiophene) (PEDOT) polymer to 531 
result in a sensitivity of 56 ± 1 mV/unit. 532 

Because of its strong adhesion to Pt and Ag, PET glycol (PETG) is used as the platform (e.g., 533 
PETG mouthguard) to integrate Ag/AgCl reference electrode and Pt working electrode with GOx 534 
immobilized by poly (MPC-co-EHMA) (PMEH) for monitoring saliva glucose (Fig. 7e) [172].  By 535 
using a 1.0 wt% PMEH overcoat and an electrode surface area of 16.8 mm2, optimized glucose 536 
measurement in artificial saliva with a phantom jaw is achieved with a stable response within ~ 60 s 537 
and good sensitivity for the glucose concentration from 0.05 to 1.0 mM. 538 

 539 
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 540 
Figure 7. Plastic-based wearable electrochemical biosensors. (a) i) Schematic and ii) optical image of the fabrication of the 541 
electrochemical sensor through screen printing, as well as iii) its flexibility demonstration and iv) integration with the 542 
wireless electronics; Reproduced with permission from [56], Copyright 2016, Macmillan Publishers Limited. (b) Optical 543 
image of a wearable flexible integrated sensing array (FISA) on the wrist of a subject; Reproduced with permission from [22], 544 
Copyright 2016, Macmillan Publishers Limited. (c) i) Fabrication process and ii-iii) optical images of a lactate sensor on the 545 
contact lens with sensing structure on ii) a flat substrate and iii) a completed contact lens held on a finger; Reproduced with 546 
permission from [82], Copyright 2012, Elsevier. (d) Exploded view and optical image of the microfluidic chip with 547 
microneedles for sweat collection and analysis. The sensors were placed inside the microfluidic channel that could draw a 548 
continuous flow of sweat; Reproduced with permission from [171], Copyright 2017, Elsevier. (e) Schematic and optical image 549 
of the glucose biosensor on the polyethylene terephthalate glycol (PETG) mouthguard, with Pt and Ag electrodes formed by 550 
a sputtering process; Reproduced with permission from [172], Copyright 2016, Elsevier. 551 
 552 

4.3.3 Temporary tattoo-based biosensors 553 
Tattoo-like electrochemical biosensors are attractive because of their intimate contact with the 554 

human skin without causing much discomfort on the body [2,173].  In fabricating temporary 555 
transfer tattoo-based electrochemical biosensors (Fig. 8a) [57], the electrode designed in red with 556 
active ink materials (e.g., carbon and Ag/AgCl reinforced with carbon fibers) is first patterned by 557 
screen printing on paper (orange) coated with the release agent (olive).  After applying the adhesive 558 
sheet (blue) with a protective coating (maroon) on the printed sensor, removing the protective sheet 559 
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and flipping the layers can apply it onto the skin (green).  Removing the release agent-coated paper 560 
then exposes the sensor.  Before removing the protective sheet, the release agent-coated paper can 561 
be removed to allow direct contact of the electrode to the skin.  In addition to favorable 562 
electrochemical properties as opposed to the electrodes from the conventional screen printing, the 563 
resulting sensor also exhibits robust performance against various deformation modes (e.g., pinching, 564 
bending, and twisting), with promising applications as potentiometric and amperometric sensors 565 
[60,147,148,173–177]. 566 

The accuracy of conventional potentiometric biosensors hinges on a stable and reproducible 567 
potential of the liquid-junction at both reference and working electrodes. However, the leakage of 568 
the solution becomes a concern [38].  By exploring the concept of all-solid-state electrodes [147,148], 569 
a wearable potentiometric all-solid-state biosensor (without inner liquids) is developed for real-time 570 
on-body monitoring of nerve agents simulant diisopropyl fluorophosphate (DFP) (Fig. 8b) [175].  571 
The enzymatic hydrolysis of DFP by the enzyme of organophosphate hydrolase (OPH) results in 572 
proton release.  The resulting pH change captured by the skin-worn potentiometric pH-sensing 573 
transducer directly correlates to the DFP in the liquid and gas phases.  The device in the design of a 574 
“skull face’’ layout consists of one ‘eye’ from an Ag/AgCl reference electrode and the other ‘eye’ 575 
from a printed carbon working electrode coated with PANI.  The sensor can detect the DFP in the 576 
liquid phase with a limit of detection of 10 mM and a stable response in less than 20 s for the 577 
concentration from 10 to 120 mM.  The detection of the DFP in the vapor phase is slightly longer but 578 
still within 30 s.  With the same limit of detection of ~ 10 mM, the sensor response increases linearly 579 
as the vapor concentration increases from 20 to 120 mM. 580 

By using a mediated LOx working electrode in an amperometric biosensor, the printed 581 
temporary-transfer tattoo electrochemical biosensor enables real-time lactate sensing (Fig. 8c) [60].  582 
The LOx working electrode is prepared by first tethering the LOx enzyme on the surface of the 583 
printed tattoo electrode functionalized with tetrathiafulvalene and multiwalled carbon nanotubes.  584 
Next, a biocompatible chitosan overlayer is coated.  The resulting sensor exhibits a high sensitivity 585 
of 10.31 µA/(mM cm2), a very good specificity with negligible responses from interfering agents (e.g., 586 
ascorbic acid, uric acid, glucose, and creatinine) of less than 5%, and a highly linear response for the 587 
lactate concentration ranging from 1 to 20 mM. 588 

Combining reverse iontophoresis (RI) to extract interstitial fluid (ISF) glucose to the skin surface 589 
results in a tattoo-based noninvasive glucose monitoring system [61].  This enzymatic 590 
amperometric biosensor has a similar principle of the GlucoWatch glucose sensor.  The device 591 
system has one pair of the anodic and cathodic contingents, with each consisting of a group of 592 
working, counter, and reference electrodes encompassed by an additional Ag/AgCl RI electrode for 593 
efficient extraction of ISF.  The glucose tattoo sensor exhibits a sensitivity of 23 nA/µM and a limit 594 
of detection of 3 µM, and a linear response range from 0 to 100 µM.  Exploiting two iontophoretic 595 
electrodes (anode and cathode) with three amperometric sensing electrodes (working, reference, and 596 
counter electrodes) in the anode compartment can also yield a wearable alcohol sensor system (Fig. 597 
8d) [46].  By delivering the pilocarpine drug from the anode compartment, iontophoretic electrodes 598 
induce the sweat in the anode region for the alcohol analysis with a high sensitivity to detect ethanol 599 
(0.362 ± 0.009 µA/mM).  Because of the use of alcohol oxidase, the alcohol sensor demonstrates 600 
negligible interferences from glucose, uric acid, lactate, ascorbic acid, and creatine. 601 
 602 
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 603 
Figure 8. Temporary tattoo-based wearable electrochemical biosensors. (a) i) Schematic and ii-iv) optical images of the 604 
processes to prepare temporary transfer on-skin tattoo-like electrochemical sensor; Reproduced with permission from [57], 605 
Copyright 2012, The Royal Society of Chemistry. (b) Tattoo-like biosensor for detecting nerve agents: i) Image of the 606 
integrated potentiometric biosensor system placed on the mannequin for wireless signal transmission with schematics to 607 
show ii) sensors printed on the tattoo paper and optical images to show iii) sensors transferred to the skin after removal of the 608 
protective layer; Reproduced with permission from [175], Copyright 2018, Elsevier. (c) i) Schematic illustration of a 609 
three-electrode “NE” tattoo-like electrochemical sensor to detect epidermal lactate, with its ii) working principle and iii) 610 
demonstration of sweat lactate monitoring during cycling exercise; Reproduced with permission from [60], Copyright 2013, 611 
American Chemical Society. (d) Tattoo-based transdermal alcohol sensor. i) Schematic diagram of an iontophoretic-sensing 612 
tattoo-like device for transdermal alcohol sensing, as well as schematic diagrams to show ii) its wireless operation and iii) 613 
constituents in the iontophoretic system; Reproduced with permission from [46], Copyright 2016, American Chemical Society. 614 
 615 

4.4 Stretchable thin-film biosensors 616 
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Flexible thin-film biosensors can withstand a mechanical strain before fracture (e.g., < 1% for 617 
paper and < 5% for plastic substrates).  However, opportunities still exist for electrochemical 618 
biosensors when the applied strain from various loading conditions exceeds the fracture limit 619 
[177–179].  Additionally, the flexible thin-film biosensors cannot conform to the textured surface of 620 
the skin at various locations on the human body.  Imparting stretchable characteristics in the 621 
devices represents a simple yet effective strategy to integrate them on the non-developable surfaces 622 
(i.e., non-zero Gaussian curvature) of the skin [15,180–183].  The stretchable devices can be realized 623 
by exploiting either intrinsically stretchable materials or stretchable structures.  The stretchable 624 
structures [184,185] applied for electrochemical biosensors include wavy thin-film structures 625 
[186,187], serpentine structures [57,129,188,189], mesh structures [190,191], island-bridge structures 626 
[192,193], among others. 627 

With the “island–bridge” design, the rigid electrodes (i.e., islands) from screen printing are 628 
connected by serpentine interconnects (i.e., bridges) from lithography on an elastomeric substrate 629 
(Fig. 9a) [192].  Without a specific requirement for the material in the rigid islands, the electrodes 630 
can then be prepared with a wide range of functional materials such as printable inks (e.g., Ag/AgCl, 631 
enzyme-loaded Prussian blue, and carbon inks).  The bridges can also be replaced by other 632 
stretchable structures to provide a variety of different stretchable layouts.  By selecting ferricyanide 633 
and dopamine as target analytes, the electrochemical biosensor exhibits a negligible response change 634 
even for a repeated biaxial strain of 75%.  Applying the structure in a lactate biosensor measures the 635 
real-time epidermal sweat lactate from the linear current response to the lactate level (Fig. 9a ii, iii).  636 
After the perspiration of the subject at ~ 900 s, increasing the cycling intensity results in an increase 637 
in the sweat lactate level, as evidenced by the rising current.  638 

Without using the lithographic approach for the bridges, the serpentine structures (arc angle of 639 
180°) that connect electrodes and contact pads can also be created by screen printing of conducting 640 
inks with tailored elastomer and surfactant through a custom-designed stencil (Fig. 9b) [188].  The 641 
detection of ferricyanide with cyclic voltammetry shows a minimal change in the peak current 642 
before and after ten fatigue cycles (stretching to 100% and then back to 0) for a total of 50 repetitions.  643 
Free-standing serpentine structures with an optimized arc angle can also be combined with 644 
intrinsically stretchable nanomaterial-based inks to result in a highly stretchable CNT-based 645 
electrochemical biosensor (tensile strain up to 500%) (Fig. 9c) [58].  After the free-standing 646 
serpentine interconnects fully unwind upon stretching, further applied tensile strain leads to an 647 
increase in the resistance of the intrinsically stretchable CNT inks.  The electrochemical biosensors 648 
with stretchable structures can also be applied to stretchable textile substrates.  Combining 649 
polyurethane (PU)-based ion-selective membranes with CNT binder inks along with 650 
Ecoflex-containing Ag/AgCl inks printed in serpentine pattern results in a highly stretchable 651 
textile-based potentiometric biosensor that can withstand a tensile strain of 100% (Fig. 9d) [128].  652 
The PU matrix provides the biocompatibility and resistance against mechanical stress/strain that is 653 
lacking in ion-selective membranes based on PVC matrices.  By exploiting adsorptive stripping 654 
voltammetry (AdSV) to assay trace amounts of species with interfacial adsorption on the working 655 
electrode, similar stretchable electrochemical biosensors can also detect explosive compounds.  This 656 
sensor consists of the Ag/AgCl–Ecoflex reference electrode and the CNTs-PU working/counter 657 
electrodes.  The sensor can detect 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and hydrogen peroxide 658 
with negligible changes in response to extreme multiaxial and bending deformations from inflation 659 
and deflation of balloon (> 400% increase in the balloon area) (Fig. 9e) [189]. 660 
 661 



Micromachines 2019, 10, x FOR PEER REVIEW  24 of 39 

 662 
Figure 9. Wearable electrochemical biosensors based on stretchable structures. (a) i) Schematic of the fabrication processes 663 
that merge lithographically fabricated thin- and printed thick-film for a hybrid, stretchable electrochemical sensor, along with 664 
ii) an image of the stretchable lactate sensor (working, reference, and counter electrodes) and iii) its demonstration for 665 
real-time on-body amperometric evaluation of lactate levels from a subject with (red) and without (black) enzyme 666 
modification; Reproduced with permission from [192], Copyright 2017, Wiley-VCH. (b) i) Optical image and ii) fabrication 667 
process of different patterns of interconnects that connect electrodes and contact pads by printing inks through a stencil with 668 
(iii) a schematic of the screen printing; Reproduced with permission from [188], Copyright 2015, Wiley-VCH. (c) Combining 669 
stretchable serpentine structures with intrinsically stretchable nanomaterial-based inks results in highly stretchable 670 
electrochemical sensors; Reproduced with permission from [58], Copyright 2015, American Chemical Society. (d) Schematic 671 
representation and optical images of the electrochemical sensors with stretchable structures applied on stretchable textile 672 
substrates upon a tensile strain of 100%. The sensor was fabricated by screen printing of stretchable Ag/AgCl ink, stretchable 673 
CNT ink, and Ecoflex layer, followed by surface modification of ion-selective membrane at specific locations; Reproduced 674 
with permission from [128], Copyright 2016, Wiley-VCH. (e) Series of optical images to show different inflation levels of the 675 
expandable electrochemical device; Reproduced with permission from [189], Copyright 2016, Wiley-VCH. 676 
 677 

5. Conclusions and future perspectives 678 
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In this mini-review, we have briefly summarized the recent development of flexible and 679 
stretchable electrochemical biosensors for personal healthcare, which has experienced remarkable 680 
growth over the past few decades.  Integrating these sensors with affordable and advanced wireless 681 
modules [194–196] results in functional devices that can continuously detect and analyze biofluids 682 
such as saliva, tear, sweat, and interstitial fluid.  Despite the significant strides achieved in the field 683 
of the electrochemical biosensors, several challenges still exist before their wide adoption in the 684 
practical and daily applications.  First of all, effective sampling of biofluids from the body is crucial 685 
to ensure accurate sensing results, necessitating the need for a biofluid sampling and collection 686 
module in the system [197–199].  It is also highly desirable to improve the sensing performance of 687 
wearable electrochemical biosensors.  While significant efforts have been devoted to the 688 
development of highly sensitive sensors, their response to various interfering factors in the complex 689 
biofluids cannot be ignored, especially when a trace amount of target analyte is present.  The 690 
deconvolution of multiple components from a mixture by a high-density array represents a 691 
promising approach to address such a challenge [11].  692 

The wearable electrochemical biosensors should also maintain stable performance with 693 
minimal interfacial adhesion issues against washing or relatively high temperature.  A possible 694 
concern from the relatively high temperature is the damage of the sensor in a hot shower [189].  695 
While there are plenty of strategies to achieve a high dry adhesion, the robust wet adhesion is of 696 
more relevance to the application of wearable electrochemical biosensors.  The bioinspired 697 
materials (e.g., gelatin-, collagen-, or chitosan-based materials) [200–202] have been studied and 698 
developed to provide an improved wet adhesion [203].  Exploring these materials can achieve 699 
stable binding between functional layers (e.g., electrode and substrate) in the sensors and at the 700 
sensor/skin interface, despite the drastic differences in their physical and chemical properties.  701 
However, attention still needs to be paid to biocompatibility, tunable adhesion strength, reusability, 702 
and compliance [204].  In addition to the bio-integrated wearable devices to sample the biofluids 703 
from the skin surface, exploiting the recently developed biodegradable electronics [205–213] could 704 
open up new opportunities for transient electrochemical biosensors to access biofluids from inside 705 
the body.  Additionally, real-time monitoring of various biofluid contents from different 706 
populations presents an excellent opportunity for big data analytics, which can help accurately 707 
inform the health condition and provide in-time treatment [103]. 708 
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