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Abstract: The skyrocketing popularity of health monitoring has spurred increasing interest in
wearable electrochemical biosensors. =~ Compared with the traditionally rigid and bulky
electrochemical biosensors, flexible and stretchable devices render a unique capability to conform
to the complex, hierarchically textured surfaces of the human body. With a recognition element
(e.g., enzymes, antibodies, nucleic acids, ions) to selectively react with the target analyte, wearable
electrochemical biosensors can convert the types and concentrations of chemical changes in the
body into electrical signals for easy readout. Initial exploration of wearable electrochemical
biosensors integrates electrodes on textile and flexible thin-film substrate materials. A stretchable
property is needed for the thin-film device to form an intimate contact with the textured skin
surface and to deform with various natural skin motions. Thus stretchable materials and
structures have been exploited to ensure the effective function of a wearable electrochemical
biosensor. In this mini-review, we summarize the recent development of flexible and stretchable
electrochemical biosensors, including their principles, representative application scenarios (e.g.,
saliva, tear, sweat, and interstitial fluid), and materials and structures. While great strides have
been made in the wearable electrochemical biosensors, challenges still exist, which represents a
small fraction of opportunities for the future development of this burgeoning field.

Keywords: Electrochemical biosensors; Wearable devices; Flexible and Stretchable; Template and
non-template printing methods; Health monitoring

1. Introduction

As personal healthcare starts to gain skyrocketing popularity, various wearable sensors have
been developed for the health monitoring of the individual [1-4]. With relatively simple design,
physical sensors have been explored to capture physical (e.g., temperature [5,6], motion [7,8],
respiration rate [9,10], and gas exposure [11,12] among others) and electrophysiological signals (e.g.,
ECG [13], EMG [14], and EEG [15], among others). However, it is still highly desirable to capture
chemical information for reflecting complete physiological conditions from the children to the
elderly. With a recognition element (e.g., enzymes, antibodies, nucleic acids, ions) to selectively
react with the target analyte [16,17], electrochemical biosensors can convert the types and
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concentrations of biochemical changes in the body into electrical signals [18,19]. However,
traditional electrochemical biosensors are rigid and bulky. Because of the mismatch in material and
geometry, their applications are limited on the soft, hierarchically textured surfaces of the human
body [20,21]. Therefore, the development of flexible and stretchable electrochemical biosensors
becomes attractive [22-28].

The recent development in cost-effective fabrication approaches includes various additive
manufacturing or printing technologies. Integrating electrochemical biosensors on soft substrates
with these approaches renders flexible and stretchable properties for wearable applications (Fig. 1)
[2,29-34]. Printing electrochemical sensing materials directly onto soft textiles of daily clothes
allows for timely monitoring of critical information, without compromising the level of comfort or
function of the garment [35-37]. However, textile-based biosensors are limited to limited regions
because of the need for pliably conformal or intimate contact with biofluids for high-fidelity
detection. Additionally, not all types of textiles are suitable to integrate sensing materials [38—40].
As an alternative, other flexible thin-film substrates (e.g., paper and plastic) have been explored
[41-46]. However, the intrinsic fracture limit of the flexible thin-film materials is small (e.g., < 1%
for paper). Thus, the deformation of flexible electrochemical biosensors is limited. Considering a
stretchable property is needed to form an intimate contact with the textured skin surface and to
deform with various natural skin motions, stretchable materials and structures have been exploited
to ensure the effective function of an electrochemical biosensor (Fig. 1) [32,47,48].
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Figure 1. Overview of wearable electrochemical biosensors. Representative fabrication approaches include (a) gravure
printing, reproduced with permission from [49], Copyright 2015, Springer; (b) screen printing, reproduced with permission
from [50], Copyright 2013, Wiley-VCH, (c) 3D printing, reproduced with permission from [51], Copyright 2016, Wiley-VCH,
(d) flexographic printing, reproduced with permission from [52], Copyright 2010, The Royal Society of Chemistry, and (e)
inkjet printing, reproduced with permission from [53]. Copyright 2017, American Chemical Society. Wearable electrochemical
sensors can be integrated on various substrate materials, including (f) fabric/textile, reproduced with permission from [54],
Copyright 2014, Wiley-VCH; (g) paper, reproduced with permission from [55], Copyright 2014, Wiley-VCH; (h) plastic thin
films, reproduced with permission from [56], Copyright 2012, Macmillan Publishers Limited; (i) temporary tattoo substrates,

reproduced with permission from [57], Copyright 2012, The Royal Society of Chemistry; along with (j) stretchable structures,
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reproduced with permission from [58], Copyright 2015, American Chemical Society. Applying the resulting wearable
electrochemical sensors can analyze a variety of body fluids, including (k) tear, reproduced with permission from [59],
Copyright 2015, IOP Publishing Ltd; (1) sweat, reproduced with permission from [60], Copyright 2013, American Chemical
Society; (m) interstitial fluid (ISF), reproduced with permission from [61], Copyright 2014, American Chemical Society, and

(n) saliva, reproduced with permission from [62], Copyright 2012, Macmillan Publishers Limited.

In this mini-review, we summarize the latest development of wearable electrochemical
biosensors. Their working principles, target biofluids, fabrication approaches, and wearable
electrochemical biosensors based on various stretchable materials and structures are reviewed.
Following the introduction of the working principles of different electrochemical biosensors in
Section 2, we discuss the variety of target biofluids (e.g., sweat, tear, saliva, and interstitial fluids) for
wearable electrochemical biosensors to sample and analyze in Section 3. Next, Section 4 focuses on
a few representative cost-effective fabrication approaches such as additive manufacturing or
printing to integrate electrochemical biosensors on various flexible and stretchable substrates,
followed by a conclusion and future perspective in Section 5.

2. Principles of electrochemical biosensors

Electrochemical biosensors often consist of a recognition element and a sensor element (Fig. 2).
The recognition element could be the nucleic acid, antibody, ions, or enzyme. The sensing element
may rely on amperometry/voltammetry, potentiometry, field-effect transistors, or impedimetry
[63-66]. These different types of electrochemical biosensors are also compared in Table 1 [64-67].
The transduced signals from the sensing element can be transmitted through a wired or wireless
communication module. The analysis of the data can then help inform the health condition.
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98
99 Figure 2. Schematic of electrochemical biosensors that include (a) a recognition element (e.g., nucleic acid, antibody, ions, or
100 enzyme) and a detection transducer, along with a corresponding signal processing unit; Reproduced with permission from

101 [63]; Copyright 2016, The Royal Society of Chemistry. The detection transducer could be (b) amperometric/voltammetric

102 sensors with i) two-, ii) three-, or iii) four-electrode configuration (Reproduced with permission from [63]; Copyright 2016,

103 The Royal Society of Chemistry), (c) a potentiometric sensor (Reproduced with permission from [64]; Copyright 2014,

104 National Academy of Sciences), (d) a field-effect transistor sensor (Reproduced with permission from [65]; Copyright 2017,

105 Elsevier), or (e) an impedimetric sensor (Reproduced with permission from [66], Copyright 2008, Elsevier.) (f) Signal

106 processing element that may include wireless communication module and processing units such as phones (Reproduced with

107  permission from [65]; Copyright 2017, Elsevier).

108
109 Table 1. Summary of the working principles of different electrochemical sensors.
Detection Mode Transducer Analytes
Amperometric/ Carbon, metal, chemically modified electrodes | Alcohols, glucose, phenols, lactate
voltammetric sensors
Potentiometric sensors Ion-selective, carbon, metal, glass electrodes K+, CI-, Ca?, Na*
Field-effect transistors Ion-sensitive/ enzyme field-effect transistor K+, H+
Impedimetric sensors Interdigitated/ metal electrodes K, helicobacter pylori
110

111 2.1 Amperometric/voltammetric biosensors
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By probing the potential-current relationship, the amperometric or voltammetric biosensors can
detect electroactive species present in biological samples. In voltammetric biosensors, the applied
potential is varied to operate in either a linear or cyclic voltammetric mode. The target analyte can
be identified by the peak potential, whereas its concentration could be informed by the peak current.
Different from voltammetric biosensors, amperometric sensors relate the measured current with the
concentration of a specific analyte at a fixed potential. Other than the Faradaic current from the
reaction of the analyte, other sources of current also contribute to the measured current (collectively
referred to as the background current). The background current includes the electrolysis of
impurities, the electrolyte, and the electrode material, along with the capacitive current from the
electrode/solution interface. Operating the electrode at a fixed potential can help eliminate the
capacitive current. While the background current might be subtracted from the total current in
some cases [68-70], it can be challenging in other cases as the background current may interact with
the signal current in a non-linear manner. The electrochemical system in a simple amperometric/
voltammetric cell configuration could consist of a few from two to four electrodes, i.e., a working,
working sensing, counter, and reference electrodes (Fig. 2a). In the amperometric biosensor, gold,
carbon, or platinum represents the common choice for the working electrode. These electrode
materials can provide good electron transfer towards the substrate in the reaction and maintain high
activation energy for electron transfer in the competing reactions. Ag/AgCl often serves as the
reference electrode to provide a fixed potential against which the potential of the working electrode
is controlled and measured. The two-electrode configuration is simple. However, it has limited
control of the potential on the surface of the working electrode with large currents, leading to a
smaller linear range. To overcome this limitation, the counter electrode is employed to provide a
more stable potential reference in the three-electrode configuration. In a four-electrode biosensor,
redox recognition elements are immobilized on both the working and working sensing electrodes.
The proximity of two working electrodes enhances redox recycling that helps regenerate
electroactive species after their oxidation or reduction. Thus, this configuration is ideally suited for
micro-scale interdigitated electrode arrays. Because redox recycling is only available with the
redox bio-recognition element, four-electrode systems are not as commonly used as their
three-electrode counterparts. Amperometric/ voltammetric biosensors with different
configurations are commonly used as immunosensors, enzyme biosensors, and pesticide monitors
[71-74].

2.2 Potentiometric biosensors

In potentiometric biosensors, an analyte recognition event is converted into a potential signal
for sensing (Fig. 2b). Local equilibrium is established across the recognition membrane (e.g.,
ion-selective members), leading to a change in the membrane potential. The information of the
analyte is obtained from the potential difference between the working and reference electrodes.
The most common potentiometric biosensors are capable of detecting pH, ions (e.g., F, I, CN-, Na*,
K+, Ca?, or NH*), and gas (e.g., CO2 or NHs). The potential differences between the working and
reference electrodes are proportional to the logarithm of the ion activity or gas fugacity (i.e., effective
partial pressure or concentration) [71-74]. Though potentiometric biosensors are simple, low cost,
and highly selective, they have low sensitivity that limits their use in many applications [72]. In
addition to the contribution from the sensor response, the current response in potentiometric
biosensors also comes from the electrode double layer charging current that can be estimated by a
double layer capacitance model. The charging current is often considerable and difficult to remove
or filter out, thereby limiting the resolution of potentiometric sensors [73].

2.3 Field-effect transistor (FET) biosensors

In the ion-sensitive field-effect transistors (ISFETs), an ion-selective membrane is applied
directly to the insulated gate of the field-effect transistors (Fig. 2c). The ISFETs can also be used to
determine the corresponding ion concentrations. When such ISFETs are coupled with a biocatalytic
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or biocomplexity layer, they become biosensors and are usually called either enzyme or
immunological field-effect transistors (ENFETs or IMFETs).  Unlike potentiometric and
amperometric biosensors that use an electrode transducer, the ISFETs’ transducer is the gate oxide
layer. The response of the ISFETs allows the output to be either the gate voltage or source-drain
current by fixing one and measuring the other. The ISFET biosensors have been developed for
enzyme sensing, antigen-antibody binding reaction measurements, and DNA detection [71,73,75].

2.4 Impedimetric biosensors

Impedimetric biosensors measure the change in electrical impedance. This change often
results from changes in capacitance and/or resistance of bio-interface characteristics for
bio-recognition events. As a small sinusoidal stimulus voltage (or current) is imposed in a range of
frequencies, the resulting current (or voltage) is measured in the impedimetric biosensor. Thus, it
can inform bio-recognition events from the obtained phase and/or amplitude changes. Compared
to potentiometric and amperometric biosensors, an important advantage of impedimetric biosensors
is that they do not damage or disturb most bio-recognition events because of the applied stimulus
sinusoidal voltage is negligibly small (usually 5-10 mV in amplitude) [74].

3. Target biofluids for the wearable electrochemical biosensors

Wearable electrochemical biosensors have been explored for human health monitoring through
the analysis of saliva, tear, sweat, and interstitial fluid (Fig. 3). Table 3 compares the representative
electrochemical biosensors for these different target biofluids within the last five years.
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Table 3. Summary of representative electrochemical biosensors with applications of biofluid analysis.

Biofluid Platform Recognition Analyte Technique Response time | Linearity range LOD detection sensitivity Ref.
element

Saliva PET Uricase Uric acid Amperometry | NR (real-time) 0-1.0 mM NR 2.32 pA /mM in artificial saliva [76]

enzyme 1.08 pA/mM in undiluted human saliva
PB LOx Lactate Amperometry | NR (real-time) 0.1-1.0 mM NR 0.202 pA/mM in undiluted human [77]

saliva
Foil Carbon (carboxymethyl)lysine | Amperometry | NR (real-time) 0.5-10 pg/mL 0.8 uM NR [78]
polyester GOx Glucose Amperometry | NR (real-time) 0-1.0 mM 5 uM 41.7 pA-mM1-cm= [79]
PETG GOx Glucose Amperometry | NR (real-time) 0.1-1.0 mM NR NR [80]
Tear PET GOx Glucose Amperometry NR 10 uM-100 mM 5uM NR [81]
Amperometry 35s 0-100 uM 50 uM 53 uA-mM1-cm [82]
Amperometry | NR (real-time) 0.1-0.6mM NR NR [83]
Polyethylene CuO Glucose Amperometry | NR (real-time) 0-0.7 mM 2.99 uM 850 A mM1cm2 [84]
Sweat PET Carbon ink Glucose Amperometry | NR (real-time) | 0.05to 0.3 mM NR 10.89 A mM-! cm~2 [85]
Tattoo Carbon ink Zinc Amperometry | NR (real-time) 20-100 mM 0.05 pg/ml 23.8 uA-ml/ug [86]
Carbon fibres CNT ink Na* Potentiometry NR 106Mto 101 M | 4.02x107 0.19 mV/decade [87]
M

PET GOx Glucose Amperometry NR NR 10 x10°M 41.8 nA um cm= [88]
Polycarbonate LOx Lactate Amperometry NR NR NR 0.2mM [89]
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Tattoo LOx Lactate Amperometry | NR (real-time) 1-20 mM NR 0.1031 pA-mm2mM-1 [60]
ETH 129, Ca>, pH Potentiometry | NR (real-time) NR NR 32.2 mV/decade, 62.5 mV/decade [90]
PANI
PDMS GOx Glucose Amperometry | NR (real-time) 0-1 mM NR NR [91]
Interstitial Tattoo GOx Glucose Amperometry NR 0-0.16 mM NR NR [92]
fluid

NR: not reported; LOD: Limit of detection; PET: Polyethylene terephthalate; PB: Polybutylene; PETG: Polyethylene Terephthalate Glycol; ETH 129: a thin organic membrane containing electrically

neutral carrier calcium ionophore II; PDMS: Polydimethylsiloxane.
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Figure 3. Application of wearable electrochemical biosensor for biofluid analysis. (a) Saliva analysis from i) a mouthguard
biosensor integrated with a wireless amperometric circuit board. ii) Schematic of reagent layer of the chemically modified,
printed Prussian-Blue carbon working electrode containing uricase for the salivary uric acid (SUA) biosensor and iii) optical
image of the wireless amperometric circuit board; Reproduced with permission from [76], Copyright 2015, Elsevier. (b) Tear
analysis by (i) an eyeglasses platform consisting of wireless electronics and a fluidic device with (ii) its exploded view that
shows (1) top polycarbonate membrane, (2) double-adhesive spacer, (3) paper outlet, (4) electrochemical (bio)sensor, and (5)
bottom polycarbonate membrane; Reproduced with permission from [93], Copyright 2019, Elsevier. (c) Sweat analysis from i)
an electrochemical biosensor attached to the skin wet with sweat, along with ii) its performance under mechanical
deformation; Reproduced with permission from [85], Copyright 2018, American Chemical Society. (d) Interstitial fluid (ISF)
analysis that relies on i) a screen-printed glucose biosensor and a wireless flexible printed circuit board, with schematic
illustrations of ii) iontophoretic operation and layout of glucose biosensor. Reproduced with permission from [92], Copyright

2018, Wiley-VCH.

3.1 Saliva analysis

Human saliva is a watery substance that contains 99.5% water with electrolytes, mucus, white
blood cells, epithelial cells, glycoproteins, enzymes, among others [94]. By leveraging the
developments of biosensors, glucose and lactate in saliva can be non-invasively monitored by a
cavitas sensor from the oral cavity. A wearable biosensor on a mouthguard is developed to monitor
salivary lactate [77]. The fabrication starts with the printing of Ag/AgCl as the reference electrode
and contacts (for interfacing the electrochemical analyzer) on a flexible PET substrate. Next, the
Prussian-blue-graphite ink and LOx are coated on the working electrode (without LOx for the
counter electrode), followed by a coating of an insulation layer. The resulting lactate sensor
demonstrates high sensitivity of 0.553 pA mM and a low limit of detection 0.050 mM. Building on
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this work, a mouthguard electrochemical biosensor using the enzyme (uricase)-modified electrode
from screen-printing along with an integrated wireless amperometric circuitry detects salivary uric
acid with high sensitivity of 2.32 uA/mM (Fig. 3a) [76].

By using non-toxic serine amino acid as linker molecules for the functionalization of nZrO, a
label-free and non-invasive biosensing platform can efficiently detect microRNA, an oral cancer
biomarker [63]. This sensor has a low limit of detection of 0.01 ng/mL that is sufficient for the lower
secretion level of targets in human saliva. And the biosensor also exhibits a linear detection range
0.01-29 ng/mL with a sensitivity of 0.295 uA mL/ng, along with a response time of 6 minutes and
long-term stability up to 45 days. While the monitoring of saliva is of high interest for healthcare,
significant challenges still exist for the saliva electrochemical biosensors. The complicated mixture
in the saliva requires the sensor to be highly selective. The sensor also needs to maintain stable
performance in such a high moisture environment. Additionally, the devices should be fully
biocompatible due to the use in the mouth.

3.2 Tear analysis

Electrolytes, metabolites, lipids, and proteins/peptides are widely available in the complex
extracellular fluid of tears secreted from lacrimal glands, ocular surface epithelial cells, goblet cells,
and blood [95]. Through electrochemical biosensor applications, these complex extracellular fluids
can be measured for desirable health monitoring analyses [59,82,95,96]. As a natural choice, a
contact lens can integrate an amperometric glucose sensor to analyze the tear. Firstly, the sol-gel
titania film is applied to immobilize GOx. Next, Nafion is used to decrease interference from the
other analytes in the tear to result in a glucose sensor with a fast response of 20 s and high sensitivity
of 240 pA/(cm2 mM). Integrating the sensor with power supply and wireless signal transduction to
a remote electronic device further provides a wireless sensor. The contact lens biosensor is used to
wirelessly monitor tear glucose in a rabbit ranging from 0.03 to 5.0 mM [97]. The estimated basal
tear glucose of 0.11 mM is shown to have a delay of 10 min from the blood sugar level. Without
using enzymes, modifying the electrodes with CuO microparticles from inkjet printing leads to an
enzyme-free glucose tear sensor with a high sensitivity of 850 tA mM cm2 and a low limit of
detection of 2.99 uM [84]. Besides, ocular contact lenses should not obstruct the field of vision. Thus
a highly transparent, multifunctional glucose sensor utilizing graphene and its hybrid with metal
nanowires on an actual ocular contact lens is developed [98,99]. With a stretchability of 25% and
high transparency of > 91%, the sensor has demonstrated its reliable operation through both in vitro
and in vivo tests by using a bovine eyeball and living rabbit, respectively. Without the need for
direct eye contact, integrating wearable sol-gel tear biosensor on a eyeglasses nose-bridge pad
connected to eyeglasses to collect and analyze tear can enable non-invasive monitoring (Fig. 3b) [93].

3.3 Sweat analysis

Compared to saliva and tear, sweat that contains abundant biochemical compounds can be
monitored from a wider range of locations on the human body. With a temperature sensor for
internal calibration, analysis of sweat with a constant flow yields simultaneous and selective
measurements of metabolite (e.g., lactate) and electrolytes (e.g., pH, Na*) [100]. The trace metal in
sweat can also be detected by a wearable amperometric biosensor. This biosensor consists of an
Ag/AgCl pseudo-reference, counter, and carbon working electrode modified by Nafion and bismuth
for Zn detection. It owns a sensitivity of 23.8 pA-ml/ug and a limit of detection of 0.05 pg/ml [60].
After preparing patterned Au nanosheets (AuNS) on a stretchable silicon substrate by filtration,
deposition of CNTs is followed by coating of CoOWOs/CNT (of polyaniline/CNT) nanocomposites on
the electrode to result in a skin-attachable electrochemical biosensor for detecting glucose (or pH) in
sweat (Fig. 3c) [85]. Besides a sensitivity of 10.89 pA/(mM cm?) (or 71.44 mV/pH) for glucose (or
pH), the sensors are also stable in air for 10 days and against mechanical deformation with a tensile
strain up to 30%. As sweat rates could vary with body movements (e.g., running vs. sitting), it is
highly desirable for sweat sensors to deconvolute multiple components in the complex mixture of
sweat at different rates.



260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

278

279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

Micromachines 2019, 10, x FOR PEER REVIEW 11 of 39

3.4 Interstitial fluid (ISF) analysis

Interstitial fluid (ISF) has a similar composition to that of blood. Each contains essential small
molecules (e.g., salts, proteins, glucose, and ethanol). Additionally, it can allow for minimally
invasive monitoring without the need for blood sampling [101]. By applying a potential difference
between two electrodes on the skin surface, reverse iontophoresis extracts ions such as Na* in the ISF
to the skin surface [102,103], which has also been used by the GlucoWatch [104]. Combining
reverse iontophoresis with enzyme-based amperometric biosensor results in a flexible tattoo-based
epidermal diagnostic device (Fig. 3d) [92]. Compared to GlucoWatch, a GOx-modified Prussian
blue transducer at a low applied potential analyzes the ISF glucose extracted by reverse
iontophoresis at a low current density. Non-invasive extraction of the ISF from the subcutaneous
tissue can also be enabled by a PDMS-based microfluidic system. This system consists of a micro
vacuum generator for transdermal ISF extraction, microchambers for ISF collection, micro
pneumatic valves for fluid management, and a microflow sensor for ISF volume measurement with
an error < 0.05 puL [105]. Combining the microfluidic chip for ISF collection with a three-electrode
electrochemical glucose sensor further leads to a continuous glucose monitoring microsystem [106].
The resolution of glucose measurements is improved by decorating graphene and Au nanoparticles
on the working electrode. By providing a composite nanostructured surface, the sensor with the
decoration can capture glucose ranging from 0 to 162 mg/dl with a limit of detection of 1.44 mg/dLl.

4. Wearable electrochemical biosensors based on flexible and stretchable materials and structures

4.1. Temple and non-template fabrication methods

Several novel fabrication methods have been developed for flexible and stretchable
electrochemical biosensors [48,107,108]. Lithographic approaches (e.g., thin-film deposition and
etching, photolithography, and ion-beam lithography) can be used to reproducibly fabricate
high-performance devices (e.g., H20: sensors [108] and RNA sensors [109]). However, their
attractive attributes come at a high cost due to the cleanroom setup, multiple equipment
acquisitions, complex processes, and the unique materials required [108-110].  Recent
developments in advanced materials such as new ink formulations help promote the development
of various printing technologies (Fig. 4) [111-115]. These new developments partially address the
challenges in high-cost lithographic approaches that also have compromised performance on rough
or textured surfaces. Both the leading template and non-template-based printing technologies for
fabricating electrochemical biosensors are summarized and compared (Table 3).

Because the screen printing technique is low cost and easy to scale up for mass production of
electrochemical biosensors with the favorable electroanalytical performance [116,117], it easily
results in low-cost fabric/textile-based electrochemical biosensors [118]. Firstly, the conductive ink
(e.g., Ag/AgCl as a reference electrode) is applied as an underlayer on the textile. Next, carbon or
metal-based ink containing the recognition element is overlaid on the underlayer to work as the
working electrodes (Fig. 4a) [50]. The spatial resolution and electrical performance of printed
electrodes hinge on ink formulation. For instance, the ink with a nearly defect-free graphene oxide
derivative can be printed to result in high-resolution lines with a width below 100 pm, a thickness of
3 um, and a sheet-resistance below 1 Q/sq [119].

The other template-based printing methods also include flexography and gravure printing,
where the ink is transferred to the substrate from a raised (flexography) or engraved (gravure)
pattern on aroll. In flexography printing (Fig. 4b) [112], the ink is first transferred from a bath to an
anilox roll. The anilox roll contains millions of tiny divots to take up the ink, which can bring the
anilox roll in contact with the printing cylinder. The ink is then transferred to the surface of the
target substrates. While the ink is on the ridges of the pattern on the printing cylinder in
flexography [87, 94-95], gravure printing relies on impressing the film into the cavities of the roll
where the ink resides (Fig. 4c) [113]. Both these two printing methods are intrinsically robust and
can enable large-area manufacturing [113,119-124].
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In addition to the template-based printing methods, non-template-based printing technologies
have been developed because of their higher customization design and lower price for small-scale
manufacturing. Non-template-based printing methods rely on dispensing the given technology.
These technologies include the use of gas or pressurized air (pneumatic), the use of piezoelectric
material in the setup (piezoelectric), the use of aerodynamic focusing (aerosol jet), the driving of ink
by an electric field (electrohydrodynamic), and the heating the material (thermal). [125,126]. As a
representative non-template-based printing method, extrusion-based 3D printing applies the ink
filament through a heated nozzle onto the substrate via a computer-controlled motion stage (e.g.,
three-axis) to manufacture a fully 3D-printed electrode (Fig. 4d) [114]. Different from
extrusion-based 3D printing that often requires high viscosity (>300k cP) in the inks, inkjet printing
explores the low viscosity (10-20 cP) inks to help ink transfer (Fig. 4e). However, low viscosity inks
suffer from small filler loading [115,125].
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Figure 4. Template- (red boxes) and non-template (green boxes) fabrication approaches. The template fabrication

approaches include (a) screen printing, (b) flexographic process, and (c¢) gravure printing. The screen printing explores i)
laser-cut stainless steel or chemically-etched polymeric mesh-screen stencils for patterning ii) the Ag/AgCl reference and iii)
working/counter electrodes with carbon- or metal-based ink containing recognition elements overlaid on the Ag/AgCl
conductor; Reproduced with permission from [50], Copyright 2013, Wiley-VCH. In the flexographic process, the surface of
the anilox roller consists of engraved cells. The doctor blade helps to remove excess ink from the anilox; Reproduced with
permission from [112], Copyright 2017, Elsevier. By using a rotary printing press in the gravure printing, the image is
engraved onto a cylinder. Reproduced with permission from [113], Copyright 2018, American Chemical Society. The

non-template fabrication approaches include (d) 3D printing and (e) inkjet printing. In extrusion-based 3D printing, the build
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material filament is heated, melted, and extruded in the nozzle. Each layer is deposited on the previous layer to form the
designed 3D structure; Reproduced with permission from [114], Copyright 2016, Wiley-VCH. In inkjet printing, layers of
conducting and dielectric materials are injected, patterned, and stacked on a substrate; Reproduced with permission from
[115], Copyright 2015, Elsevier.

Table 3. Comparison of representative printing approaches for electrochemical biosensors.

Method Template printing Non-template printing
Screen printing | Gravure printing | Flexography printing | Inkjet printing | 3D printing
Ink viscosity (cP) 500 - 5000 100 - 1000 50 - 500 10-20 >300 k
Line width (um) 50 - 100 10 - 100 45-100 2.3-50 1-100
Line thickness (um) | 3 -250 1 <1 1-10 1-100
Speed (m/s) 70 1000 ~500 ~1 <1

While the electrochemical performance of biosensors hinges on the specific materials of the
electrodes in the sensor, the substrate material affects their mechanical properties, which is related to
the level of comfort and may also result in a change in their electrochemical performance. The
commonly used substrate materials include the textile, flexible thin films (e.g., paper, plastic, and
tattoo-like thin films), and stretchable thin films. Table 4 summarizes the representative
electrochemical biosensors based on different substrate materials.

Table 4. Summary of representative electrochemical sensors based on different substrates.

Substrate Recognition | Analytes Technique Respo Limit of Flexible/ | Intimate | Ref.
element nse detection Stretchable | contact
time

Fabrics/ | Woven fiber GOx Glucose FET 05s NR Yes/Yes No [127]
Textiles Textiles PANI/PAN | Ammonia | Amperometry| 9s 10 ppm Yes/Yes [128]
Carbon ink TNT Amperometry [ NR NR Yes/NR [118]
Ionselective Na*, K* | potentiometry | NR 104°M, 1042 Yes/Yes [129]

membranes (real-ti M

me)
Underwater | Tyrosinase Phenols | Amperometry| NR 0.25 M Yes/NR [130]
garments
Cotton LOx Lactate | Amperometry| NR 0.3 mM Yes/NR [131]
Silk LOx Lactate | Amperometry| 55 NR Yes/NR [132]
Fabrics GOx Glucose | Amperometry | NR NR Yes/NR [133]
Paper GOx Glucose | Amperometry | NR NR Yes/No Yes [134]
Ag Chloride | Amperometry | 30 - 120 1.5 mM Yes/No [135]
s
GOx Glucose | Amperometry | NR NR Yes/No [136]
Ag Chloride | Voltammetry NR NR Yes/No [137]
Bienzymatic | Glucose | Amperometry| NR 0.37 mg/dL Yes/No [138]
GOx-HRP
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Plastic | Polyimide Glutamate | Glutamate, | Amperometry | A few |220nM, 2 mM Yes/No Yes [139]
and LOx lactate second
s
Polyimide LOx Lactate | Amperometry| NR NR Yes/No [140]
PET Enzymes Uric acid, FET NR 3x10° M, Yes/No [141]
cholesterol, 30x10° M,
glucose 100x10° M
LOx Lactate | Amperometry| NR 1.0 uM Yes/No [142]
(real-ti
me)
Polyamide GOx Glucose | Amperometry | NR 0.1 mg/dL Yes/No [143]
PEN LOx Lactate FET NR 66 nM Yes/No [144]
(real-ti
me)
Polyurethane GOx Glucose | Amperometry | NR 0.010 mM Yes/No [145]
(real-ti
me)
LOx Lactate [ Amperometry| 50s NR Yes/No [146]
Tattoo Carbon ink pH Potentiometry | 10s NR Yes/No Yes [147]
Tonselective Na+, K+ | Potentiometry | 5s,5s | 104M, 10* M Yes/No [148]
membranes
Silver ink Water Impedimetry | NR NR Yes/No [67]
content
(hydration)
Alcohol Ethanol [Potentiometry| 30s NR Yes/No [149]
oxidase

4.2 Textile-based biosensors

horseradish peroxidase; NR: not reported.

GOx: glucose oxidase; Lox: lactate oxidase; FET: Field-effect transistor; PANI: polyaniline; PAN: polyacrylonitrile; HRP:

Being flexible and widely used in our daily life, textiles such as wool, cotton, and nylon have

been extensively exploited as the substrate for integrating various electrochemical biosensors [150].
Early investigations of textile-based chemical biosensors rely on optical systems for bio-sensing.
This is through the utilization of a light source and detector [35-37]. However, the required optical
sensors are sophisticated and high in cost. By leveraging the recently developed fabrication
techniques, simple textiles-based electrochemical biosensors have been obtained to withstand
repeated bending cycles. The influence of textile substrates (e.g., Cotton, Polyester, and GORE-TEX
fabric) on the sensing performance of nitroaromatic explosives has been investigated when
integrated screen-printed electrodes on different textile substrates [118]. The adhesion at the
electrode/textile interface is demonstrated to be robust against cycles of laundry washing and
mechanical deformations.

Applying the technique of screen printing yields a highly stretchable textile-based biofuel cell to
analyze sweat metabolites (Fig. 5a) [54]. The glucose (or lactate) biofuel cell with single-enzyme
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and membrane-free configurations could generate a maximum power density of 160 (or 250) uW
cm? with an open-circuit voltage of 0.44 (or 0.46) V. Enzymatically oxidized on the anode, the
biofuel (e.g., glucose) releases electrons that are accepted by the cathode. The generated power can
operate on human-body sweat to provide a self-powered response. Intrinsically stretchable inks
(i.e., carbon nanotubes or CNTs dispersed in Ecoflex) and stretchable structure of the serpentine
electrode are employed in the device. The resulting self-powered devices can exhibit a high
stretchability (a tensile strain of 100%) and endure a stable performance upon repeated (>100 times)
strains. An alternative wearable, high-power biofuel cell explores a glucose-oxidizing glucose
dehydrogenase as anode and an O:-diffusion bilirubin oxidase as a cathode on a textile cloth (Fig.
5b) [151]. Two types of CNT layers are used to improve the performance of the anode and cathode:
an acid-treated hydrophilic CNT layer for coating of the mediator and enzyme, and
polytetrafluoroethylene (PTFE)-based hydrophobic CNT layer for adequate oxygen diffusion by
forming a microporous layer. Owning to the stretchable material and structure, the maximum
power density can still maintain 216 uW/cm? at an output voltage of 0.36 V for glucose of 200 mM
even upon deformation (e.g., S-shape). By using a series connection of four biofuel cell, power can
be generated with an open-circuit voltage of 1.9 V to illuminate an LED on the cloth.

Compared to the integration of electrodes on the textile with a conventional screen-printing
method that results in ink waste, embroidery and yarn coating use only as much reagent and ink as
required. Conductive threads with the immobilized enzyme can be embroidered into textiles to
serve as the working, counter, and reference electrodes in an electrochemical biosensor with
three-electrode configuration to quantitatively analyze biofluid samples (Fig. 5¢) [133]. The
electrodes with customized geometries at specific locations on a garment can be quickly fabricated
by using a computerized embroidery machine. The hydrophilic nature of most threads in
embroidered sensors can help quickly absorb liquids to facilitate sample loading for improved
automation. The embroidered electrochemical biosensor exhibits a stable performance with a
marginal decrease of 9% in the signal after 100 bending cycles. Multiplexed measurements of
different targets (e.g., glucose and lactate) can also be achieved by using selective assays to each
target (e.g., a glucose assay and a lactate assay). With negligible signals from the nonspecific
analytes, the glucose (or lactate) assay only selectively responds to the glucose (or lactate) with a
significant response and a high signal-to-noise ratio of 3.2 (or 4.1) at a concentration of 5 mM (or 12.5
mM). Similar to embroidery, yarn coating allows the use of textile weaving with a wide variety of
yarn materials, weaving styles, and looms to create electrochemical biosensors with various
properties. For instance, silk yarns coated with conducting inks can be handloom-woven as
electrodes into patches of fabric to create arrays of sensors, which are then laminated, cut, and
packaged into individual sensors. By using the sensor consisting of four electrodes with one
working electrode for hemoglobin and one working electrode for glucose, a multiplexed array can
simultaneously detect glucose and hemoglobin from the blood samples (Fig. 5d) [152]. While the
use of an analyte-specific enzyme (i.e., glucose oxidase) on the working electrode provides a highly
selective glucose detection, the carbon electrode with differential pulse voltammetry (DPV) detects
hemoglobin with no significant interference from glucose. The shared counter and reference
electrodes in the multiplexed sensor also help reduce the cost.

As an alternative to the weaving/embroidery of conducting fabric or integration of other
conductive materials, the carbonization of textiles coated with nanomaterials presents another route
to the creation of the electrochemical biosensors. In a representative example, silk fabrics coated
with multi-walled carbon nanotubes to fully use the space and strengthen the interconnection are
first carbonized from hydrophilic to relatively hydrophobic. Decorating the resulting structure
with Pt microspheres (or glucose oxidase, GOx) enables the detection of H20O: (or glucose) (Fig. 5e)
[153]. The obtained glucose sensor has a sensitivity of 288.86 pA/(mM cm?) in a relatively good
linear range from 0 to 5 mM. As the intimate contact between the sensor and skin is highly
desirable to allow for the precise measurement of the target analyte, tight-fit clothing has been
explored. As arepresentative example, textile-based amperometric biosensors are integrated on an
elastic waistband of common underwear for direct tight contact [31]. However, the level of comfort
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is significantly compromised. Additionally, measurements of analyte concentrations are limited to
specific locations that have intimate contact between textile-based devices and the skin [38].
Therefore, thin-film sensors based on the other flexible and stretchable substrates have been
developed to address some of these concerns.
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Figure 5. Fabric-based electrochemical sensors. (a) Optical images of the designed stencil and its use for printed stretchable
devices through a screen printing process; Reproduced with permission from [54], Copyright 2016, The Royal Society of
Chemistry. (b) i) Schematic of enzyme/CNT composite fibers woven on a textile cloth. The anode and cathode fibers were
prepared by modifying multi-walled CNT-decorated carbon fibers with glucose dehydrogenase and bilirubin oxidase,
respectively. ii) [llumination of an LED device consisting of a charge pump IC, capacitor, and red LED connected to enzymatic
power fibers upon dropping a glucose solution on a cloth; Reproduced with permission from [151], Copyright 2019, Elsevier.
(c) Embroidered electrochemical sensors fabricated on textile, cotton gauze, and cotton t-shirt; Reproduced with permission
from [133], Copyright 2016, The Royal Society of Chemistry. (d) Manufacturing of fabric-based electrochemical sensors: i)
Custom-made yarn coating instrument, ii) handloom used to weave the sensors, iii) woven patches on the loom, and iv) a
woven array of 90 (15 x 6) sensors; Reproduced with permission from [152], Copyright 2015, The Royal Society of Chemistry.
(e) Schematic of processes to prepare the glucose sensor based on the carbonization of textiles; Reproduced with permission

from [153], Copyright 2018, Elsevier.

4.3 Flexible thin-film biosensors

4.3.1 Paper-based biosensors

Being flexible, foldable and rollable, widely available, inexpensive, lightweight, and
hydrophilic, paper can be readily and rapidly modified with biomolecules and nanomaterials for
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electrochemical sensing applications. The high porosity of cellulose in the paper also allows for
solution transport through capillary forces. It can serve as an autonomous microfluidic pumping
system without a need for external pumps [154]. The paper-based bioanalytical devices use
capillary forces to drive the lateral flow of a liquid sample (i.e., lateral flow immunochromatographic
assays or lateral flow tests) [155,156]. Based on the generated color, lateral flow tests can provide
qualitative or semi-quantitative information [157]. Quantitative measurements can also be
obtained with electrochemical paper-based analytical devices (ePADs) that wuse the
photolithography to create microfluidic channels on the filter paper (Fig. 6a) [55]. The Ag/AgCl ink
is first applied as the reference electrode and conductive pads. Next, screen-printing carbon ink
that contains Prussian blue (PB) results in the working and counter electrodes. Spotting the
analyte-specific enzymes (e.g.,, GOx, lactate oxidase or LOx, and uricase) helps determine the
concentration of glucose, lactate, and uric acid, with a limit of detection of 0.21 +0.02 mM, 0.36 +0.03
mM, and 1.38+0.13 mM, respectively. As a close distance between the working and reference
electrodes minimizes the effect from uncompensated resistance between the two electrodes, screen
printing that requires a stencil to pattern the electrodes limits the achievable maximum resolution
[157-160].

Though the shape of electrodes is well-defined with a patterned screen or stencil, they often
suffer from poor electrical properties and irreproducible surface chemical properties. As an
alternative, prefabricated Au microwires and carbon fibers, along with their meshes, can be
exploited as electrodes in a paper-based device with a multilayered structure created by the folding
principles of origami (Fig. 6b) [161]. When a large surface area is desirable, mesh electrodes are
preferred over their wire counterparts to provide a larger surface area for the immobilization of
bioprobes. Without using a patterned screen or stencil, portable writing tools such as lead pencils
can directly draw electrodes with the desired geometry on paper to create electrochemical devices
[162]. After pressurization, the mixture consisting of carbon powder as a conductive material,
sodium bentonite as a binding agent, and sodium silicate as a hardening agent in thin rods can be
inserted in commercial lead holders to facilitate drawing on paper.

With precise control of ink droplet volume, inkjet printing has also been explored to fabricate
paper-based electrochemical biosensors [163]. In the inkjet printing paper-based electrochemical
biosensor with a three-electrode configuration [164], the electrochemical deposition of Ag/AgCl on
an inkjet-printed Ag nanoparticle pattern serves as the reference electrode. After inkjet-printing of
nanoparticle-based gold working and counter electrodes, electropolymerized polyaniline (or GOx
entrapped poly-3,4-ethylenedioxythiophene) films on the surface of the working electrode enables
selective sensing of pH (or glucose), which has comparable performance with their commercial
counterparts. Applying inkjet printing can also integrate a potentiometric cell into a piece of filter
paper to form a paper-based ion-selective platform (Fig. 6¢) [165]. This device uses a hydrophilic
high-capacity ion-exchange membrane and a valinomycin-doped ion-selective electrode (ISE)
membrane embedded into the paper. It achieves highly selective sensing of Cl-and K* with a
sensitivity of 57.4 + 0.5 mV/decade and 53.3 + 0.7 mV/decade, respectively.

Integrating paper-based biosensors with other platforms such as a commercial bandage may
open additional opportunities, such as a smart bandage. The screen-printed conductive inks are
embedded into commercial bandages. The developed omniphobic paper-based smart bandage
(OPSB) with a lightweight (~ 8 g) is capable of measuring pH and uric acid in open wounds and
pressure ulcers for chronic wound monitoring (Fig. 6d) [166]. Taken together with a wireless
communication module, the wearable OPSB can simultaneously quantify pH and uric acid levels at
the wound site to wirelessly inform the user of wound status [167] at low-cost (~ $ 18).
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Figure 6. Paper-based electrochemical biosensors. (a) Design and optical image of the electrochemical detection cell for
paper-based microfluidic devices. WE/CE: working/counter electrode (carbon ink); RE: reference electrode (silver/silver
chloride ink); Reproduced with permission from [55], Copyright 2009, American Chemical Society. (b) Paper-based
microelectrochemical devices with electrodes based on conductive wires, inlet/outlet in the 1st layer, and two stacked
channels in the other 3 layers; Reproduced with permission from [161], Copyright 2014, American Chemical Society. (c)
Optical image of a paper-based ion-sensing platform, with two alligator clips on the left to measure the electromotive force
(EMF) and two clips on the right for balancing; Reproduced with permission from [165], Copyright 2016, WILEY-VCH. (d)
Fabrication and assembly process of omniphobic paper-based smart bandage (OPSB): (i) Schematic of the fabrication of
OPSBs: 1) After spraying RFSICI3 of 2% in IPA to render Whatman #1 paper omniphobic, 2) flexible carbon and Ag/AgCl
electrodes are patterned through stencil printing, followed by 3) laser-cutting the adhesive layer of the bandage for creating
openings to interface with the wearable potentiostat. Placing the paper-based sensors between the adhesive layer and the
absorbent pad of the commercial bandages assembles the OPSBs, which can monitor (ii) uric acid and pH levels in open
wounds, as well as (iii) the early detection of pressure ulcers. (iv) shows the packaging of the electronics in the rechargeable,

wearable potentiostat; Reproduced with permission from [166], Copyright 2018, Elsevier.

4.3.2 Plastic-based biosensors
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Compared to paper, plastic substrates (e.g., polyester family, polyethylene naphthalene,
polytetrafluoroethylene, and many others) have sufficient thermal stability, low coefficient of
thermal expansion, and structural resiliency against deformation [125]. By using the widely
reported flexible polyester with a thickness of 50 um as a representative example [82,168-170], a
three-electrode amperometric lactate biosensor is fabricated along with a bipolar electrocardiogram
sensor in a wearable hybrid sensing system (Fig. 7a) [56]. The three amperometric electrodes are
also separated from the Ag/AgCl electrocardiogram electrodes via a printed hydrophobic layer to
increase sensor stability and signal-to-noise ratio. The working electrode of the lactate biosensor is
coated with LOx-modified Prussian blue as a biocatalytic layer for selective detection of lactate,
which has a sensitivity of 96 nA/mM in a linear range for the lactate concentration from 0 to 28 mM.
As a representative example in the polyester family, the polyethylene terephthalate (PET) substrate
has also been widely explored for the thin-film sensors. For instance, a mechanically flexible and
fully integrated sensor array can also be embodied on the PET substrate for multiplexed in situ
perspiration analysis (Fig. 7b)[22]. The integrated sensor array can simultaneously and selectively
measures sweat metabolites (glucose and lactate) and electrolytes (sodium and potassium ions),
along with the skin temperature to calibrate the response of the other sensors. Molding a 100
um-thick PET into a contact lens shape allows for the integration of sensors to detect lactate with an
average sensitivity of ~ 53 pA/(mM cm?) within the linear range from 0 and 1 mM and a relatively
fast response time of 35 s (Fig. 7c) [82].

A flexible hybrid poly(methyl methacrylate) (PMMA)/paper microfluidic platform with fully
integrated sensing can simultaneously monitor lactate, Na*, and pH for on-body testing of human
sweat (Fig. 7d) [171]. A continuous flow of sweat is collected by microneedles with an array of Pt
and Ag wires (50 um diameter) and transported in a paper microfluidic channel. The Pt and Ag
wire microneedles also serve as the working and reference electrodes for the lactate/ Na*/pH sensors.
Before drop-casting LOx on the working electrode in the amperometric-based lactate sensor, a
semipermeable copolymer membrane (sulfonated polyether ether sulphone-polyether sulphone,
SPEES/PES) is applied to achieve high selectivity, following by a coating of an outer polyurethane
layer. The pH sensor relies on a pH-sensitive iridium oxide (IrOx) membrane to yield a sensitivity
of 71.90 + 0.8 mV/unit. And the potentiometric Na* sensor exploits a bilayered structure with
polyvinyl chloride (PVC) membrane on a poly(3,4-ethylenedioxythiophene) (PEDOT) polymer to
result in a sensitivity of 56 + 1 mV/unit.

Because of its strong adhesion to Pt and Ag, PET glycol (PETG) is used as the platform (e.g.,
PETG mouthguard) to integrate Ag/AgCl reference electrode and Pt working electrode with GOx
immobilized by poly (MPC-co-EHMA) (PMEH) for monitoring saliva glucose (Fig. 7e) [172]. By
using a 1.0 wt% PMEH overcoat and an electrode surface area of 16.8 mm? optimized glucose
measurement in artificial saliva with a phantom jaw is achieved with a stable response within ~ 60 s
and good sensitivity for the glucose concentration from 0.05 to 1.0 mM.
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Figure 7. Plastic-based wearable electrochemical biosensors. (a) i) Schematic and ii) optical image of the fabrication of the
electrochemical sensor through screen printing, as well as iii) its flexibility demonstration and iv) integration with the
wireless electronics; Reproduced with permission from [56], Copyright 2016, Macmillan Publishers Limited. (b) Optical
image of a wearable flexible integrated sensing array (FISA) on the wrist of a subject; Reproduced with permission from [22],
contact lens with sensing structure on ii) a flat substrate and iii) a completed contact lens held on a finger; Reproduced with
permission from [82], Copyright 2012, Elsevier. (d) Exploded view and optical image of the microfluidic chip with
microneedles for sweat collection and analysis. The sensors were placed inside the microfluidic channel that could draw a
continuous flow of sweat; Reproduced with permission from [171], Copyright 2017, Elsevier. (e) Schematic and optical image
of the glucose biosensor on the polyethylene terephthalate glycol (PETG) mouthguard, with Pt and Ag electrodes formed by

a sputtering process; Reproduced with permission from [172], Copyright 2016, Elsevier.

4.3.3 Temporary tattoo-based biosensors

Tattoo-like electrochemical biosensors are attractive because of their intimate contact with the
human skin without causing much discomfort on the body [2,173]. In fabricating temporary
transfer tattoo-based electrochemical biosensors (Fig. 8a) [57], the electrode designed in red with
active ink materials (e.g., carbon and Ag/AgCl reinforced with carbon fibers) is first patterned by
screen printing on paper (orange) coated with the release agent (olive). After applying the adhesive
sheet (blue) with a protective coating (maroon) on the printed sensor, removing the protective sheet
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and flipping the layers can apply it onto the skin (green). Removing the release agent-coated paper
then exposes the sensor. Before removing the protective sheet, the release agent-coated paper can
be removed to allow direct contact of the electrode to the skin. In addition to favorable
electrochemical properties as opposed to the electrodes from the conventional screen printing, the
resulting sensor also exhibits robust performance against various deformation modes (e.g., pinching,
bending, and twisting), with promising applications as potentiometric and amperometric sensors
[60,147,148,173-177].

The accuracy of conventional potentiometric biosensors hinges on a stable and reproducible
potential of the liquid-junction at both reference and working electrodes. However, the leakage of
the solution becomes a concern [38]. By exploring the concept of all-solid-state electrodes [147,148],
a wearable potentiometric all-solid-state biosensor (without inner liquids) is developed for real-time
on-body monitoring of nerve agents simulant diisopropyl fluorophosphate (DFP) (Fig. 8b) [175].
The enzymatic hydrolysis of DFP by the enzyme of organophosphate hydrolase (OPH) results in
proton release. The resulting pH change captured by the skin-worn potentiometric pH-sensing
transducer directly correlates to the DFP in the liquid and gas phases. The device in the design of a
“skull face” layout consists of one ‘eye’ from an Ag/AgCl reference electrode and the other ‘eye’
from a printed carbon working electrode coated with PANI. The sensor can detect the DFP in the
liquid phase with a limit of detection of 10 mM and a stable response in less than 20 s for the
concentration from 10 to 120 mM. The detection of the DFP in the vapor phase is slightly longer but
still within 30s. With the same limit of detection of ~ 10 mM, the sensor response increases linearly
as the vapor concentration increases from 20 to 120 mM.

By using a mediated LOx working electrode in an amperometric biosensor, the printed
temporary-transfer tattoo electrochemical biosensor enables real-time lactate sensing (Fig. 8c) [60].
The LOx working electrode is prepared by first tethering the LOx enzyme on the surface of the
printed tattoo electrode functionalized with tetrathiafulvalene and multiwalled carbon nanotubes.
Next, a biocompatible chitosan overlayer is coated. The resulting sensor exhibits a high sensitivity
of 10.31 pA/(mM cm?), a very good specificity with negligible responses from interfering agents (e.g.,
ascorbic acid, uric acid, glucose, and creatinine) of less than 5%, and a highly linear response for the
lactate concentration ranging from 1 to 20 mM.

Combining reverse iontophoresis (RI) to extract interstitial fluid (ISF) glucose to the skin surface
results in a tattoo-based noninvasive glucose monitoring system [61]. This enzymatic
amperometric biosensor has a similar principle of the GlucoWatch glucose sensor. The device
system has one pair of the anodic and cathodic contingents, with each consisting of a group of
working, counter, and reference electrodes encompassed by an additional Ag/AgCl RI electrode for
efficient extraction of ISF. The glucose tattoo sensor exhibits a sensitivity of 23 nA/uM and a limit
of detection of 3 uM, and a linear response range from 0 to 100 uM. Exploiting two iontophoretic
electrodes (anode and cathode) with three amperometric sensing electrodes (working, reference, and
counter electrodes) in the anode compartment can also yield a wearable alcohol sensor system (Fig.
8d) [46]. By delivering the pilocarpine drug from the anode compartment, iontophoretic electrodes
induce the sweat in the anode region for the alcohol analysis with a high sensitivity to detect ethanol
(0.362 + 0.009 pA/mM). Because of the use of alcohol oxidase, the alcohol sensor demonstrates
negligible interferences from glucose, uric acid, lactate, ascorbic acid, and creatine.
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Figure 8. Temporary tattoo-based wearable electrochemical biosensors. (a) i) Schematic and ii-iv) optical images of the

processes to prepare temporary transfer on-skin tattoo-like electrochemical sensor; Reproduced with permission from [57],

Copyright 2012, The Royal Society of Chemistry. (b) Tattoo-like biosensor for detecting nerve agents: i) Image of the

integrated potentiometric biosensor system placed on the mannequin for wireless signal transmission with schematics to

show ii) sensors printed on the tattoo paper and optical images to show iii) sensors transferred to the skin after removal of the

protective layer; Reproduced with permission from [175], Copyright 2018, Elsevier. (c¢) i) Schematic illustration of a

three-electrode “NE” tattoo-like electrochemical sensor to detect epidermal lactate, with its ii) working principle and iii)

demonstration of sweat lactate monitoring during cycling exercise; Reproduced with permission from [60], Copyright 2013,

American Chemical Society. (d) Tattoo-based transdermal alcohol sensor. i) Schematic diagram of an iontophoretic-sensing

tattoo-like device for transdermal alcohol sensing, as well as schematic diagrams to show ii) its wireless operation and iii)

constituents in the iontophoretic system; Reproduced with permission from [46], Copyright 2016, American Chemical Society.

4.4 Stretchable thin-film biosensors
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Flexible thin-film biosensors can withstand a mechanical strain before fracture (e.g., < 1% for
paper and < 5% for plastic substrates). However, opportunities still exist for electrochemical
biosensors when the applied strain from various loading conditions exceeds the fracture limit
[177-179]. Additionally, the flexible thin-film biosensors cannot conform to the textured surface of
the skin at various locations on the human body. Imparting stretchable characteristics in the
devices represents a simple yet effective strategy to integrate them on the non-developable surfaces
(i-e., non-zero Gaussian curvature) of the skin [15,180-183]. The stretchable devices can be realized
by exploiting either intrinsically stretchable materials or stretchable structures. The stretchable
structures [184,185] applied for electrochemical biosensors include wavy thin-film structures
[186,187], serpentine structures [57,129,188,189], mesh structures [190,191], island-bridge structures
[192,193], among others.

With the “island-bridge” design, the rigid electrodes (i.e., islands) from screen printing are
connected by serpentine interconnects (i.e., bridges) from lithography on an elastomeric substrate
(Fig. 9a) [192]. Without a specific requirement for the material in the rigid islands, the electrodes
can then be prepared with a wide range of functional materials such as printable inks (e.g., Ag/AgCl,
enzyme-loaded Prussian blue, and carbon inks). The bridges can also be replaced by other
stretchable structures to provide a variety of different stretchable layouts. By selecting ferricyanide
and dopamine as target analytes, the electrochemical biosensor exhibits a negligible response change
even for a repeated biaxial strain of 75%. Applying the structure in a lactate biosensor measures the
After the perspiration of the subject at ~ 900 s, increasing the cycling intensity results in an increase
in the sweat lactate level, as evidenced by the rising current.

Without using the lithographic approach for the bridges, the serpentine structures (arc angle of
180°) that connect electrodes and contact pads can also be created by screen printing of conducting
inks with tailored elastomer and surfactant through a custom-designed stencil (Fig. 9b) [188]. The
detection of ferricyanide with cyclic voltammetry shows a minimal change in the peak current
before and after ten fatigue cycles (stretching to 100% and then back to 0) for a total of 50 repetitions.
Free-standing serpentine structures with an optimized arc angle can also be combined with
intrinsically stretchable nanomaterial-based inks to result in a highly stretchable CNT-based
electrochemical biosensor (tensile strain up to 500%) (Fig. 9c) [58]. After the free-standing
serpentine interconnects fully unwind upon stretching, further applied tensile strain leads to an
increase in the resistance of the intrinsically stretchable CNT inks. The electrochemical biosensors
with stretchable structures can also be applied to stretchable textile substrates. Combining
polyurethane (PU)-based ion-selective membranes with CNT binder inks along with
Ecoflex-containing Ag/AgCl inks printed in serpentine pattern results in a highly stretchable
textile-based potentiometric biosensor that can withstand a tensile strain of 100% (Fig. 9d) [128].
The PU matrix provides the biocompatibility and resistance against mechanical stress/strain that is
lacking in ion-selective membranes based on PVC matrices. By exploiting adsorptive stripping
voltammetry (AdSV) to assay trace amounts of species with interfacial adsorption on the working
electrode, similar stretchable electrochemical biosensors can also detect explosive compounds. This
sensor consists of the Ag/AgCl-Ecoflex reference electrode and the CNTs-PU working/counter
electrodes. The sensor can detect 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and hydrogen peroxide
with negligible changes in response to extreme multiaxial and bending deformations from inflation
and deflation of balloon (> 400% increase in the balloon area) (Fig. 9e) [189].
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with permission from [128], Copyright 2016, Wiley-VCH. (e) Series of optical images to show different inflation levels of the
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5. Conclusions and future perspectives
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In this mini-review, we have briefly summarized the recent development of flexible and
stretchable electrochemical biosensors for personal healthcare, which has experienced remarkable
growth over the past few decades. Integrating these sensors with affordable and advanced wireless
modules [194-196] results in functional devices that can continuously detect and analyze biofluids
such as saliva, tear, sweat, and interstitial fluid. Despite the significant strides achieved in the field
of the electrochemical biosensors, several challenges still exist before their wide adoption in the
practical and daily applications. First of all, effective sampling of biofluids from the body is crucial
to ensure accurate sensing results, necessitating the need for a biofluid sampling and collection
module in the system [197-199]. It is also highly desirable to improve the sensing performance of
wearable electrochemical biosensors. =~ While significant efforts have been devoted to the
development of highly sensitive sensors, their response to various interfering factors in the complex
biofluids cannot be ignored, especially when a trace amount of target analyte is present. The
deconvolution of multiple components from a mixture by a high-density array represents a
promising approach to address such a challenge [11].

The wearable electrochemical biosensors should also maintain stable performance with
minimal interfacial adhesion issues against washing or relatively high temperature. A possible
concern from the relatively high temperature is the damage of the sensor in a hot shower [189].
While there are plenty of strategies to achieve a high dry adhesion, the robust wet adhesion is of
more relevance to the application of wearable electrochemical biosensors. The bioinspired
materials (e.g., gelatin-, collagen-, or chitosan-based materials) [200-202] have been studied and
developed to provide an improved wet adhesion [203]. Exploring these materials can achieve
stable binding between functional layers (e.g., electrode and substrate) in the sensors and at the
sensor/skin interface, despite the drastic differences in their physical and chemical properties.
However, attention still needs to be paid to biocompatibility, tunable adhesion strength, reusability,
and compliance [204]. In addition to the bio-integrated wearable devices to sample the biofluids
from the skin surface, exploiting the recently developed biodegradable electronics [205-213] could
open up new opportunities for transient electrochemical biosensors to access biofluids from inside
the body. Additionally, real-time monitoring of various biofluid contents from different
populations presents an excellent opportunity for big data analytics, which can help accurately
inform the health condition and provide in-time treatment [103].
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