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ABSTRACT. Motivated by applications of the discrete random Schrodinger
operator, mathematical physicists and analysts began studying more general
Anderson-type Hamiltonians; that is, the family of self-adjoint operators

H,=H+YV,

on a separable Hilbert space H, where the perturbation is given by

Vo= 3 wnlrga)en

with a sequence {p,} C H and independent identically distributed random
variables w,,. We show that the essential parts of Hamiltonians associated to
any two realizations of the random variable are (almost surely) related by a
rank-one perturbation. This result connects one of the least trackable perturba-
tion problem (with almost surely noncompact perturbations) with one where
the perturbation is “only” of rank-one perturbations. The latter presents a
basic application of model theory. We also show that the intersection of the
essential spectrum with open sets is almost surely either the empty set, or it
has nonzero Lebesgue measure.
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1. Introduction

In this spirit, let H be a self-adjoint operator on a separable Hilbert space H.
Let {¢,} C H be a sequence of linearly independent unit vectors in H, and let
w = (w1, ws, . ..) consist of independent, identically distributed random variables
w, corresponding to a probability measure on R. Assume that the probability
distribution satisfies Kolmogorov’s 0-1 law (see Section 2.5 below).

Without going into details about the definition, the Anderson-type Hamiltonian
is an almost surely self-adjoint operator associated with

H,=H+YV, on®H, V, = an(-,gon)apn. (1.1)

In many applications the vectors ¢, are mutually orthogonal. However, a pri-
ori, the definition allows the case of nonorthogonal vectors ¢,,. And many of the
properties that were originally proved for mutually orthogonal vectors immedi-
ately extend to this case.

Probably the most important special case of such Anderson-type Hamiltonians
is the discrete Schrodinger operator with random potential on [?(Z?) given by

Hf(x)=—=Af(z) ==Y (fle+n) = f(2)),

Inj=1

1 z=n,

pn(r) = 0n(2) = {

0 otherwise,

where each w, is distributed according to uniform distribution on the interval
[—c, ¢]. That just means that each value in the interval occurs with equal proba-
bility. Many Anderson models are special cases of an Anderson-type Hamiltonian.

From the perspective of classical perturbation theory (see [15]), the main dif-
ficulty is that the potential V, is almost surely a noncompact operator, implying
that many results from classical perturbation theory cannot be applied here.

On the side we mention an important open problem concerning this per-
turbation family. The Anderson localization conjecture for weak disorder (see
2], [10], [16], [17], [4]) stands out as one problem whose solution has been much
attempted. The general question is whether or not an initially localized wave
packet will spread out over time or remain localized in space as time moves on.
Literature renders a variety of definitions on what precisely localization means.
For example, some definitions use the wave operator, while others formulate local-
ization in terms of dynamical properties, or the persistence of a nontrivial abso-
lutely continuous part (almost surely). The conjecture can be formulated with
either of these definitions. For simplicity we choose the latter. To embed the con-
jecture, we mention that, for the discrete random Schrédinger operator in one
dimension (d = 1), operators H,, are known to have trivial absolutely continuous
parts (almost surely) whenever ¢ > 0. In higher dimensions (d > 2), there is a
dimension-dependent threshold c¢; above which the absolutely continuous parts
vanish almost surely, and it is expected that for d > 3 they prevail for small
positive c¢. Now, it is conjectured that for d = 2, the discrete random Schrodinger
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operator has vanishing absolutely continuous part (almost surely) whenever ¢ > 0,
no matter how small.

In contrast to Anderson-type Hamiltonians stands the seemingly simple prob-
lem of perturbing a self-adjoint operator by an operator of rank one. Namely,
for a self-adjoint operator A on H consider the family of self-adjoint rank-one
perturbations by a vector ¢ € H:

A, =A+a(,p)p, aeR

(For details beyond this formal definition, see the discussion surrounding equation
(2.2) below.)

When the underlying Hilbert space H is finite-dimensional, we just need to keep
track of the eigenvalues. However, for infinite-dimensional H, intricate scenarios
can occur that are closely connected with the boundary values of functions from
model spaces. In fact, the problem of rank-one perturbations has connections to
many interesting topics in analysis, such as model theory including deBranges—
Rovnyak and Sz.-Nagy-Foiag model spaces (see [9], [19], [20]), Nehari interpo-
lation (see [25]), Carleson embeddings (see [7]), singular integral operators (see
[18]), and truncated Toeplitz operators (see [5]).

With this in mind it becomes clear that, although rank-one perturbations are
the simplest from a perturbation-theoretic perspective, their fine properties are
extremely rich in nature. While Aronszajn—Donoghue theory captures much of the
theory related to rank-one perturbations, the picture is certainly not complete.
For example, we do not know the singular continuous spectrum of the perturbed
operator A, in terms of properties of the unperturbed operator A (see, e.g., [26]).

It was surprising when the Simon and Wolff [28] criterion on rank-one pertur-
bations was used to study localization properties of random Jacobi matrices (see
[27]). These ideas were extended to Anderson-type Hamiltonians and refined (see
[1], [12], [14]). For example, it turns out that under mild conditions, any nonzero
vector is cyclic for the Anderson-type Hamiltonian almost surely.

In this manuscript we present a new relationship between rank-one pertur-
bations and the essential parts of Anderson-type Hamiltonians. In view of the
great difference in the very nature of these two perturbation problems, this seems
almost paradoxical. On the one hand this result restricts the spectral behavior
of the Anderson-type Hamiltonians, while on the other hand it shows the great
complexity of the problem of rank-one perturbations.

The proof at hand consists of constructing the spectral measures of the two
operators. The Krein—Lifshits spectral shift function allows us to ensure that the
hence constructed operators are indeed related by a rank-one perturbation. These
tools are based on similar observations made by Poltoratskii in [24].

Our work here is organized as follows. In Section 2, we review related results
from perturbation theory. We introduce and remind the reader of a few facts
about the Krein—Lifshits spectral shift function for rank-one perturbations, and
we review on Kolmogorov’s 0-1 law as well as its implications for Anderson-type
Hamiltonians. In Section 3, we mention some simple known results along with
some new results. Specifically, Section 3.1 provides a short proof for two state-
ments about the deterministic spectral structure of Anderson-type Hamiltonians.
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And in Section 3.2 we focus on the intersection of the essential spectrum with
open sets, showing that this intersection is almost surely either the empty set
or has nonzero Lebesgue measure (see Theorem 3.3). In Section 4, we state and
prove the main result (Theorem 4.1), which roughly says that the essential parts
of H,, and H, are almost surely with respect to the product measure P x P unitary
equivalent modulo a rank-one perturbation.

2. Preliminaries

2.1. Perturbation theory. Perturbation theory is concerned with this general
question: Given some information about the spectrum of an operator A, what
can be said about the spectrum of the operator A + B for B in some operator
class? Depending on which class of operators the perturbation B is taken from,
we obtain different results of spectral stability, that is, preservation of parts of
the spectrum under such perturbations.

Since unitarily equivalent operators (i.e., UAU™! = B for some unitary oper-
ator U) are of the same spectral type, we introduce the following notation. We
write A ~ B for two operators A and B if the operators are unitary-equivalent.
The notation

A ~ B(mod Class X)

is used if there exists a unitary operator U such that UAU ~! — B is an element of
Class X. Here, Class X can be any class of operators (e.g., compact, trace class,
or finite-rank operators).

For self-adjoint operators A and B, let us recall the following well-known the-
orems that will be used in the proof of Theorem 3.1.

Theorem 2.1 ([6, Chapter 9, Theorems 3, 6]). The essential spectra of two
bounded self-adjoint operators A and B satisfy oess(A) = 0ess(B) if and only if
A ~ B(mod compact operators).

Here, the essential part of the spectrum is obtained by removing the isolated
eigenvalues of finite multiplicity from the spectrum.

Theorem 2.2 (Kato—Rosenblum; see [15]). If for two self-adjoint operators we
have A ~ B(mod trace class), then their absolutely continuous parts are equivalent
(i.e., Aac ~ Bac).

We now briefly explain how to recover the absolutely continuous part of an
operator. First, find a spectral measure p (using the spectral theorem with respect
to some minimal cyclic set of vectors) and take its Radon-Nikodym derivative
‘di—ft‘ = dta.. The desired part of the operator is the one that corresponds to this
absolutely continuous part of the measure.

Remark 2.3. For self-adjoint A and B, Carey and Pincus [8] characterized when
two operators are related by a rank-one perturbation, that is, when we have
A ~ B(mod trace class). Of course, they must have unitarily equivalent abso-
lutely continuous parts. Outside the continuous spectrum, they are only allowed
discrete parts. And the discrete eigenvalues of A and B (counting multiplicity)
must fall into three categories: (i) those eigenvalues of A with distances from the
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joint continuous spectrum having finite /' norm (i.e., are trace class), (ii) those
eigenvalues of B with distances from the joint continuous spectrum having finite
I' norm, and (iii) eigenvalues of A and B that can be matched up (via a 1-1 and
onto map) so that their differences have finite [* norm.

In the case of purely singular measures (i.e., with trivial absolutely continuous
part), the next theorem resembles a characterization for A ~ B(modrank one).
Recall that two operators A and B are said to be completely nonequivalent, if
there are no nontrivial closed invariant subspaces H; and Hs of H such that
Alz, ~ Alx,. It is not hard to see that two operators are completely nonequiva-
lent, if and only if their spectral measures are mutually singular. Here, we mean
mutually singular in the sense of measure theory. That is, two measures p and v
are said to be mutually singular, if there is a measurable set B so that u(B) =0

and ¥(R\ B) = 0.

Theorem 2.4 ([24, Theorem 9]). Let K C R be closed. By I = (z1;11), > =
(2;y2), ... denote disjoint open intervals such that K = R\|JI,. Let A and B
be two cyclic self-adjoint completely nonequivalent operators with purely singular
spectrum. Suppose that

0(A)=0(B)=K
and assume that, for the pure point spectra (consisting of the eigenvalues) of A
and B, we have

UPP(A> N {xlyyl>$2ay27 . } = 0pp<B) N {:L'la Y1,T2,Y2, . - } =4J.
Then we have
A ~ B(mod rank one).

The proof of our main result applies the latter theorem as well as Lemma 4.3
below, which allows us to introduce absolutely continuous spectrum (while retain-
ing precise control of the singular measures).

2.2. Cauchy transform and rank-one perturbations. The deep connection
between operator theory and the Cauchy transform

KT(Z)ZE/C”—“), seC,,

TJpt—2

of an operator’s spectral measure 7 is well studied. This relationship is frequently
used to learn about the spectral properties of the operator under investigation.
The connection between operator theory and the Cauchy transform and the spec-
tral theory of rank-one perturbations is particularly well developed (see, e.g.,
9], [19], [20], [18], [25]). This connection is one of our major ingredients. Here we
merely recall the results that are applied later in this article.

It is well known that the density/weight function w € L' of the absolutely
continuous part of the measure can be recovered via

dTac(z) = wdx = liﬁ)l SK7(x +iy)dx, x€R, (2.1)
y

where & denotes the imaginary part.
In Aleksandrov—Clark theory, the following result plays an essential role.
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Theorem 2.5 (][22, Theorem 2.7], also see [13, Theorem 1.1]). Let 7 and 7 be
two nonnegative measures on the real line such that 7 = fr + 75. Then
KT e
K—T(:c +ie) 8 f(z)  Te-almost everywhere.
-

Here we always work with measures that satisfy Poisson integrability [ ‘Z;fl) <

oo. Especially when dealing with rank-one perturbations, we do often encounter
measures with [ ‘dﬂTJ(r? = 00. In order to avoid difficulties with convergence, it is
standard to introduce an alternative definition of the Cauchy transform

1 1 t
Ki7t(z) = ;/R<t TR g 1) dr(t), =z e C;.
We use both K7 and K;7 below. Notice that the two behave alike locally, as the
integrand —ﬁ is uniformly bounded on R. Although it will not play a role later
on, it is worth mentioning here that (for 7 such that K7 is defined on C,) the
real part of K7 differs from the conjugate Poisson integral by a finite additive
constant.

The advantage of introducing this alternative definition is that it makes it
possible to define K;7 for more general measures 7. Indeed, since é — t2i-1
behaves like =2 as t — oo, we can work with Poisson integrable measures 7 and
do not need to assume the stronger condition [ ‘lﬁg < 00.

Let A be a self-adjoint (possibly unbounded) operator on a Hilbert space H.
Let ¢ be such that the corresponding rank-one perturbation will be form bounded
(ie., |(1+]A)"2¢|l3% < oo; see [18] and its references for more information).
Then we can use quadratic forms to define the family of rank-one perturbations

via the formal expression

Ay =A+a(,9)p, a€eR. (2.2)

Only focusing on the interesting part of the perturbation problem, we assume
that ¢ is a cyclic vector for A—that is,

H = span{(A — 2I)~lp: z € C\R}.

To see that we are not restricting generality, notice that on the orthogonal com-
plement of the invariant subspace span{(A — zI)~ly : z € C\R} for A and A, in
‘H, operator A, is independent of «.

In our setting, it is well known that ¢ is also a cyclic vector of the operator
A, for all @ € R. By pu, denote the spectral measure of A, with respect to . In
other words, invoking the spectral theorem, pu, is given by

(Aa —20) ', 0),, = / dpia(?) for all z € C\R.
R L—2
We use the notation p = pyp.
With the resolvent formula, it is not difficult to see that the Cauchy transforms
of the measures p and p, of the rank-one perturbation (2.2) are related via the
Aronszajn—Krein formula
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Kp

Kuy =———7+
K 1+ 7maKu

(2.3)
(see also [26, (11.13)]).

The Aronszajn—Donoghue theory (see, e.g., [26, Section 12.2]) provides a good
picture of the spectrum of the perturbed operator for rank-one perturbations.
One of its intriguing results says that the singular part of rank-one perturbations
must move when we change the perturbation parameter a:

Theorem 2.6 (Aronszajn—Donoghue). For coupling constants o # 3 € R, the
singular parts of the corresponding spectral measures [, and pg are mutually

singular (i.e., (fa)s L (115)s)-

This result was proved by Aronszajn for Sturm-Liouville operators with varying
boundary conditions in [3] and by Donoghue in the abstract setting of rank-one
perturbations in [11]. Another result within this theory gives a necessary condition
for a point to be in the essential support of the singular spectrum of A,. The
theorem in this form can easily be extracted from Theorem 6 of [11], which states
that the set {x : limyyo Ku(x + iy) = —a~'} is a carrier for (u,)s (meaning that
(11a)s s trivial outside that set).

Theorem 2.7. We have (ua)s({z : limyo Ku(z +iy) # —a~'}) = 0.

2.3. Essential support of the absolutely continuous part of a measure.
In order to define one of the objects of interest, we isolate the limit supremum
from the symmetric definition of the Radon—Nikodym derivative. In this spirit,
we let 7 be a Borel measure on R. Fix ¢ > 0 and consider the Borel function
x +— D.7(x), where

T([x — e,z +¢€])

2¢ '
Note that the denominator equals the Lebesgue measure of interval [z — e,z + ¢].
The essential support of the absolutely continuous part of a Borel measure 7
(on R) is given by

D.7r(x) :=

ess-Supp Tac = {2 € R : 0 < limsup D.7(z) < oo}. (2.4)
e—0
Remark 2.8. In order to embed this into classical theory, we mention that the
Radon-Nikodym derivative of 7 exists at x if and only if
limsup D.7(z) = liminf D.7(x) < oo.
e—0 =0

Remark 2.9. Since the Radon—Nikodym derivative exists almost everywhere (with
respect to Lebesgue measure), two operators satisfy A,. ~ B, if and only if the
essential supports of the absolutely continuous parts of their spectral measures
are equal up to a set of measure zero. Indeed, as described in [26, Section 12.1],
two absolutely continuous measures f(x)dz and g(z)dx are equivalent if and
only if the symmetric difference of the sets {z | f(z) # 0} and {x | g(x) # 0}
has Lebesgue measure zero. And the operators that act as multiplication by the
independent variable M, on L*(f(z)dz) and L?*(g(x) dx) are unitarily equivalent
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if and only if the measures f(x) dx and g(z) dz are equivalent. It remains to apply
Remark 2.8.

Remark 2.10. The same arguments used in Remark 2.9 also imply that the essen-
tial support of the absolutely continuous part of an operator’s spectral measure
is up to a set of measure zero independent of the choice of cyclic vector (used in
the spectral theorem).

It is worth presenting a simple example to demonstrate that ess-supp 7. €
Supp Tac may happen, as follows.

Example 2.11. Let 7 be the measure given by the sum of Lebesgue measures on
intervals that have all rational points of [0, 3] as centers and with width 271,
Namely, with an enumeration {¢,} of these rational points, let

dT(I) = Z X[qn_zin,q"“‘zin] (I) d'x

neN

The sum of the interval width is Y-, 27" = 2, so that the Lebesgue measure
of the essential support satisfies the crude estimate |ess-supp,. 7| < 2. On the
other hand, the rationals are dense in [0, 3] and so 3 < |supp 7a.|. In fact, as 0
and 3 are centers of some intervals, we have 3 < |supp Tuc|. In any case, we have
€SS-SUPP Tac & SUPD Tac-

2.4. Krein—Lifshits spectral shift for rank-one perturbations. In this sec-
tion, we briefly present the Krein—Lifshits spectral shift function and its properties
for rank-one perturbations. More detailed explanations, examples and proofs can
be found in [23] and the references therein.

Consider the rank-one perturbations A, given by (2.2) and their spectral mea-
sures i, corresponding to the cyclic vector ¢. Since the spectral measure p is
nonnegative, the Cauchy transform Kp(z) is Herglotz (i.e., its imaginary part is
nonnegative for z € C, ). For every o € R, it is thus possible to find an essentially
bounded by the —7 < u(t) < 7, t € R, function and a constant ¢ € R such that

1+ maKp = fvte (2.5)

(see, e.g., [21, Section VIII.1]). To better understand this formula, recall that
the angular boundary values of the Cauchy transform exist almost everywhere
with respect to the Lebesgue measure. Now think of Kju as the analytic upper
half-plane extension of u, so that, for & > 0 (we can always re-label A and A, so
that o > 0), function u can equivalently be defined via the principal argument

u=arg(l + raKpu). (2.6)

Function u is called the Krein—Lifshits spectral shift of the rank-one perturbation
A,. Since Kp is Herglotz, the range of u is contained in [0, 7. Indeed, consider
the logarithm of (2.5), take its imaginary part, and recall the relation (2.1). By
breaking Kp in (2.6) into real and imaginary part Ky = iPu — Qu (where P
denotes the Poisson integral and @) denotes the conjugate Poisson integral), it
becomes clear that the singularity of the integrand causes u to jump from 0 to m
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at isolated points of supp ps. (In the nonisolated case, a characterization of the
point masses of p and p, is included in [21, Section VIIL5].)

Using the Aronszajn—Krein formula (2.3), we obtain a relation between the
shift function and the measure f,:

—Kiu—c

l—maKp, =e
The analog of (2.6) for u,,
u=—arg(l — mraK i), (2.7)

implies that u drops from 7 to 0 at isolated points of supp(pa)s-

So in essence, each family of spectral measures {is}aecr corresponds to some
Krein—Lifshits spectral shift function u. Further the set where u € (0, 7) and not
equal to one of the endpoints of the inverval is equal (up to a set of Lebesgue
measure zero) to ess-supp(pt)a.. In particular, it follows that

ess-SUPP(f4)ac = €55-SUPDP(fa )ac-

Remark 2.12. These observations about the relationship between the spectrum
of A and A, and the behavior of u give an alternative proof for the fact that the
discrete spectrum of two purely singular operators in the same family of rank-one
perturbations must be interlacing. In the absence of absolutely continuous spec-
trum, u can only take on the values 0 and 7, so that the Krein—Lifshits spectral
shift essentially jumps from 0 to 7 and then back.

Vice versa, it is well known that, for fixed @ > 0, any measurable function
u which is essentially bounded by 0 < u < 7 is the Krein—Lifshits spectral
shift of the rank-one perturbation M, + «(-,1)1 of the multiplication operator
M,, by the independent variable on L?(p). In fact, given such a function u and
a > 0, we obtain a unique pair of measures pu and v = p, if we impose a
normalization condition on the measures. For o = 1, we say that the measures u
and v correspond to u.

2.5. Kolmogorov’s 0—1 law and Anderson-type Hamiltonians. Consider
triples (€2, A, P) of probability spaces, where {2 = R consists of countably many
copies of R and where P is a countable product of equal probability measures. We
let w = (w1, ws,...) € Q be taken in accordance with P. Here we consider only
those probability measures P that satisfy Kolmogorov’s 0-1 law; namely, proper-
ties that are invariant under changing finitely many of the w, are enjoyed with
probability 0 or 1. This is particularly useful here, because perturbation theory
tells us that many properties are independent under finite-rank perturbations.
Specifically, we use the following.

Proposition 2.13 (Kolmogorov’s 0-1 law applied to Anderson-type Hamiltoni-
ans). Consider the Anderson-type Hamiltonian H,, given by (1.1). Assume that
the probability distribution P satisfies the 0-1 law. Then those spectral properties
that are invariant under finite-rank perturbations are enjoyed by H,, almost surely
or almost never.
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3. Deterministic spectral structure

3.1. Deterministic absolutely continuous part and essential spectrum.
While the statement in item (1) below is known (see [12, Corollary 1.3]), we follow
the statement of Theorem 3.1 with a short proof for the convenience of the reader
and since the proof structure also underlies the proof of the statement in item

(2).
Theorem 3.1. Let H,, be given by (1.1 ). Assume the hypotheses of Section 1 and
assume that P satisfies the Kolmogorov 01 law. Then almost surely with respect
to the product measure P x P:

(1) (Ho)ac ~ (Hn>ac and

(2) H, ~ H,(mod compact operator).

Proof. (In this proof, the words “almost surely” (resp., “almost never”) refer to
almost surely (resp., almost never) with respect to the product measure PxP.) Let
H; denote finite-rank perturbations of H (i.e., w = (w1, Wy, ...) with @, # 0 only
for finitely many n). In particular, Hy are compact and trace class perturbations
of H.

To show the statement in item (1), without loss of generality, let pu, denote
the “fiber” of the spectral measure of H, for which ess-supp p, is maximal with
respect to the inclusion of sets. (Alternatively, one can think of u, as the asso-
ciated scalar-valued spectral measure. This can also be obtained by taking the
trace of a matrix-valued spectral measure.) Let ug be the analog measure for H;.

By the Kato—Rosenblum theorem (see Theorem 2.2) and Remarks 2.8 and 2.9,
for almost every x € R we have x € ess-supp(f(0,0,0,..))ac if and only if z €
ess-Supp( (g )ac- By virtue of the Kolmogorov 0-1 law (see Proposition 2.13), for
almost every € R we have x € ess-supp(p, )ac almost surely or almost never.
The set (up to a set of measure zero) of points = for which the latter is almost
surely true is hence deterministic and the statement in item 1) is proven.

Item (2) follows in analogy via the Weyl-von Neumann theorem (see Theo-
rem 2.1) replacing Theorem 2.2. U

Remark 3.2. (a) In fact, we have proved the stronger than item (1) of Theorem 3.1
statement that the essential support of the absolutely continuous spectrum is
a deterministic set (up to a set of Lebesgue measure zero). Namely, for some
measurable set A C R, we have that the symmetric difference

A A ess-Supp (i )ac

has Lebesgue measure zero P almost surely w.

(b) Similarly for item (2) of Theorem 3.1, it follows that there exists a deter-
ministic set K such that K = oe(H,) almost surely.

(c) Although the perturbation V, is almost surely (with respect to P) a non-
compact perturbation, there is still a deterministic set K = 0o (H,,) for P almost
all w.

3.2. Intersection of the essential spectrum with open sets. Assume the
setting of Theorem 3.1. Recall that oes(H,,) is a deterministic set, by item (2) of
Theorem 3.1.
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Theorem 3.3. Assume the hypotheses of Theorem 3.1 and assume that P is a
product of absolutely continuous measures. Let O be an open set and let X =
O N oess(Hy). Then almost surely

either X = &, or the Lebesque measure | X| > 0.

Proof. Assume that | X| = 0and X # @. Take z € X. Since O is open, there exists
e > 0 such that the interval (z —e,z+¢) C O. Consider X, = X N(x —¢e,x+¢).
Clearly, we have | X | = 0.

Recall item (1) of Theorem 3.1. This implies that almost surely

(,Uw)ac((x — &+ 5)) = (//’OJ)ac(Xe) = 0.

In virtue of Lemma 3.4 below, (u,)s(X:) = 0 almost surely. Therefore = ¢
Oess(H,,) almost surely, in contradiction to the fact that x € X. Hence almost
surely either X = @ or | X| > 0. O

Lemma 3.4. Assume the hypotheses of Theorem 3.1 and assume that P is a
product of absolutely continuous measures py. If set A C R satisfies |A| = 0, then
we have (f1,)s(A) = 0 almost surely.

Proof. Recall that P is a product of absolutely continuous measures p;. Assume
that (pw)s(A) > 0 with positive probability. Then (for arbitrary k& € N) there
exist wyp and X C R such that p,(X) > 0 and such that, for all « € X', we have
(Hw, )s(A) > 0 where w, = wy+ady. But this contradicts the Aronszajn-Donoghue
Theorem 2.6 for rank-one perturbations. Notice that X contains at least two
points, since all y are absolutely continuous. Il

4. Almost sure unitary equivalence modulo a rank-one perturbation

The main result of this paper, Theorem 4.1 below, states that the essential parts
of two Anderson-type Hamiltonians are unitarily equivalent modulo a rank-one
perturbation. Its proof relies on constructing an appropriate Krein—Lifshits spec-
tral shift function. By 05 we denote the boundary of a given set S, and by | - |
denote the Lebesgue measure.

Theorem 4.1. Assume the hypotheses of Theorem 3.1. Assume that (H,)ess 1S
cyclic almost surely (with respect to P) and P = [], pux is a product measure of
purely absolutely continuous measures i, on R. Let i denote the spectral measure
of the operator (H,,)ess with respect to some cyclic vector. If |0 ess-supp(pi)ac| = 0
almost surely, then

(Hy)ess ~ (Hy)ess(mod rank one)

almost surely with respect to the product measure P x P.

On the one hand, this result greatly restricts the possible deterministic prop-
erties of Anderson-type Hamiltonians. On the other hand, it tells us how ‘wild’
rank-one perturbations can be.

Recall that the essential spectrum comes about from removing from the spec-
trum all isolated point masses that have finite multiplicity. Further recall that
the absolutely continuous and singular parts of the spectrum arise from Lebesgue
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decomposition of its spectral measure, = . + 5. A particular decomposition
of the operator is then obtained through unitary equivalence with the particular
decomposition of the spectral representation. (That is, on the spectral repre-
sentation side, the L?*(u) space is orthogonally decomposed in accordance with
the particular spectral decomposition, the multiplication operator is restricted to
these invariant subspaces, and the decomposition of the operator is carried over
via unitary equivalence.)

Remark 4.2. (a) If a family of Anderson-type Hamiltonians possesses a weak
Anderson localization property (namely, if there is no absolutely continuous spec-
trum almost surely), then the hypotheses of cyclicity and |0 ess-supp(fiw)ac| = 0
hold automatically. Indeed, the restricted operator (H,)s is cyclic almost surely
by Theorem 1.2 of [14]; also recall that the operators (H, ). and (H,)s are com-
pletely nonequivalent because the essential supports of their spectral measures are
mutually singular. Similarly, almost sure cyclicity of (H,)a. implies the almost
sure cyclicity of (H,,)ess-

(b) In the conclusion of this result it is necessary to restrict to the essential parts
of the operators. The statement H, ~ H,(modrank one) is not true, since the
finite isolated point spectra of H,, and H, might not interlace. This intertwining
is one of the necessary conditions for two operators to be unitarily equivalent up
to rank-one perturbation. In fact, between two points in the discrete spectrum of
H,, there may be any number of points from the discrete spectrum of H, (almost
surely).

(c) Theorem 4.1 cannot be concluded trivially by using Theorem 2.4, plus
item 1) of Theorem 3.1 and then separating the singular from the absolutely con-
tinuous part. This can be seen by counterexample: Embedded singular spectrum
can occur for one operator, but not for the other (with positive probability). In
particular, the absolutely continuous spectrum of (H, )ess may have dense embed-
ded singular spectrum, and (H,)es has purely absolutely continuous spectrum.
In this case, the singular parts of (H,,)ess and (H,))ess are not unitarily equivalent
up to rank-one perturbations (as they would have to interlace).

(d) We expect that relaxing the hypotheses of the theorem from (H,)ess is
cyclic to assuming that it has finite multiplicity m would yield the conclusion
(Hy)ess ~ (Hy)ess(mod rank m).

The proof of Theorem 4.1 uses Poltoratskii’s result on a characterization of
rank-one perturbations in terms of the spectrum (Theorem 2.4) as well as the
following lemma which will allow us to introduce absolutely continuous spectrum
while retaining precise control of the singular measures.

Lemma 4.3. Let u be a Krein—Lifshits spectral shift function with range in the
set {0,m}. Let u and v be the corresponding spectral measures. Take an open set
O C R such that |O] < oco. For ¢ > 0 define a new shift function by

(2) = u(x) on R\O,
|u(z) — min{dist(R\O, z), 7/2}| ifz € O.
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For the measures i and U that correspond to w, we have the equivalence of mea-
sures filr\o ~ ptlrio and Ulr\o ~ v|r\o-
Proof. For t € R\O, we have
— U dist(R\O
Ky (u— )(1)] < / ‘M‘dx < / dist(R\O, ) < o],
o) t—x o) |t — $|
and with (2.5), it follows that

1+7nKpn
1+7Kp

(Since i and 7 correspond to @, we have by convention o« = 1.) By definition
plr\o and filg\o are purely singular. Therefore, we have

0<e< < C <00 plr\o-almost everywhere.

K ~
0<e< K_u < C <00 plg\o-almost everywhere. (4.1)
i

If (on R\O) measure p has a part that is singular with respect to i (denote it
by 1), then the ratio of Cauchy integrals % tends to zero with respect to n almost
everywhere. This contradicts the lower bound of the last estimate (4.1). Hence
tt|r\0 must be absolutely continuous with respect to fi|g\o-

The other direction—that filmo is absolutely continuous with respect to
p|r\o—follows in analogy and we have proved that

flr\o ~ plr\o-
The result for v can be proven in analogy. U

Proof of Theorem 4.1. Most of this proof is to be understood almost surely with
respect to the product measure P x P, although this might not be stated every-
where explicitly. By p denote the spectral measure of the operator (H,,)ess with
respect to some cyclic vector and similarly for v and (H,)ess, where (w,n) is dis-
tributed according to P x P. It is worth mentioning that the spectral measures of
an operator corresponding to any two cyclic vectors are equivalent. In virtue of
Lemma 4.4 (below) we have that us L vy almost surely with respect to product
measure.

The goal is to produce a spectral shift function with corresponding spectral
measures that are equivalent to the spectral measures p and v, respectively. This
is done by construction of auxiliary measures p; and v; that behave like p and v
on the singular parts. And in a second step we modify these auxiliary measures
to obtain the desired absolutely continuous parts. In the end, we verify that we
did not destroy the good singular behavior that the auxiliary measures had.

By item (1) of Theorem 3.1, the symmetric difference

€SS-SUPP flac 2\ €SS-SUPP Vac

is a set of measure zero (almost surely with respect to the product measure). Let
us denote the intersection of these sets by F' = eSs-Supp fiac N €Ss-supp Vae. Notice
that by the hypothesis, without loss of generality, we can assume |0 ess-Supp fiac| =
|0 ess-supp vac| = 0. A simple set theoretic argument shows that |0F| = 0.
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Further, by item (2) of Theorem 3.1 and the Weyl-von Neumann theorem,
Theorem 2.1, their essential spectra satisfy oes(H,) = supp g = suppv. Let us
denote this set by

E = 0ess(Hy).

First observe that, by definition of £, operators (H,,)ess and (H,)ess have dense
purely singular spectrum on the set E\ clos(F'). By the definition of F' and since
|OF| = 0, it is possible to choose two purely singular measures p’' and v’ such
that:

e 1/ and v/ are mutually singular (1 L v/'),
[ ,ullR\(F\ap) = V/|R\(F\8F) = O, and so that
e i1 = s + ¢/ and v, = vy + 1/ have dense (alternating) spectrum on E.

The rough idea is that ju|r\(m\or) and vy |r\(m\or) are essentially what we are
looking for. Further, u; and 14 are spectral measures of operators that are rank-
one perturbations of one another. We still need to modify these measures on
F\OF, in order to ensure that the constructed measures are equivalent to p and
v also on F.

By Theorem 2.4, the measures p; and vy possess a spectral shift function wuy;
that is, there exists a function u; which is essentially bounded by 0 < u; < 7 and
such that

wy = arg(l + 7K py) = —arg(l — nKuy).

Note that the hypothesis that there are no point masses at the endpoints is
satisfied almost surely. So we can assume this condition without loss of generality.
In order to destroy the artificially created singular spectrum and introduce the
appropriate absolutely continuous spectrum, we define

(1) = uy () if x € R\(F\0OF),
? luy () — min{dist(R\(F\OF),z),7/2}| if z € F\OF,

and let ps and 15 be the measures corresponding to us.

It remains to prove that us ~ p and v, ~ v. We will explain the equivalence
of e and p. The same fact for v follows in analogy.

Let us begin with the absolutely continuous parts. Recall that [0F| = 0. So on
the set F' we have uy € (0,7) Lebesgue almost everywhere. By equations (2.6),
(2.7) and (2.1), it follows that %%(x) > (0 and < oo for Lebesgue almost all z € F.
This means that

(MZ)aC‘F ~ (,u)ac|F-
The equivalence of the absolutely continuous part on R\ F follows similarly from
the fact that uy takes only the values 0 or @ on R\F. We have shown that
(142)ac ~ Hac- And by the same reasoning we have (12)ac ~ Vac.
Now we need to ensure that this construction lead to the desired singular parts.

By the definition the measures we ensured that on the complement of the interior
of ' (on the set R\(F\OF)) we have the equality of measures

M1|R\(F\8F) = (,U«1)S|R\(F\8F) = H|1R<\(F\8F)
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and Lemma 4.3 implies that

talr\(m\ar) ~ (H2)s|r\(P\oF) ~ BlR\(F\oF)-

It remains to check the singular parts on F\JF. We begin by recalling that
in definition (2.4) the points where the limit-superior is infinite are excluded. So
by the definition of F' via the intersection of essential supports of the absolutely
continuous measures we have that ps|m\or = 0. By the definition of uy on F\OF,
the same is true for (us)s. Indeed, for any closed set X C F\OF there exists an
e > 0 such that us(z) € (6,7 —¢) for all z € X. By equation (2.7), this means
that

].i}/gl%KVQ(x +iy) #0 forall z € X.
y

In virtue of Theorem 2.7 (applied to the measures ji, = po and pu = 1) it follows
that (p2)s(X) = 0. Whereby the singular parts satisfy the desired property also
on F\OF. O

If the {¢,} form an orthonormal sequence, the following lemma is proved as a
corollary to the main theorem in [12]. Although, their proof extends immediately
to the nonorthogonal case, we decided to include a new shorter proof here.

Lemma 4.4. Assume the hypotheses of Theorem 3.1 and assume that P is a
product of absolutely continuous measures. Then (f,)s L (py)s almost surely with
respect to the product measure. In particular (with the notation of the proof of
Theorem 4.1), we have ps L v almost surely with respect to the product measure.

Proof. Assume that the set S = {(w,n) : (tw)s £ (iy)s} has positive product
measure. Because PP is assumed to be a product of absolutely continuous measures,
there then exists a pair (w,n) € S such that H, is a rank-one perturbation
of H,. But by the Aronszajn-Donoghue theory (see Theorem 2.6), this is not
possible. O
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